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1. INTRODUCTION

This note is a continuation of the papers [22] and [23]. As in [22] and [23], we
consider the 2 × 2 operator matrices

(1.1) H0 =

(
A0 T01

T10 A1

)

acting in the orthogonal sum H = H0⊕H1 of separable Hilbert spaces H0 and H1.
The entry A0 : H0 → H0 is assumed to be a (not necessarily bounded) selfadjoint
operator with the domain D(A0). We assume that A0 is semibounded from below,

(1.2) A0 > α0

for some α0 ∈ R. We suppose that the entry A1 is a bounded selfadjoint operator
in H1. In contrast to [22] and [23], in the present paper we consider unbounded
coupling operators Tij , i, j = 0, 1, i6=j. Regarding these couplings we assume that

(i) T01 is a densely defined closable operator from D(T01) ⊂ H1 to H0;
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(ii) T10 is the adjoint operator of T01 (that is T10 = T ∗
01) and

(1.3) D(T10) ⊃ D(|A0|1/2).
Since D(|A0|1/2) ⊃ D(A0), these assumptions mean that H0 is a densely defined,
symmetric and, hence, closable operator on the domain D(H0) = D(A0)⊕D(T01).

The assumptions (i) and (ii) are similar to those used in the works by
V.M. Adamyan, H. Langer, R. Mennicken and J. Saurer ([2]) and by R. Men-
nicken and A.A. Shkalikov ([24]). It follows from the results of [2] and [24] that
under such assumptions the closure H = H0 is a selfadjoint operator in H (see
Section 2). In applications arising from physical problems (see [9], [16], [17], [18],
[19] and references cited therein), one typically deals just with the case where H0

is a selfadjoint operator in a Hilbert space or a symmetric operator admitting a
selfadjoint closure.

Many results regarding selfadjoint 2 × 2 operator matrices H = H0 (see [1],
[2], [18], [19], [24], [26] and references cited therein) are related to the problem of
the existence of invariant subspaces Gi, i = 0, 1, for H admitting so-called graph
representations

(1.4)

G0 =

{
u ∈ H : u =

(
u0

Q10u0

)
, u0 ∈ H0

}
,

G1 =

{
u ∈ H : u =

(
Q01u1

u1

)
, u1 ∈ H1

}
,

with bounded Qji : Hi → Hj such that Qij = −Q∗
ji and H = G0⊕G1. The point is

that if such invariant subspaces exist, then the restrictions of H to Gi, i = 0, 1, are
similar to some operators Hi which are explicitly written in terms of the operators
Qij and act in the corresponding component Hilbert spaces Hi. In particular, in
the case of bounded Tij the operators Hi read

(1.5) Hi = Ai + TijQji.

A replacement of the initial inner products in the spaces Hi by appropriate equiv-
alent new inner products turns the operators Hi into selfadjoint ones (see [1], [2],
[24] and [26]). Thus, in case of the existence of invariant subspaces of the form
(1.4), the study of the operator matrix H is reduced to the study of the, in general,
more simple operators Hi.

The existence of the above mentioned invariant subspaces for H with self-
adjoint entries A0 and A1 and with bounded couplings T01 = T ∗

10 having small
norm has been proved by V.A. Malyshev and R.A. Minlos ([18] and [19]), under
the condition that the spectra σ(A0) and σ(A1) are separated

(1.6) dist{σ(A0), σ(A1)} > 0.

A similar result was obtained by A.K. Motovilov [26] (see also [25]) for the Hilbert-
Schmidt class entries Tij whose Hilbert-Schmidt norm satisfies the condition

(1.7) ‖Tij‖2 <
1

2
dist{σ(A0), σ(A1)}.

In [1], V.M. Adamyan and H. Langer proved the existence of invariant subspaces
admitting a graph representation for arbitrary bounded entries Tij , however as-
suming, instead of the condition (1.6), the essentially different assumption that the
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spectrum of one of the entries Ai, i = 0, 1, is situated strictly below the spectrum
of the other one, say

(1.8) maxσ(A1) < minσ(A0).

The result of [1] was extended by V.M. Adamyan, H. Langer, R. Mennicken and
J. Saurer ([2]) to the case where

(1.9) maxσ(A1) 6 minσ(A0)

and where the couplings Tij were allowed to be unbounded operators satisfying
the assumptions (i) and (ii). The condition (1.9) was somewhat weakened by
R. Mennicken and A.A. Shkalikov ([24]) in the case of a bounded entry A1 and
unbounded entries Tij of the same type as in [2].

In the spectral theory of the operator matrices (1.1) an important role is
played by the transfer functions which, in the case of bounded Tij , are defined as
(see, e.g., [23], [24]):

(1.10) Mi(z) := Ai − z − Tij(Aj − z)−1Tji, i, j = 0, 1, j 6= i.

For a definition of the transfer function M1(z) in the case of unbounded entries
Tij satisfying the assumptions (i) and (ii) see Section 2 (see also [2], [24]). The
particular role of the functions Mi(z) can be understood already from the fact that

the resolvent of the operator H can be expressed explicitly in terms of
[
M0(z)

]−1

or
[
M1(z)

]−1
(see, e.g., [23]). Therefore, in studying the spectral properties of

the transfer functions one studies at the same time the spectral properties of the
operator matrix H. In [1], [2], [18], [19], [22], [23], [24], [25], [26] and [27] these
functions were used as a main tool for a spectral analysis of operator matrices of
the form (1.1). Notice that for T01 = T ∗

10 and selfadjoint A0 and A1 the operator-
valued functions −Mi defined on C+ ∪ C− belong to the class of operator-valued
Herglotz functions (see, e.g., [4], [8], [14], [15], and [28]).

It was proved in [26] that under the condition (1.7) the operators (1.5) can
be constructed as operator roots of the corresponding transfer functions Mi(z).
More precisely, each operator Hi, i = 0, 1, can be determined as a solution of the
nonlinear equation

(1.11) Mi(Hi) = 0,

where Mi(Y ) := Ai − Y + Vi(Y ). Here Vi(Y ) is an operator-valued function on
the space of bounded linear operators in Hi which has been constructed in such a
way (see [26]) that

Vi(Y )f = −Tij(Aj − z)−1Tjif

and, thus, Mi(Y )f = Mi(z)f for any eigenvector f corresponding to an eigenvalue
z of the argument operator Y .

In [22] and [23] the approach of [26] in the construction of the operators (1.5)
was carried out in a case which is different from the spectral situations considered
in [1], [2], [18], [18], [19], [24], [25], [26] and [27]. Namely, the papers [22] and
[23] consider the case where the spectrum of one of the main-diagonal entries, say
A1, is partly or totally embedded into the continuous spectrum of the other one,
A0. This is done under the assumptions that the couplings Tij are bounded oper-
ators satisfying a certain smallness condition and such that the transfer function



190 Volker Hardt, Reinhard Mennicken and Alexander K. Motovilov

M1(z) admits analytic continuation, as an operator-valued function, through the
absolutely continuous spectrum σac(A0) of the entry A0. In [22] and [23], the
nonreal discrete spectrum of the continued transfer function M1 is interpreted as
resonances since points of this spectrum correspond to the poles of the analytic
continuation of the resolvent (H − z)−1 located on the unphysical sheets. In the
present work we follow this interpretation. For more details concerning unphysical
sheets, resonances and the history of the subject see, e.g., [29].

It has been proved in [22] and [23] that, having found an operator root H1 of
the analytically continued transfer function M1, one can factorize it in a certain
domain surrounding the spectrum of A1 and partly lying on unphysical sheets in
such a way that

(1.12) M1(z) = W1(z)(H1 − z)

where W1 is a holomorphic function whose values represent bounded and bound-
edly invertible operators in H1. The factorization formula (1.12) implies that the
spectrum of M1 coincides in this domain with the spectrum of the operator H1.
Thus, in contrast to the case where σ(A0)∩ σ(A1) = ∅, the results of [22] and [23]
imply that for σ(A0) ∩ σ(A1) 6= ∅ the operator roots of M1 may have in general
a nonreal spectrum, in particular a discrete nonreal spectrum which corresponds
to resonances of H. In this case no similarity transform in H1 can turn these
operator roots of M1 into selfadjoint operators.

Note that under the conditions on the entries Tij assumed in [22] and [23], the
factorization formula (1.12) holds true for the solutions of (1.11) also for the case
where σ(A0)∩σ(A1) = ∅. The factorization formula of type (1.12) for the transfer
function was obtained in [24] by an application of the general factorization results
of A.S. Markus and V.I. Matsaev ([21]) and A.I. Virozub and V.I. Matsaev ([30]).

In the present paper, like in the papers [22], [23], we work under the assump-
tion that σ(A0) ∩ σ(A1) 6= ∅ and that the transfer function M1 admits analytic
continuation through σac(A0) onto unphysical sheets. Section 2 includes a detailed
description of the conditions making such a continuation of M1 possible in the case
of unbounded entries Tij satisfying the conditions (i) and (ii). In Section 3 we in-
troduce the basic nonlinear equation (3.5) giving a rigorous sense to the equation
M1(H1) = 0 in the considered spectral situation. We explicitly show that eigen-
values and accompanying eigenvectors of a solution H1 of (3.5) are automatically
eigenvalues and corresponding eigenvectors for the analytically continued transfer
function M1. We prove solvability of the basic equation (3.5) under the hypoth-
esis (3.10). In Section 4 we prove a factorization formula of the form (1.12) for
the analytically continued transfer function M1 (see Theorem 4.1). Further, on
the basis of the factorization theorem, we describe in that section some relations
between different solutions of (3.5) and some relations between their spectra. Sec-
tion 5 pays special attention to the real point spectrum of the solutions of (3.5)
and, thereby, to this part of the spectrum of the transfer function as well. It
is found in this section that the real eigenvalues are the same for all considered
solutions of (3.5). Furthermore, we establish that the real isolated eigenvalues of
these solutions correspond to the same algebraic eigenspaces which consist only
of eigenvectors. We prove the basis property for these eigenvectors with respect
to their closed linear span. Section 6 is devoted to a short discussion of the non-
real spectra of the solutions H1 under some additional assumptions. Finally, in
Section 7 we present a simple example.
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2. ANALYTIC CONTINUATION OF THE TRANSFER FUNCTION M1

We may assume without loss of generality that the lower bound α0 for the entry
A0 in the assumption (1.2) is positive, α0 > 0 (otherwise we could simply make
a shift of the origin of the spectral parameter axis). The condition (1.3) implies

that the product B10 = T10A
−1/2
0 represents a bounded linear operator between

H1 and H0 and T10|D(A
1/2
0 ) = B10A

1/2
0 . This means that

(2.1) B∗
10 ⊃ A

−1/2
0 T ∗

10 = A
−1/2
0 T 01 ⊃ A

−1/2
0 T01.

In view of the assumption (i) we conclude that A
−1/2
0 T01 is a densely defined

operator. Therefore, it follows from (2.1) that A
−1/2
0 T01 has a bounded extension

to the whole space H1. This extension coincides with B01 := B∗
10 and T 01 = T ∗

10 ⊂
A

1/2
0 B01.

It was already mentioned that under the assumptions (i) and (ii) the operator
matrix H0 is a densely defined symmetric operator in H and, hence, closable.
Lemma 1.4, Theorem 1.1 and Proposition 1.5 of [2] (cf. Section 2 of [24]) imply
that the closure H = H0 represents a selfadjoint operator in H. For z in the
resolvent set %(A0) of A0, the operator function

A1 − z − T10(A0 − z)−1T01

is defined on D(T01) and has a bounded extension to the whole space H1. We
denote this extension by

(2.2) M1(z) := A1 − z − T10(A0 − z)−1T01

and call it the transfer function associated to the operator H. For z ∈ %(A0), the
operator H has the representation

(2.3) H = zI +

(
I0 0

G10(z) I1

)(
A0 − z 0

0 M1(z)

)(
I0 [G10(z)]

∗

0 I1

)

where I stands for the identity operator in H, Ij for the identity operators in Hj ,
j = 0, 1, and

(2.4) G10(z) = T10(A0 − z)−1 = B10A
−1/2
0

[
I0 + z(A0 − z)−1

]
.

The domain of H reads

(2.5) D(H) = {x = (x0, x1) : x0 ∈ H0, x1 ∈ H1, x0 + [G10(z)]
∗x1 ∈ D(A0)} .

Note that x0 + [G10(z)]
∗x1 ∈ D(A0) implies x0 ∈ D(A

1/2
0 ) ⊂ D(T10). From (2.3)

one finds that for (x0, x1) ∈ D(H)

(2.6) H

(
x0

x1

)
=

(
A0

(
x0 + [G10(z)]∗x1

)
− z[G10(z)]∗x1

T10x0 +A1x1

)
.

The set (2.5) and the representation (2.6) (for fixed x0, x1) do not depend on the
choice of z ∈ %(A0) in the description above. In particular, choosing z = 0 we find

(2.7)





D(H) = (x0, x1) ∈ H : x0 +A
−1/2
0 B01x1 ∈ D(A0),

H

(
x0

x1

)
=

(
A0

(
x0 +A

−1/2
0 B01x1

)

T10x0 +A1x1

)
.
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By definition

M1(z)|D(T01) = A1 − z + T10(z −A0)
−1T01

= A1 − z +B10A0(z −A0)
−1B01 = Ã1 − z + V1(z)

where

(2.8) Ã1 := A1 −B10B01, V1(z) := zB10(z −A0)
−1B01.

Ã1 is a bounded selfadjoint operator in H1, V1(z) a bounded operator function on
%(A0). It follows that

M1(z) = Ã1 − z + V1(z).

