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Abstract. A bounded linear operator T on the Hilbert space H is called
strongly irreducible if T does not commute with any nontrivial idempotent
operator. One says that T has a finite (SI) decomposition if T can be written
as the direct sum of finitely many strongly irreducible operators. In this
paper, we use the K0-group of the commutant of operators to characterize
operators with unique finite (SI) decomposition up to similarity. Also we
show that the K0-group of H∞(Ω) is isomorphic to the integers, where Ω is
simply connected.
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0. INTRODUCTION

Let H be a complex separable Hilbert space and L(H) the collection of all bounded
linear operators onH. An operator T in L(H) is called strongly irreducible if T does
not commute with any nontrivial idempotent operator. If idempotent operator is
replaced by self-adjoint idempotent, then T is said to be irreducible (see [10], [15],
[12]). Strong irreducibility is preserved by similarity. This is quite different from
irreducible operators.

When H is finite dimensional, classical matrix theory gives two important
theorems.

Schur Theorem. Each n×n matrix can be uniquely written as an orthog-
onal direct sum of irreducible matrices up to unitary equivalence.

Jordan Standard Theorem. Each n× n matrix can be uniquely written
as a direct sum of strongly irreducible matrices up to similarity.

Obviously, an n×n matrix A is strongly irreducible if and only if A is similar
to an n × n Jordan block. When H is an infinitely dimensional complex and
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separable Hilbert space, a natural question is raised: Can we establish analogues
of the Jordan Standard Theorem and Schur Theorem in L(H)?

Behncke ([2]) proved the following:

Theorem B. Let T ∈ L(H) be pure essentially normal. Then T can be
uniquely expressed as a direct sum of countably many irreducible operators up to
unitary equivalence.

An operator T ∈ L(H) is called pure essentially normal if T ∗T − TT ∗ is
compact and has no nontrivial self-adjoint idempotent P commuting with T such
that A = T |PH is normal, i.e. A∗A = AA∗. By the Berger-Shaw Theorem, every
n-rationally multicyclic hyponormal operator is essentially normal. Thus, every n-
rationally multicyclic hyponormal operator can be uniquely written as a direct sum
of countably many irreducible operators up to unitary equivalence. An operator
T is called hyponormal if T ∗T − TT ∗ is a positive operator.

Let Ω be a bounded and connected open subset of the complex plane C and
n a positive integer. Let Bn(Ω) denote the set of operators B in L(H) satisfying:

(i) Ω ⊂ σ(B) = {ω ∈ C : B − ω is not invertible},
(ii) ran (B − ω) = H for every ω in Ω,
(iii)

∨
{ker(B − ω) : ω ∈ Ω} = H,

(iv) dim ker(B − ω) = n for every ω ∈ Ω.

We call an operator in Bn(Ω) a Cowen-Douglas operator (see [6]). G.L. Yu
and C.Q. Yan independently proved the following.

Theorem YY. ([20], [21]) Let B ∈ B2(Ω). Then B has a unique irreducible
decomposition up to the unitary equivalence.

L.J. Gray proved the following.

Theorem G. ([11]) Let T ∈ L(H) be nilpotent i.e. there exists a natural
number n such that Tn = 0. Then T can be uniquely written as a direct sum of
countably many Jordan blocks up to similarity if and only if ranT j is closed for
all j = 1, 2, . . ..

K. Davidson and D.A. Herrero obtained the following:

Theorem DH. ([7]) Let T ∈ L(H) be biquasitriangular and ε > 0. Then
there exists a compact operator K with ‖K‖ < ε such that T +K is quasisimilar
to an orthogonal direct sum of countably many Jordan blocks.

An operator is called biquasitriangular if ind(T − λ) = 0 for λ ∈ ρs−F(T ),

where ρs−F(T )
4
= {λ : T − λ is semi-Fredholm}.

We say an operator A is quasisimilar to an operator B if there exist two
injective operators with dense range, X and Y , satisfyingXA=BX and AY =Y B.

In the last ten years, a lot of work on strongly irreducible operators has been
done by the functional analysis seminar of Jilin University. D.A. Herrero, C.L.
Jiang, Z.Y. Wang and C.K. Fong confirmed Ze Jian Jiang’s Conjecture: A strongly
irreducible operator is a suitable analogue of Jordan blocks in L(H) (see [13], [16],
[17], [18]). D.A. Herrero and C.L. Jiang obtained the following result.
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Theorem HJ. Let T ∈ L(H) and ε > 0. Then there exists an operator A
which can be written as a topological direct sum of finitely many strongly irreducible
operators such that ‖A− T‖ < ε.

Theorem HJ shows that the class of the operators which can be written as
a topological direct sum of finitely many strongly irreducible operators is dense
in L(H).

The next theorem, given by Ze Jian Jiang, shows that a lot of operators can-
not be expressed as a topological direct sum of countably many strongly irreducible
operators.

Theorem J. ([17]) Let T ∈ L(H) be normal and σp(T ), the point spectrum
of T , be empty. Then T can not be written as a topological direct sum of countably
many strongly irreducible operators.

The main purpose of this paper is to discuss the following question: For an
operator T in L(H), when can T be uniquely expressed as a topological direct sum
of finitely many strongly irreducible operators up to similarity?

In what follows, T ∈ (SI) means that T is a strongly irreducible operator
and T ∈ (IR) means that T is irreducible.

Definition 0.1. Let T ∈ L(H). P = {Pi}ni=1, (n <∞), the set of idempo-
tent elements of L(H), is called a unit finite decomposition of T if the following
are satisfied:

(i) Pi ∈ A′(T ), that is the commutant of T , i = 1, 2, . . . , n;
(ii) PiPj = 0, i 6= j;

(iii)
n∑
i=1

Pi = I, where I denotes identity operator on H.

If, in addition, the following is satisfied:

(iv) T |PiH ∈ (SI), i = 1, 2, . . . , n,

then we call P a unit finite (SI) decomposition of T and call the cardinality of P
a (SI) cardinality of T .

It is clear that if T has a unit finite (SI) decomposition, then T can be written
as a topological direct sum of finitely many (SI) operators.

Definition 0.2. For T in L(H), one says T has finite (SI) decomposition if
for an arbitrary idempotent P in A′(T ), T |PH has a unit finite (SI) decomposition.

C.K. Fong and C.L. Jiang ([9]) proved that B1(Ω) ⊂ (SI). A simple compu-
tation shows that every Cowen-Douglas operator has finite (SI) decomposition.

