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Abstract. Let M be a semi-finite von Neumann algebra equipped with
a faithful, normal, semi-finite trace τ . We introduce the notion of equi-
integrability in non-commutative spaces and show that if a rearrangement in-
variant quasi-Banach function space E on the positive semi-axis is α-convex
with constant 1 and satisfies a non-trivial lower q-estimate with constant
1, then the corresponding non-commutative space of measurable operators
E(M, τ) has the following property: every bounded sequence in E(M, τ) has
a subsequence that splits into an E-equi-integrable sequence and a sequence
with pairwise disjoint projection supports. This result extends the well known
Kadec-Pe lczyński subsequence splitting lemma for Banach lattices to non-
commutative spaces. As applications, we prove that for 1 6 p < ∞, ev-
ery subspace of Lp(M, τ) either contains almost isometric copies of `p or is
strongly embedded in Lp(M, τ).
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1. INTRODUCTION

In [9], Kadec and Pe lczyński proved the fundamental result that if 1 6 p < ∞ then
every bounded sequence {fn}∞n=1 in Lp[0, 1] has a subsequence that can be decom-
posed into two extreme sequences {gk}∞k=1 and {hk}∞k=1, where the hk’s are pair-
wise disjoint and the gk’s are Lp-equi-integrable that is lim

m(A)→0
sup

k
‖χAgk‖p → 0

and hk ⊥ gk for every k > 1. This result was used to study different structures
of subspaces of Lp[0, 1]. Later, the same decomposition property was proved for
larger classes of Banach function spaces (see [7] for Orlicz spaces with ∆2-condition
and q-concave lattices, [8] for some symmetric spaces). There are however exam-
ples of Banach lattices with sequences for which the above decomposition is not
possible. For instance, examples of reflexive, p-convex Banach lattices without the



256 N. Randrianantoanina

subsequence splitting property can be found in a paper of Figiel et al. ([7]). Subse-
quently, Weis ([18]) characterized, in terms of uniform order continuity conditions
and ultraproducts, the class of all Banach lattices where such property is possi-
ble. For the case of rearrangement invariant function spaces, the spaces in which
the subsequence splitting lemma holds are exactly those with order continuous
norm and satisfying the so called Fatou property (equivalently, those that contain
no subspace isomorphic to c0). The subsequence splitting lemma has played an
important role in the investigation of Banach space structures of function spaces.

It is the intention of the present paper to give an extension of the Kadec-
Pe lczyński decomposition stated above to the case of bounded sequences in gen-
eral non-commutative symmetric spaces of measurable operators. Let M be a
von Neumann algebra, equipped with a faithful, normal, semi-finite trace τ and
E be a rearrangement invariant Banach function space on [0, 1] or the half line
(0,∞) according to whether M is finite or infinite. We define equi-integrability
in the non-commutative setting as generalization of Akemann’s characterization
of weak compactness on preduals of von Neumann algebras. Using such notion,
we provide an analogue of the Kadec-Pe lczyński subsequence splitting lemma for
non-commutative spaces. More precisely, we proved that if E is order continuous
and satisfies the Fatou property then the corresponding symmetric space of mea-
surable operators E(M, τ) has the subsequence splitting property. Our approach
allows one to consider more general spaces such as quasi-Banach rearrangement
invariant spaces that are α-convex with constant 1 and satisfy non trivial q-lower
estimate with constant 1. In particular, splitting of bounded sequences is valid
in non-commutative Lp-spaces for 0 < p < ∞. It should be noted that Sukochev
([16]) obtain a similar result for the case of finite von Neumann algebras.

As application of the main result, we study the structure of subspaces of
Lp(M, τ) for 1 6 p < ∞.

We refer to [10] and [17] for general information concerning von Neumann
algebras as well as non-commutative integration, to [12] and [15] for Banach lattice
theory.

2. DEFINITIONS AND PRELIMINARY RESULTS

Throughout, H is a given Hilbert space and M⊂ B(H) denotes a semi-finite von
Neumann algebra with a normal, faithful semi-finite trace τ . The identity in M
will be denoted by 1 and Mp will stand for the set of all (self adjoint) projections
in M. A closed and densely defined operator a on H is said to be affiliated with
M if u∗au = a for all unitary operator u in the commutant M′ of M.

A closed and densely defined operator x, affiliated with M, is called τ -
measurable if for every ε > 0, there exists an orthogonal projection p ∈ M such
that p(H) ⊆ dom(x), τ(1 − p) < ε and xp ∈ M. The set of all τ -measurable
operators will be denoted by M̃. The set M̃ is a ∗-algebra with respect to the
strong sum, the strong product and the adjoint operation. Given a self-adjoint
operator x in M̃, we denote by ex(·) its spectral measure. Recall that e|x|(B) ∈M
for all Borel sets B ⊆ R and x ∈ M̃. For fixed x ∈ M̃, the generalized singular
value function µ(x) of x is defined by

µt(x) = inf{s > 0 : τ(e|x|(s,∞)) 6 t}, for t > 0.



Sequences in non-commutative Lp-spaces 257

The function µ(·)(x) : [0,∞) → [0,∞] is right continuous, non-decreasing. We
note that µt(x) < ∞ for every t > 0. For a complete study of µ(·), we refer to [6].

The topology defined by the metric on M̃ obtained by setting:

d(x, y) = inf{t > 0 : µt(x− y) 6 t}, for x, y ∈ M̃,

is called the measure topology. It is well-known that a net (xα)α∈I in M̃ converges
to x ∈ M̃ in measure topology if and only if for every ε > 0, δ > 0, there exists
α0 ∈ I such that whenever α > α0, there exists a projection p ∈Mp such that

‖(xα − x)p‖M < ε and τ(1− p) < δ.

Such criteria will be used in the sequel. It was shown in [13] that (M̃, d) is a
complete metric space.

Remark that if we consider M = L∞(R+,m), where m is the Lebesgue
measure on R+ then M is an abelian von Neumann algebra acting on L2(R+,m)
via the multiplication operators. With the trace being the usual integration with
respect to m, M̃ = L0(R+,m) (the usual space of all measurable functions on R+)
and the generalized singular value µ(f) is precisely the decreasing rearrangement
of the function |f | (usually denoted by f∗ in Banach lattice theory).