The transfer function M1, considered on %(A0), represents a particular case of a
holomorphic operator-valued function. In the present work we use the standard
definition of holomorphy of an operator-valued function with respect to the op-
erator norm topology (see, e.g., [2]). One can extend the usual definitions of the
spectrum and its components to operator-valued functions. The function M1 is
holomorphic at least in the resolvent set %(A0) of the entry A0. Since the inverse

transfer function
[
M1(z)

]−1
coincides with the right lower block component R11(z)

of the resolvent R(z) = (H − z)−1, it is holomorphic at least in the resolvent set
%(H).

Let E0 be the spectral measure for the entry A0, A0 =
∫

σ(A0)

λ dE0(λ),

σ(A0) ⊂ R. Then the function V1(z) can be written

V1(z) = B10

∫

σ(A0)

z

z − µ
dE0(µ)B01.

Thus, it is convenient to introduce the quantities

(2.9) Varθ(B) := sup
{δk,µk∈δk}

∑

k

(1 + |µk|)−θ‖B10E0(δk)B01‖,

where θ is some real number and {δk} stands for a finite or countable complete
system of Borel subsets of σ(A0) such that δk ∩ δl = ∅, if k 6= l, and

⋃
k

δk =

σ(A0). The points µk are arbitrarily chosen points of δk. The number Varθ(B) is
called weighted variation of the operators Bij with respect to the spectral measure
E0. Along with the “total” weighted variation Varθ(B), we use the “truncated”
variations

Varθ(B)|∆ := sup
{δk,µk∈δk∩∆}

∑

k

(1 + |µk|)−θ‖B10E0(δk ∩ ∆)B01‖,

where ∆ is a certain Borel subset of σ(A0); Varθ(B)|∆ 6 Varθ(B).
Note that in contrast to [22] and [23], where the variation (2.9) was considered

in case of θ = 0, we now will mainly consider θ = 1. Of course, the consideration
of the variation Varθ(B) for θ 6= 0 only makes sense when the entry A0 is an
unbounded operator.
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We assume that the spectrum of the operator Ã1 may only intersect the

continuous spectrum of A0 and this intersection is realized on finitely many pair-

wise nonintersecting open intervals ∆0
k = (µ

(1)
k , µ

(2)
k ) ⊂ σc(A0), µ

(1)
k < µ

(2)
k ,

k = 1, 2, . . . ,m, m < ∞. Therefore, we assume that ∆0
k ∩ σ(Ã1) 6= ∅ for all

k = 1, 2, . . . ,m and σ(Ã1) ∩ σ′(A0) = ∅ where σ′(A0) = σ(A0) \
m⋃
k=1

∆0
k. For the

case considered in this work, µ
(1)
1 > 0 and µ

(2)
m 6 +∞. We shall suppose that

the product KB(µ) := B10E
0(µ)B01, where E0(µ) stands for the spectral function

of A0, E
0(µ) = E0

(
(−∞, µ)

)
, is differentiable in µ ∈ ∆0

k, k = 1, 2, . . . ,m, in the
operator norm topology. The derivative K ′

B(µ) is non-negative,

(2.10) K ′
B(µ) > 0,

since KB(µ) is a non-decreasing function. Obviously,

Varθ(B)|∆0
k =

∫

∆0
k

(1 + |µ|)−θ‖K ′
B(µ)‖ dµ.

Further, we suppose that the function K ′
B(µ) is continuous within the in-

tervals ∆0
k and, moreover, that it admits analytic continuation from each of these

intervals to a simply connected domain situated, say, in C−. For the interval ∆0
k,

let this domain be called D−
k . We assume that the boundary of each domain D−

k

includes the entire spectral interval ∆0
k and the domainsD−

k and D−
j for different k

and j do not intersect each other. Since K ′
B(µ) is a selfadjoint operator for µ ∈ ∆0

k

and ∆0
k ⊂ R, the function K ′

B(µ) admits an analytic continuation from ∆0
k into the

domain D+
k , symmetric to D−

k with respect to the real axis, D+
k = {z : z ∈ D−

k }.
For the continuation into D+

k we will use the same notation K ′
B(µ). The selfad-

jointness of K ′
B(µ) for µ ∈ ∆0

k implies [K ′
B(µ)]∗ = K ′

B(µ), µ ∈ D±
k . Also, we shall

always suppose that the K ′
B(µ) satisfies the following condition at the (finite) end

points µ
(1)
k , µ

(2)
k of the spectral intervals ∆0

k:

‖K ′
B(µ)‖ 6 C|µ− µ

(i)
k |γ , i = 1, 2, µ ∈ D±

k ,

with some C > 0 and γ ∈ (−1, 0].

Let l = (l1, l2, . . . , lm) be a multi-index having the components lk = +1 or

lk = −1, k = 1, 2, . . . ,m. In what follows we consider the domains Dl =
m⋃
k=1

Dlk
k .

Let Γlkk be a rectifiable Jordan curve in Dlk
k resulting from continuous deformation

of the interval ∆0
k, the (finite) end points of this interval being fixed (see Figure 1).
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Figure 1: DomainDlk
k , contour Γlkk (both for lk = +1), domainD(Γl)∩

Dlk
k and location of the domain Or0(B)(Ã1) in the neighbourhood of the

interval [µ
(1)
k , µ

(2)
k ].

With the exception of the end points, the closure Γ
lk
k of the contour Γlkk should

have no other common points with the set σc(A0). By Γl, l = (l1, l2, . . . , lm), we

shall denote the union of the contours Γlkk , Γl =
m⋃
k=1

Γlkk . Finally, by D(Γl) we will

denote the subdomain of Dl bounded by the set
m⋃
k=1

∆0
k and contour Γl.

As mentioned above, in the following we deal with the variation Var1(B).
We extend the definition of this variation to the set σ′(A0)

⋃
Γl by introducing

the modified variation

(2.11) Var1(B,Γl) := Var1(B)|σ′(A0) +

∫

Γl

(1 + |µ|)−1‖K ′
B(µ)‖ |dµ|,

where |dµ| denotes the Lebesgue measure on Γl. We suppose that the operators

Bij are such that there exists a contour (exist contours) Γl on which the value
Var1(B,Γl) is finite, i.e., Var1(B,Γl) <∞, including also the case of an unbounded

set
m⋃
k=1

∆0
k.

The contours Γl satisfying the condition Var1(B,Γl) < ∞ are said to be

KB-bounded contours.

Note that, in the case of unbounded A0, the condition of boundedness of

Var1(B,Γl) is much weaker than the condition of boundedness of Var0(B,Γl) used

in [22] and [23].
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Lemma 2.1. The analytic continuation of the transfer function M1(z), z ∈
C \ σ(A0), through the spectral intervals ∆0

k into the subdomain D(Γl) ⊂ Dl is
given by

(2.12) M1(z,Γl) := Ã1 − z + V1(z,Γl)

where

(2.13)

V1(z,Γl) :=

∫

σ′(A0)∪Γl

KB(dµ)
z

z − µ

:=

∫

σ′(A0)

B10
z

z − µ
dE0(µ)B01 +

∫

Γl

K ′
B(µ)

z

z − µ
dµ.

For z ∈ Dlk
k ∩D(Γl) the function M1(z,Γl) may be written as

(2.14) M1(z,Γl) = M1(z) + 2πilkzK
′
B(z).

Proof. Obviously, the function (2.13) is well defined due to the KB-boun-
dedness of the contour Γl and since for all z ∈ C \ [σ′(A0) ∪ Γl] there exist a

number c(z) > 0 such that the estimate
∣∣(z−µ)−1

∣∣ < c(z)
(
1 + |µ|

)−1
holds where

µ runs through σ′(A0) ∪ Γl. Thus, the proof of this lemma is reduced to the
observation that the function M1(z,Γl) is holomorphic for z ∈ C \ [σ′(A0) ∪ Γl]

and coincides with M1(z) for z ∈ C \ [σ′(A0) ∪ D(Γl)]. The equation (2.14) is
obtained from (2.13) using the Residue Theorem.

The formula (2.14) shows that in general the transfer function M1 has a
Riemann surface with at least 2m sheets. The sheet of the complex plane where
the transfer function M1 together with the resolvent R is initially considered is said
to be the physical sheet. The remaining sheets of the Riemann surface of M1(z)
are said to be unphysical sheets. In the present work we deal with the unphysical
sheets neighboring the physical one, i.e., with the sheets connected through the
intervals ∆0

k for some k ∈ {1, 2, . . . ,m} directly to the physical sheet.

Remark 2.2. For z ∈ C \
(
σ′(A0) ∪ Γl

)
, the equation (2.13) defines values

of the function V1( · ,Γl) in the space of bounded operators in H1. As mentioned

above, the inverse transfer function
[
M1(z)

]−1
coincides with the right lower block

component R11(z) of the resolvent R(z) = (H− z)−1 and, thus, it is holomorphic
in C \ σ(H) ⊃ C \ R. Since M1(z,Γl) coincides with M1(z) for all z ∈ C \[
σ′(A0) ∪ D(Γl)

]
, one concludes that [M1(z,Γl)]

−1 exists as a bounded operator

and is holomorphic in z at least for z ∈ C \
[
σ(H) ∪D(Γl)

]
.

Remark 2.3. Note that in contrast to the papers of V. Adamyan and
H. Langer ([1]), V. Adamyan, H. Langer, R. Mennicken and J. Saurer ([2]) and
R. Mennicken and A.A. Shkalikov ([24]) we can also consider the case when the

spectra of Ã1 and A0 alternate and do not intersect or intersect as described above.
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3. THE BASIC EQUATION

In the following we use integrals of the form
∫

σ

X(µ) dE(µ)Y (µ)

where E is the spectral function of a selfadjoint operator and σ a part of the
spectrum of this operator. For the definition and some properties of integrals of
this form we refer the reader to Appendix B in [23], cf. also [2].

If an operator-valued function F : σ′(A0) ∪ Γ → B(H1,H1) is continuous on
a KB-bounded contour Γ and satisfies the condition

sup
µ∈σ′(A0)∪Γ

(1 + |µ|)‖F (µ)‖ <∞

and a Lipschitz condition on σ′(A0), then the integral

(3.1)

∫

σ′(A0)∪Γ

KB(dµ)F (µ) :=

∫

σ′(A0)

dKB(µ)F (µ) +

∫

Γ

K ′
B(µ)F (µ) dµ

exists in the sense of the operator norm topology (see Lemma 7.2 in [2]) and

(3.2)

∥∥∥∥
∫

σ′(A0)∪Γ

KB(dµ)F (µ)

∥∥∥∥ 6 Var1(B,Γ) sup
µ∈σ′(A0)∪Γ

(1 + |µ|)‖F (µ)‖.

In particular, if F (z) = Y (Y − zI1)
−1, where Y stands for an arbitrary bounded

operator in H1 such that the spectrum of Y is separated from the set σ′(A0) ∪ Γ,
then one may define the operator

(3.3) V1(Y,Γ) :=

∫

σ′(A0)∪Γ

KB(dµ)Y (Y − µ)−1.

This operator is bounded, V1(Y,Γ) ∈ B(H1,H1), and, because of (3.2), its norm
admits the estimate

(3.4) ‖V1(Y,Γ)‖ 6 Var1(B,Γ)‖Y ‖ sup
µ∈σ′(A0)∪Γ

(1 + |µ|)‖(Y − µ)−1‖.

In what follows we consider the equation

(3.5) Y = Ã1 + V1(Y,Γ).

This equation possesses the following special property: If an operator H1 is a
solution of (3.5) and u1 is an eigenvector of H1, H1u1 = zu1, then

zu1 = Ã1u1 + V1(H1,Γ)u1 = Ã1u1 +

∫

σ′(A0)∪Γ

KB(dµ)H1(H1 − µ)−1u1

= Ã1u1 +

∫

σ′(A0)∪Γ

KB(dµ)
z

z − µ
u1 = Ã1u1 + V1(z,Γ)u1.
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This means that any eigenvalue z of such an operatorH1 is automatically an eigen-
value for the analytically continued transfer function M1(z,Γ) and u1 is a corre-
sponding eigenvector. Thus, having found the solution(s) of the equation (3.5),
one obtains an effective way of studying the spectral properties of the transfer
function M1(z,Γ). It is convenient to rewrite the equation (3.5) in the form

(3.6) X = V1(Ã1 +X,Γ),

where X := Y − Ã1.
Let Γ be a KB-bounded contour and the spectrum of the operator Ã1 be

separated from the set σ′(A0) ∪ Γ, i.e.,

(3.7) d0(Γ) := dist{σ(Ã1), σ
′(A0) ∪ Γ} > 0.

Since Ã1 is bounded, it is obvious that the following quantity

(3.8)

VarÃ1
(B,Γ) := sup

{δk,µk∈δk∩σ′(A0)}

∑

k

‖B10E0

(
δk ∩ σ′(A0)

)
B01‖

dist{µk, σ(Ã1)}

+

∫

Γ

‖K ′
B(µ)‖

dist{µ, σ(Ã1)}
| dµ|

is finite,

(3.9) VarÃ1
(B,Γ) 6 Var1(B,Γ) sup

µ∈σ′(A0)∪Γ

(1 + |µ|)
[
dist{µ, σ(Ã1)}

]−1
<∞,

where {δk} is as in the definition (2.9) of Varθ(B) and µk are arbitrarily chosen
points of δk ∩ σ′(A0).

It is more convenient to make the subsequent estimations in terms of the
variation VarÃ1

(B,Γ), rather then in terms of the variation Var1(B,Γ).

Theorem 3.1. Let Ã1 be a bounded operator, the contour Γ be KB-bounded
and

(3.10) VarÃ1
(B,Γ) < 1, VarÃ1

(B,Γ)‖Ã1‖ <
1

4
d0(Γ)[1 − VarÃ1

(B,Γ)]2.