Definition 0.3. Let T have finite (SI) decomposition. If, for any two unit
finite (SI) decompositions of T , say P1 = {Pi}ni=1 and P2 = {Qi}mi=1, the following
are satisfied:

(i) m = n;
(ii) there exists an X ∈ GL(A′(T )) = {A : A is invertible in A′(T )} and a

permutation Π ∈ Sn such that XPiX−1 = QΠ(i) for i = 1, 2, . . . , n.
Then we say that T has unique finite (SI) decomposition up to similarity.



238 Yang Cao, Junsheng Fang and Chunlan Jiang

Definition 0.1′. Let T ∈ L(H). We call P = {Pi}ni=1, n < ∞, a set of
orthogonal projections of L(H), a unit finite orthogonal decomposition of T , if the
following are satisfied:

(i) Pi ∈ A′(T, T ∗), that is the commutant of T and T ∗, i = 1, 2, . . . , n,
(ii) PiPj = 0, i 6= j;

(iii)
n∑
i=1

Pi = I;

If, in addition, the following is satisfied:
(iv) T |PiH is irreducible, i = 1, 2, . . . , n;

then we call P unit finite (IR) decomposition of T .

Definition 0.2′. For T in L(H), one says T has finite (IR) decomposition
if, for an arbitrary orthogonal projection P ∈ A′(T, T ∗), T |PH has a unit finite
(IR) decomposition.

Definition 0.3′. Let T have finite (IR) decomposition. If, for any two unit
finite (IR) decompositions of T , say P1 = {Pi}ni=1 and P2 = {Qi}mi=1, the following
are satisfied:

(i) m = n;
(ii) there exists a unitary U ∈ A′(T, T ∗), and a permutation Π ∈ Sn such

that UPiU∗ = QΠ(i) for i = 1, 2, . . . , n.
Then we say T has unique finite (IR) decomposition up to unitary equivalence.

According to the above definitions, we can see that the (SI) decomposition
of operator T is completely determined by the commutant of T .

K-theory has revolutionized the study of operator algebras in the last few
years. As the primary component of subject of “non-commutative topology”, K-
theory has opened vast new vistas within the structure theory of C∗-algebras,
and has also led to profound and unexpected applications of operator algebras to
problems in geometry and topology. In this paper, we will use the K0-group of the
commutant to characterize operators with unique finite (SI) decomposition up to
similarity and we will calculate the K0-group of H∞(Ω) by using the uniqueness
of (SI) decomposition of operators up to similarity.

In the following definitions, A always denotes a unital Banach algebra.

Definition 0.4. Let e and f be idempotents in A. We write e ∼ (a)f
if there exist x, y ∈ A with xy = e, yx = f (algebraic equivalence). We write
e ∼ (A)f if there exists a z ∈ GL(A) with zez−1 = f .

Obviously, ∼ (a) and ∼ (A) are equivalence relations.

Definition 0.5. M∞(A) is the algebraic direct limit of Mn(A) under the
embedding a 7→ diag(a, 0) = a⊕ 0, where

Mn(A)
4
=


 a11 · · · a1n

...
...

an1 · · · ann

 : aij ∈ A

 .

Definition 0.6. Proj (A) is the set of algebraic equivalence classes of idem-
potents in A and

∨
(A) = Proj (M∞(A)).
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There is a binary operation (orthogonal addition) on
∨

(A): if [e], [f ] ∈
∨

(A),
choose e′ ∈ [e], f ′ ∈ [f ] with e′f ′ = f ′e′ = 0 (this is always possible by “moving
down the diagonal”), and define [e] + [f ] = [e′ + f ′]. Obviously, this operation is
well defined and makes

∨
(A) into an abelian semigroup with identity.

Because of the classical results of K-theory, one obtains exactly the same
semigroup starting with ∼ (A) instead of ∼ (a), since the two notions coincide
on M∞(A).

Note that
∨

(A) depends on A only up to stable isomorphism. If M∞(A1)
is isomorphic (∼=) to M∞(A2), then

∨
(A1) ∼=

∨
(A2). In particular,

∨
(Mn(A)) ∼=∨

(A).

Definition 0.7. K0(A) is the Grothendieck group of
∨

(A).

In Section 1, we will prove the following theorems.

Theorem 1.1. Let T ∈ L(H), and let H(n) denote the direct sum of n copies

of H and A(n) the operator
n⊕
1
A acting on H(n). Then the following are equivalent:

(i) T is similar to (∼)
k⊕
i=1

A
(ni)
i with respect to the decomposition H =

k⊕
i=1

H(ni)
i , where k, ni < ∞, Ai ∈ (SI), Ai 6∼ Aj for i 6= j, and for each natu-

ral number n, T (n) has unique finite (SI) decomposition up to similarity.
(i′)

∨
(A′(T )) ∼= Nk and this isomorphism h sends [I] to (n1, n2, . . . , nk), i.e.,

h([I]) = n1e1 + n2e2 + · · ·+ nkek, where 0 6= ni ∈ N, i = 1, 2, 3, . . . , k, {ei}ki=1 are
the generators of Nk, and N = {0, 1, 2, 3, . . .}.

Corollary 1.2. Let T1, T2 ∈ (SI), T = T1 ⊕ T2. If
∨

(A′(T )) ∼= N, then
T1 ∼ T2. Furthermore, if, for all natural number n, T (n) has unique finite (SI)
decomposition up to similarity, then T1 ∼ T2 if and only if

K0(A′(T )) ∼= Z 4
= {0,±1,±2, . . .}.

Theorem 1.3. Let T ∈ L(H) and let T have a unit finite (IR) decomposi-
tion. Then the following are equivalent:

(i) T ' (unitary equivalent)
k⊕
i=1

A
(ni)
i , where k, ni <∞, Ai ∈ (IR), Ai 6' Aj,

(i 6= j).
(ii) K0(A′(T, T ∗)) ∼= Zk.
Corollary 1.4. Let T1, T2 ∈ L(H) be irreducible. Then T1 ' T2 if and

only if K0(A′(T1 ⊕ T2, (T1 ⊕ T2)∗)) ∼= Z.

Corollary 1.5. Let T ∈ L(H) have a unit finite (IR) decomposition. Then
T has unique finite (IR) decomposition up to unitary equivalence.

Corollary 1.4 tells us the following fact: for two irreducible operators T1 and
T2 in L(H), their unitary equivalence is completely determined by K0-group of
A′(T1 ⊕ T2, (T1 ⊕ T2)∗).