Definition 2.1. A symmetric quasi-Banach function space on R+ is a quasi-
Banach lattice E of measurable functions with the following properties:

(i) E is an order ideal in L0(R+,m);
(ii) E is rearrangement invariant in the sense of [12] (p. 114);

(iii) E contains all finitely supported simple functions.

Definition 2.2. A quasi-Banach function space E is said to satisfy a lower
q-estimate if there exists a positive constant C > 0 such that for all finite sequences
{xn} of mutually disjoint elements in E,( ∑

‖xn‖q
) 1

q

6 C
∥∥∥∑

xn

∥∥∥.

The least such constant C is called the constant of the lower q-estimate.
Recall that if E is a quasi-Banach function space and 1 < p < ∞,

E(p) = {x ∈ L0(R+,m) : |x|p ∈ E} with ‖x‖E(p) = ‖ |x|p ‖
1
p

E .

Definition 2.3. Let E be a rearrangement invariant quasi-Banach func-
tion space on (0, τ(1)). We define the symmetric space of measurable operators
E(M, τ) by setting:

E(M, τ) := {x ∈ M̃ : µ(x) ∈ E}

and
‖x‖E(M,τ) = ‖µ(x)‖E for all x ∈ E(M, τ).

It was shown in [19], Lemma 4.1 that if E is α-convex (for some 0 < α 6 1)
with constant 1, then ‖ · ‖E(M,τ) is a α-norm, that is, for every x, y ∈ E(M, τ),

‖x + y‖α
E(M,τ) 6 ‖x‖α

E(M,τ) + ‖y‖α
E(M,τ).
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Equipped with ‖ · ‖E(M,τ), the space E(M, τ) is a α-Banach space. The space
E(M, τ) is often referred to as the non-commutative analogue of the function space
E. We remark that if 0 < p < ∞ and E = Lp(R+,m) then E(M, τ) coincides with
the usual non-commutative Lp-space associated to the semi-finite von Neumann
algebra M. Also if E = L∞(R+,m), then L∞(M, τ) is the von Neumann algebra
M. We refer to [3], [4] and [19] for some background on the space E(M, τ).

We will need the following known result. A proof can be found in [5].

Proposition 2.4. Assume that E is order-continuous and α-convex with
constant 1 for some 0 < α 6 1.

(i) If x ∈ E(M, τ) and e 6 f are projections in M then ‖exe‖E(M,τ) 6
‖fxf‖E(M,τ);

(ii) If x ∈ E(M, τ) and eβ ↓β 0 is a net of projections in M then
‖xeβ‖E(M,τ) ↓β 0.

The following definition isolates the main topic of this paper.

Definition 2.5. Let E be a quasi-Banach function space on R+ and K

be a bounded subset of E(M, τ). We will say that K is E-equi-integrable if
lim

n→∞
sup
x∈K

‖enxen‖E(M,τ) = 0 for every decreasing sequence {en}∞n=1 of projections

with en ↓n 0.

Remark 2.6. Since {en}∞n=1 is decreasing, it is clear from Proposition 2.4

that the sequence
{

sup
x∈K

‖enxen‖E(M,τ)

}∞
n=1

is decreasing and therefore the limit

in the definition above always exists. This notion of equi-integrability was moti-
vated by the commutative case on one hand and the characterization of weakly
compact subsets of L1(M, τ) by Akemann [1] (see also [17], p. 150) on the other.
Using this terminology, Akemann’s characterization can be stated as in the com-
mutative case: relatively weakly compact subsets of L1(M, τ) are exactly the
equi-integrable sets.

In general, relatively weakly compact sets are not necessarily equi-integrable.
For example, if 1 < p < ∞, any normalized disjoint sequence cannot be Lp-
integrable but since Lp is reflexive, such set is relatively weakly compact. Our
next result shows that the converse always holds.

Proposition 2.7. Assume that E is an order-continuous symmetric Banach
function space and K is an E-equi-integrable set in E(M, τ). Then K is relatively
weakly compact.

The proposition will be proved in several steps. Recall that E(M, τ) is a
subset of L1(M, τ) + M and therefore if p is a projection in L1(M, τ) ∩M and
K is a subset of E(M, τ), then pK and Kp are subsets of L1(M, τ).
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Lemma 2.8. Let p be a projection in L1(M, τ) ∩M and K be an E-equi-
integrable subset of E(M, τ). The sets pKp and pK(1 − p) are relatively weakly
compact in L1(M, τ).

Proof. It is enough to check that these sets are L1-equi-integrable. Let T :
E(M, τ) → L1(M, τ) be the linear map defined by x → Tx = pxp. This map is
well-defined and one can deduce from the closed graph theorem that it is bounded.
Let {en}∞n=1 be a sequence of projections with en ↓n 0. For each n > 1, set fn to
be the right support projection of enp. By the definition of support projections,
fn 6 p. So {fn}∞n=1 is a sequence of finite projections. We also note that (see for
instance the proof of [17], Proposition 1.6, p. 292),

fn = en ∨ (1− p)− (1− p)

and by Kaplansky formula (see for instance [10], Theorem 6.1.6, p. 403),

fn ∼ en − en ∧ (1− p).

Since τ(fn) = τ(en − en ∧ (1 − p)) 6 τ(p) and {en − en ∧ (1 − p)}∞n=1 converges
to zero, {fn}∞n=1 converges to zero. Now since the fn’s are finite projections, we
conclude that if gn =

∧
k>n

fk, then {gn}∞n=1 converges to zero. Therefore, for every

x ∈ K,

‖enpxpen‖1 = ‖enp(gnxgn)pen‖1 6 ‖p(gnxgn)p‖1 6 ‖T‖ · ‖gnxgn‖E(M,τ).

Since K is E-equi-integrable, one obtains that

lim
n→∞

sup
y∈pKp

‖enyen‖1 6 ‖T‖ · lim
n→∞

sup
x∈K

‖gnxgn‖E(M,τ) = 0

which concludes that pKp is relatively weakly compact in L1(M, τ).
For pK(1 − p), let S : E(M, τ) → L1(M, τ) be the map defined by x →

Sx = px(1− p). As above, S is bounded. Let {en}∞n=1 and {gn}∞n=1 be sequences
of projections as described above. For each n > 1, let sn be the left support
projection of (1 − p)en. Then sn = en ∨ p − p for every n > 1 and the sequence
{sn}∞n=1 is decreasing. It is claimed that sn ↓n 0.