Let

(3.11)

rmin(Γ) :=
1

2
d0(Γ)[1 − VarÃ1

(B,Γ)]

−
√

1

4
d2
0(Γ)[1 − VarÃ1

(B,Γ)]2 − d0(Γ)VarÃ1
(B,Γ)‖Ã1‖

and

(3.12) rmax(Γ) := d0(Γ) −
√

VarÃ1
(B,Γ)d0(Γ)[d0(Γ) + ‖Ã1‖] .

Then the equation (3.6) is uniquely solvable in any closed ball

S1(r) :=
{
X ∈ B(H1,H1) : ‖X‖ 6 r

}

where

(3.13) rmin(Γ) 6 r < rmax(Γ).
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The solution X of the equation (3.6) is the same for any r satisfying (3.13) and
in fact it belongs to the smallest ball S1(rmin), ‖X‖ 6 rmin(Γ).

Proof. Let Φ(X) = V1(Ã1 + X,Γ) with X∈S1(r). First, we search for a
condition under which the function Φ is a contracting mapping of the ball S1(r)
into itself. Since in view of (3.13) and (3.12) the condition 0 6 r < d0, d0 := d0(Γ)

holds, the spectrum of the operator Ã1 +X does not intersect the set σ′(A0) ∪ Γ.

This means that for all µ ∈ σ′(A0) ∪ Γ the resolvent (Ã1 +X − µ)−1 exists as a
bounded operator in H1. Moreover,

(3.14)

‖(Ã1 +X − µ)−1‖ =
∥∥(I1 + (Ã1 − µ)−1X

)−1
(Ã1 − µ)−1

∥∥

6
1

dist{µ, σ(Ã1)} − ‖X‖
.

Note also that

(3.15)
dist{µ, σ(Ã1)}

dist{µ, σ(Ã1)} − ‖X‖
6

d0

d0 − r
.

Thus, we can write

‖Φ(X)‖ 6
(
‖Ã1‖ + ‖X‖

)
(

sup
{δk ,µk∈δk∩σ′(A0)}

∑

k

‖B10E0

(
δk ∩ σ′(A0)

)
B01‖ ‖(Ã1 +X − µk)

−1‖

+

∫

Γ

‖K ′
B(µ)‖ ‖(Ã1 +X − µ)−1‖ dµ




6
(
‖Ã1‖ + ‖X‖

)
(

sup
{δk ,µk∈δk∩σ′(A0)}

∑

k

‖B10E0

(
δk ∩ σ′(A0)

)
B01‖

dist{µk, σ(Ã1)}
dist{µk, σ(Ã1)}

dist{µk, σ(Ã1)} − ‖X‖

+

∫

Γ

‖K ′
B(µ)‖

dist{µ, σ(Ã1)}
dist{µ, σ(Ã1)}

dist{µ, σ(Ã1)} − ‖X‖
dµ





6 VarÃ1
(B,Γ)(‖Ã1‖ + r)

d0

d0 − r
.

At the same time we conclude
‖Φ(X) − Φ(Y )‖

=

∥∥∥∥
∫

σ′(A0)∪Γ

KB(dµ)
[
(Ã1 +X)(Ã1 +X − µ)−1 − (Ã1 + Y )(Ã1 + Y − µ)−1

]∥∥∥∥

6

∥∥∥∥
∫

σ′(A0)∪Γ

KB(dµ)(Ã1 +X)
[
(Ã1 +X − µ)−1 − (Ã1 + Y − µ)−1

]∥∥∥∥

+

∥∥∥∥
∫

σ′(A0)∪Γ

KB(dµ)(X − Y )(Ã1 + Y − µ)−1

∥∥∥∥
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for X,Y ∈ S1(r). Since

(Ã1 +X − µ)−1 − (Ã1 + Y − µ)−1 = (Ã1 +X − µ)−1(Y −X)(Ã1 + Y − µ)−1,

we obtain using the inequality (3.14) that

‖Φ(X)− Φ(Y )‖ 6 d0

(
VarÃ1

(B,Γ)(‖Ã1‖ + r)

(d0 − r)2
+

VarÃ1
(B,Γ)

d0 − r

)
‖X − Y ‖.

Thus, Banach’s Fixed Point theorem can be applied to the ball S1(r) if the con-
ditions

(3.16) VarÃ1
(B,Γ)(‖Ã1‖ + r)

d0

d0 − r
6 r

and

(3.17) d0VarÃ1
(B,Γ)

(
‖Ã1‖ + r

(d0 − r)2
+

1

d0 − r

)
< 1

are fulfilled. Under the conditions (3.10) the inequalities (3.16) and (3.17) con-
sidered together are equivalent to the condition (3.13). Thus, if this condition is
fulfilled, then the equation (3.6) has a solution in any ball S1(r) with r satisfy-
ing (3.13) and this solution is unique. This means that the solution is the same
for all the radii satisfying (3.13). Moreover, it belongs to the ball S1(rmin) with
the radius rmin given by (3.11).

The following statement follows immediately from the conditions (3.10).

Remark 3.2. The values of rmin(Γ) and rmax(Γ) satisfy the estimates

rmin(Γ) <
1

2
d0(Γ)[1 − VarÃ1

(B,Γ)] < rmax(Γ).

Theorem 3.3. Let the conditions of Theorem 3.1 be fulfilled for a KB-
bounded contour Γ ⊂ Dl and let X be the solution of the equation (3.6). Then

X coincides with the analogous solution X̃ for any other KB-bounded contour

Γ̃ ⊂ Dl satisfying the estimates

VarÃ1
(B, Γ̃) < 1 and VarÃ1

(B, Γ̃)‖Ã1‖ <
1

4
d̃0[1 − VarÃ1

(B, Γ̃)]2

where 0 < d̃0 = dist{σ(Ã1), σ
′(A0) ∪ Γ̃} 6 d0(Γ). Moreover, this solution satisfies

the inequality ‖X‖ 6 r0(B) where

r0(B) := inf
{
rmin(Γl) : VarÃ1

(B,Γl) < 1 and ω(B,Γl) > 0
}

with rmin(Γl) given by (3.11) and

ω(B,Γl) := d0(Γl)
[
1 − VarÃ1

(B,Γl)
]2 − 4‖Ã1‖VarÃ1

(B,Γl).

The value of r0(B) does not depend on l.

Proof. The proof of this theorem is reduced to an appropriate continuous
deformation of the integration paths (see the proof of Theorem 3.3 in [23]). The
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essential point consists in checking the independence of the radius r0(B) of the
multi-index l. To this end, we consider an arbitraryKB-bounded contour Γl ⊂ Dl,

Γl =
m⋃
k=1

Γlkk . Denote by Γl′ the contour resulting from Γl by replacing Γlkk by the

curves Γ
(−lk)
k = {µ : µ ∈ Γlkk }, symmetric to Γlkk with respect to the real axis. Ob-

viously, such replacements generate, additionally to Γl, 2m − 1 different contours
Γl′ where l′ = (l′1, l

′
2, . . . , l

′
m) with l′k = ±lk, k = 1, 2, . . . ,m. For any such contour

the value of VarÃ1
(B,Γl′) is the same, namely VarÃ1

(B,Γl′) = VarÃ1
(B,Γl), since

the replacement of Γl with Γl′ does not change
∫
Γl

‖K ′
B(µ)‖[dist{µ, σ(Ã1)}]−1| dµ|.

But this means that r0(B) does not depend on l.

So, for a given holomorphy domain Dl, the solutions X and H1, H1 =

Ã1 + X, do not depend on the KB-bounded contours Γl ⊂ Dl satisfying the
conditions (3.10). But when the index l changes, X and H1 can also change. For
this reason we shall supply them in the following, when it is necessary, with the in-

dex l writing X(l) and H
(l)
1 , H

(l)
1 = Ã1 +X(l). Therefore, Theorem 3.1 guarantees

the existence of 2m solutions X(l) of the basic equation (3.6) and hence 2m cor-

responding solutions H
(l)
1 of the basic equation (3.5). Surely, the equations (3.5)

and (3.6) are nonlinear equations and, outside the balls ‖X‖ < rmax(Γl), they

may, in principle, have other solutions, different from the operators X (l) or H
(l)
1 .

In the following we only deal with the solutions X (l) or H
(l)
1 constructed above.

4. A FACTORIZATION THEOREM

As a next step, we prove a factorization theorem for the transfer functionM1(z,Γl).
This statement will play an important role when we study the spectral properties

of the operators H
(l)
1 .

Theorem 4.1. Let Γl be a KB-bounded contour satisfying the conditions
(3.10). Suppose X(l) is the solution of the basic equation (3.6) for Γ = Γl, ‖X(l)‖ 6

r0(B), and H
(l)
1 = Ã1 +X(l). Then, for z ∈ C\ (σ′(A0)∪Γl), the transfer function

M1(z,Γl) admits the factorization

(4.1) M1(z,Γl) = W1(z,Γl)(H
(l)
1 − z)

where W1(z,Γl) is a bounded operator in H1,

(4.2)

W1(z,Γl) = I1 −
∫

σ′(A0)∪Γl

KB(dµ)(H
(l)
1 − µ)−1

+ z

∫

σ′(A0)∪Γl

(z − µ)−1KB(dµ)(H
(l)
1 − µ)−1

= I1 +

∫

σ′(A0)∪Γl

µ

z − µ
KB(dµ)(H

(l)
1 − µ)−1.
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If dist{z, σ(Ã1)} 6 d0(Γl)[1 − VarÃ1
(B,Γl)]/2, then the operator W1(z,Γl) is

boundedly invertible and

(4.3)
∥∥[W1(z,Γl)]

−1
∥∥ 6

(
1 −

4VarÃ1
(B,Γl)

[
d0(Γl) + ‖Ã1‖

]

d0(Γl)
[
1 + VarÃ1

(B,Γl)
]2

)−1

<∞.

Proof. First, we prove the formula (4.1). Note that, according to (3.3) and
(3.6),

(4.4) Ã1 = H
(l)
1 − V1(Ã1 +X(l),Γl) = H

(l)
1 −

∫

σ′(A0)∪Γl

KB(dµ)H
(l)
1 (H

(l)
1 − µ)−1.

Thus, in view of the representations (2.12) and (2.13), the function M1(z,Γl) can
be written as

M1(z,Γl) = Ã1 − z + V1(z,Γl) = Ã1 − z +

∫

σ′(A0)∪Γl

KB(dµ)
z

z − µ

= H
(l)
1 − z −

∫

σ′(A0)∪Γl

KB(dµ)

[
H

(l)
1 (H

(l)
1 − µ)−1 − z

z − µ

]

= H
(l)
1 − z −

∫

σ′(A0)∪Γl

KB(dµ)(H
(l)
1 − µ)−1

(
H

(l)
1 − z

)

+ z

∫

σ′(A0)∪Γl

KB(dµ)

[
1

z − µ
− (H

(l)
1 − µ)−1

]

=
(
H

(l)
1 − z

)
−

∫

σ′(A0)∪Γl

KB(dµ)(H
(l)
1 − µ)−1

(
H

(l)
1 − z

)

+ z

∫

σ′(A0)∪Γl

KB(dµ)
(H

(l)
1 − µ)−1

z − µ

(
H

(l)
1 − z

)

which proves the equation (4.1). The boundedness of the operator W1(z,Γl) for
z ∈ C \ (σ′(A0) ∪ Γl) is obvious.

Further, we prove that the factorW1(z,Γl) is a boundedly invertible operator

if the condition dist{z, σ(Ã1)} 6 d0(Γl)[1 − VarÃ1
(B,Γl)]/2 holds. Indeed, due

to (3.14) and the definition of d0(Γl), we have

(4.5)

∥∥∥∥
∫

σ′(A0)∪Γl

KB(dµ)(H
(l)
1 − µ)−1

∥∥∥∥ 6 VarÃ1
(B,Γl)

d0(Γl)

d0(Γl) − ‖X(l)‖ .

The inequality ‖X(l)‖ 6 rmin(Γl) and Remark 3.2 yield that

‖X(l)‖ < 1

2
d0(Γl)[1 − VarÃ1

(B,Γl)].
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Thus, (4.5) implies

(4.6)

∥∥∥∥
∫

σ′(A0)∪Γl

KB(dµ)(H
(l)
1 − µ)−1

∥∥∥∥ 6
2VarÃ1

(B,Γl)

1 + VarÃ1
(B,Γl)

.

Again, using inequality (3.14) and Remark 3.2, we find
∥∥∥∥z

∫

σ′(A0)∪Γl

KB(dµ)(H
(l)
1 − µ)−1(z − µ)−1

∥∥∥∥

6 |z|VarÃ1
(B,Γl) sup

µ∈σ′(A0)∪Γl

[
dist{µ, σ(Ã1)}‖(H(l)

1 − µ)−1‖ |z − µ|−1
]

6 |z|
2VarÃ1

(B,Γl)

1 + VarÃ1
(B,Γl)

sup
µ∈σ′(A0)∪Γl

|z − µ|−1.

The inequality dist{z, σ(Ã1)} 6 d0(Γl)[1 − VarÃ1
(B,Γl)]/2 yields that

|z| 6 ‖Ã1‖ + dist
{
z, σ(Ã1)

}
6 ‖Ã1‖ +

1

2
d0(Γl)[1 − VarÃ1

(B,Γl)]

and one obtains for µ ∈ σ′(A0) ∪ Γl that

|z − µ| > dist{z, σ′(A0) ∪ Γl}
> dist{σ(Ã1), σ

′(A0) ∪ Γl} − dist{z, σ(Ã1)}

> d0(Γl) −
1

2
d0(Γl)[1 − VarÃ1

(B,Γl)].