In Section 2, we will give applications of Theorem 1.1.
Let Ω be a bounded and simply connected domain and H∞(Ω) the bounded

analytic functions on Ω. We can obtain
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Theorem 2.1.
∨

(H∞(Ω)) ∼= N and K0(H∞(Ω)) ∼= Z.

Let D be the unit disk. For ϕ in H∞(D) and λ in D, inn(ϕ− ϕ(λ)) denotes
the inner function in the inner-outer factorization of (ϕ − ϕ(λ)). Let Tϕ denote
the analytic Toeplitz operator with symbol ϕ.

Theorem 2.2. For ϕ in H∞(Ω), if there exists a λ in D such that inn(ϕ−
ϕ(λ)) is a finite Blaschke product, then Tϕ has unique finite (SI) decomposition up
to similarity.

Theorem 2.3. Let ϕ1, ϕ2, . . . , ϕn ∈ H∞(D) be univalent analytic functions.

Then there exists a natural number k such that
∨
A′

(
n⊕
i=1

Tϕi

)
∼= Nk. Further-

more, T =
n⊕
i=1

Tϕi has unique finite (SI) decomposition up to similarity.

Corollary 2.4. Let ϕ1, ϕ2 ∈ H∞(D) be univalent analytic functions. Then
Tϕ1 ∼ Tϕ2 if and only if K0(A′(Tϕ1 ⊕ Tϕ2)) ∼= Z.

In Section 3, we will give a new proof of the Jordan Standard Theorem by
using Theorem 1.1 and the K0-group of the commutant. In this proof, we use only
elementary matrices instead of determinants. We will see that

∨
(A′(T )) ∼= Nk

and [I] =
k∑
i=1

niei, as in Theorem 1.1, is exactly the minimum polynomial of T

when T is an n × n matrix. This shows that Theorem 1.1 is a generalization of
the Jordan Standard Theorem to infinite-dimensional Hilbert space.

For a unital Banach algebra A, RadA denotes the Jacobson radical of A.

Theorem 3.1. Let A1, . . . , Ak ∈ (SI) ∩ L(H) satisfying

A′(Ai)/RadA′(Ai) ∼= C, i = 1, 2, . . . .

Then the following hold:
(i) Ai ∼ Aj if and only if K0(A′(Ai ⊕Aj)) ∼= Z.

(ii) Set T =
k∑
i=1

A
(ni)
i where Ai 6∼ Aj for i 6= j. Then

∨
(A′(T )) ∼= Nk and

K0(A′(T )) ∼= Zk. Furthermore, T has unique (SI) decomposition up to similarity.

The above arguments suggest the following.

Conjecture 1. Let A1, A2 ∈ (SI). Then A1 ∼ A2 if and only if

K0(A′(A1 ⊕A2)) ∼= Z.

Conjecture 2. Let T ∈ L(H) have unique finite (SI) decomposition up to
similarity. Then T (n) does for each natural number n.
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1. THE PROOF OF THEOREM 1.1 AND THEOREM 1.3

1.1. Several auxiliary lemmas.

Lemma 1.6. Let A,B ∈ L(H) and ϕ be an isomorphism from A′(A) to
A′(B). Then {Pi}ni=1 is a unit (SI) decomposition of A if and only if {ϕ(Pi)}ni=1
is a unit (SI) decomposition of B. In particular, if A ∼ B then A′(A) ∼= A′(B).

Proof. Since ϕ is an isomorphism, 0 = ϕ(PiPj) = ϕ(Pi)ϕ(Pj), (i 6= j) and
n∑
i=1

ϕ(Pi) = I. We need only to prove that B|ϕ(Pi)H ∈ (SI). Otherwise, there exist

two non-zero idempotents Q1 and Q2 in A′(B) so that Q2Q1 = Q1Q2 = 0 and
Q1 + Q2 = ϕ(Pi). Note that ϕ−1(Q1), ϕ−1(Q2) are two non-zero idempotents in
A′(A) and Pi = ϕ−1(Q1) + ϕ−1(Q2). This contradicts A|PiH ∈ (SI).

If A is similar to B, then there exists an invertible operator X satisfying
XAX−1 = B. Define a mapping ϕ below: ϕ(T ) = XTX−1, ∀T ∈ A′(A). It is
clear that ϕ is an isomorphism from A′(A) to A′(B).

Lemma 1.7. Let T ∈ L(H) and P1, P2 ∈ A′(T ) be idempotent operators. If
P1 ∼ (A′(T ))P2 then T |P1H ∼ T |P2H.

Proof. Since P1 ∼ (A′(T ))P2, there exists an X ∈ GL(A′(T )) such that
XP1X

−1 = P2. Therefore XranP1 = ranP2, Xran (I − P1) = ran (I − P2). Set
X1 = X|ranP1 , X2 = X|ran (I−P1). Then X = X1+̇X2, where +̇ denotes the
topological direct sum, and X1 ∈ GL(L(P1H, P2H)), X2 ∈ GL(L((I − P1)H, (I −
P2)H)). Note that

T =
[
T1 0
0 T2

]
P1H

(I − P1)H
=

[
T ′1 0
0 T ′2

]
P2H

(I − P2)H
,

where T1 = T |P1H, T2 = T |(I−P1)H, T ′1 = T |P2H, and T ′2 = T |(I−P2)H. A simple
computation shows that[

T ′1 0
0 T ′2

] [
X1 0
0 X2

]
=

[
X1 0
0 X2

] [
T1 0
0 T2

]
.

Thus T |P1H ∼ T |P2H.

Lemma 1.8. Let T ∈ L(H) and let {Pi}ni=1 and {Qi}ni=1 be two unit (SI)
decompositions of T . If there exist X1, . . . , Xn ∈ GL(L(PiH, QiH)) satisfying

Xi(T |PiH)X−1
i = T |QiH, i = 1, . . . , n,

then X = X1+̇X2+̇ · · · +̇Xn ∈ GL(A′(T )).

Proof. SinceH=ranP1+̇ranP2+̇ · · · +̇ranPn=ranQ1+̇ranQ2+̇ · · · +̇ranQn,

T =

T1 0
. . .

0 Tn

 P1H
...

PnH
=

T ′1 0
. . .

0 T ′n

 Q1H
...