For this, it is enough to check that en∨p ↓n p. In fact, en∨p−en ∼ p−en∧p
and the sequence defined by the right hand side of the equivalence converges to p
which implies that

lim
n→∞

τ(en ∨ p− en) = lim
n→∞

τ(p− en ∧ p) = τ(p)

and therefore,
lim

n→∞
τ(en ∨ p− p− en) = 0.

But since (en ∨ p− p− en)2 = (en ∨ p− p− en) + enp + pen, we can conclude that

lim
n→∞

‖en ∨ p− p− en‖2 = 0.

From this, we get (by passing to a subsequence if necessary) that {en∨p−p−en}∞n=1

converges to zero in measure. Similarly, {en ∨ p − p − pen}∞n=1 converges to zero
in measure so en ∨ p ↓n p hence sn ↓n 0.
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To conclude the proof of Lemma 2.8, note that gn ⊥ sn so gn∨ sn = gn + sn.
In particular, gn ∨ sn ↓n 0 and we get that

lim
n→∞

sup
y∈pK(1−p)

‖enyen‖1 = lim
n→∞

sup
x∈K

‖enpx(1− p)en‖1

= lim
n→∞

sup
x∈K

‖enp(gn ∨ sn)x(gn ∨ sn)(1− p)en‖1

6 lim
n→∞

sup
x∈K

‖p(gn ∨ sn)x(gn ∨ sn)(1− p)‖1

6 ‖S‖ · lim
n→∞

sup
x∈K

‖(gn ∨ sn)x(gn ∨ sn)‖E(M,τ) = 0

which verifies the lemma.

Lemma 2.9. Let p and K be as in Lemma 2.8. Then pK is relatively weakly
compact in E(M, τ).

Proof. Note first that pK is E-equi-integrable. This can be seen by applying
the series of arguments used in Lemma 2.8, considering the operators T and S as
maps from E(M, τ) into E(M, τ). Let {pxn}∞n=1 be a bounded sequence in pK.
From Lemma 2.8, we can assume that {pxn}∞n=1 is weakly convergent in L1(M, τ).

Fix ϕ ∈ E∗(M, τ)+ and let ϕ =
∞∫
0

t det be its spectral decomposition. For each

k > 1, set qk := eϕ((0, k)). We remark that ϕqk = qkϕ ∈M. For m,n ∈ N,

〈ϕ, pxn − pxm〉 = 〈ϕ− ϕqk, pxn − pxm〉+ 〈ϕqk, pxn − pxm〉
= 〈ϕ(1− qk), pxn − pxm〉+ 〈ϕqk, pxn − pxm〉
= 〈(1− qk)ϕ(1− qk), pxn − pxm〉+ 〈ϕqk, pxn − pxm〉.

This implies that

|〈ϕ, pxn − pxm〉| 6 |τ(ϕ(1− qk)(pxn − pxm)(1− qk))|+ |〈ϕqk, pxn − pxm〉|.
Since ϕqk belongs to M,

lim sup
n,m→∞

|〈ϕqk, pxn − pxm〉| 6 2‖ϕ‖E∗(M,τ) · sup
a∈K

‖(1− qk)pa(1− qk)‖E(M,τ).

Since 1− qk ↓k 0 and pK is E-equi-integrable, we conclude that

lim
n,m→∞

〈ϕqk, pxn − pxm〉 = 0.

This proves the lemma.

To deduce Proposition 2.7, let {pk}∞k=1 be a sequence of projections that
increases to 1 and τ(pk) < ∞ and fix ε > 0. Choose k0 > 1 such that

sup
a∈K

‖(1− pk0)a(1− pk0)‖E(M,τ) 6 ε.

We have K = pk0K + (1− pk0)Kpk0 + (1− pk0)K(1− pk0) which implies that

K ⊂ pk0K + (1− pk0)Kpk0 + εBE(M,τ)

where BE(M,τ) denotes the closed unit ball of E(M, τ). From Lemma 2.9, the
sets pk0K and (1− pk0)Kpk0 are relatively weakly compact which concludes that
K is relatively weakly compact. The proof is complete.
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Remark 2.10. If τ(1) < ∞, the proof above can be considerably shortened.
In this case, E(M, τ) ⊂ L1(M, τ) so if K is E-equi-integrable, then it is relatively
weakly compact in L1(M, τ) and one can argue directly as in the last part of
Lemma 2.9 to conclude that K is relatively weakly compact in E(M, τ).

The following proposition should be compared with Theorem 5.1 and The-
orem 5.2 in [2]. It generalizes a well known property of equi-integrable sets in
function spaces to the non-commutative setting.

Proposition 2.11. Let E be a symmetric quasi-Banach space function space
and K be a E-equi-integrable subset of E(M, τ). For each sequence {xn}∞n=1 in
K and x ∈ K, the following are equivalent:

(a) lim
n→∞

‖xn − x‖E(M,τ) = 0;

(b) {xn}∞n=1 converges to x in measure (as n →∞).

Proof. The implication (a) ⇒ (b) is trivial. For (b) ⇒ (a), we will assume
that x = 0. Recall that there exists 0 < α 6 1, such that M ∩ Lα(M, τ) ⊂
E(M, τ) ⊂ M + Lα(M, τ) with ‖x‖M+Lα(M,τ) 6 ‖x‖E(M,τ) 6 2‖x‖M∩Lα(M,τ)

for every x ∈M∩ Lα(M, τ). We will prove first the following lemma:

Lemma 2.12. For every p ∈ Mp with τ(p) < ∞, lim
n→∞

‖xnp‖E(M,τ) = 0.

Similarly, lim
n→∞

‖pxn‖E(M,τ) = 0.

To prove this lemma, fix ε > 0 and let C = max{1, τ(p)}. Since K is equi-
integrable, there exists δ > 0 such that whenever q ∈ Mp satisfies τ(q) < δ, then
for every n ∈ N, ‖qxnq‖E(M,τ) 6 ε/(2)1/α. Since both {xn}∞n=1 and {x∗n}∞n=1

converge to zero in measure, one can choose n0 > 1 such that for each n > n0,
there exists a projection pn ∈Mp with τ(1− pn) < δ,

‖xnpn‖M <
ε

2[4C]
1
α

and
‖x∗npn‖M <

ε

2[4C]
1
α

.