Thus,

sup
µ∈σ′(A0)∪Γl

|z − µ|−1
6

2

d0(Γl)[1 + VarÃ1
(B,Γl)]

.

Hence for dist{z, σ(Ã1)} 6 d0(Γl)[1 − VarÃ1
(B,Γl)]/2

‖W1(z,Γl) − I1‖

6
2VarÃ1

(B,Γl)

1 + VarÃ1
(B,Γl)

+
4VarÃ1

(B,Γl)
{
‖Ã1‖ + 1

2d0(Γl)[1 − VarÃ1
(B,Γl)]

}

d0(Γl)[1 + VarÃ1
(B,Γl)]2

and thus

(4.7) ‖W1(z,Γl) − I1‖ 6
4VarÃ1

(B,Γl)[d0(Γl) + ‖Ã1‖]
d0(Γl)[1 + VarÃ1

(B,Γl)]2
< 1.

Note that the inequality

VarÃ1
(B,Γl)[d0(Γl) + ‖Ã1‖] <

1

4
d0(Γl)[1 + VarÃ1

(B,Γl)]
2

is equivalent to

VarÃ1
(B,Γl)‖Ã1‖ <

1

4
d0(Γl)

[
1 − VarÃ1

(B,Γl)
]2
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which holds by the second inequality in (3.10). We conclude from the estimate (4.7)
that W1(z,Γl) is invertible and that

∥∥W1(z,Γl)
−1
∥∥ 6

(
1 − ‖W1(z,Γl)‖

)−1

6

(
1 −

4VarÃ1
(B,Γl)[d0(Γl) + ‖Ã1‖]

d0(Γl)[1 + VarÃ1
(B,Γl)]2

)−1

<∞.

It is easy to write some simple but useful relations between the operators

H
(l)
1 . In particular, we derive such relations between H

(l)
1 and H

(−l)
1 , (−l) =

(−l1,−l2, . . . ,−lm). According to our convention, Γ(−l) ⊂ D(−l) is the contour

which is obtained from Γl by replacing all the components Γlkk by the conjugate

contours Γ
(−lk)
k .

The following theorems can be proved in the same way as Theorem 4.4 and
Theorem 4.7 in [23].

Theorem 4.2. The spectrum σ(H
(l)
1 ) of the operator H

(l)
1 = Ã1 +X(l) be-

longs to the closed r0(B)-neighbourhood

(4.8) Or0(B)(Ã1) :=
{
z ∈ C : dist{z, σ(Ã1)} 6 r0(B)

}

of the spectrum of Ã1 (see Figure 1). The nonreal spectrum of H
(l)
1 is contained in

Dl ∩Or0(B)(Ã1) while outside Dl the spectrum of H
(l)
1 is pure real. Moreover, the

spectrum σ(H
(l)
1 ) coincides with a subset of the spectrum of the transfer function

M1(z,Γl). More precisely, the spectrum of M1(z,Γl) in the set

(4.9) O(Ã1,Γl) :=
{
z ∈ C : dist{z, σ(Ã1)} 6 d0(Γl)[1 − VarÃ1

(B,Γl)]/2
}

equals the spectrum of H
(l)
1 , i.e.,

(4.10) σ
(
M1( · ,Γl)

)
∩ O(Ã1,Γl) = σ(H

(l)
1 ).

In fact, such a statement separately holds for the point and continuous spectra.

Theorem 4.3. Suppose that two different domains Dl′ and Dl′′ include the
same subdomain Dlk

k for some k = 1, 2, . . . ,m, i.e., l′k = l′′k = lk. Then the spectra

of the operators H
(l′)
1 and H

(l′′)
1 in Dlk

k coincide.

Lemma 4.4. Let Γl ⊂ Dl be a KB-bounded contour for which the conditions
of Theorem 3.1 are fulfilled. Then, for any z ∈ C \ (σ′(A0) ∪ Γl), the following
relation holds:

(4.11) W1(z,Γl)(H
(l)
1 − z) = (H

(−l)∗
1 − z)[W1(z,Γ(−l))]

∗.

Further, the spectrum of H
(−l)∗
1 coincides with the spectrum of H

(l)
1 .

Proof. Let z ∈ C \
(
σ′(A0)∪ Γl

)
. By definition, z ∈ C \

(
σ′(A0)∪Γ(−l)

)
and

(4.12) M1(z,Γl)
∗ = M1(z,Γ(−l)).

Therefore, the relation (4.11) follows from the factorizationsM1(z,Γl) = W1(z,Γl)

·(H(l)
1 − z) and M1(z,Γ(−l)) = W1(z,Γ(−l))(H

(−l)
1 − z). By the relation (4.10), z
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belongs to the spectrum of the operator H
(−l)∗
1 if and only if z ∈ O(Ã1,Γ(−l))

and 0 ∈ σ
(
[M1(z,Γ(−l))]

∗). From (4.12) we conclude that 0 ∈ σ
(
[M1(z,Γ(−l))]

∗)

if and only if 0 ∈ σ
(
M1(z,Γl)

)
. Again by (4.10), the coincidence of the spectra of

H
(l)
1 and H

(−l)∗
1 follows.

Let

(4.13)

Ω(l) :=

∫

σ′(A0)∪Γl

µ(H
(−l)∗
1 − µ)−1KB(dµ)(H

(l)
1 − µ)−1

:=

∫

σ′(A0)

µ(H
(−l)∗
1 − µ)−1 dKB(µ)(H

(l)
1 − µ)−1

+

∫

Γl

µ(H
(−l)∗
1 − µ)−1K ′

B(µ)(H
(l)
1 − µ)−1 dµ

where as above Γl denotes a KB-bounded contour satisfying the conditions (3.10).

The operator Ω(l) does not depend on the choice of such Γl. It follows that
Ω(−l) = Ω(l)∗ and

(4.14) ‖Ω(l)‖ < 1.

Indeed, since µ(H
(l)
1 − µ)−1 = −I1 +H

(l)
1 (H

(l)
1 − µ)−1, one can rewrite Ω(l) in the

form

Ω(l) = −
∫

σ′(A0)∪Γl

(H
(−l)∗
1 − µ)−1KB(dµ)

+

∫

σ′(A0)∪Γl

(H
(−l)∗
1 − µ)−1KB(dµ)H

(l)
1 (H

(l)
1 − µ)−1.

By Lemma 4.4 we know that σ
(
H

(−l)∗
1

)
= σ

(
H

(l)
1

)
. Following the proof of the

estimate (4.6) we conclude that

(4.15)

∥∥∥∥
∫

σ′(A0)∪Γl

(H
(−l)∗
1 − µ)−1KB(dµ)

∥∥∥∥ 6
2VarÃ1

(B,Γl)

1 + VarÃ1
(B,Γl)

.

The estimate (4.15) and the inequalities

‖H(l)
1 ‖ 6 ‖Ã1‖ + ‖X(l)‖ 6 ‖Ã1‖ +

1

2
d0(Γl)[1 − VarÃ1

(B,Γl)]

and

sup
µ∈σ′(A0)∪Γl

∥∥(H(l)
1 − µ)−1

∥∥ 6 sup
µ∈σ′(A0)∪Γl

[
dist

{
µ, σ(Ã1)

}
− ‖X(l)‖

]−1

6
2

d0(Γl)[1 + VarÃ1
(B,Γl)]



Factorization theorem for transfer function 205

imply that

(4.16)

∥∥∥∥
∫

σ′(A0)∪Γl

(H
(−l)∗
1 − µ)−1KB(dµ)H

(l)
1 (H

(l)
1 − µ)−1

∥∥∥∥

6
4VarÃ1

(B,Γl)
{
‖Ã1‖ + 1

2d0(Γl)[1 − VarÃ1
(B,Γl)]

}

d0(Γl)
[
1 + VarÃ1

(B,Γl)
]2 .

Combining the estimates (4.15) and (4.16), one finds

‖Ω(l)‖ 6
4VarÃ1

(B,Γl)[d0(Γl) + ‖Ã1‖]
d0(Γl)[1 + VarÃ1

(B,Γl)]2
.

Due to the assumptions (3.10), the inequality (4.14) holds (see formula (4.7)).
The estimate (4.14) assures that the sum I1 + Ω(l) represents a boundedly

invertible operator in H1.

Theorem 4.5. The operators Ω(l) possess the following properties (cf. [20],
[21], [22], [23], [24], and [30]):

− 1

2πi

∫

γ

[M1(z,Γl)]
−1 dz = (I1 + Ω(l))−1,(4.17)

− 1

2πi

∫

γ

z[M1(z,Γl)]
−1 dz = (I1 + Ω(l))−1H

(−l)∗
1 = H

(l)
1 (I1 + Ω(l))−1,(4.18)

where γ stands for an arbitrary rectifiable closed contour going around the spectrum

of H
(l)
1 inside the set O(Ã1,Γl) in the positive direction. The integration along γ

is understood in the strong sense.

Proof. First, we recall that due to the factorization Theorem 4.1 and the

formula (4.11), the following factorization holds for z ∈ O(Ã1,Γl) \ σ(H
(l)
1 ):

(4.19) [M1(z,Γl)]
−1 =

(
H

(l)
1 −z

)−1
[W1(z,Γl)]

−1 =[W1(z,Γ(−l))]
∗−1
(
H

(−l)∗
1 −z

)−1
,

where [W1(z,Γl)]
−1 and [W1(z,Γ(−l))]

∗−1 are holomorphic functions with values
in B(H1,H1). By the resolvent equation

(H
(l)
1 − µ)−1(H

(l)
1 − z)−1 = [(H

(l)
1 − µ)−1 − (H

(l)
1 − z)−1](µ− z)−1

and due to (4.2)

(4.20)

[W1(z,Γ(−l))]
∗ = I1 −

∫

σ′(A0)∪Γl

(H
(−l)∗
1 − µ)−1KB(dµ)

+ z

∫

σ′(A0)∪Γl

(H
(−l)∗
1 − µ)−1(z − µ)−1KB(dµ),

the product Ω(l)(H
(l)
1 − z)−1 can be written as

(4.21) Ω(l)(H
(l)
1 − z)−1 = F1(z) + F2(z)
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where

(4.22) F1(z) :=

∫

σ′(A0)∪Γl

µ(H
(−l)∗
1 − µ)−1KB(dµ)(H

(l)
1 − µ)−1(µ− z)−1

and

(4.23)

F2(z) :=

(
−

∫

σ′(A0)∪Γl

µ

µ− z
(H

(−l)∗
1 − µ)−1KB(dµ)

)
(H

(l)
1 − z)−1

=
(
[W1(z,Γ(−l))]

∗ − I1
)
(H

(l)
1 − z)−1.

Further, the formula (4.19) yields that

(I1 + Ω(l))[M1(z,Γl)]
−1

= [M1(z,Γl)]
−1 + [F1(z) + F2(z)][W1(z,Γl)]

−1

= [M1(z,Γl)]
−1 + F1(z)[W1(z,Γl)]

−1 + ([W1(z,Γ(−l))]
∗ − I1)[M1(z,Γl)]

−1

= F1(z)[W1(z,Γl)]
−1 + (H

(−l)∗
1 − z)−1.

The function F1(z) is holomorphic inside the contour γ, γ ⊂ O(Ã1,Γl), since the
argument µ of the integrand in the formula (4.22) belongs to σ′(A0) ∪ Γl and

thereby

|z − µ| >
d0(Γl) + VarÃ1

(B,Γl)

2
> 0.

Thus, the term F1(z)[W1(z,Γl)]
−1 does not contribute to the integral

− 1

2πi

∫

γ

(I1 + Ω(l))[M1(z,Γl)]
−1 dz

while the resolvent (H
(−l)∗
1 − z)−1 gives the identity I1 which proves the equa-

tion (4.17).

Concerning the equation (4.18) we obtain

− 1

2πi

∫

γ

(I1 + Ω(l))z[M1(z,Γl)]
−1 dz

= − 1

2πi

∫

γ

zF1(z)[W1(z,Γl)]
−1 dz − 1

2πi

∫

γ

z(H
(−l)∗
1 − z)−1 dz.

The first integral vanishes whereas the second integral equals H
(−l)∗
1 . The second

equation of (4.18) can be checked in the same way.

Note that the formulae (4.17) and (4.18) allow, in principle, to construct the

operators H
(l)
1 and thus to solve the equation (3.6) by a contour integration of the

inverse of the transfer function M1(z,Γl).
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Remark 4.6. The formula (4.18) implies that

H
(l)∗
1 = (I1 + Ω(−l))H(−l)

1 (I1 + Ω(−l))−1.

Theorem 4.7. Let λ be an isolated eigenvalue of the operator H
(l)
1 and,

consequently, of the operator H
(−l)∗
1 and of the transfer function M1(z,Γl) taken

for a KB-bounded contour Γl satisfying the conditions (3.10). By P
(l)
λ and P

(−l)∗
λ

we denote the eigenprojections of the operators H
(l)
1 and H

(−l)∗
1 , respectively, and

by P
(l)
λ the residue of M1(z,Γl) at z = λ,

P
(l)
λ := − 1

2πi

∫

γ

(H
(l)
1 − z)−1 dz,(4.24)

P
(−l)∗
λ := − 1

2πi

∫

γ

(H
(−l)∗
1 − z)−1 dz(4.25)

and

P
(l)
λ := − 1

2πi

∫

γ

[M1(z,Γl)]
−1 dz.(4.26)

Here γ denotes an arbitrary rectifiable closed contour going around λ in the positive
direction in a sufficiently small neighbourhood of this point such that γ ∩ Γl = ∅
and no points of the spectrum of M1( · ,Γl), except the eigenvalue λ, lie inside γ.
Then the following relations are valid:

(4.27) P
(l)
λ = P

(l)
λ (I1 + Ω(l))−1 = (I1 + Ω(l))−1P

(−l)∗
λ .