QnH

where Ti = T |PiH, T ′i = T |QiH, i = 1, 2, 3, . . . , n. Clearly, XT = TX and X is
invertible.
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Lemma 1.9. Suppose that {P1, . . . , Pm, Pm+1, . . . , Pn} and {Q1, . . . , Qm,
Qm+1, . . . , Qn} are two sets of idempotent operators in A′(T ), T ∈ L(H). If
there exist X,Y ∈ GL(A′(T )) and a permutation Π ∈ Sn satisfying

(i) XPiX−1 = Qi, 1 6 i 6 m;
(ii) Y PiY −1 = QΠ(i), 1 6 i 6 n;

then ∀Qr, m < r′ 6 n, there exists a Pr′ , m < r 6 n, and Zr, a finite product of
Y and X, such that ZrQrZ−1

r = Pr′ . Moreover, {Pr′} is exactly a rearrangement
of {Pr}nr=m+1.

Proof. Given Qr, m < r 6 n, it follows from Property (ii) that there exists
a Pj1 , 1 6 j1 6 n satisfying Y QrY −1 = Pj1 . If m < j1 6 n, then set Zr = Y and
Pr′ = Pj1 . If 1 6 j1 6 m, then it follows from Property (i) that there exists a
Qj1 , j1 6= r, such that XYQrY −1X−1 = Qj1 . By Property (ii), Y Qj1Y

−1 = Pj2 .
If m < j2 6 n, then set Zr = Y XY , Pr′ = Pj2 . If 1 6 j2 6 m, it is clear that
j1 6= j2. Otherwise Qj1 = Y −1Pj2Y = Y −1Pj1Y = Qr, which is a contradiction.
Using Property (ii) again, we can find Pj3 so that Y Qj2Y

−1 = Pj3 . Similarly,
j3 /∈ {j1, j2}. If m < j3 6 n, then set Zr = Y XY XY , Pr′ = Pj3 . Otherwise,
we can continue the above choice procedure. Since n is a natural number, after s
steps, s 6 m+ 1, we will force Pjs ∈ {Pm+1, . . . , Pn}. Set

Pr′ = Pjs , Zr = Y XY · · ·XY (X appears s times),

then ZrQrZ−1
r = Pjs . We assert that if r1 6= r2, with r1, r2 ∈ {m+1, . . . , n}, then

js1 6= js2 . Otherwise, there exists Zr1 = Y XY · · ·Y XY (X appears s1 times) and
Zr2 = Y XY · · ·Y XY (X appears s2 times) such that

Zr1Qr1Z
−1
r1 = Zr2Qr2Z

−1
r2 .

Without loss of generality, assume that js1 > js2 . If js1 > js2 , then it follows
Z−1
r2 Zr1Qr1Z

−1
r1 Zr2 = Qr2 ∈ {Qi}ni=m+1. Note that

Z−1
r2 Zr1 = XY · · ·XY (X appears js1 − js2 times).

Set
R = Y XY · · ·XY (X appears js1 − js2 − 1 times).

By this choice process, we can deduce that RQr1R
−1 ∈ {Pi}mi=1. Thus we have

XRQr1R
−1X−1 ∈ {Qi}mi=1. But

XRQr1R
−1X−1 = Z−1

r2 Zr1Qr1Z
−1
r1 Zr2 = Qr2 ∈ {Qi}ni=1,

which is impossible. If js1 = js2 , it is not difficult to check that Qr1 = Qr2 . This
contradicts our assumption that r1 6= r2.

Similarly to the proof of Lemma 1.9, we immediately can prove

Lemma 1.10. Let T ∈ L(H) and let {P1, . . . , Pm1 , . . . , Pmk−1−1, . . . , Pmk
,

Pmk+1, . . . , Pn} and {Q1, . . . , Qm1 , . . . , Qmk−1−1, . . . , Qmk
, Qmk+1, . . . , Qn} be two

sets of idempotent operators in A′(T ). If there exist X1, X2, . . . , Xk, Y ∈GL(A′(T ))
and a permutation Π ∈ Sn satisfying

XiPjX
−1
i = Qj , mi + 1 6 j 6 mi+1, i = 0, 1, . . . , k − 1,m0 = 0,

and
Y −1PjY = QΠ(i), 1 6 i 6 n,
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then for each r, mk < r < n, there exists a Zr, a finite product of {Y,X1, . . . , Xk},
so that {ZrQrZ−1

r }nr=mk+1 is exactly a rearrangement of {Pr}nr=mk+1.

Lemma 1.11. Suppose that {P1, . . . , Pm, Pm+1, . . . , Pn} and {Q1, . . . Qm,
Qm+1, . . . , Qn} are two unit decompositions of T , T ∈ L(H). If the following
properties are satisfied:

(i) for each Pi, there exists an Xi ∈ GL(PiH, QiH) satisfying XiT |PiHX
−1
i =

T |QiH, 1 6 i 6 m;
(ii) there exists a Y ∈ GL(A′(T )) and a permutation Π ∈ Sn satisfying

Y −1PiY = QΠ(i);
then given Qr, r ∈ {m + 1, . . . , n}, there exist r′ ∈ {m + 1, . . . , n} and Zr ∈
GL(QrH, Pr′H) satisfying Zr(T |QrH)Z−1

r = T |Pr′H. Furthermore, if r1 6= r2,
then r′1 6= r′2.

Proof. Given r ∈ {m + 1, . . . , n}, there exists Pj1 ∈ {Pi}ni=1 satisfying
Y QrY

−1 = Pj1 , by Property (ii). If m < j1 6 n set Zr = Y |QrH. Otherwise,
by T |(Y QrY −1)H = T |Pj1H and Property (i), we have Xj1T |Pj1

HX−1
j1

= TQj1H.
Using Property (ii) again, we can find j2 ∈ {1, . . . , n} satisfying Y Qj1Y

−1 = Pj2 .
Obviously, j2 6= j1. If j2 ∈ {m + 1, . . . , n}, set Zr = Y |QjHXj1Y |QrH, Pr′ = Pj2 .
Then Zr(T |QrH)Z−1

r = T |Pr′H. Otherwise, similarly to the proof of Lemma 1.9,
after s steps we can find Pjs /∈ {Pk}nk=m+1 such that

ZrT |QrHZ
−1
r = T |Pr′H

where Pr′ = Pjs and

Zr = (Y |Qjs−1H)Xjs−1 · · · (Y |Qj1H)Xj1(Y |QrH).

Again similarly to the proof of Lemma 1.9, we can deduce that r′1 = r′2 if r1 6= r2.

Lemma 1.12. Let T ∈ L(H) and suppose T has unique finite (SI) decompo-
sition up to similarity. Then for an arbitrary idempotent P in A′(T ), T |PH has
unique (SI) decomposition up to similarity.

Proof. Since T has unique finite (SI) decomposition up to similarity, T |PH
has finite (SI) decomposition and all the (SI) cardinalities of TPH must be the
same.

