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0. INTRODUCTION

In this article we are concerned with some questions related to Cauchy equations
in Banach spaces, which can be treated using underlying holomorphic semigroups
with moderate growth on vertical lines. The link between both subjects is given
by the existence of appropriate functional calculi. It supplies a unified viewpoint
on problems usually approached by diverse methods.

Let X be a Banach space and let H be a closed linear operator with domain
and range in X. Let us consider the abstract Cauchy equation{

u′(t) = −Hu(t), t > 0,
u(0) = x,

where x ∈ X (higher order Cauchy equations may be reduced to that using ma-
trices). The Hille-Yosida theorem characterises those operators H for which the
above problem admits a (unique) solution, given by a strongly continuous (C0)-
semigroup of bounded operators acting on X: u(t, x) ≡ T tx, where t > 0 and
x ∈ X. In this case −H is the infinitesimal generator of T t, with T t = e−tH . There
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are important classes of Cauchy equations which are “ill-posed” in the sense that
the elements of the formal semigroup e−tH are not bounded operators on X. Well
known examples of it are the Schrödinger operators H = i(∆+V ) (where ∆ is the
usual Laplacian on X = Lp(Rn), 1 6 p 6 ∞, p 6= 2 and V lies in the Kato class)
or cosine functions linked to wave equations. A way to overcome this difficulty
consists of looking for large sets of functions f giving rise to bounded operators of
the form e−tHf(H). So it is clear there is an interest in having suitable functional
calculi involving H and e−tH ([36], [35], [15]).

There have been recent developments in this direction connected with the
formula

(0.1) f(H) := − 1
π

∫
C

∂f̃

∂z
(z)(z −H)−1 dxdy

(here f̃ is an almost analytic extension to C of the function f initially defined on
R, see Section 1). The formula (0.1) was introduced by Helffer and Sjöstrand for
self-adjoint operators H ([28], [11], [12], [16]), and Jensen and Nakamura realized
its validity to estimate expressions like e−itHf(H) in their study of Schrödinger
operators on Lp(Rn) ([36], [35]). One of the goals of this paper is to show in a
fairly simple way how to extend or recover such results, provided that H can be
given an appropriate version of a functional calculus linked to formula (0.1). In
this respect, Davies has shown that an abstract calculus can be constructed on the
basis of (0.1), whenever it is assumed that σ(H) ⊂ R and the resolvent function
of H satisfies property

(Rα) ‖(z −H)−1‖ 6 C
〈z〉α

|=z|α+1
,

for every z 6∈ R, where 〈z〉 =
√

1 + |z|2 and α > 0 is fixed ([11]).
As an application, it is possible to give a very general statement about Lp-

spectral independence of (initially defined) self-adjoint operators on L2. This result
covers a wide variety of cases ([12]). Let us pay attention to the method of proof
followed by Davies. In this, the required condition onH affects the (C0)-semigroup
(“exponential function”) e−tH generated by H rather than its resolvent function.
Indeed, the argument begins with the proof that H on Lp, say Hp, is such that
L = ε+Hp satisfies property

(HGα) ‖e−zL‖ 6 Cε

(
|z|
<z

)α

where <z > 0,

for every ε > 0 and fixed α > 0. This implies that σ(Hp) ⊂ [0,∞) and, more
important, implies property (Rα). Thus the functional calculus applies and one
obtains σ(Hp) = σ(H2) ([12], p. 182).

On the other hand, it is possible to establish an accurate functional calculus
for operators H satisfying (HGα). This is done using the inverse Laplace transform

Gν(u) =
1

2πi

∫
<z=1

e−zH

zν+1
euz dz,
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where u ∈ R and ν > α, and Weyl fractional derivatives W νf , with ν > 0.
A function g operates in this way on H whenever it has absolutely continuous
(fractional) derivative up to the order ν+ 1

2 , with ν > α, and g(H) can be obtained
by refinement of the formula

(0.2) f(H) =
1

Γ(ν)

∞∫
0

W ν+1f(u)Gν(u) du,

where ν > α and f ∈ C
(∞)
c ([0,∞)) ([20], Theorem 6.3). We will refer to this

calculus as the AC(ν)-calculus. More generally, f(H) has a sense as defined by
(0.2) if f ∈ C(∞)

c ([0,∞)) for example, and H is subject to the condition, that we
call (Gα), with α > 0, that is,

(Gα) sup
<z>1

‖e−zH‖
|z|α

<∞.