Proof. The proof is carried out in the same way as the proof of the rela-
tion (4.17), only the path of integration being changed.

5. PROPERTIES OF REAL EIGENVALUES

For arbitrary l let Γl be a KB-bounded contour satisfying the conditions (3.10),

and H
(l)
1 = Ã1+X(l) where X(l) is the solution of (3.6) mentioned in Theorem 3.1.

Remark 5.1. σ′(A0)∩σ(H
(l)
1 ) = ∅ and in particular σ′(A0)∩σp(H(l)

1 ) = ∅.
Proof. According to Theorem 4.2, the spectrum σ(H

(l)
1 ) belongs to the closed

r0(B)-neighbourhood Or0(B)(Ã1) of the spectrum of Ã1 whence

(5.1) sup
µ∈σ(H

(l)
1 )

{
µ, σ(Ã1)

}
6 r0(B).

The definitions of d0(Γl) and rmin(Γl) (see (3.7) and (3.11)) yield that

r0(B) 6 rmin(Γl) 6
1

2
d0(Γl)[1 − VarÃ1

(B,Γl)] 6
1

2
dist

{
σ′(A0) ∪ Γl, σ(Ã1)

}

6
1

2
dist

{
σ′(A0), σ(Ã1)

}
,

so that the statements of the remark follow from the inequality (5.1).
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If λ is a real eigenvalue of H
(l)
1 , then by Remark 5.1 λ belongs either to the

resolvent set %(A0) of the entry A0 or it is embedded in the continuous spectrum

of A0 in
m⋃
k=1

∆0
k. The connection between the real eigenvalues of H

(l)
1 and H is

described below in the Lemmas 5.2 and 5.5.

Lemma 5.2. Let λ ∈ %(A0) ∩ R.

(i) Suppose that λ is an eigenvalue of H
(l)
1 and ψ(1) ∈ H1 is a corresponding

eigenvector, i.e. H
(l)
1 ψ(1) = λψ(1) with ψ(1) 6= 0. Let

(5.2)
ψ(0) = −G10(λ)

∗ψ(1) = −A−1/2
0

(
I0 + λ(A0−λ)−1

)
B01ψ

(1)

= −A1/2
0 (A0−λ)−1B01ψ

(1).

Then the vector Ψ := (ψ(0), ψ(1)) ∈ H is an eigenvector of H to the eigenvalue λ,
i.e. HΨ = λΨ.

(ii) Conversely, let λ be an eigenvalue of H and Ψ = (ψ(0), ψ(1)) ∈ D(H) a
corresponding eigenvector. Then ψ(0) and ψ(1) fulfill the relation (5.2). If λ belongs

to the set O(Ã1,Γl) (see (4.9)), then λ ∈ σp(H
(l)
1 ) and ψ(1) is a corresponding

eigenvector.

Proof. (i) From (5.2) it immediately follows that Ψ ∈ D(H). By the Schur
factorization (2.3), only the relation

M1(λ)ψ
(1) = 0

remains to be proved. By Theorem 4.2, λ belongs to the set Or0(B)(Ã1). The
factorization formula (4.1) yields that

M1(λ,Γl)ψ
(1) = W1(λ,Γl)(H

(l)
1 − λ)ψ(1) = 0.

Since λ is supposed to be real, M1(λ,Γl) = M1(λ).
(ii) The Schur factorization (2.3) yields the relations

(A0 − λ)
(
ψ(0) +G10(λ)

∗ψ(1)
)

= 0,(5.3)

M1(λ)ψ
(1) = 0.(5.4)

Since λ ∈ %(A0), (5.3) infers that ψ(0) and ψ(1) fulfill the relation (5.2). Since it

is supposed that λ ∈ O(Ã1,Γl), W1(λ,Γl) is invertible and thus

(
H

(l)
1 − λ

)
ψ(1) = 0

by the factorization (4.1).

If an eigenvalue λ ofH
(l)
1 belongs to ∆0

k = (µ
(1)
k , µ

(2)
k ) for some k = 1, 2, . . . ,m,

then (see Remark 3.2)

|λ− µ
(i)
k | > dist{µ(i)

k , σ(Ã1)} − ‖X(l)‖ > dist{σ′(A0) ∪ Γl, σ(Ã1)} − ‖X(l)‖

> d0(Γl) − rmin(Γl) >
1

2
d0(Γl)[1 + VarÃ1

(B,Γl)] > 0
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for i = 1, 2. Therefore, in this case λ is situated strictly inside the interval ∆0
k.

Recall that, according to our assumption, the entry A0 has no point spectrum
inside ∆0

k. Since ∆0
k is a part of the continuous spectrum of A0, the resolvent

(A0−z)−1 exists for z = λ±i0 being however an unbounded operator. Nevertheless
a statement analogous to Lemma 5.2 holds in this case.

First let u1 be an arbitrary element of H1. By our assumptions, the function

(5.5) gu1(µ) := 〈KB(µ)u1, u1〉 =
∥∥E0(µ)B01u1

∥∥2

is continuously differentiable on ∆0
k = (µ

(1)
k , µ

(2)
k ). By (2.10), g′u1

(µ) > 0 for

µ ∈ ∆0
k and g′u1

admits an analytic continuation to the domain D+
k ∪D−

k ∪ ∆0
k.

Proposition 5.3. Let λ ∈ ∆0
k = (µ

(1)
k , µ

(2)
k ) for some k ∈ {1, 2, . . . ,m}.

Suppose that λ is an eigenvalue of H
(l)
1 and ψ(1) ∈ H1 a corresponding eigenvector,

i.e., H
(l)
1 ψ(1) = λψ(1) with ψ(1) 6= 0. Then the first derivative as well as the second

derivative of the function

gψ(1)(µ) = 〈KB(µ)ψ(1), ψ(1)〉 =
∥∥E0(µ)B01ψ

(1)
∥∥2

vanish at µ = λ, which means that the function g′
ψ(1)(µ)/(µ − λ)2 is holomorphic

in D+
k ∪D−

k ∪ ∆0
k.

Proof. The equation (3.5) for Y = H
(l)
1 , Γ = Γl and the definition (3.3) yield

that
0 = 〈(H(l)

1 − λ)ψ(1), ψ(1)〉
= 〈(Ã1 − λ)ψ(1), ψ(1)〉 + 〈V1(H

(l)
1 ,Γl)ψ

(1), ψ(1)〉

= 〈(Ã1 − λ)ψ(1), ψ(1)
〉

+

∫

σ′(A0)∪Γl

λ

λ− µ
d〈KB(µ)ψ(1), ψ(1)〉.

Since the denominator of the integrand is non-zero for µ ∈ σ(A0) \ ∆0
k, we can

deform the part Γl\Γlkk of the contour Γl back into the interval ∆0
i , i = 1, 2, . . . ,m,

i 6= k. As a result, we conclude that

(5.6)

〈(Ã1 − λ)ψ(1), ψ(1)〉 +

∫

σ(A0)\∆0
k

λ

λ− µ
d〈KB(µ)ψ(1), ψ(1)〉

+

∫

Γ
lk
k

λ

λ− µ
〈K ′

B(µ)ψ(1), ψ(1)〉 dµ = 0.

Obviously, the first two terms are real, and an imaginary component may appear
in the left-hand side of the equation (5.6) only in the third term. To determine this
component, one simply transforms the path of integration into the two intervals

[µ
(1)
k , λ− ε] and [λ + ε, µ

(2)
k ] and the semicircle |µ − λ| = ε, lk Imµ > 0, between

them. Then, taking the limit ε ↓ 0, one obtains

0 = Im

∫

Γ
lk
k

λ

λ− µ
〈K ′

B(µ)ψ(1), ψ(1)〉 dµ = lkπλ〈K ′
B(λ)ψ(1), ψ(1)〉
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whence g′
ψ(1)(λ) = 〈K ′

B(λ)ψ(1), ψ(1)〉 = 0. Since the function g′
ψ(1) is nonnegative

on ∆0
k and λ is an interior point of this interval, apart from g′

ψ(1) also g′′
ψ(1) vanishes

at µ = λ which completes the proof of Proposition 5.3.

Corollary 5.4. Under the assumptions of Proposition 5.3, the following
alternative holds: Either

(a) E0(µ)B01ψ
(1) = 0 for all µ 6 µ

(2)
k or

(b) E0(µ)B01ψ
(1) 6= 0 for all µ ∈ ∆0

k, the function ‖E0(µ)B01ψ
(1)‖ is twice

differentiable in µ on ∆0
k, and its first derivative as well as its second derivative

vanish at µ = λ.

Proof. First consider the case that E0(λ)B01ψ
(1) = 0. Since ‖E0(µ)B01ψ

(1)‖
is a non-decreasing function of the variable µ, we conclude that ‖E0(µ)B01ψ

(1)‖ =
0 for all µ 6 λ, whence the function g′

ψ(1) vanishes for µ 6 λ. Since this function

is holomorphic in D+
k ∪ D−

k ∪ ∆0
k, it vanishes in this domain, which implies that

condition (a) holds.

If E0(λ)B01ψ
(1) 6= 0, the function ‖E0(µ)B01ψ

(1)‖ is non-zero for any µ ∈
∆0
k. Since the function ‖E0(µ)B01ψ

(1)‖2 is twice differentiable in ∆0
k, it follows

that also its square root ‖E0(µ)B01ψ
(1)‖ is twice differentiable in this interval.

The further statements then immediately follow from Proposition 5.3.

Lemma 5.5. Let λ ∈ ∆0
k = (µ

(1)
k , µ

(2)
k ) for some k ∈ {1, 2, . . . ,m}.

(i) Suppose that λ is an eigenvalue of H
(l)
1 and ψ(1) ∈ H1 is a corresponding

eigenvector, i.e., H
(l)
1 ψ(1) = λψ(1) with ψ(1) 6= 0. Then the limits

G10(λ∓ i0)∗ψ(1) = A
−1/2
0

(
I0 + λ(A0 − λ± i0)−1

)
B01ψ

(1)

exist and coincide. Define

(5.7) ψ(0) := −G10(λ∓ i0)∗ψ(1).

Then Ψ := (ψ(0), ψ(1)) belongs to D(H), HΨ = λΨ, i.e., λ is an eigenvalue of H

and Ψ is a corresponding eigenvector.
(ii) Conversely, let λ be an eigenvalue of H and Ψ = (ψ(0), ψ(1)) ∈ D(H)

a corresponding eigenvector. Then the components ψ(0) and ψ(1) fulfill the rela-

tion (5.7). If λ belongs to the set O(Ã1,Γl), then λ ∈ σp
(
H

(l)
1

)
and ψ(1) is a

corresponding eigenvector.

Proof. It is sufficient to prove the existence and the coincidence of the limits
(A0−λ±i0)−1B01ψ

(1). To this end, we consider an arbitrary sequence λn = λ+iηn,

n = 0, 1, 2, . . . such that ηn 6= 0 and ηn → 0 as n→ ∞. By the resolvent equation
we obtain

(5.8)

(A0−λn)−1B01ψ
(1)−(A0−λm)−1B01ψ

(1)

= (λn−λm)

∫

R

dE0(µ)B01ψ
(1)

(µ−λn)(µ− λm)
=i(ηn−ηm)

∫

R

dE0(µ)B01ψ
(1)

(µ− λn)(µ−λm)
.
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An easy estimate yields
∥∥∥∥
∫

R

dE0(µ)B01ψ
(1)

(µ− λn)(µ− λm)

∥∥∥∥
2

=

∫

R

d〈E0(µ)B01ψ
(1), B01ψ

(1)〉
|µ− λn|2|µ− λm|2

=

∫

R\∆0
k

d〈E0(µ)B01ψ
(1), B01ψ

(1)〉
|µ− λn|2|µ− λm|2 +

∫

∆0
k

g′
ψ(1) (µ)

[(µ− λ)2 + η2
n][(µ− λ)2 + η2

m]
dµ.

Suppose that m > n. First, consider the case that |ηn| > |ηm|. Since, by Propo-
sition 5.3, g′

ψ(1) (µ)/(µ− λ)2 is a continuous bounded function on a neighborhood

of µ = λ in ∆k, we conclude that

‖(A0 − λn)
−1B01ψ

(1) − (A0 − λm)−1B01ψ
(1)‖2

6 |ηn|2

c1 + c2

∞∫

−∞

1

(µ− λ)2 + |ηn|2
dµ


 = |ηn|(c1|ηn| + c2π),

where c1 > 0 and c2 > 0 are suitable constants. If |ηm| > |ηn|, then we obtain an
estimate by |ηm|(c1|ηm| + c2π). Thus, we have shown that

∥∥∥(A0 − λn)
−1B01ψ

(1) − (A0 − λm)−1B01ψ
(1)
∥∥∥ = O

(
sup
m>n

|ηm|
)
,

which implies the existence and coincidence of the limits (A0 − λ ± i0)−1B01ψ
(1)

and G10(λ∓ i0)∗ψ(1).
It also follows that the limits M1(λ ± i0)ψ(1) are well-defined and M1(λ ±

i0)ψ(1) = M1(λ,Γl)ψ
(1). For the sequence (λn)∞n=0 considered above we define

ψ(0)
n := −G10(λn)∗ψ(1).

By (2.5), the vector
(
ψ

(0)
n , ψ(1)

)
belongs to D(H) and by (2.3),

H

(
ψ

(0)
n

ψ(1)

)
= λn

(
ψ

(0)
n

ψ(1)

)
+

(
0

M1(λn)ψ(1)

)
.