Let {Pi}mi=1 and {Qi}mi=1 be two unit (SI) decompositions of T |PH and let
{Pi}ni=m+1 be a unit (SI) decomposition of T |(I−P )H. Then {{Pi}mi=1, {Pi}ni=m+1}
and {{Qi}mi=1, {Pi}ni=m+1} are two unit (SI) decomposition of T . By uniqueness,
we can find a Y ∈ GL(A′(T )) such that

{Y PiY −1} = {Q1, . . . , Qm, Pm+1, . . . , Pn}.

By Lemma 1.11, we can find Zi in GL(L(QiH, PiH)) and a permutation Π ∈ Sn
satisfying

Zi(T |QiH)Z−1
i = T |PΠ(i)H, 1 6 i 6 m.

Set Zk = I|PkH for k > m + 1 and set Z = Z1+̇ · · · +̇Zn. By Lemma 1.8, Z ∈
GL(A′(T )) and Z|PH ∈ GL(A′(T )|PH). Note that (Z|PH)Qi(Z|PH)−1 = PΠ(i),
1 6 i 6 m.
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Lemma 1.13. Let T ∈ L(H) and suppose T has unique finite (SI) decompo-
sition up to similarity. Then the following are equivalent:

(i) P ∼ (A′(T ))Q;
(ii) T |PH ∼ T |QH;

where P and Q are idempotents of A′(T ).

Proof. (i) ⇒ (ii) This is a straightforward consequence of Lemma 1.7.
(ii) ⇒ (i) By Lemma 1.12, T |PH, T |QH, T |(I−P )H, and T |(I−Q)H have unique

finite (SI) decomposition up to similarity. Since T |PH ∼ T |QH, there exists X ∈
GL(L(PH, QH)) satisfying X(T |PH)X−1 = T |QH. Thus, if {P1, . . . , Pm} is a
unit (SI) decomposition of T |PH, then {XP1X

−1, . . . , XPmX
−1} is a unit (SI)

decomposition of T |QH.
Let {Pm+1, . . . , Pn} and {Qm+1, . . . , Qn} be arbitrary (SI) decompositions of

T |(I−P )H and T |(I−Q)H, respectively. Then {Pi}ni=1 and {{XPiX−1}mi=1,
{Qi}ni=m+1} are two unit (SI) decompositions of T . By uniqueness, there exists
Y ∈ GL(A′(T )) such that {Y −1PiY }ni=1 are an exact rearrangement of
{{XPiX−1}mi=1, {Qi}ni=m+1}. Applying Lemma 1.11 for each r ∈ {m+ 1, . . . , n},
we can find Pr′ , r′ ∈ {m + 1, . . . , n} and Zr ∈ GL(L(QrH, Pr′H)) so that
Zr(T |QrH)Z−1

r = T |Pr′H and r′1 = r′2 if r1 = r2. Set

Zr = X−1|XPkX−1H, k 6 m.

Then
Z = Z1+̇ · · · +̇Zn ∈ GL(A′(T )).

Noting that ZPZ−1 = Q and using Lemma 1.8, we can deduce that P ∼
(A′(T ))Q.

Lemma 1.14. Let T ∈ L(H) and let P and Q be idempotents in A′(T ). If
T |PH is not similar to T |QH, then for each natural number n, P ⊕ 0H(n) is not
similar to Q⊕ 0H(n) in A′(T (n+1)).

Proof. If not, there exists n ∈ N and X ∈ GL(A′(T (n+1))) satisfying
X(P ⊕ 0H(n))X−1 = (Q⊕ 0H(n)).

According to Lemma 1.7,

T (n+1)|(P⊕0H(n) )H(n+1) ∼ T (n+1)|(Q⊕0H(n) )H(n+1) .

Note that T (n+1)|(P⊕0H(n) )H(n+1) ' T |PH and T (n+1)|(Q⊕0H(n) )H(n+1) ' T |QH.
Thus T |PH ∼ T |QH. This contradicts T |PH 6∼ T |QH.

Lemma 1.15. Let T ∈ L(H) and let T (n) have unique finite (SI) decomposi-
tion up to similarity for each natural number n. Then P ∼ (A′(T ))Q if and only
if [P ] = [Q] in

∨
(A′(T )).

Proof. The “if” part is clear.
Let P,Q be two idempotent elements of A′(T ). If [P ] = [Q] in

∨
(A′(T )),

then there exists a natural number k satisfying

P ⊕ 0H(k) ∼ (A′(T (n+1)))Q⊕ 0H(k) .

By Lemma 1.7,
T |PH ∼ T |QH.

Furthermore, P ∼ (A′(T ))Q follows from Lemma 1.13.
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1.2. The proof of Theorem 1.1. (i) ⇒ (ii) Let Pi be the orthogonal projection
onto Hi. Let E be an idempotent in Mn(A′(T )) = A′(T (n)). Since T (n) has
unique finite (SI) decomposition, T (n)|EH(n) and T (n)|(I−E)H(n) have finite (SI)
decompositions.

If {Q1, . . . , Qa} is an (SI) decomposition of T (n)|EH(n) and {Qa+1, . . . , Qb}
is an (SI) decomposition of T (n)|(I−E)H(n) , then {Q1, . . . , Qb} is an (SI) decompo-
sition of T (n). Since we also have an (SI) decomposition of T (n) using nni copies
of each of the projections Pi uniqueness implies that there is X ∈ GL(A′(T (n)))
so that conjugation by X carries Qj to a copy of one of the Pi, with appropriate
multiplicity conditions.

In particular, XDX−1 = X(Q1 + · · · + Qa)X−1 equals a sum of copies of
the Pi. That is, there are integers mi, 0 6 mi 6 nni, so that

XEX−1 =
k∑
i=1

P
(mi)
i .

Define a map h :
∨

(A′(T )) → Nk by

h([E]) = (m1, . . . ,mk).

To see that h is well-defined, we observe that if [E] = [F ] then F ∼ E ∼
k∑
i=1

P
(mi)
i

by using Lemma 1.15. If F can be similar at most to one projection of the form
k∑
i=1

P
(mi)
i , it follows that if h([F ]) = h([E]), then F ∼ E, so h is one-to-one. For

any k-tuple (m1, . . . ,mk) of nonnegative integers, we can find n so that mi 6 nni

for all i and then h sends
k∑
i=1

P
(mi)
i to (m1, . . . ,mk), showing that h is onto. Thus,∨

(A′(T )) ∼= Nk and by our construction, h([I]) = (n1, . . . , nk).
(ii) ⇒ (i) Suppose

∨
(A′(T )) ∼= Nk and h is the isomorphism. Then there

exists a natural number r and Q1, . . . , Qk, k idempotents of A′(T (r)), satisfying
h([Qi]) = ei, 1 6 i 6 k.