For every n > n0,

‖xnp‖α
E(M,τ) 6 ‖xnpnp‖α

E(M,τ) + ‖pnxn(1− pn)p‖α
E(M,τ)

+ ‖(1− pn)xn(1− pn)p‖α
E(M,τ)

6 2α max
{
‖xnpn‖α

M, ‖xnpnp‖α
Lα(M,τ)

}
+ 2α max

{
‖x∗npn‖α

M, ‖p(1− pn)x∗npn‖α
Lα(M,τ)

}
+ ‖(1− pn)xn(1− pn)‖α

E(M,τ)

6 2 · 2α max
{ εα

2α4C
,

εα

2α4C
τ(p)

}
+

εα

2
6 εα.

A similar estimate works for {x∗np}∞n=1. The lemma is verified.
To complete the proof of Proposition 2.11, choose a mutually disjoint family

{ei}i∈I of projections in M with
∑
i∈I

ei = 1 for the strong operator topology and
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τ(ei) < ∞ for all i ∈ I. Using a similar argument as in [19], one can get an at
most countable subset {ek}∞k=1 of {ei}i∈I such that for each ei outside of {ek}∞k=1,
eixn = xnei = 0 for every n ∈ N. Let e =

∑
k∈N

ek. Replacing M by eMe and τ by

its restriction on eMe, we may assume that e = 1. Let pn =
∑

k>n

ek. It is clear

that pn ↓n 0 and τ(1 − pn) < ∞ for every n ∈ N. Fix ε > 0 and choose n0 > 1
such that sup

n∈N
‖pn0xnpn0‖E(M,τ) 6 ε. We get that

lim sup
n→∞

‖xn‖α
E(M,τ) 6 lim

n→∞
‖xn(1−pn0)‖α

E(M,τ) + lim
n→∞

‖x∗n(1−pn0‖α
E(M,τ) +ε = ε

and since ε is arbitrary, the proof is complete.

The inequality given below can be viewed as the analogue of the well-known
fact on normal functionals on von Neumann algebras, |ϕ(a)|2 6 ‖ϕ‖ · |ϕ|(aa∗)
whenever a ∈ M and ϕ ∈ M∗ ([17], Proposition 4.6, p. 146), of the general case
of symmetric spaces of measurable operators.

Proposition 2.13. Let x ∈ E(M, τ) and y ∈M then

‖xy‖E(M,τ) 6 ‖ |x|y‖E(M,τ) 6 ‖x‖
1
2
E(M,τ) · ‖y

∗|x|y‖
1
2
E(M,τ).

Proof. Let x = u|x| be the polar decomposition of x. Then ‖xy‖E(M,τ) =
‖u|x|y‖E(M,τ) 6 ‖u‖∞ · ‖ |x|y‖E(M,τ). Also ‖ |x|y‖E(M,τ) = ‖ |x| 12 |x| 12 y‖E(M,τ)

and using Hölder’s inequality,

‖ |x|y‖E(M,τ) 6 ‖ |x| 12 ‖E(2)(M,τ) · ‖ |x|
1
2 y‖E(2)(M,τ)

= ‖x‖
1
2
E(M,τ) · ‖y

∗|x|y‖
1
2
E(M,τ).

Remark 2.14. Let K be a bounded subset of E(M, τ). If we set |K| :=
{|a| : a ∈ K}, then it is clear from Proposition 2.13 that if |K| is E-equi-
integrable then for every decreasing projections en↓n0, lim

n→∞
sup
x∈K

‖xen‖E(M,τ) =

lim
n→∞

sup
x∈K

‖enx‖E(M,τ) = 0. In particular, if |K| is E-equi-integrable then so is K.

Proposition 2.15. Assume that E is α-convex with constant 1 for some
0 < α 6 1. Let {pn}∞n=1 be a sequence of decreasing projections in M and K be a
bounded subset of E(M, τ) such that:

(i) pn ↓n 0;
(ii) For each n > 1, the sets (1−pn)K and |K(1−pn)| are E-equi-integrable.
Then K is E-equi-integrable if and only if lim

n→∞
sup
a∈K

‖pnapn‖E(M,τ) = 0.

Proof. We will show the nontrivial implication. Fix a sequence fk ↓k 0 in
Mp. We need to show that lim

k→∞
sup
a∈K

‖fkafk‖E(M,τ) = 0. We will assume without

loss of generality that K is a subset of the unit ball of E(M, τ). For every a ∈ K,

fkafk = fk(1− pn)afk + fkpnafk

= fk(1− pn)afk + fkpna(1− pn)fk + fkpnapnfk.
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Since E(M, τ) is α-convex, we get:

‖fkafk‖α
E(M,τ) 6‖fk(1−pn)afk‖α

E(M,τ)+‖fkpna(1−pn)fk‖α
E(M,τ)

+‖fkpnapnfk‖α
E(M,τ)

6‖fk(1−pn)afk‖α
E(M,τ) + ‖a(1−pn)fk‖α

E(M,τ)+‖pnapn‖α
E(M,τ).

Using Proposition 2.13 on the second term, we have

‖fkafk‖α
E(M,τ) 6 ‖fk(1− pn)afk‖α

E(M,τ) + ‖a(1−pn)‖
α
2
E(M,τ)

· ‖fk|a(1− pn)|fk‖
α
2
E(M,τ) + ‖pnapn‖α

E(M,τ).

Let ε > 0, choose n0 large enough so that sup
a∈K

‖pn0apn0‖E(M,τ) < ε. We conclude

that

lim
k→∞

sup
a∈K

‖fkafk‖α
E(M,τ) 6 lim

k→∞
sup
a∈K

‖fk(1− pn0)afk‖α
E(M,τ)

+ lim
k→∞

sup
a∈K

‖fk|a(1− pn0)|fk‖
α
2
E(M,τ) + εα.

By (ii), the first two terms converge to zero so lim
k→∞

sup
a∈K

‖fkafk‖E(M,τ) 6 ε and

since ε is arbitrary, the proof is complete.