The closedness of the operator H yields that (ψ(0), ψ(1)) ∈ D(H) and

H

(
ψ(0)

ψ(1)

)
= λ

(
ψ(0)

ψ(1)

)
+

(
0

M1(λ,Γl)ψ
(1)

)
.

By the factorization Theorem 4.1, M1(λ,Γl)ψ
(1) = 0 which implies that λ is an

eigenvalue of H and (ψ(0), ψ(1)) is a corresponding eigenvector.
Let us now prove the converse statement. Suppose that λ is an eigenvalue

of H and Ψ = (ψ̃(0), ψ(1)) ∈ D(H) is a corresponding eigenvector, i.e., HΨ = λΨ,
Ψ 6= 0. The formula (2.7) yields

(5.9)
(
A

1/2
0 − λA

−1/2
0

)
ψ̃(0) = −B01ψ

(1);

note that ψ̃(0) ∈ D(A
1/2
0 ). Let E0

ac(µ) be the spectral function corresponding to
the absolutely continuous spectrum of A0, E

0
ac(µ) = Eac

0

(
(−∞, µ)

)
. Let δ be any
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subinterval of ∆0
k. Recall that the differentiability ofKB(µ) yields that E0(δ)B01 =

Eac
0 (δ)B01. Applying the projection Eac

0 (δ) to both sides of the equation (5.9) leads

to the relation
∫

δ

µ− λ√
µ

dE0
ac(µ)ψ̃(0) = −

∫

δ

dE0(µ)B01ψ
(1).

Thus, taking the norm squares, one finds

∫

δ

(µ− λ)2

µ
d〈E0

ac(µ)ψ̃(0), ψ̃(0)〉 =

∫

δ

d〈KB(µ)ψ(1), ψ(1)〉.

Since the function 〈E0
ac(µ)ψ̃(0), ψ̃(0)〉 is absolutely continuous and hence almost

everywhere differentiable, we obtain

g′ψ(1)(µ) = 〈K ′
B(µ)ψ(1), ψ(1)〉 =

(µ− λ)2

µ

d

dµ
〈E0

ac(µ)ψ̃(0), ψ̃(0)〉

for almost all µ ∈ ∆0
k. The derivative on the right-hand side of this equation is

an element of L1

(
σac(A0)

)
. Thus the function g′

ψ(1)(µ)/(µ− λ)2 is integrable over

any subinterval δ ⊂ ∆0
k which is only possible if g′

ψ(1)(λ) = 〈K ′
B(λ)ψ(1), ψ(1)〉 = 0.

As in the proof of Proposition 5.3, it follows that g′
ψ(1)(µ)/(µ−λ)2 is holomorphic

in D+
k ∪D−

k ∪ ∆0
k.

As in the proof of part (i), we conclude that the limits G10(λ∓ i0)∗ψ(1) and
M1(λ± i0)ψ(1) exist and define

(5.10) ψ(0) := −G10(λ∓ i0)∗ψ(1).

Choose a sequence λn = λ + iηn, ηn 6= 0, ηn → 0 as n → ∞, as above. Consider

the relation

(5.11)

(H−λn)
(
ψ̃(0)

ψ(1)

)

=

(
I0 0

G10(λn) I1

)(
A0 − λn 0

0 M1(λn)

)(
I0 G10(λn)

∗

0 I1

)(
ψ̃(0)

ψ(1)

)
.

Since the left-hand side of this equation converges to 0 as n→ ∞, we obtain with

respect to the first component that (A0 − λn)
(
ψ̃(0) +G10(λn)∗ψ(1)

)
−→ 0 as n→

∞. The closedness of A0 yields that ψ̃(0)−ψ(0) = ψ̃(0)+G10(λ∓i0)∗ψ(1) belongs to

D(A0) and (A0−λ)(ψ̃(0) −ψ(0)) = 0. The continuity of the spectrum of A0 within

the intervals ∆0
k implies that ψ̃(0) = ψ(0). Further, it then follows from the second

component in (5.11) that M1(λ± i0)ψ(1) = 0. This implies that M1(λ,Γl)ψ
(1) = 0

for any KB-bounded contour Γl ⊂ Dl satisfying the conditions (3.10). Applying

Theorem 4.1 yields H
(l)
1 ψ(1) = λψ(1). Obviously ψ(1) 6= 0 because otherwise

ψ̃(0) = ψ(0) would vanish by (5.10).
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Corollary 5.6. The statements of Lemmas 5.2 and 5.5 imply that σp(H
(l)
1 )

∩R ⊂ σp(H). It also follows from these lemmas that any eigenvector ψ(1) corre-

sponding to an eigenvalue λ ∈ σp(H
(l)
1 ) ∩ R of the operator H

(l)
1 = Ã1 +X(l) for

a certain l = (l1, l2, . . . , lm) is such an eigenvector, H
(l′)
1 ψ(1) = λψ(1), for the re-

maining 2m − 1 operators H
(l′)
1 = Ã1 +X(l′) for l′ = (l′1, l

′
2, . . . , l

′
m) with arbitrary

l′k = ±1, k = 1, 2, . . . ,m. Thus, the set σp(H
(l)
1 ) ∩ R is the same for all the 2m

operators H
(l)
1 .

Lemma 5.7. If some λ ∈ R is an isolated eigenvalue of the operator H
(l′)
1 =

Ã1+X
(l′) for some l′ = (l′1, l

′
2, . . . , l

′
m), then this λ is also such an eigenvalue for the

remaining 2m − 1 operators H
(l)
1 = Ã1 +X(l) for l = (l1, l2, . . . , lm) with arbitrary

lk = ±1, k = 1, 2, . . . ,m. Moreover, the resolvents for all the 2m operators H
(l)
1

have a pole of the first order at z = λ allowing the decomposition

(5.12) (H
(l)
1 − z)−1 =

P
(l)
λ

λ− z
+ R̃

(l)
λ (z)

with R̃
(l)
λ (z) holomorphic in a neighbourhood of λ. In the factorization formula

(4.27) the operator P
(l)
λ reads as

(5.13) P
(l)
λ = lim

z→λ
z 6∈σ(H)

(λ− z)R11(z)

and thus does not depend on l.

Proof. As the factorization formula (4.1) is fulfilled forM1(z,Γl), any isolated

real eigenvalue of H
(l)
1 is at the same time such an eigenvalue of M1(·,Γl).

If λ is an isolated point of the spectrum of H, then the validity of the
statements of the lemma are immediately clear. Indeed, in this case there is
a pointed open neighbourhood of λ where M1(z,Γl) coincides with M1(z). But
M−1

1 (z) = R11(z) where R11(z) is the 11-block of the resolvent R(z) = (H−z)−1.
Since H is a selfadjoint operator, the resolvent R(z) and, consequently, the block
R11(z) can have a pole of at most first order of the isolated eigenvalue z = λ.

Consider the case that λ is not an isolated point of the spectrum of H.

Denote by O(λ) an open circle centered at λ such that O(λ) ⊂ Or0(B)(Ã1) and

σ
(
H

(l)
1

)
∩O(λ) = {λ}. Due to the factorization (4.1), there are also no singularities

of M−1
1 ( · ,Γl) in O(λ) \ {λ}. The function M−1

1 ( · ,Γl) represents an analytic
continuation of the block component R11(z) of the resolvent R(z) to the domain
D(Γl) and in particular to O(λ) ∩D(Γl). Recalling again that the operator H is
selfadjoint and applying the spectral theorem we get

(5.14) R11(z) =

∫

σ(H)

1

µ− z
dE11(µ).

Here E11(µ) denotes the 11-component of the (right-continuous) spectral function
E(µ) of H, E11(µ) = PH1E(µ)|H1 where PH1 denotes the orthogonal projection
onto H1 in H.
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Consider the quadratic form 〈M−1
1 (z)f1, f1〉 where f1 is an arbitrary element

of H1. Since M−1
1 (z) admits an analytic continuation from O(λ)\D(Γl) to O(λ)\

{λ}, the same holds for the scalar function 〈M−1
1 (z)f1, f1〉. The function ωf1(µ) =

〈E11(µ)f1, f1〉 is a non-decreasing non-negative function having bounded variation
on R and the form 〈M−1

1 (z)f1, f1〉 has the Stieltjes integral representation

(5.15) 〈M−1
1 (z)f1, f1〉 =

∫

σ(H)

1

µ− z
dωf1(µ).

Theorem 1.2 from [12] implies that the function ωf1 is real-analytic in the open
intervals ∆l = O(λ)∩ (−∞, λ) and ∆r = O(λ)∩ (λ,+∞) and its derivative ω′

f1
(µ)

admits analytic continuation both from ∆l and ∆r to the whole set O(λ) \ {λ}.
Moreover, the result of this continuation does not depend on whether one starts

from ∆l or from ∆r since the function
[
M1(z,Γl)

]−1
is single-valued on O(λ)\{λ}.

Thus, the continued derivative, for which we keep the same notation ω′
f1

(µ), is a

single-valued function on O(λ) \ {λ}, too.

The real-analyticity of the function ωf1 in the set ∆l ∪∆r implies that it can
be represented in ∆l ∪ {λ} ∪ ∆r as a sum of two terms:

(5.16) ωf1(µ) = ωac
f1(µ) + ωj

f1
(µ)

where the first term, ωac
f1

, is an absolutely continuous function while the second

term, ωj
f1

, is a jump function having in ∆l ∪{λ}∪∆r the only discontinuity point

µ = λ. Moreover, ωj
f1

(λ + 0) − ωj
f1

(λ − 0) = ωf1(λ + 0) − ωf1(λ − 0). (In fact

ωf1(λ + 0) = ωf1(λ) since we assume that the spectral function E(µ) is right-

continuous.) Also we know that d
dµω

j
f1

(µ) = 0 for µ 6= λ. For the derivative
d
dµω

ac
f1

we have d
dµω

ac
f1

(µ) = ω′
f1

(µ) for any µ ∈ ∆l ∪∆r and, hence, this derivative

admits analytic continuation as ω′
f1

to O(λ) \ {λ}.
Let [a, b] be a real interval in O(λ) such that λ ∈ (a, b). Surely, [a, λ) ⊂ ∆l

and (λ, b] ⊂ ∆r. With ωac
f1

and ωj
f1

we can rewrite the Stieltjes integral (5.15) in
the form

〈M−1
1 (z)f1, f1〉

=

∫

σ(H)\[a,b]

1

µ− z
dωf1(µ) +

b∫

a

1

µ− z

d

dµ
ωac
f1(µ) dµ+

ωf1(λ) − ωf1(λ− 0)

λ− z

where the second term is understood as the usual Lebesgue integral.

For arbitrary z ∈ O(λ) \D(Γl) we denote by Ff1(µ, z) an antiderivative for

the L1(a, b)-function (µ− z)−1 d
dµω

ac
f1

(µ). Then

b∫

a

1

µ− z

d

dµ
ωac
f1 (µ) dµ = Ff1(b, z) − Ff1(a, z).
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Since for z ∈ O(λ)\D(Γl) the product (µ−z)−1 d
dµω

ac
f1

(µ) is a holomorphic function

of the variable µ in O(λ) ∩D(Γl), we can also write

Ff1(b, z) − Ff1 (a, z) =

∫

γ(a,b)

1

µ− z

d

dµ
ωac
f1(µ) dµ

where γ(a, b) is a rectifiable Jordan curve lying in O(λ) ∩ D(Γl) and having end
points in a and b. It is assumed that the contour γ(a, b) is obtained by contin-
uous deformation of the interval (a, b) and, therefore, inherits the corresponding
orientation “from the left to right”. Thus, finally we get

(5.17)

〈M−1
1 (z)f1, f1〉

=

∫

σ(H)\[a,b]

1

µ−z dωf1(µ)+

∫

γ(a,b)

1

µ−z
d

dµ
ωac
f1(µ) dµ+

ωf1(λ)−ωf1(λ−0)

λ−z .

Obviously, there is an open neighborhood Õ(λ) of the point λ lying in O(λ)

such that Õ(λ) ∩ γ(a, b) = ∅. Then the first two terms in the right hand side
of (5.17) are holomorphic functions while the third term generates a pole of the
first order of the function 〈M−1

1 (z)f1, f1〉 at z = λ. It follows that the function

〈(z − λ)M−1
1 (z)f1, f1〉 admits an analytic continuation to O(λ) for any f1 ∈ H1.

We conclude by the polar formulae that the same holds true for the function
〈(z − λ)M−1

1 (z)f1, f2〉 for arbitrary f1, f2 ∈ H1. By twice applying Banach-

Steinhaus Theorem we obtain that (z−λ)M−1
1 (z) has an analytic continuation to

O(λ). Finally, it follows that (z − λ)R11(z) has an analytic continuation to O(λ)
and, consequently, R11(z) can have a pole of at most first order at z = λ.

Let σpri(H
(l)
1 ) be the set of all real isolated eigenvalues of the operator H

(l)
1 .

According to Lemma 5.7 (cf. Corollary 5.6), the set σpri(H
(l)
1 ) is the same for

all l = (l1, l2, . . . , lm), lk = ±1, k = 1, 2, . . . ,m. Moreover, this set coincides
with the part σpri

(
M1(·,Γl)

)
of the set of the real isolated eigenvalues of the

transfer function M1(z,Γl) belonging to O(Ã1,Γl) for any KB-bounded contour
Γl satisfying the conditions (3.10),

σpri(H
(l)
1 ) = σpri(M1( · ,Γl)) ∩ O(Ã1,Γl).