Since
∨

(A′(T (n))) ∼=
∨

(A′(T )), we need only prove that T has unique finite
(SI) decomposition up to similarity. At first, we will prove the following:

(a) For an arbitrary idempotent P in A′(T ), if T |PH ∈ (SI), then there exists
i, 1 6 i 6 k, satisfying h([P ]) = ei.

Let h([P ]) =
k∑
i=1

λiei =
k∑
i=1

λih([Qi]) , λi ∈ N, set w = r
k∑
i=1

λi, then we can

find a natural number n > w satisfying

P ⊕ 0H(n−1) ∼ (A′(T (n)))
k∑
i=1

Q
(λi)
i ⊕ 0H(n−w) .

By Lemma 1.7

T (n)|(P⊕0H(n−1) )H(n) ∼ T (n)|( k∑
i=1

Q
(λi)
i

⊕0H(n−w)

)
H(n)

.
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So
T |PH ∼ T (w)| k∑

i=1

Q
(λi)
i

H(w)

.

Note that T |PH ∈ (SI) but the righthand side of this similarity is in (SI) only
if one λi is 1 and the rest are zero. Thus, there exists i, 1 6 i 6 k, h([P ]) = ei.

(b) For arbitrary idempotents P and Q in A′(T (n)), if h([P ]) = h([Q]), then
T |PH ∼ T |QH. The proof is similar to the proof of (a), so we omit it.

Let (P1, . . . , Pm) be a unit decomposition of T let h([Pi]) =
k∑
j=1

λijej , where

λij ∈ N. Then h([I]) = h

([
m∑
i=1

Pi

])
=

m∑
i=1

k∑
j=1

λijej . Note that h([I]) =
k∑
i=1

niei,

so that
m∑
i=1

k∑
j=1

λij =
k∑
i=1

ni, so m 6
k∑
i=1

ni. This shows that T has finite (SI)

decomposition.
Furthermore, let (P1, . . . , Pt) be a unit (SI) decomposition of T , then

h

( t∑
i=1

[Pi]
)

= h([I]) =
k∑
i=1

niei.

By (a), t =
k∑
i=1

ni, and for each i, 1 6 i 6 k, there exist Pi1 , . . . , Pini
∈

{P1, . . . , Pt} satisfying h([Pi1 ]) = · · · = h([Pini
]) = ei. By (b), T |Pij

H ∼ T |Pik
H,

∀1 6 j, k 6 ni. Letting Ai = T |Pi1H, it is clear that

T ∼
k∑
i=1

A
(ni)
i .

Suppose (P ′1, . . . , P
′
s) be another unit (SI) decomposition of T , then in the

same way we know r =
k∑
i=1

ni, and for each i, 1 6 i 6 k, there exist ni idempotents

in {P ′1, . . . , P ′s} and h sends each of them to ei. By (b) again, if h([Pi]) = h([Pj ]),

1 6 i, j 6
k∑
i=1

ni, then T |PiH ∼ T |P ′
j
H. By Lemma 1.8, T has unique finite (SI)

decomposition up to similarity.
This completes the proof of Theorem 1.1.

1.3. The proof of Corollary 1.2. The first part of Corollary 1.2 comes from
Theorem 1.1.

Note that T (n) has unique finite (SI) decomposition up to similarity. That
T1 ∼ T2 if and only if

∨
(A′(T1 ⊕ T2)) ∼= N follows from Theorem 1.1. Thus,

if T1 ∼ T2 then K0(A′(T1 ⊕ T2)) ∼= Z by using
∨

(A′(T1 ⊕ T2)) ∼= N. Also, if
K0(A′(T1 ⊕ T2)) ∼= Z, then

∨
(A′(T1 ⊕ T2)) ∼= Nk, k 6 2, by using Theorem 1.1.

Since K0(A′(T1 ⊕ T2)) ∼= Z,
∨

(A′(T1 ⊕ T2)) ∼= N.
This shows that T1 ∼ T2, completing the proof of Corollary 1.2.
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1.4. The proof of Theorem 1.3.

Lemma 1.16. Let T ∈ L(H). Then the following are equivalent:

(i) T '
k∑
i=1

A
(ni)
i with respect to the decomposition H =

k∑
i=1

H(ni)
i where

Ai 6' Aj, i 6= j, and ni, k <∞;
(ii)

∨
(A′(T, T ∗) ∼= Nk.

Proof. (i) ⇒ (ii). If Ai ∈ (IR), it is easy to see A′(Ai, A∗i ) ∼= C. For arbitrary
Ai, Aj ∈ (IR), i 6= j, then ker τAi,Aj

∩ ker τAi,Aj
= {0}, where the Rosenblum

operator τAi,Aj ∈ L(L(Hj ,Hi)) is defined by τAi,Aj (X) = AiX − XAj for every
X ∈ L(Hj ,Hi) (see [8]). If 0 6= A ∈ ker τAi,Aj

∩ τAi,Aj
, then AA∗Ai = AAjA

∗ =
AiAA

∗. Since Ai ∈ (IR), AA∗ = λI and λ = 0. Similarly, A∗A = µI and µ 6= 0.
It is easy to see that λ = µ. This shows A/λ1/2 is a unitary operator and Ai ' Aj .

It is a contradiction. So A′(T, T ∗) ∼=
k∑
i=1

Mni(C),
∨

(A′(T, T ∗)) ∼= Nk.

(ii) ⇒ (i) is similar to the proof of Theorem 1.1.

Now we are in position to prove Theorem 1.3. If T '
k∑
i=1

A
(ni)
i and Ai 6' Aj

for i 6= j then K0(A′(T, T ∗)) ∼= Zk by Lemma 1.16. Also, if K0(A′(T, T ∗)) ∼= Zk,
then since T has one unit finite (IR) decomposition,

∨
(A′(T, T ∗)) ∼= Nk′ follows

from Lemma 1.16. Thus k′ = k and T '
k∑
i=1

A
(ni)
i , Ai 6' Aj for i 6= j. The proof

of Theorem 1.3 is now complete.

Corollary 1.4 and Corollary 1.5 are straightforward consequences of Theo-
rem 1.3.

2. THE APPLICATION OF THEOREM 1.1 AND THE CALCULATION OF K0-GROUP

2.1. Several auxiliary lemmas and definitions.

Von Neumann-Wold Theorem. Let S ∈ L(H) be an isometric operator

and let L∞ =
∞⋂
n=1

SnH. Then S|L∞ is unitary and S|L⊥∞ '
l⊕
1
Tz, where l =

dim kerS∗.