The present paper has been planned in an abstract setting. Our first main
result is Theorem 2.1 which asserts that, under common hypotheses, the Davies
functional calculus (also called Davies-Helffer-Sjöstrand calculus in [18]) and the
AC(ν)-calculus of [20] coincide on common domains. Moreover they can be ex-
pressed by the operator-valued formula which is naturally based on the Fourier
transform. These facts suggest a structural approach to the subject, which is
started in Section 2. We show that σ(H) is an invariant for the homomorphisms
involved in that calculus and, as a consequence, we obtain an “internal” proof of
spectral independence for operators H enjoying property (Gα). We mean for this
a proof which depends directly on the growth on vertical lines of the semigroup
generated by H rather than on the growth of its resolvent. It extends results of
[12], [13] in particular.

Whereas all of the above is valid for general Banach spaces, there is another
method to deduce spectral independence when we are dealing with interpolated
Banach spaces. It turns out that the operators of semigroups e−zH with property
(Gα) are decomposable, and in this case an earlier theorem by E. Albrecht estab-
lishes the constancy of spectra for all interpolation spaces ([1]). This provides us
with a shorter (but less direct) way to prove the results of [12], [13], [54] as well
as those of this paper, about p-independence; see Theorem 2.7. Note that the
decomposability of an operator is closely related to the existence of a sufficiently
rich functional calculus ([2], [3], [4]). So functional calculi are still relevant in this
method of proof.

Application of techniques associated with the AC(ν) formulation implies
bounds for the operators f(H)eitH . These generalise, or extend partially, simi-
lar results obtained in Rn by multiplier methods, amalgams, etc., and in Banach
spaces by methods of regularized or integrated semigroups and so on (a more
detailed analysis of the relationships between the functional calculus and these
notions will be given in a forthcoming paper). See Sections 3 and 5.

Calculations in Section 3 show in particular that if a semigroup (e−zH)<z>0

satisfies (HGα) then ((1+H)−z)<z>0 is also an analytic semigroup which satisfies
(HGν+ 1

2
) for ν > α. In Section 4 we give a converse of this result for property

(Gα). The argument is related to Hadamard fractional integration.
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Finally we do observe in Section 5 the close connection which exists between
questions on spectral independence or norm estimates and multiplier theory on
stratified or solvable Lie groups. Interesting examples constructed in recent papers
are then considered, to illustrate and apply the results of preceding sections.

1. PRELIMINARIES

We collect the main features of the functional calculi defined in [11] and [20], and
make some related observations. We use the variable constant convention, in which
C denotes a constant which may not be the same in different lines.

For f in C
(∞)
c (R) let f̃ denote the following particular almost-analytic ex-

tension of f to C, of degree n. Take τ in C
(∞)
c (R), non-negative, such that

τ(s) = 1 if |s| 6 1 and τ(s) = 0 if |s| > 2, and define ψ(x, y) := τ( y
〈x〉 ). Set

f̃(z) = ψ(x, y)
n∑

r=0

1
(r!)f

(r)(x)(iy)r for every z = x+ iy ∈ C. It is a simple fact that∣∣∣∂f̃
∂z (z)

∣∣∣ = O(|y|n) as |y| → 0, where ∂
∂z = 1

2

(
∂
∂x + i ∂

∂y

)
([11]).

For n ∈ N, let An be the completion of C(∞)
c (R) with respect to the norm

‖f‖n :=
n∑

r=0

∫
R
|f (r)(x)| 〈x〉r−1dx, f ∈ C(∞)

c (R). Then An is a Banach algebra for

pointwise multiplication. By putting f (r) in terms of f (r+1) and then applying the
Fubini Theorem one gets that the above norm is equivalent to

∫
R
|f(x)|〈x〉−1 dx

+
∫
R
|f (n)(x)|〈x〉n−1 dx. Another stronger norm has been considered in [18], p. 117.