The next proposition can be found in [5], Proposition 2.5.

Proposition 2.16. Assume that E is α-convex with constant 1 for some
0 < α 6 1 and satisfies a lower q-estimate with constant 1 for some finite q > α.
If k = 2q/α, then for all y ∈ E(M, τ), for all projections e, f ∈M with e + f = 1
and τ(e) < ∞, it follows that

‖eye‖k
E(M,τ) + ‖eyf‖k

E(M,τ) + ‖fye‖k
E(M,τ) + ‖fyf‖k

E(M,τ) 6 ‖y‖k
E(M,τ).

3. KADEC-PE lCZYŃSKI THEOREM FOR SYMMETRIC SPACES OF OPERATORS

The main result of the present article is the following theorem.

Theorem 3.1. Let E be an order continuous symmetric quasi-Banach func-
tion space in R+ that is α-convex with constant 1 for some 0 < α 6 1 and suppose
that E satisfies a lower q-estimate with constant 1 for some q > α.

Let {xn}∞n=1 be a bounded sequence in E(M, τ) then there exists a subse-
quence {xnk

}∞k=1 of {xn}∞n=1, bounded sequences {yk}∞k=1 and {zk}∞k=1 in E(M, τ)
and a decreasing sequence of projections pk ↓k 0 in M such that:

(i) xnk
= yk + zk for all k > 1;

(ii) {yk : k > 1} is E-equi-integrable and pkykpk = 0 for all k > 1;
(iii) {zk}∞k=1 is such that pkzkpk = zk for all k > 1.

The proof will be divided into several steps. Without loss of generality, we
will assume that the sequence {xk}∞k=1 is a subset of the unit ball of E(M, τ). Since
we are dealing with sequences, we can and do assume without loss of generality
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that M is countably decomposable (see [19] and the proof of Proposition 2.11
above for the details of such reduction).

Set D1 := {{en}∞n=1 ⊂Mp : en ↓n 0 and τ(e1) < ∞} and consider

δ := sup
{

lim
n→∞

sup
k∈N

‖en|xk|en‖E(M,τ) : {en}∞n=1 ∈ D1

}
.

Lemma 3.2. There exists {pn}∞n=1 ∈ D1 such that

δ := lim
n→∞

sup
k∈N

‖pn|xk|pn‖E(M,τ).

Proof. For each m > 1, choose a sequence {q(m)
n }n in D1 such that

lim
n→∞

sup
k∈N

‖q(m)
n |xk|q(m)

n ‖E(M,τ) > δ(1− 2−(m+1)).

Since q
(m)
n ↓n 0 and τ(q(m)

1 ) < ∞, lim
n→∞

τ(q(m)
n ) = 0. For each m > 1, choose

nm ∈ N so that τ(q(m)
nm ) 6 2−m and sup

k∈N
‖q(m)

nm |xk|q(m)
nm ‖E(M,τ) > δ(1 − 2−m).

For j > 1, set pj =
∨

m>j

q
(m)
nm . It is clear that {pj}j is a decreasing sequence of

projections and τ(pj) 6
∞∑

m=j

τ(q(m)
nm ) =

∞∑
m=j

2−m so {pj}j ∈ D1. Moreover,

δ(1− 2−j) 6 sup
k∈N

‖q(j)
nj
|xk|q(j)

nj
‖E(M,τ) 6 sup

k∈N
‖pj |xk|pj‖E(M,τ) 6 δ

so lim
j→∞

sup
k∈N

‖pj |xk|pj‖E(M,τ) = δ.

Lemma 3.3. There exists a subsequence {x(1)
n }∞n=1 so that

lim
n→∞

‖pn|x(1)
n |pn‖E(M,τ) = δ.

Proof. We will construct a sequence of integers {kn}n inductively satisfying,

‖pn|xkn |pn‖E(M,τ) > δ(1− 2−n).

Note first that
{

sup
k∈N

‖pn|xk|pn‖E(M,τ)

}
n

is a decreasing sequence so

sup
k∈N

‖p1|xk|p1‖E(M,τ) > δ.

Choose k1 > 1 so that ‖p1|xk1 |p1‖E(M,τ) > δ(1−2−1). Assume that the construc-
tion is done for k1, . . . , km. Since {ϕj : j 6 km} is a finite set,

lim
n→∞

sup
k>km

‖pn|xk|pn‖E(M,τ) = δ.

Therefore, one can choose km+1 > km so that ‖pm+1|xkm+1 |pm+1‖E(M,τ) > δ(1−
2−(m+1)). The construction is complete.
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Apply the argument above on {x(1)
n

∗
}n to get a further subsequence {x(2)

n }n

of {x(1)
n }n and {rn}n ∈ D1 such that

δ∗ = sup
{

lim
n→∞

sup
k∈N

‖qn|x(2)
k

∗
|qn‖E(M,τ) : (qn)n ∈ D1

}
= lim

n→∞
‖rn|x(2)

n

∗
|rn‖E(M,τ).

We remark that since both τ(p1) and τ(r1) are finite numbers, {pn ∨ rn}n ∈ D1.
By setting en = pn ∨ rn, we can assume that

(3.1) δ = lim
n→∞

‖en|xn|en‖E(M,τ)

and

(3.2)
δ∗ = lim

n→∞
‖en|x∗n|en‖E(M,τ)

= sup
{

lim
n→∞

sup
k
‖qn|x∗k|qn‖E(M,τ) : {qn}∞n=1 ∈ D1

}
.

For each n > 1, set vn := xn − enxnen and let V := {vn : n > 1}.

Lemma 3.4. There exists a sequence of projections {gn}∞n=1 in M with:
(i) for every n > 1, gn 6 1− en;

(ii) τ(gn) < ∞, in particular gn is a finite projection;
(iii) gn ↑n 1.

Proof. The lemma can be obtained inductively. Since M is countably de-
composable, there exists ϕ0 a faithful normal state in M∗. Since 1 − en is
a semi-finite projection, there exists a sequence of projections {g(n)

j }∞j=1 with

τ(g(n)
j ) < ∞ for every j > 1 and g

(n)
j ↑j 1− en. One can choose jn > 1 such

that ϕ0(1− en)− ϕ0(g(n)
jn

) < 1/n. Set{
gn := g

(1)
j1

, for n = 1;

gn = g
(n)
jn

∨ gn−1, for n > 1.