Definition 2.5. Say S to be a pure isometry if
∞⋂
n=1

SnH = 0.

It is easily seen that T (n)
z is a pure isometry for every natural number n. The

following result is well-known.

Lemma 2.6. Let S ∈ L(H) be a pure isometry. Then the following hold:

(i) If l = dim kerS∗, then S '
l⊕
1
Tz;

(ii) If l <∞, then S∗ ∈ Bl(D);
(iii) S ∈ (SI) if and only if S∗ ∈ B1(D).
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Corollary 2.7. Let S ∈ L(H) be a pure isometry and P an idempotent of
A′(S). Then S|PH ∈ (SI) if and only if S|PH ' Tz.

Proof. It is a straightforward conclusion of Lemma 2.6.

Lemma 2.8. For each natural number n, T (n)
z has unique (SI) decomposition

up to similarity.

Proof. Since (T (n)
z )∗ ∈ Bn(D), T (n)

z has finite (SI) decomposition. If P ∈
A′(T (n)

z ) is idempotent and T
(n)
n |PH(n) ∈ (SI), then T

(n)
z |PH(n) ' Tz follows from

Lemma 2.6. Since (T (n)
z )∗ ∈ Bn(D), m = n. This implies that T (n)

z has unique
(SI) decomposition up to similarity.

Lemma 2.9.
∨

(H∞(D)) ∼= N, K0(H∞(D)) ∼= Z.

Proof. Note that A′(Tz) ∼= H∞(D) and use Lemma 2.8 and Theorem 1.1, we
can complete the proof of Lemma 2.9.

Definition 2.10. Let T ∈ L(H) and let K be a compact subset of C. If
σ(T ) ⊂ K and for every f in Rat (K) = {f : f is rational function with poles

outside K}, ‖f(T )‖ 6 ‖f‖ 4= max
z∈K

‖f(z)‖, then we call K a spectral set for T .

Definition 2.11. T ∈ L(H) is called a von Neumann operator, if T has a
spectral set.

The following three lemmas come from [4].

Lemma 2.12. Every subnormal operator T is a von Neumann operator and
σ(T ) and σ(T ∗) are spectral sets for T and T ∗. Furthermore,

‖f(T )‖ = ‖f‖σ(T ), ‖g(T ∗)‖ = ‖g‖σ(T∗),

where f ∈ Rat (σ(T )) and g ∈ Rat (σ(T ∗)).

An operator is called subnormal if it is (unitarily equivalent to) the restriction
of a normal operator to an invariant subspace.

Lemma 2.13. Let T ∈ L(H) be a von Neumann operator. Then the following
are equivalent:

(i) ‖f(T )‖ = ‖f‖σ(T ) for each f in Rat (σ(T ));
(ii) σ(f(T )) = f(σ(T )) for each f in Rat (σ(T )).

Lemma 2.14. Let K be a spectral set for T and let f ∈ Rat (T ). Then f(K)
is a spectral set for A(= f(T )). Furthermore, if ‖g(T )‖ = ‖g‖K holds for every g
in Rat (K), then ‖h(A)‖ = ‖h‖f(K) holds for every h ∈ Rat (f(K)).

2.2. The proof of Theorem 2.1. Since Ω is simply connected, the Riemann
Mapping Theorem says that there exists a univalent analytic function f on D
satisfying f(D) = Ω and f(∂D) = ∂Ω. Set T = f(Tz) = Tf . By Lemma 2.13 and
Lemma 2.14, σ(Tf ) = f(D) = Ω. Since f is univalent, A′(Tf ) = A′(Tz) = H∞(D)
(see [5]). Clearly, Tz and Tf are subnormal. It follows from Lemma 2.12 that Ω
and Ω

∗
are spectral sets for Tf and T ∗f , respectively. As usual, Ω

∗
= {λ : λ ∈ Ω}.
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A simple computation shows that T ∗f ∈ B1(D). By Theorem 1.12 of [6], A′(T ∗f ) ∼=
H∞(Ω

∗
). Note that A′(T ∗f ) ∼= A′(Tf ). We have

H∞(Ω) ∼= H∞(D).

Thus
∨

(H∞(Ω)) ∼= N and K0(H∞(Ω) ∼= Z follows from Lemma 2.9.

2.3. The proof of Theorem 2.2. Let h = inn(ϕ − ϕ(α)) be a finite Blaschke
product for some α in D. Using Theorem 4 of [5], we can find a natural number k
and a finite Blaschke product ψ with k zeroes satisfying A′(Tϕ) = A′(Tψ). Since

Tψ is a pure isometry, Tψ ∼=
k⊕
1

(Tz) follows from von Neumann-Wold Theorem.

By Lemma 1.6, we have∨
(A′(Tϕ)) ∼=

∨ (
A′

( k⊕
1
Tz

))
∼=

∨
(Mk(H∞(D))) ∼= N.

By Theorem 1.1, Tϕ has unique finite (SI) decomposition up to similarity.

2.4. The proof of Theorem 2.3.

Lemma 2.15. ([13], Lemma 2) Let A,B ∈ L(H). If

H =
∨
{ker(λ−B)k : λ ∈ Γ, k > 1}

for some fixed subset Γ of σp(B) satisfying σp(A) ∩ Γ = ∅, then ker τA,B = {0}.

Lemma 2.16. Let ϕ1 and ϕ2 be two univalent analytic functions on D. Then
one of the following holds:

(i) Tϕ1 ' Tϕ2 ;
(ii) either ker τTϕ1 ,Tϕ2

= {0} or ker τTϕ2 ,Tϕ1
= {0}.

Proof. Set ϕi =
∞∑
j=1

λjizj , where i = 1, 2. Since ϕi is univalent, λi1 6= 0, i =

1, 2. If ker τTϕ1 ,Tϕ2
6= {0} and ker τTϕ2 ,Tϕ1

6= {0}. We can find X,Y ∈ L(H2(D))
satisfying

Tϕ2Y = Y Tϕ1 , Tϕ1X = XTϕ2 .

Set Ω1 = ϕ1(D), Ω2 = ϕ2(D). Then Ω1 and Ω2 are simply connected and

T ∗ϕ1
∈ B1(Ω∗1), T ∗ϕ2

∈ B1(Ω∗2).