Let X be a Banach space and denote by L(X) the algebra of bounded oper-
ators on X endowed with the operator norm. Suppose that H is a closed densely
defined operator on X with real spectrum, σ(H) ⊂ R, and assume that property
(Rα) mentioned in the introduction holds for some α > 0.

Theorem 1.1. ([11]) Assume that n > α. Then there exists a bounded
algebra homomorphism Θ : An+1 −→ L(X) given by

Θ(f) = − 1
π

∫
C

∂f̃

∂z
(z)(z −H)−1 dxdy

for every f ∈ C(∞)
c (R).

The above formula for Θ(f) does not depend on the choice of either τ or n in
the expression for f̃ . A property of the calculus Θ is that Θ((z−u)−1) = (z−H)−1

for every z 6∈ R. Also, if suppf ∩ σ(H) = ∅ then Θ(f) = 0. This fact is crucial in
the Davies proof of Lp spectral independence ([11], [12]).

Let us now suppose that the spectrum σ(H) of H is contained in [0,∞).
For ε > 0, take ϕε in C(∞)(R) such that ϕε(u) = 0 in u < −ε and ϕε(u) = 1
in u > − ε

2 . If ez(u) = e−zu, where u ∈ R and <z > 0, then the function (ϕε −
ϕε′)ez is compactly supported on (−∞, 0), for every ε, ε′ > 0, and therefore the
family Θ(ϕεez) is a holomorphic (C0)-semigroup, independent of ε ([11], p. 174).
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As a matter of fact, Θ(ϕez) ≡ Θ(ϕεez) is generated by −H : let −A be the
infinitesimal generator of Θ(ϕez). For λ such that <λ > 0 and =λ 6= 0 we have

that (λ+ A)−1 =
∞∫
0

e−λtΘ(ϕet) dt = Θ
( ∞∫

0

ϕ(u)e−(λ+u)t dt
)

= Θ(ϕ(u)(λ+ u)−1).

Now, Θ([1−ϕ(u)](λ+u)−1) = 0 as above (by approximating with C(∞)
c functions),

and then (λ + A)−1 = Θ((λ + u)−1) = (λ +H)−1 ([11], Theorem 5). (So, if −H
satisfying (Rα) is originally assumed to generate a semigroup, the calculus Θ allows
us to recover it.)

The calculus that we have just described relies upon almost analytic ex-
tensions and the Helffer-Sjöstrand formula. The next one appeals to fractional
derivation in the sense of Weyl, and its corresponding reproducing formula.

For f ∈ C
(∞)
c ([0,∞)) the Weyl fractional integral of f of order ν > 0 is

defined by

W−νf(u) =
1

Γ(ν)

∞∫
u

(t− u)ν−1f(t) dt, u > 0.

The operator W−ν : C(∞)
c ([0,∞)) → C

(∞)
c ([0,∞)) is bijective and its inverse

operator, denoted by W ν , is called the Weyl fractional derivative (of f) of order ν.
When ν ∈ N then W νf = (−1)νf (ν). Moreover Wα+β = WαW β for any α, β ∈ R
where W 0 is to be taken as the identity operator. For ν > 0 we define the Banach
spaces AC(ν)

exp, AC(ν)
exp,2, and AC(ν), AC(ν)

2,1 , as the completions of C(∞)
c ([0,∞)) in

the respective norms

‖f‖(ν),e :=

∞∫
0

|W νf(u)|eu du, ‖f‖(ν),e;2 :=
( ∞∫

0

|W νf(u)|2e2u du
) 1

2

,

and

‖f‖(ν) :=

∞∫
0

|W νf(u)|uν−1 du, ‖f‖(ν),2,1 :=

∞∫
0

[ 2y∫
y

|W νf(u)uν |2 du
u

] 1
2 dy
y
.