Since in the remainder of this section we will consider different eigenvalues

λ ∈ σpri(H
(l)
1 ), we will use a more specific notation, ψ

(1)
λ,j , j = 1, 2, . . . ,mλ, for

the corresponding eigenvectors of the operator H
(l)
1 . The notation mλ, mλ 6 ∞,

stands for the multiplicity of the eigenvalue λ. Recall that every ψ
(1)
λ,j is an eigenvec-

tor simultaneously for all the operators H
(l)
1 and M1(λ± i0,Γl), l = (l1, l2, . . . , lm)

with lk = ±1, k = 1, 2, . . . ,m (see Lemmas 5.2 and 5.5). Since, according to

Lemma 5.7, the resolvent (H
(l)
1 − z)−1 has a pole of the first order at z = λ ∈

σpri(H
(l)
1 ), the multiplicity mλ is, in the considered case, both the geometric and

algebraic multiplicity of λ (which means that every element of the subspace P
(l)
λ H1
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is an eigenvector of H
(l)
1 since (H

(l)
1 − λ)P

(l)
λ = 0). The corresponding eigenvec-

tors of the total matrix H will be denoted by Ψλ,j , Ψλ,j = (ψ
(0)
λ,j , ψ

(1)
λ,j). It will

be supposed that the ψ
(1)
λ,j are chosen in such a way that the vectors Ψλ,j are

orthonormal, 〈Ψλ,j ,Ψλ′,j′〉 = δλλ′δjj′ .

Let H(pri)
1 ,H(pri)

1 ⊂ H1, be the closed span of the eigenvectors ψ
(1)
λ,j of H

(l)
1

corresponding to the spectrum σpri(H
(l)
1 ),

H(pri)
1 =

∨
{ψ(1)

λ,j , λ ∈ σpri(H
(l)
1 ), j = 1, 2, . . . ,mλ}.

Then the following statement holds.

Theorem 5.8. The system

(5.18) ψ
(1)
λ,j , λ ∈ σpri(H

(l)
1 ), j = 1, 2, . . . ,mλ,

forms a Riesz basis of the subspace H(pri)
1 .

We first prove an auxiliary assertion.

Lemma 5.9. For any l = (l1, l2, . . . , lm), lk = ±1, k = 1, 2, . . . ,m, the oper-

ator Ω(l) defined by the equation (4.13) is non-negative on the subspace H(pri)
1 .

Proof. It is sufficient to prove the assertion for a dense subset of H(pri)
1 , say,

for elements u1 ∈ H(pri)
1 of the form

u1 =
∑

(λ,j)∈I
cλ,jψ

(1)
λ,j , cλ,j ∈ C,

where I runs through the finite subsets of the set of all possible pairs (λ, j) with

λ ∈ σpri(H
(l)
1 ), j = 1, 2, . . . ,mλ. Since ψ

(1)
λ,j and ψ

(1)
λ′,j′ are eigenfunction for both

H
(l)
1 and H

(−l)
1 , we obtain that

〈Ω(l)u1, u1〉 =
∑

(λ,j)∈I

∑

(λ′,j′)∈I
cλ,jcλ′,j′Ω

(l)
λ,j;λ′,j′

with

(5.19)

Ω
(l)
λ,j;λ′,j′ =

∫

σ′(A0)

µ

(µ− λ)(µ− λ′)
d〈KB(µ)ψ

(1)
λ,j , ψ

(1)
λ′,j′〉

+

∫

Γl

µ

(µ− λ)(µ− λ′)
〈K ′

B(µ)ψ
(1)
λ,j , ψ

(1)
λ′,j′〉 dµ.

We will show that

(5.20) Ω
(l)
λ,j;λ′ ,j′ = 〈ψ(0)

λ,j , ψ
(0)
λ′,j′〉, independent of l

and, hence, 〈Ω(l)u1, u1〉 = ‖u0‖2 > 0 with u0 =
∑

(λ,j)∈I
cλ,jψ

(0)
λ,j . Thus, the operator

Ω(l) is non-negative on a dense subset of H(pri)
1 and consequently non-negative on

the whole subspace H(pri)
1 .
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To prove (5.20), let us first suppose that λ and λ′ belong to %(A0). The
relation (5.2) yields that

ψ
(0)
λ,j = −A1/2

0 (A0 − λ)−1B01ψ
(1)
λ,j , ψ

(0)
λ′,j′ = −A1/2

0 (A0 − λ′)−1B01ψ
(1)
λ′,j′

and hence

〈ψ(0)
λ,j , ψ

(0)
λ′,j′〉 = 〈B∗

01(A0 − λ′)−1A0(A0 − λ)−1B01ψ
(1)
λ,j , ψ

(1)
λ′,j′〉

=

∫

σ(A0)

µ

(µ− λ)(µ − λ′)
d〈B10E0(µ)B01ψ

(1)
λ,j , ψ

(1)
λ′,j′〉,

which shows the validity of (5.20) since one can deform all the subcontours Γlkk of
Γl back to the corresponding intervals ∆0

k on which KB(µ) = B10E0(µ)B01.
Now consider the case that λ ∈ ∆0

k for some k ∈ {1, 2, . . . ,m} and λ′ ∈ %(A0).
As in the proof of Lemma 5.5, we choose a sequence λn = λ + iηn, n ∈ N, such
that ηn → 0 (n→ ∞) and ηn < 0 if lk = +1 and ηn > 0 if lk = −1. Then

ψ
(0)
λ,j = − lim

n→∞
A

1/2
0 (A0 − λn)−1B01ψ

(1)
λ,j

and

〈ψ(0)
λ,j , ψ

(0)
λ′,j′〉 = lim

n→∞
〈B∗

01(A0 − λ′)−1A0(A0 − λn)−1B01ψ
(1)
λ,j , ψ

(1)
λ′,j′ 〉.

Similar as before, we conclude that

〈ψ(0)
λ,j , ψ

(0)
λ′,j′〉 = lim

n→∞

( ∫

σ′(A0)

µ

(µ− λn)(µ− λ′)
d〈KB(µ)ψ

(1)
λ,j , ψ

(1)
λ′,j′ 〉

+

∫

Γl

µ

(µ− λn)(µ− λ′)
〈K ′

B(µ)ψ
(1)
λ,j , ψ

(1)
λ′,j′〉 dµ

)

=

∫

σ′(A0)

µ

(µ− λ)(µ − λ′)
d〈KB(µ)ψ

(1)
λ,j , ψ

(1)
λ′,j′〉

+

∫

Γl

µ

(µ− λ)(µ− λ′)
〈K ′

B(µ)ψ
(1)
λ,j , ψ

(1)
λ′,j′〉 dµ

= Ω
(l)
λ,j;λ′ ,j′ .

The remaining cases λ ∈ %(A0), λ
′ ∈ ∆0

k′ for some k′ ∈ {1, 2, . . . ,m} and λ ∈ ∆0
k,

λ′ ∈ ∆0
k′ for some k, k′ ∈ {1, 2, . . . ,m} can be treated analogously.

Thus, one can introduce a new inner product in H(pri)
1 ,

(5.21) [u1, v1]H(pri)
1

:= 〈(I1 + Ω(l))u1, v1〉, u1, v1 ∈ H(pri)
1 ,

which is topologically equivalent to the initial inner product 〈 · , · 〉, since, in view
of the estimate (4.14), the operator I1+Ω(l) is boundedly invertible. (One can even
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check that the restriction of H
(l)
1 on H(pri)

1 does not depend on l and is an operator

in H(pri)
1 which is selfadjoint with respect to the inner product [ · , · ]H(pri)

1

.)

Proof of Theorem 5.8. We show that the system (5.18) is an orthonormal
system with respect to the inner product [ · , · ]H(pri)

1

. Indeed, according to the

equations (5.19) and (5.20) we have 〈Ω(l)ψ
(1)
λ,j , ψ

(1)
λ′,j′ 〉 = Ω

(l)
λ,j;λ′ ,j′ = 〈ψ(0)

λ,j , ψ
(0)
λ′,j′〉.

Thus,

[ψ
(1)
λ,j , ψ

(1)
λ′,j′ ]H(pri)

1

= 〈ψ(1)
λ,j , ψ

(1)
λ′,j′〉 + 〈ψ(0)

λ,j , ψ
(0)
λ′,j′〉 = 〈Ψλ,j ,Ψλ′,j′〉 = δλλ′δjj′ .

By definition, the system (5.18) is complete in H(pri)
1 and the inner product

[ · , · ]H(pri)
1

is topologically equivalent to the initial inner product 〈 · , · 〉. Accord-

ing to a theorem of N.K. Bari (Theorem VI.2.1 of [11]), this means that the
system (5.18) is a Riesz basis.

6. SOME PROPERTIES OF COMPLEX EIGENVALUES

For arbitrary l, let Γl ⊂ Dl be a KB-bounded contour satisfying the conditions
(3.10). Suppose X(l) is the solution of the equation (3.6) (see Theorem 3.1) and

H
(l)
1 = Ã1 +X(l). From Theorem 4.2 we know that the spectrum of H

(l)
1 outside

Dl is pure real,

(6.1) σ
(
H

(l)
1

)
\ R ⊂ Dl ∩ Or0(B)(Ã1)

and

(6.2) σ
(
M1( · ,Γl)

)
∩O(Ã1,Γl) = σ

(
H

(l)
1

)
.

Proposition 6.1. Let Γl ⊂ Dl be a KB-bounded contour satisfying the
conditions (3.10). Suppose X (l) is the solution of the basic equation (3.6) and

H
(l)
1 = Ã1 + X(l). Further, we assume that the operators KB(µ) and K ′

B(µ)

are compact for all µ to be considered. Then the operator X (l) is compact and

the nonreal (resonance) spectrum of the operator H
(l)
1 is discrete and may have

accumulation points only in the essential spectrum of Ã1.

Proof. By hypothesis, for any µ ∈ σ′(A0)∪Γl, the operatorKB(µ) is compact

while due to conditions (3.10) the product H
(l)
1 (H

(l)
1 −µ)−1 is a bounded operator.

This implies that any finite sum in the definition of the integral which defines the

operator X(l), X(l) =
∫

σ′(A0)∪Γl

KB(dµ)H
(l)
1 (H

(l)
1 − µ)−1, is a compact operator.

Under the KB-boundedness condition for the contour Γl, the sums converge to
X(l) with respect to the operator norm topology (see [23], Appendix B). Thus,
X(l) is a compact operator.

It is well known that a compact perturbation does not change the essential
spectrum of a closed operator (see, e.g., [13], Theorem IV.5.35 or, for the case
where the main operator is selfadjoint, see [11], Chapter I, Theorem 5.2). Thus,
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the essential spectrum σess(H
(l)
1 ) of H

(l)
1 coincides with the essential spectrum

σess(Ã1) of Ã1. Since σess(Ã1) ⊂ R, the nonreal spectrum of H
(l)
1 is discrete. This

also yields that possible accumulation points of the nonreal (resonance) spectrum

of H
(l)
1 belong to σess(Ã1).

In the remaining part of this section we work under the assumption that
the operators KB(µ) and K ′

B(µ) are compact for all µ to be considered. Let

λ ∈ σ(H
(l)
1 ) \ R. Then, by Proposition 6.1, λ is a discrete eigenvalue of the

operator H
(l)
1 and, by Theorem 4.2, it is simultaneously a discrete eigenvalue of

the transfer function M1( · ,Γl).
Recall some definitions related to isolated eigenvalues (see, e.g., [13], Sec-

tion I.5 and Section III.5) bearing in mind the above discrete eigenvalue λ of H
(l)
1 .

The subspace M(l)
λ = P

(l)
λ H1, where P

(l)
λ stands for the Riesz projection (4.24), is

called the algebraic eigenspace for the eigenvalue λ. Since this λ is a discrete eigen-

value and, thus, of finite type, the algebraic multiplicity mλ = dimM(l)
λ is finite,

mλ < ∞. Any nonzero vector of M(l)
λ is called root vector of H

(l)
1 corresponding

to the eigenvalue λ. By N
(l)
λ we denote the eigennilpotent associated with λ,

(6.3) N
(l)
λ = (H

(l)
1 − λ)P

(l)
λ = P

(l)
λ (H

(l)
1 − λ).

The kernel G(l)
λ = Ker(H

(l)
1 −λ) is called the geometric eigenspace for the eigenvalue

λ. Any nonzero u ∈ G(l)
λ is an eigenvector of H

(l)
1 , H

(l)
1 u = λu. The dimension

gλ = dimG(l)
λ is called the geometric multiplicity of λ. From G(l)

λ ⊂ M(l)
λ it follows

that gλ 6 mλ. There is an open neighborhood Õ(λ) of λ such that for any

z ∈ Õ(λ) \ {λ} the following representation holds:

(6.4)
(
H

(l)
1 − z

)−1
= − P

(l)
λ

z − λ
−
nλ−1∑

k=1

[N
(l)
λ ]k

(z − λ)k+1
+R

(l)
1,λ(z),

where R
(l)
1,λ(z) is a holomorphic operator-valued function in Õ(λ). This function

satisfies the relations:

(6.5) R
(l)
1,λ(z)P

(l)
λ = P

(l)
λ R

(l)
1,λ(z) = 0

for any z ∈ Õ(λ). The number nλ represents the pole order of the resolvent(
H

(l)
1 − z

)−1
at z = λ. Indication of l in the notation nλ is omitted since for

a given λ the pole order does not depend on l, according to the formula (4.19)
and Theorem 4.3. (Similarly to the pole order nλ, the algebraic and geometric
multiplicities mλ and gλ do not depend on l, either.) Since λ is a finite-type

eigenvalue of H
(l)
1 , the value of nλ is finite and, moreover, nλ 6 mλ.