If Ω1 6= Ω2, then by using Lemma 2.15, we can deduce that ker τTϕ1 ,Tϕ2
= {0}

or ker τTϕ2 ,Tϕ1
= {0}. This contradicts our assumption. Thus we may assume that

Ω = Ω1 = Ω2 and σ(Tϕ1) = σ(Tϕ2) = Ω. Without loss of generality, we can assume
that 0 ∈ Ω and ϕ1(0) = 0. Let z0 ∈ D and ϕ2(z0) = 0. Then there exists a Möbius
transformation χ : D → D satisfying χ(0) = z0. Therefore ϕ2(χ(0)) = 0. This
shows that Tϕ2(z) is unitarily equivalent to Tϕ2(χ(z)). Thus we may assume that
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ϕ2(0) = 0. Note that T ∗ϕ1
and T ∗ϕ2

have the following matrix representations with
respect to the usual orthogonal basis, {1, z, z2, . . .} of H2(D).

T ∗ϕ1
=


0 λ1

1 λ1
2 . . .

0 0 λ1
1 λ1

2 . . .
. . .

...
...

 , T ∗ϕ2
=


0 λ2

1 λ2
2 . . .

0 0 λ2
1 λ2

2 . . .
. . .

...
...

 .
Note that T ∗ϕ1

Y ∗ = Y ∗T ∗ϕ2
. Then

Y ∗ =

Y11 Y12 . . .
0 Y22 Y23 . . .

. . . . . .

 and Ynn =
(
λ2

1

λ1
1

)n−1

Y11.

We claim that |λ2
1/λ

1
1| 6 1, as otherwise since Y ∗ is bounded, Y11 = 0 and Ynn = 0,

n = 1, 2, . . .. Similarly, we can deduce that Yij = 0, i, j > 1. This contradicts
Y ∗ 6= 0.

Similarly, |λ1
1/λ

2
1| 6 1. Therefore |λ1

1| = |λ2
1| = λ.

Set θj = arg λj
1
λ and Uj = diag(1, eiθj , e2iθj , . . .), j = 1, 2. Clearly, Uj is

unitary and for each j,

Rj = UjT
∗
ϕj
U∗j =


0 λ
0 0 λ ∗
0 0 0 λ

. . .

 .
Since UjT ∗z U

∗
j = e−iθjT ∗z , Rj ∈ A′(T ∗z ), there exists a gj in H∞(D) satisfying

Rj = T ∗gj
. Since T ∗gj

is unitarily equivalent to T ∗ϕj
, gj(D) = ϕj(D) = Ω, and

T ∗gj
∈ B1(Ω∗). Clearly, each gj is a univalent analytic function on D and

gj(0) = 0, g′j(0) = λ > 0.
By the Riemann Mapping Theorem g1 = g2. This shows that Tϕ1 ' Tϕ2 .

Using Lemma 2.16, we immediately obtain

Lemma 2.17. Let T =
n⊕
i=1

Tϕi be given by Theorem 2.3. Then there exists a

unitary operator U such that the followings hold:

(i) UTU∗ =
k⊕
p=1

T
(np)
ϕip

and Tϕip1
6' Tϕip2

for ip1 6= ip2 ;

(ii) ker τTϕip2
,Tϕip2

= {0} for ip1 < ip2 .

Now we are in position to prove Theorem 2.3. We know that if ϕi is a
univalent analytic function on D, then A′(Tϕi

) ∼= H∞(D). By Lemma 2.16, it is

easy to see that A′(T )/RadA′(T ) ∼=
k∑
i=1

Mni(H
∞(D)). By Lemma 2.9,

∨
(A′(T )) ∼=

∨ (
A′(T )/RadA′(T ))

) ∼= ∨ ( k∑
i=1

Mni(H
∞(D))

)
∼= Nk.

By Theorem 1.1, T has unique finite (SI) decomposition up to similarity.
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Similarly to the argument of Section 1, we can prove Corollary 2.4.

3. THE PROOF OF THEOREM 3.1

Lemma 3.2. Let A1, A2 ∈ (SI) ∩ L(H) satisfying
A′(Ai)/RadA′(Ai) ∼= C, i = 1, 2.

Then at least one of the following hold:
(i) A1 ∼ A2;
(ii) for X and Y in L(H), if AX = XB, Y A = BY then XY ∈ RadA′(A1)

and Y X ∈ RadA′(A2).

Proof. If A1 6∼ A2 and there exist X and Y ∈ L(H) such that A1X = XA2

and Y A1 = A2Y , then A1XY = XA2Y = XY A1. Hence XY ∈ A′(A1). If
XY /∈ RadA′(A1), then XY = λ + R, where 0 6= λ ∈ C and R ∈ RadA′(A1) by
A′(A1)/RadA′(A1) ∼= C. So XY is invertible. Since we have Y X ∈ A′(A2) and
σ(Y X) ∪ {0} = σ(XY ) ∪ {0}, Y X is also invertible by A′(A2)/RadA′(A2) ∼= C.
This shows that X is invertible and A1 ∼ A2. This contradicts A1 6∼ A2.

Similarly we have Y X ∈ RadA′(A2).

Lemma 3.3.
∨

(Mn(C)) ∼= N, n > 1 (see 5.1.3 in [3]).

Proof of Theorem 3.1. By Lemma 3.2, A′(T )/RadA′(T ) ∼=
k∑
i=1

Mni
(C). By

Lemma 3.3∨
(A′(T )) ∼=

∨
(A′(T )/RadA′(T )) ∼=

∨ ( k∑
i=1

Mni(C)
)
∼= Nk.

So T has unique decomposition up to similarity.

Example 3.4. Suppose that

T =



0 w1

0 w2

. . . . . .
wn

0
. . .
. . .


,

where
∞∑
n=1

|wn|2 < ∞, |wn| 6 |wn−1|, and wn → 0. A simple computation shows

that
A′(T )/RadA′(T ) ∼= C.

Example 3.4 shows that the collection of operators considered in Theorem 3.1
is not empty.

It is well known that a Jordan block is an (SI) operator on a finite-dimensio-
nal space, and if A is an (SI) operator on a finite-dimensional space, then A is
similar to some Jordan block and A′(A)/RadA′(A) ∼= C. So, in the same way,
we can prove the Jordan Standard Theorem, and in our proof we do not use
determinants.
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Jordan Standard Theorem. Every operator A in L(Cn) is similar to J =
n⊕
i=1

ni⊕
1

(λiImi
+ Jmi

), where λiImi
+ Jmi

a summand of J , is uniquely determined

by A and ‖mi −mj‖+ ‖λi − λj‖ > 0 for i 6= j.
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