These spaces satisfy the continuous inclusions AC(ν+ 1
2 ) ⊂ AC

(µ)
2,1 ⊂ AC(µ) and

AC
(ν+ 1

2 )
exp ⊂ AC

(µ)
exp,2 for ν > µ > 0. Moreover, AC(ν)

exp, AC(ν) for ν > 1, and

AC
(ν)
exp,2, AC

(ν)
2,1 for ν > 1

2 , are in fact Banach algebras. All this is proved in [20]

for AC(ν) and AC
(ν)
2,1 . The same arguments work for the exponential weighted

cases AC(ν)
exp , AC(ν)

exp,2.
Now, let X and H be as above and assume that −H is the infinitesimal

generator of a holomorphic semigroup az := e−zH , <z > 0, in L(X) which satisfies,
for some fixed α > 0,

(Gα) sup
<z>1

‖az‖
|z|α

<∞,
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or the stronger condition

(HGα) ‖az‖ 6 C

(
|z|
<z

)α

for all z ∈ C+,

where C+ := {z ∈ C : <z > 0}. We also assume that az is a (C0)-semigroup,
i.e., lim

t→0+
atx = x for each x ∈ X. Under hypothesis (Gα) it is the case that

σ(H) ⊂ [0,∞) and a functional calculus for H can be defined via the kernel Gν(u)
given by

Gν(u)x =
1

2πi

∫
<z=1

azx

zν+1
euz dz,

where u ∈ R, ν > α and x ∈ X. We have that Gν(u) ∈ L(X). Indeed, Gν(u) lies
in A for every u ∈ R, where A is the Banach subalgebra of L(X) generated by the
semigroup (az)<z>0. Moreover, the mapping u ∈ R → Gν(u) ∈ A is continuous,
satisfies ‖Gν(u)‖ 6 Ceu, for every u ∈ R, and Gν(u) = 0 if u 6 0.

Theorem 1.2. ([20]). Let (az)<z>0 be a holomorphic (C0)-semigroup in
L(X) with infinitesimal generator −H.

(i) Suppose that (az)<z>0 satisfies (Gα). Then the formula

Φ(f) =

∞∫
0

W ν+1f(u)Gν(u) du

does not depend on ν > α and defines a bounded algebra homomorphism Φ :
AC

(ν+1)
exp → L(X) such that Φ(f)H ⊂ HΦ(f) = Φ(g) where g(t) = tf(t) whenever

f ∈ C(∞)
c ([0,∞)). In fact, Φ can be extended to a bounded algebra homomorphism

Φ̃ : AC(ν+ 1
2 )

exp,2 → L(X) given, for every f ∈ C∞c ([0,∞)), by

Φ̃(f) = lim
h→0+

∞∫
0

W ν+ 1
2 f(u)

Gν+ 1
2 (u)−Gν+ 1

2 (u− h)
h

du.

(ii) If (az)<z>0 satisfies (HGα) then ‖Gν(u)‖ 6 uν for u > 0, in which case
Φ extends automatically to a bounded homomorphism AC(ν+1) → L(X). More-
over, the formula for Φ̃ defines in this case a bounded algebra homomorphism
AC

(ν+ 1
2 )

2,1 → L(X).

In the sequel we will use the letter Φ to also denote the homomorphism Φ̃.

Remarks 1.3. (i) The growth hypothesis on az which is actually considered
in [20], p. 327 is not what we have here called (Gα), but the stronger one

sup
<z>ε

‖az‖
|z|α

≡ Cε <∞,

for some fixed α > 0, and each ε > 0. Nevertheless, Theorem 1.2 (i) is still true
with a similar proof. Our weaker hypothesis (Gα) has the advantage that one
does not need to take care about the behaviour of az close to iR, at least in what
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concerns Section 2 and examples in accordance with it. Note also that, under
condition (Gα), the map Φ enables us to recover az: if <λ > 1 then

Φ(e−λu) = λm+1

∞∫
0

e−λuGm(u) du =
1

2πi

∫
<z=1

∞∫
0

e−(λ−z)u du
(
λ

z

)m+1

az dz

=
1

2πi

∫
<z=1

az(λ
z )m+1

λ− z
dz = aλ.

(ii) The kernel Gν(u) also enjoys the following properties:
(1) ‖Gν(u)‖ 6 Cuν−α if u 6 1. To see this notice that for u < 1 the

map z → azz−(ν+1)euz is holomorphic in the strip 1 6 <z 6 u−1 and tends to
zero at infinity within this domain. By the residue theorem we then get Gν(u) =
( 1
2πi )

∫
<z= 1

u

azz−(ν+1)euz dz and the inequality follows.