It is easy to verify that {gn}∞n=1 satisfies the requirements of the lemma.

For each n > 1, let pn = 1− gn. Clearly pn ↓n 0, 1− pn is a finite projection
and pn > en for each n > 1.

Lemma 3.5. For each n > 1, the sets |V (1 − pn)| and |(1 − pn)V | are E-
equi-integrable.

Proof. We will prove that for every n > 1, |V (1−pn)| is an E-equi-integrable
set. Assume that there exists k0 > 1 such that |V (1 − pk0)| is not E-equi-
integrable. There exists a decreasing sequence of projections qn ↓n 0 such that
lim

n→∞
sup

a∈|V (1−pk0 )|
‖qnaqn‖E(M,τ) > 0, that is

lim
n→∞

sup
m∈N

‖qn|vm(1− pk0)|qn‖E(M,τ) > 0.
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Choose a strictly increasing sequence {mn}∞n=1 of N such that

lim
n→∞

‖qn|vmn(1− pk0)|qn‖E(M,τ) > 0.

Let un,k0 be a bounded operator such that |vmn
(1 − pk0)| = un,k0vmn

(1 − pk0).
We get that

‖qn|vmn(1− pk0)|qn‖E(M,τ) = ‖qnun,k0vmn(1− pk0)qn‖E(M,τ)

= ‖qnun,k0 [xmn
− emn

xmn
emn

](1− pk0)qn‖E(M,τ).

We recall that ek0 6 pk0 and since {en}∞n=1 is decreasing, for mn > k0, emn
6 pk0

and therefore emn
(1 − pk0) = 0 and since ‖qnun,k0‖∞ 6 1, we obtain that for n

large enough,

‖qn|vmn
(1− pk0)|qn‖E(M,τ) = ‖qnun,k0(xmn

)(1− pk0)qn‖E(M,τ)

6 ‖xmn
(1− pk0)qn‖E(M,τ).

Using Proposition 2.13, with x = xmn
and y = (1− pk0)qn, we get

‖qn|vmn
(1− pk0)|pn‖E(M,τ) 6‖xmn

‖
1
2
E(M,τ) · ‖qn(1−pk0)|xmn

|(1−pk0)qn‖
1
2
E(M,τ)

6‖qn(1− pk0)|xmn
|(1− pk0)qn‖

1
2
E(M,τ).

This implies that

lim sup
n→∞

‖qn(1− pk0)|xmn
|(1− pk0)qn‖E(M,τ) > 0.

Let sn be the left support projection of (1 − pk0)qn (this is equal to the right
support projection of qn(1− pk0)). We have

‖qn(1−pk0)|xmn |(1−pk0)qn‖E(M,τ) =‖qn(1−pk0)sn|xmn |sn(1−pk0)qn‖E(M,τ)

6‖sn|xmn
|sn‖E(M,τ).

By the definition of support projection, sn 6 (1−pk0) for every n > 1, so {sn}∞n=1
is a sequence of finite projections. As in proof of Lemma 2.8, we note that sn =
qn∨pk0−pk0 and as before, sn ∼ qn−qn∧pk0 . Now since qn ↓n 0, qn−qn∧pk0 ↓n 0
hence τ(sn) = τ(qn − qn ∧ pk0) converges to zero which implies that sn ↓n 0.
Therefore, {sn}∞n=1 ∈ D1.

In summary, we get {sn}∞n=1 ∈ D1 with sn 6 1− pk0 for each n > 1 and for
some γ > 0,

(3.3) lim sup
n→∞

‖sn|xmn
|sn‖ = γ.

Let fn := sn ∨ emn .
For each mn > k0, sn 6 1− pk0 6 1− ek0 so sn ⊥ emn

hence fn = sn + emn
.

In particular {fn}∞n=1 ∈ D1.
Using Proposition 2.16 (it applies since τ(fn) < ∞),

‖fn|xmn |fn‖
2q
α

E(M,τ) > ‖sn|xmn |sn‖
2q
α

E(M,τ) + ‖emn |xmn |sn‖
2q
α

E(M,τ)

+ ‖sn|xmn
|emn

‖
2q
α

E(M,τ) + ‖emn
|xmn

|emn
‖

2q
α

E(M,τ)

> ‖sn|xmn
|sn‖

2q
α

E(M,τ) + ‖emn
|xmn

|emn
‖

2q
α

E(M,τ).
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Taking the limit as n tends to ∞, one gets from (3.1) and (3.3) that δ
2q
α >

γ
2q
α + δ

2q
α . This is a contradiction since γ > 0.

We conclude that for every n > 1, the set |V (1−pn)| is an E-equi-integrable
set.

For the case of |(1 − pn)V |, it is enough to repeat the argument above for
V ∗(1− pn) using the definition of δ∗ (instead of δ). Details are left to the reader.
This ends the proof of the lemma.

We will proceed with the proof of Theorem 3.1. Consider two cases.
Case 1: Assume that V is E-equi-integrable.
It is enough to set yn = xmn

− emn
xmn

emn
and zn = emn

xmn
emn

.
Case 2: Assume that V is not E-equi-integrable.
Proposition 2.15 and Lemma 3.5 imply that there exists ν > 0 such that

lim
n→∞

sup
v∈V

‖pnvpn‖E(M,τ) = ν > 0.

Choose a subsequence {vnk
}∞k=1 such that

(3.4) lim
k→∞

‖pkvnk
pk‖E(M,τ) = ν > 0.

For each k > 1, let wk := vnk
− pkvnk

pk and set

W := {wk : k > 1}.
Lemma 3.6. The set W is E-equi-integrable.

Proof. We note first that if k > n, then (1 − pn)wk = (1 − pn)vk and
wk(1−pn) = vk(1−pn) so for fixed n > 1, (1−pn)W = {(1−pn)wk : k < n}∪{(1−
pn)vk : k > n}. Similarly, W (1−pn) = {wk(1−pn) : k < n}∪{vk(1−pn) : k > n}.