Note that the eigenprojection P
(l)
λ and eigennilpotent N

(l)
λ possess the fol-

lowing standard properties (see [13], Section III.1):

(6.6)
P

(l)
λ P

(l)
λ = P

(l)
λ , P

(l)
λ N

(l)
λ = N

(l)
λ P

(l)
λ = N

(l)
λ ,

[
N

(l)
λ

]nλ−1 6= 0,
[
N

(l)
λ

]nλ = 0.
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From (6.5) and (6.6) we infer that

(6.7)
(
H

(l)
1 − z

)−1
P

(l)
λ = − P

(l)
λ

z − λ
−
nλ−1∑

k=1

[N
(l)
λ ]k

(z − λ)k+1

for any z ∈ Õ(λ). From the uniqueness of the analytic continuation it follows that

the equality (6.7) holds in fact for any z ∈ C \ σ(H
(l)
1 ).

Lemma 6.2. Let the assumptions of Proposition 6.1 be fulfilled and λ ∈
σ
(
H

(l)
1

)
\ R. Then the eigenprojection P

(l)
λ and the eigennilpotent N

(l)
λ of the

operator H
(l)
1 satisfy the equations

M1(λ,Γl)P
(l)
λ = N

(l)
λ −

nλ−1∑

k=1

1

k!
V

(k)
1 (λ,Γl)[N

(l)
λ ]k,(6.8)

M1(λ,Γl)[N
(l)
λ ]nλ−p = [N

(l)
λ ]nλ−p+1 −

p−1∑

k=1

1

k!
V

(k)
1 (λ,Γl)[N

(l)
λ ]nλ−p+k(6.9)

for p = 1, . . . , nλ− 1, where V
(k)
1 (z,Γl) denotes the k-th derivative of the function

V1(z,Γl), defined by the equation (2.13), at z = λ

(6.10) V
(k)
1 (λ,Γl) = k!(−1)k

∫

σ′(A0)∪Γl

KB(dµ)

[
λ

(λ−µ)k+1
− 1

(λ− µ)k

]
, k > 1.

Proof. The equations (3.5) and (3.6) yield (see (4.4)) that

(6.11) Ã1 = H
(l)
1 − V1(H

(l)
1 ,Γl).

Multiplying both parts of (6.11) by P
(l)
λ from the right and taking into account

the equality

(6.12) H
(l)
1 P

(l)
λ = λP

(l)
λ +N

(l)
λ

yields the relation

(6.13) Ã1P
(l)
λ = λP

(l)
λ +N

(l)
λ − V1(H

(l)
1 ,Γl)P

(l)
λ .

The definition (3.3) and the equalities (6.12), (6.6) and (6.7) imply that

V1(H
(l)
1 ,Γl)P

(l)
λ =

∫

σ′(A0)∪Γl

KB(dµ)
(
H

(l)
1 − µ

)−1
H

(l)
1 P

(l)
λ

=

∫

σ′(A0)∪Γl

KB(dµ)
(
H

(l)
1 − µ

)−1(
λP

(l)
λ +N

(l)
λ

)

=

∫

σ′(A0)∪Γl

KB(dµ)
(
H

(l)
1 − µ

)−1
P

(l)
λ

(
λP

(l)
λ +N

(l)
λ

)
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= −
∫

σ′(A0)∪Γl

KB(dµ)
( P

(l)
λ

µ− λ
+

nλ−1∑

k=1

[N
(l)
λ ]k

(µ− λ)k+1

)(
λP

(l)
λ +N

(l)
λ

)

= −
∫

σ′(A0)∪Γl

KB(dµ)
λ

µ− λ
P

(l)
λ(6.14)

−
nλ−1∑

k=1

∫

σ′(A0)∪Γl

KB(dµ)

[
λ

(µ− λ)k+1
+

1

(µ− λ)k

]
[N

(l)
λ ]k.

The equation (2.12) together with (6.11) and (6.14) yields

M1(λ,Γl)P
(l)
λ = Ã1P

(l)
λ − λP

(l)
λ +

∫

σ′(A0)∪Γl

KB(dµ)
λ

λ − µ
P

(l)
λ

= N
(l)
λ +

nλ−1∑

k=1

∫

σ′(A0)∪Γl

KB(dµ)
[ λ

(µ− λ)k+1
+

1

(µ− λ)k

]
[N

(l)
λ ]k.

But according to (6.10) this is the equation (6.8) which we wanted to prove.

By multiplying both parts of (6.8) from the right by [N
(l)
λ ]nλ−p for p =

1, . . . , nλ − 1 and using the properties of the eigenprojection and eigennilpo-

tent (6.6) we obtain the formula (6.9).

Let λ1, . . . , λs ∈ σ(H
(l)
1 ) \ R be a finite set of pairwise different nonreal

eigenvalues of the operator H
(l)
1 . By P

(l)
λ1,...,λs

we denote the Riesz projection

corresponding to this set, by P
(l)
λj

the eigenprojection and byN
(l)
λj

the eigennilpotent

associated with the individual eigenvalue λj , j = 1, . . . , s. Since by Proposition 6.1

the eigenvalues λj are eigenvalues of finite type, we infer that dim P
(l)
λ1,...,λs

H1 <∞.
It is obvious from the definition that

(6.15) P
(l)
λ1,...,λs

= P
(l)
λ1

+ · · · + P
(l)
λs
.

Further, we denote by nλj the pole order of λj , j = 1, . . . , s. Recall that the
eigenprojections and eigennilpotents associated with different eigenvalues fulfill

the following properties, in addition to the properties (6.6):

(6.16) P
(l)
λj

P
(l)
λm

= 0, N
(l)
λj

P
(l)
λm

= P
(l)
λm
N

(l)
λj

= 0 and N
(l)
λj
N

(l)
λm

= 0, j 6= m.

Since the subspaces P
(l)
λ1,...,λs

H1 and (I1 − P
(l)
λ1,...,λs

)H1 are invariant under the

operator H
(l)
1 , we conclude that the following representation for the resolvent of

the restriction H
(l)
1 |P(l)

λ1,...,λs
H1 holds:

(6.17)
(
H

(l)
1 |P(l)

λ1,...,λs
H1 − z

)−1
=

s∑

j=1

{
−

P
(l)
λj

z − λj
−
nλj

−1∑

k=1

[N
(l)
λj

]k

(z − λj)k+1

}
.
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At the same time

(6.18) H
(l)
1 |P(l)

λ1,...,λs
H1 =

s∑

j=1

(
λjP

(l)
λj

+N
(l)
λj

)
.

The equations (6.15), (6.18) and

M1(z,Γl) = Ã1 − z + V1(z,Γl) = H
(l)
1 − z − V1(H

(l)
1 ,Γl) + V1(z,Γl)

imply that

M1(z,Γl)|P(l)
λ1,...,λs

H1 =

s∑

j=1

[
λjP

(l)
λj

+N
(l)
λj

− zP
(l)
λj

+ V1(z,Γl)P
(l)
λj
−V1(H

(l)
1 ,Γl)P

(l)
λj

]
.

Bearing in mind the equalities (6.10) and (6.14), we finally arrive at the following
statement:

Remark 6.3. The transfer function M1( · ,Γl) restricted to the space

P
(l)
λ1,...,λs

H1 admits the representation

M1(z,Γl)|P(l)
λ1,...,λs

H1 =
s∑

j=1

{
(λj − z)P

(l)
λj

+N
(l)
λj

+ V1(z,Γl)P
(l)
λj

− V1(λ
(l)
j ,Γl)P

(l)
λj

−
nλj

−1∑

k=1

1

k!
V

(k)
1 (λ

(l)
j ,Γl)[N

(l)
λj

]k
}
.

7. AN EXAMPLE

Let H0 = H1 = L2(R) and A0 = D2 +λ0I0 where D = i d
dx and λ0 is some positive

number. It is assumed that the domain D(D) is the Sobolev space W 1
2 (R) and

the domain D(A0) is the Sobolev space W 2
2 (R). The spectrum of A0 is absolutely

continuous and fills the semi-axis [λ0,+∞). By the operator A1 we understand
the multiplication by a bounded real-valued function a1, A1f1 = a1f1, f1 ∈ H1.

The operator T01 is defined by D(T01) = W 1
2 (R) and

T01 = DQ

where Q is the multiplication by a bounded not necessarily real-valued function
q ∈W 1

2 (R), Qf = qf , f∈L2(R). Hence T01 is a densely defined closable operator.
We set T10 = T ∗

01. Since for f ∈ D(D) and g ∈ D(T01)

〈f, T01g〉 =

∫

R

f(x)i(qg)′(x) dx =

∫

R

iq(x)f ′(x)g(x) dx = 〈Q∗Df, g〉,

we conclude that D(T10) ⊃ D(D) = W 1
2 (R) = D(A

1/2
0 ) (The proof of the statement

W 1
2 (R) = D(A

1/2
0 ) follows from the second representation theorem for quadratic

forms, see [13], Theorem VI.2.23, and is similar to the proof of Proposition 2.4 in
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[7].) and T10f = Q∗Df , f ∈ W 1
2 (R). Moreover, we assume that the function q is

exponentially decreasing at infinity, so that the estimate

(7.1) |q(x)| 6 c exp(−α|x|), x ∈ R,

holds with some c > 0 and α > 0.
For this example the operator B10 is given by

B10 = Q∗D(D2 + λ0)
−1/2 = Q∗

∫

R

µ

(µ2 + λ0)1/2
dED(µ),

where ED denotes the spectral function of the selfadjoint operator D. Thus

B01 = B∗
10 =

∫

R

µ

(µ2 + λ0)1/2
dED(µ)Q

and
Ã1 = A1 −B10B01

= A1 −Q∗
∫

R

µ

(µ2 + λ0)1/2
dED(µ)

∫

R

µ̃

(µ̃2 + λ0)1/2
dED(µ̃)Q

= A1 −Q∗
∫

R

µ2

µ2 + λ0
dED(µ)Q

= A1 −Q∗Q+ λ0Q
∗(D2 + λ0)

−1Q.

The operator A1 −Q∗Q is the multiplication by the function

ã1(x) = a1(x) − |q(x)|2,
while the term Q∗(D2 + λ0I0)

−1Q is a compact (even Hilbert-Schmidt) operator
in L2(R). Indeed, the inverse operator A−1

0 = (D2 +λ0)
−1 is the integral operator

whose kernel reads

A−1
0 (x, x′) =

1

2
√
λ0

exp
(
−
√
λ0|x− x′|

)
.

Thus, the double integral
∫
R

∫
R

|(Q∗A−1
0 Q)(x, x′)|2 dx dx′ is convergent. Obviously,

∫

R

∫

R

|(Q∗A−1
0 Q)(x, x′)|2 dx dx′ 6

1

4λ0
‖q‖4

L2(R).

Thus, the essential spectrum of Ã1 coincides with the range of the function ã1. In

the following, we assume that either all the spectrum σ(Ã1) is embedded into the

interval (λ0,+∞) or there is a gap in σ(Ã1) and the number λ0 belongs to this

gap, i.e., there is some c̃ > 0 such that dist{λ0, σ(Ã1)} > c̃.
It is easy to check that the spectral function E0(µ) of the operator A0 =

D2 + λ0I0 is given by the integral operator whose kernel reads

E0(µ;x, x′) =





0 if µ < λ0,

1√
2π

µ∫
λ0

cos[(ν−λ0)1/2(x−x′)]
(ν−λ0)1/2 dν if µ > λ0.
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Thus, the derivative K ′
B(µ) is also an integral operator in L2(R). Its kernel

K ′
B(µ;x, x′) is only nontrivial for µ > λ0 and, moreover, for these µ

K ′
B(µ;x, x′) =

(µ− λ0)
1/2

√
2πµ

cos[(µ− λ0)
1/2(x− x′)]q(x)q(x′).

Obviously, this kernel is degenerate for µ > λ0,

(7.2) K ′
B(µ;x, x′) =

(µ− λ0)
1/2

2
√

2πµ
[q−(µ, x)q−(µ, x′) + q+(µ, x)q+(µ, x′)]

where q±(µ, x) = e±i(µ−λ0)1/2xq(x). From the assumption (7.1) on q, we conclude
that in the domain ± Im

√
µ− λ0 < α, i.e., inside the parabola

(7.3) Reµ > λ0 − α2 +
1

4α2
(Im µ)2,

the functions q±(µ, · ) are elements of L2(R). The function K ′
B(µ) admits an

analytic continuation into this domain (cut along the interval λ0 − α2 < µ 6 λ0)
as a holomorphic function with values in B(H1,H1) and the equation (7.2) implies
that

‖K ′
B(µ)‖ 6

|µ− λ0|1/2
2
√

2π|µ|
[‖q−(µ, · )‖2 + ‖q+(µ, · )‖2].

Obviously, for µ > λ0 we have ‖q±(µ, ·)‖ = ‖q‖. Since Ã1 is bounded, one can
always choose a KB-bounded contour Γ lying in the domain (7.3). Indeed, for the
KB-boundedness of the contour Γ it is sufficient to have its infinite part presented
by an appropriate semi-infinite real interval. Thus, if the function q is sufficiently
small in the sense that the conditions (3.10) hold, one can apply all the statements
of the Sections 3–6 to the corresponding transfer function M1(z,Γ).
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7. M. Faierman, R. Mennicken, M. Möller, The essential spectrum of a system of
singular ordinary differential operators of mixed order. I: The general problem
and an almost regular case, Math. Nachr. 208(1999), 101–115.

8. F. Gesztesy, N.J. Kalton, K.A. Makarov, E. Tsekanovskii, Some applications
of operator-valued Herglotz functions, LANL E-print math.FA/9802103.

9. J.P. Goedbloed, Lecture notes on ideal magnetohydrodynamics, Rijnhiuzen Report,
Form Instutuut voor Plasmafysica, Niewwegein, 1983, 83–145.

10. I.C. Gohberg, S. Goldberg, M.S. Kaashoek, Classes of Linear Operators, vol.
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