(2) Γ(µ + ν + 1)Gµ+ν(u) = Γ(µ + 1)Gµ(u)Γ(ν + 1)Gν(u) for µ, ν > α
and u ∈ R. This is readily seen using, for β > α, that Φ(Rβ

u) = Gβ(u) where Rβ
u

denotes the Bochner-Riesz function defined by Rβ
u(x) = 1

Γ(β+1) (u−x)
β
+, x ∈ [0,∞)

([20], p. 332).
Put ω(u) := Γ(ν + 1)‖Gν(u)‖ for all u ∈ R and let AC(ν)

ω be defined using
the norm for AC(ν)

exp but with the weight eu replaced with ω. It is then obvious
that every f in AC

(ν)
ω operates on H in the sense of [20], p. 331. It would be

interesting to know whether AC(ν)
ω is a Banach algebra but unfortunately, this is

not clear, even though ω is submultiplicative by (ii) (2).
(iii) In practice it is sometimes necessary to consider a more general version

of (Gα) where the growth of the semigroup at infinity over (0,∞) is allowed to be
subexponential, i.e.,

sup
<z>1

‖az
ε‖

|z|α
<∞,

for every ε > 0, where az
ε = e−εzaz, az

0 = az.
Then, if Hε = ε +H, we have that σ(Hε) ⊂ [0,∞) for every ε > 0 whence

σ(H) ⊂ [0,∞). Moreover, note that

Gν
ε (u) :=

1
2πi

∫
<z=1

az
ε

zν+1
euz dz =

1
2πi

∫
<z=1

az

zν+1
e(u−ε)z dz =: Gν(u− ε)

for ν > α. Property (Gα) implies that Gν
ε (u) = 0 if u < 0, and so Gν(r) =

Gν
ε (r + ε) = 0 if r < −ε for every ε > 0. Hence Gν(u) = 0 whenever u < 0.

Coming back to a fixed ε we get that Gν
ε (u) = 0 for any u < ε. We also have that

‖Gν(u)‖ 6 Ceu for u in R.
We define

Φ(f) =

∞∫
0

W ν+1f(u)Gν(u) du,
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if ν > α and f ∈ C
(∞)
c (R). Let us denote by Φε the calculus for Hε as in

Theorem 1.2, and put fε(u) = f(u − ε) if f ∈ C
(∞)
c (R). Then W ν+1fε(u) =

W ν+1f(u− ε) and so

Φε(fε) =

∞∫
ε

W ν+1f(u− ε)Gν(u− ε) du =

∞∫
0

W ν+1f(u)Gν(u) du = Φ(f),

for every ε > 0. This allows us to easily check that Φ(fg) = Φ(f)Φ(g), and
Φ(f)H ⊂ HΦ(f) = Φ(tf(t)). So, Φ is also a functional calculus which extends
automatically to AC(ν)

exp.
Note that we can recover az from Φ for <z > 1 to get ‖az‖ 6 Cδ|z|ν+1 if

<z > δ, for δ > 1, and ν > α. As a consequence the following property holds:
any holomorphic semigroup az having polynomial growth on vertical lines and
which has subexponential growth at infinity on the real line has in fact polynomial
growth at infinity on the real line. This coincides with what is known to happen
for concrete examples in Lp spaces.

The subexponential version of (HGα), over (0,∞), is

‖az‖ 6 Cεeε<z

(
|z|
<z

)α

for all z ∈ C+, ε > 0,

or, equivalently, that (az
ε)<z>0 satisfies (HGα) for every ε > 0. Under this assump-

tion it is readily seen that Φ extends to the completion K of C(∞)
c ([0,∞)) with

respect to the norm f →
∞∫
0

(
2y+1∫

y

|W ν+ 1
2 f(u)(u+ 1)ν |2 du

) 1
2

dy
y+1 . Using Propo-

sition 2.5 from [20] it is possible to show that K is a Banach algebra. Hence,
assuming the subexponential version of (HGα) provides us with a calculus Φ, for
H, acting on K.