Lemma 3.5 implies that for every n > 1, both |W (1 − pn)| and (1 − pn)W
are E-equi-integrable sets. Therefore, if W is not E-equi-integrable, there would
be a subsequence {wk(j)}∞j=1 of {wk}∞k=1 and ε > 0 such that

(3.5) lim
j→∞

‖pjwk(j)pj‖E(M,τ) = ε.

Using Proposition 2.13 on vnk(j) and pj = (pj − pk(j)) + pk(j), we obtain:

‖pjvnk(j)pj‖
2p
α

E(M,τ) >‖(pj − pk(j))vnk(j)(pj − pk(j))‖
2q
α

E(M,τ)

+ ‖pk(j)vnk(j)(pj − pk(j))‖
2q
α

E(M,τ)

+ ‖(pj − pk(j))vnk(j)pk(j)‖
2q
α

E(M,τ)

+ ‖(pj − pk(j))vnk(j)(pj − pk(j))‖
2q
α

E(M,τ).

Taking into account the identities, (pj − pk(j))vnk(j)(pj − pk(j)) = (pj −
pk(j))wk(j)(pj − pk(j)), (pj − pk(j))vnk(j)pk(j) = pjwk(j)pk(j) and pk(j)vnk(j)(pj −
pk(j)) = pk(j)wk(j)pj , one can deduce that,

‖pjvnk(j)pj‖
2q
α

E(M,τ) >‖(pj − pk(j))wk(j)(pj − pk(j))‖
2q
α

E(M,τ) + ‖pjwk(j)pk(j)‖
2q
α

E(M,τ)

+ ‖pk(j)wk(j)pj‖
2q
α

E(M,τ) + ‖pk(j)vnk(j)pk(j)‖
2q
α

E(M,τ).
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Let C(q, α) be the norm of the identity map from `
2q
α
3 onto `α

3 , where `
2q
α
3

(respectively `α
3 ) denotes the 3-dimensional `

2q
α -space (respectively `α-space). We

have

‖pjvnk(j)pj‖
2q
α

E(M,τ) > C(q, α)
2q
α

[(
‖(pj − pk(j))wk(j)(pj − pk(j))‖α

E(M,τ)

+ ‖pjwk(j)pk(j)‖α
E(M,τ) + ‖pk(j)wk(j)pj‖α

E(M,τ)

) 1
α
] 2q

α

+ ‖pk(j)vnk(j)pk(j)‖
2q
α

E(M,τ).

We remark that pjwk(j)pj = (pj−pk(j))wk(j)(pj−pk(j))+pjwk(j)pk(j)+pk(j)wk(j)pj

and since E(M, τ) is α-convex (with constant 1), the above inequality implies

‖pjvnk(j)pj‖
2q
α

E(M,τ) > C(q, α)
2q
α ‖pjwk(j)pj‖

2q
α

E(M,τ) + ‖pk(j)vnk(j)pk(j)‖
2q
α

E(M,τ),

and taking the limit as j →∞, we get from (3.4) and (3.5) that

ν
2q
α > C(q, α)

2q
α ε

2q
α + ν

2q
α .

This is a contradiction since ε > 0, so W is a E-equi-integrable set. The lemma is
proved.

To end the proof of Theorem 3.1, we note that W = {xnk
−pkxnk

pk : k > 1};
so, if we set yk = xnk

− pkxnk
pk and zk = pkxnk

pk, the proof of is complete.

Remark 3.7. (1) If M = B(`2) with the usual trace, then every projection
of finite trace is a finite rank projection so in the proof above, δ = δ∗ = 0. In
the particular case of unitary matrix space CE where E is a symmetric sequence
space, one proceed directly to Case 2 by setting W := {xn − pnxnpn : n > 1}
where {pn}∞n=1 is an arbitrary sequence of projections satisfying: pn ↓n 0 and for
every n > 1, 1− pn is a finite projection.

(2) If M is a finite von Neumann algebra with a normalized finite trace τ and
E is a symmetric space on [0, 1] satisfying the assumptions of Theorem 3.1, it is
enough to take pn = en (i.e gn = 1− en on Lemma 3.4) and conclude immediately
as in Lemma 3.5 that V is E-equi-integrable.

(3) In the proof above, it is clear that the projections {pk}∞k=1 are such that
either τ(p1) < ∞ or τ(1 − pk) < ∞ for all k > 1. In fact, the argument above
shows that if {en}∞n=1 is a sequence in D1 that attained the quantities δ and δ∗,
then any sequence of projections satisfying pn ↓n 0, en 6 pn for each n > 1 and
τ(1− pn) < ∞ for each n > 1, would satisfy the conclusion of Theorem 3.1.

The following extension shows that if one considers finitely many bounded
sequences in E(M, τ), one can choose a single sequence of projections that works
for each sequence.
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Corollary 3.8. If M and E are as in Theorem 3.1 and {x(1)
n }∞n=1,

{x(2)
n }∞n=1, . . . , {x

(j0)
n }∞n=1 be finitely many bounded sequences in E(M, τ). Then

there exist a strictly increasing sequence {nk}∞k=1 of N and a sequence of decreasing
projections pk ↓k 0 in M such that for each 1 6 j 6 j0, the set {x(j)

nk − pkx
(j)
nk pk :

k > 1} is E-equi-integrable.

Proof. For 1 6 j 6 j0, we set, as in the proof of Theorem 3.1,

δj := sup
{

lim
n→∞

sup
k∈N

‖en|x(j)
k |en‖E(M,τ) : {en}∞n=1 ∈ D1

}
.

One can choose a strictly increasing sequence {nk}∞k=1 in N such that for
each 1 6 j 6 j0, there exists a sequence {e(j)

k }∞k=1 ∈ D1 with

δj = lim
k→∞

‖e(j)
k |x(j)

nk
|e(j)

k ‖E(M,τ)

and
δ∗j = lim

k→∞
‖e(j)

k |x(j)
nk

∗
|e(j)

k ‖E(M,τ)

= sup
{

lim
n→∞

sup
k
‖qn|x(j)

nk

∗
|qn‖E(M,τ) : {qn}∞n=1 ∈ D1

}
.

For every k > 1, set ek :=
∨

16j6j0

e(j)
k . Since τ(ek) 6

j0∑
j=1

τ(e(j)
k ), it is clear that

the sequence {ek}∞k=1 belongs to D1 and each of the δj ’s and δ∗j ’s are attained at
{ek}∞k=1. One can complete the proof by proceeding as in the proof of Theorem 3.1,
simultaneously on the finite set of sequences and the fixed {ek}∞k=1.