In order to highlight the basic aspects of the matter, we only deal with prop-
erties (Gα) or (HGα) in general statements throughout this paper. Corresponding
results for the subexponential version of the (Gα)–(HGα) hypotheses can be ob-
tained for each ε+H with ε > 0. For results given in terms of H itself one should
take the algebra K as a substitute of AC(ν+ 1

2 )
2,1 . This point is left to the reader.

There is a clear relationship between the calculi Θ and Φ from the very
beginning. Assume that the operator H satisfies σ(H) ⊂ [0,∞). Then property
(HGα) for each Hε = ε + H, ε > 0, implies (Rα) ([12], p. 181). In turn (Rα)
enables us to obtain (Gn+1) for every Hε, whenever n > α, via Θ: choosing
smooth functions ϕ = ϕε as in the discussion after Theorem 1.1, the boundedness
condition

sup
<z>1

e−εz‖az‖
|z|n+1

<∞,

for az ≡ e−zH = Θ(ϕez), z ∈ C+, follows readily from estimates for ϕez in An+1.
In particular, the calculus Φ can be established on AC

(ν+1)
exp , ν > n + 1,

according to Remark 1.3 (iii). A natural conjecture here is that Θ and Φ are equal
under common hypotheses. This is confirmed in the next section.
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2. UNIQUENESS AND SPECTRAL INVARIANCE OF THE C
(k)
c -FUNCTIONAL CALCU-

LUS

We begin with a uniqueness result.

Theorem 2.1. Let (az)<z>0 be a holomorphic (C0)-semigroup in L(X) with
infinitesimal generator −H satisfying σ(H) ⊂ [0,∞). Assume that H satisfies
condition (Rα) for some α > 0. Then Θ(f) = Φ(f) for every f ∈ C(∞)

c (R).

Proof. As seen in the previous section (Rα) implies (Gn+1) for every ε+H,
if n > α and ε > 0, so that Φ is defined on C(∞)

c (R) in particular. Fix ϕ in C∞(R)
such that ϕ(u) = 0 in u < −ε and ϕ(u) = 1 in u > − ε

2 . Then it follows that
az = Θ(ϕez) . Moreover, as also noticed before, if β > n+1 then Φ(Rβ

u) = Gβ(u),
where Rβ

u is the Bochner-Riesz function defined by

Rβ
u(x) =

1
Γ(β + 1)

(u− x)β
+ =

1
2πi

∫
<z=1

e−zx

zβ+1
euz dz,

for u > 0 and x ∈ R. Since Gβ(u) = 1
2πi

∫
<z=1

azz−(β+1)euz dz and az = Θ(ϕez)

one has

Θ(ϕRβ
u) = Θ

(
1

2πi

∫
<z=1

ϕ(x)e−zx

zβ+1
euz dz

)
= Gβ(u).

Finally, if f ∈ C
(∞)
c (R) then f =

∞∫
0

W β+1f(u)Rβ
u du is in An+1 which implies

that

Θ(f) = Θ(ϕf) =

∞∫
0

W β+1f(u)Θ(ϕRβ
u) du = Φ(f).

The theorem says that the maps Φ and Θ are different expressions of the
same calculus for H, provided that σ(H) ⊂ [0,∞). For ν > α the strongest form

Φ : AC(ν+ 1
2 )

2,1 → L(X) corresponds to the most restrictive assumption (HGα),

whereas the weakest form Φ : AC(ν+1)
exp → L(X) is associated with the most general

condition (Gα), or its “subexponential” version. In between we find Θ : An+1 →
L(X), n > α, and (Rα).

Next we show that Φ and Θ also coincide with the functional calculus natu-
rally based upon the Fourier transform.

Proposition 2.2. Let (az)<z>0 be a holomorphic semigroup in L(X) which
satisfies property (Gα) for some α > 0. Then

Φ(f)a1 =
1
2π

+∞∫
−∞

(F−1f)(t)a1+it dt

for every f ∈ C
(n+1)
c (R), n > α, where F−1f denotes the inverse Fourier trans-

form of f .
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Proof. Let f be a function in C
(n+1)
c (R). Then F−1f is an entire function

which is O(z−n−1) in every halfplane =z 6 M . Indeed, integrating by parts n+ 1
times the integral F−1f(z) =

∫
R
f(u)eizu du we get

F−1f(z) =
1

(iz)n+1

∫
R

Wn+1f(u)eizu du.

Since the semigroup (az)<z>0 has property (Gα) the integral
∫

=z=−δ

F−1f(z)a1+izdz

is absolutely convergent for every δ > 0 and does not depend on δ. In particular

+∞∫
−∞

F−1f(t)a1+itdt

=
∫

=z=−1

F−1f(z)a1+iz dz =
∫

=z=−1

∫
R

Wn+1f(u)eizu du
a1+iz

(iz)n+1
dz

=
∫
R

Wn+1f(u)
1
i

∫
<z=1

a1+z

zn+1
ezu dz du=

∫
R

Wn+1f(u)Gn(u) du=2πΦ(f) a1.

The above result is of some interest, apart from applications later, because

it is known that both Θ and Φ coincide with the L∞ spectral calculus in the case

that H is self-adjoint on a Hilbert space ([11], [20]) . Proposition 2.2 supplies more

unity to the matter.

Our purpose now is to analyse some spectral properties of the homomorphism

Φ and the semigroup (az)<z>0. To do so we need to develop an abstract framework,

which begins with the following lemma. As usual in this paper the infinitesimal

generator of the semigroup (az)<z>0 will be denoted by −H.

Lemma 2.3. Suppose that (az)<z>0 ⊂ L(X) is a holomorphic (C0)-semi-
group which satisfies (Gα), for some α > 0. Then for every ω ∈ C+,

∞∫
0

e−ωtaτ+jtdt = j(jω −H)−1aτ

in L(X) where j ∈ {+i,−i} and τ > 1.

Proof. For s > 0 and x ∈ X, we have Hasx = − lim
t→0

t−1(at+sx − asx) so

that Has ∈ L(X). Let now τ > 1 and put T =
∞∫
0

e−ωtaτ+jt dt in L(X). For each
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x ∈ X, Tx = aτ−1
∞∫
0

e−ωta1+jtxdt lies in the domain of H. Then

(jω−H)Tx = (jω −H)aτ−1

∞∫
0

e−ωta1+jtxdt

= j

∞∫
0

ωe−ωtaτ+jtxdt−
∞∫
0

e−ωt(Haτ−1)(a1+jtx) dt

= j(−e−ωtaτ+jtx)
∣∣∞
t=0

+

∞∫
0

e−ωtHaτ+jtxdt−
∞∫
0

e−ωtHaτ+jtxdt = jaτx.

Since <ω > 0 we get =(jω) 6= 0 and so (jω −H)−1 ∈ L(X). Then

Tx = (jω −H)−1(jω −H)Tx = (jω −H)−1(jaτx).

The above lemma and Proposition 2.2 enable us to give the following spectral
mapping result. The proof is standard. We include it for the sake of completeness.

Proposition 2.4. Let (az)<z>0 ⊂ L(X) be a holomorphic (C0)-semigroup
satisfying (Gα), for some α > 0. If f ∈ C

(n+1)
c (R), for n > α, is such that

supp f ∩ σ(H) = ∅ then Φ(f) = 0.

Proof. By Proposition 2.2, we have for τ > 1 and x ∈ X

Φ(f)aτx =
1
2π

+∞∫
−∞

(F−1f)(t)aτ+itxdt =
1
2π

lim
ε→0+

+∞∫
−∞

(F−1f)(t)e−ε|t|aτ+itxdt

=
1
2π

lim
ε→0+

+∞∫
−∞

f(s)F−1(e−ε|t|aτ+itx)(s) ds.

From Lemma 2.3,

F−1(e−ε|t|aτ+itx)(s) =

∞∫
0

e−(ε+is)taτ−itxdt+

∞∫
0

e−(ε−is)taτ+itxdt

= −i(−i(ε+ is)−H)−1aτx+ i(i(ε− is)−H)−1aτx

= −i(−iε+ s−H)−1aτx+ i(iε+ s−H)−1aτx.

Since supp(f) ∩ σ(H) = ∅ and both sets are closed, we get

Φ(f)aτx =
i

2π
lim

ε→0+

∫
supp f

f(s)((iε+ s−H)−1aτx− (−iε+ s−H)−1aτx) ds

=
i

2π

∫
supp f

f(s) lim
ε→0+

((iε+ s−H)−1aτx− (−iε+ s−H)−1aτx) ds = 0.