Our next result shows that the decreasing projections in the decomposition
can be replaced by mutually disjoint projections.

Theorem 3.9. Let E be an order continuous quasi-Banach function space as
in Theorem 3.1. Let {xn}∞n=1 be a bounded sequence in E(M, τ) then there exists
a subsequence {xnk

}∞k=1 of {xn}∞n=1, bounded sequences {ϕk}∞k=1 and {ζk}∞k=1 in
E(M, τ) and mutually disjoint sequence of projections {ek}∞k=1 such that:

(i) xnk
= ϕk + ζk for all k > 1;

(ii) {ϕk : k > 1} is E-equi-integrable and ekϕkek = 0 for all k > 1;
(iii) {ζk}∞k=1 is such that ekζkek = ζk for all k > 1.

Proof. Let {xn}∞n=1 be a bounded sequence in E(M, τ) and suppose (by
taking a subsequence if necessary), xn = yn + zn with pnynpn = 0, the set {yn :
n > 1} is E-equi-integrable and pnznpn = zn for all n > 1, be the decomposition
of {xn}∞n=1 as in Theorem 3.1.

Let n1 = 1. Since pn ↓n 0 and

p1z1p1 − (p1 − pn)z1(p1 − pn) = pnz1p1 + p1z1pn − pnz1pn,

Proposition 2.4 (ii) shows that

lim
n→∞

‖p1z1p1 − (p1 − pn)z1(p1 − pn)‖E(M,τ) = 0.
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Choose n2 > n1 = 1 such that

‖p1z1p1 − (p1 − pn2)z1(p1 − pn2)‖E(M,τ) <
1
2
.

Inductively, one can construct n1 < n2 < · · · < nk < · · · such that

‖pnk
znk

pnk
− (pnk

− pnk+1)znk
(pnk

− pnk+1)‖E(M,τ) <
1
2k

.

Since zn = pnznpn for every n > 1, one gets

‖znk
− (pnk

− pnk+1)znk
(pnk

− pnk+1)‖E(M,τ) <
1
2k

.

For every k > 1, set

ek : = pnk
− pnk+1

ζk : = (pnk
− pnk+1)znk

(pnk
− pnk+1)

ϕk : = ynk
+ [znk

− ekznk
ek].

Since {ynk
: k > 1} is a E-equi-integrable set and lim

k→∞
‖znk

−ekznk
ek‖E(M,τ) = 0,

it is clear that {ϕk : k > 1} is E-equi-integrable. Also {ek}∞k=1 is mutually disjoint.
The proof is complete.

Corollary 3.10. Let E be an order-continuous symmetric Banach function
space on R+ with the Fatou property. Let {xn}n=1 be a bounded sequence in
E(M, τ) then there exists a subsequence {xnk

}∞k=1 of {xn}∞n=1, bounded sequences
{ϕk}∞k=1 and {ζk}∞k=1 in E(M, τ) and mutually disjoint sequence of projections
{ek}∞k=1 such that:

(i) xnk
= ϕk + ζk for all k > 1;

(ii) {ϕk : k > 1} is E-equi-integrable and ekϕkek = 0 for all k > 1;
(iii) {ζk}∞k=1 is such that ekζkek = ζk for all k > 1.

Proof. Assume that E has the Fatou property (equivalently E does not con-
tain c0). Since E is symmetric, E 6⊃ c0 is equivalent to E not containing `n

∞
uniformly, and therefore E satisfies the q-lower estimate for some q and one can
equip E with an equivalent norm so that it satisfies the lower q-estimate of constant
1. All hese facts can be found in [17].

The proof of Theorem 3.1 can be adjusted to obtain decompositions where
the projections are taken only on one side, that is, the following result follows:

Corollary 3.11. Let E be an order continuous quasi-Banach function
space in R+ that is α-convex with constant 1 for some 0 < α 6 1 and suppose
that E satisfies a lower q-estimate with constant 1 for some q > α. Let {xn}∞n=1

be a bounded sequence in E(M, τ) then there exist a subsequence {xnk
}∞k=1 of

{xn}∞n=1, bounded sequences {yk}∞k=1 and {zk}∞k=1 in E(M, τ) and decreasing pro-
jections ek ↓n 0 in M such that:

(i) xnk
= yk + zk for all k > 1;

(ii) ekyk = 0 for all k > 1 and lim
n→∞

sup
k>1

‖fnyk‖E(M,τ) = 0 for every fn ↓n 0.

(iii) {zk}∞k=1 is such that ekzk = zk for all k > 1.
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Definition 3.12. A subspace X of Lp(M, τ) is called strongly embedded
into Lp(M, τ) if the Lp and the measure topologies on X coincide.

The following result is a direct application of Proposition 2.11 and Theo-
rem 3.9.

Theorem 3.13. Let 1 6 p < ∞. Every subspace of Lp(M, τ) either contains
almost isometric copies of `p or is strongly embedded in Lp(M, τ).

The next corollary should be compared with [16], Theorem 2.4.

Corollary 3.14. Assume that M is finite and p > 2. Every subspace
of Lp(M, τ) either contains almost isometric copies of `p or is isomorphic to a
Hilbert space.

For the commutative case, the space `p can not be strongly embedded in
Lp[0, 1] for 0 < p < 2. This is due to Kalton ([11]) for 0 < p < 1 and Rosenthal
([14]) for the case 1 6 p < 2. A non-commutative analogue should be of interest.

Problem. Let M be a semi-finite von Neumann algebra and 0 < p < 2.
Does `p strongly embed into Lp(M, τ)?

Acknowledgements. This work was supported in part by NSF grant DMS–9703789.

Note added in proof. Since this paper was submitted, there have been some new
developments: (1) Theorem 3.1 is also valid for Haagerup Lp-spaces when 1 6 p < ∞;
(2) Corollary 3.14 was extended to the Haagerup Lp-spaces by Raynaud and Xu; (3) the
problem stated above was solved positively by Haagerup, Rosenthal and Sukochev for the
finite case and 1 6 p < 2 and the author for the general semi-finite case and 0 < p <∞.
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