By the uniqueness principle for holomorphic functions Φ(f)asx = 0 for every s > 0
and x ∈ X, whence Φ(f) = 0.
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Let A be a commutative Banach algebra with its space of (modular) maximal
ideals denoted by Max(A). Let B be another Banach algebra. If Ψ : A → B is a
bounded homomorphism the spectrum Sp(Ψ) of Ψ is, by definition, the zero set in
Max(A) of the closed ideal ker(Ψ) of A, i.e. Sp(Ψ) = {χ ∈ Max(A) : χ(a) = 0, a ∈
ker(Ψ)}. This notion plays a relevant role in the spectral study of representations.

Let E be a Banach algebra of functions on R which contains C(∞)
c (R) as a

dense subalgebra and such that convergence in E implies pointwise convergence on
R. The next result provides the invariance of the spectrum of the C(k)

c -calculus.

Proposition 2.5. Let (az)<z>0 ⊂ L(X) be a holomorphic (C0)-semigroup
which satisfies (Gα) for some α > 0. Let E be as above and suppose that there is
a bounded homomorphism Ψ : E → L(X) such that

Ψ(f) =

∞∫
0

W (n+1)f(u)Gn(u) du

for each f ∈ C(n+1)
c (R), whenever n > α. Then Sp(Ψ) = σ(H).

Proof. Suppose t 6∈ σ(H). Since σ(H) is closed, a real number ε > 0 can
be chosen such that (t − ε, t + ε) ∩ σ(H) = ∅. Thus we can take f ∈ C

(∞)
c (R)

with f(t) = 1 and suppf ⊂ (t− ε, t+ ε). By Proposition 2.4, Ψ(f) = 0 and then
f ∈ ker(Ψ). However, since evaluations of elements of E at points of R belong to
Max(E) and f(t) = 1 we see that t 6∈ Sp(Ψ).

Conversely, let t ∈ σ(H). If A is the closed subalgebra of L(X) generated
by (az)<z>0 then it is clear that Ψ(f) ∈ A for each f ∈ E . By [33], p. 457, there
exists a character ϕ of A such that ϕ(az) = e−tz, z ∈ C+. Then for f ∈ C(∞)

c (R)
and n > α,

ϕ(Ψ(f)) = (−1)n+1

∞∫
0

f (n+1)(u)
(

1
2πi

∫
<z=1

e(u−t)z

zn+1
dz

)
du

=
(−1)n+1

n!

∞∫
t

f (n+1)(u)(u− t)n du = f(t)

according to [20], p. 328, Remark 3. For arbitrary f ∈ ker(Ψ) in E take (fk) ⊂
C

(∞)
c (R) with fk → f in E as k →∞. By hypothesis fk(t) → f(t). On the other

hand fk(t) = ϕ(Ψ(fk)) → ϕ(Ψ(f)) = 0 whence f(t) = 0 and therefore t ∈ Sp(Ψ).

The above theorem applies automatically to the algebras AC(ν+1)
exp , AC(ν+ 1

2 )
2,1 ,

An+1, and the corresponding calculi Φ,Θ under the appropriate growth assump-
tions and for ν, n > α.
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Remark 2.6. A remarkable case of the spectrum of a bounded homomor-
phism arises when the algebra A is the group algebra of an abelian locally compact
group ([5]). This concept also fits well in our setting.

For α > 0 let L1
α(R) be the Beurling algebra formed by the functions f of

L1(R) such that
+∞∫
−∞

|f(t)|(1+t2)
α
2 dt <∞ endowed with the norm induced by this

integral. Suppose that (az)<z>0 has property (Gα). The mapping Π : L1
α(R) →

L(X) given by Π(f) =
+∞∫
−∞

f(t)a1+it dt, for f ∈ L1
α(R), is well defined, it is linear

and bounded, and satisfies Π(f ∗ g)a1 = Π(f)Π(g) for every f, g in L1
α(R). Then

ker(Π) is a closed ideal of L1
α(R). Inspired by [6], we call the Arveson spectrum

of the semigroup (az)<z>0 the zero set in R of ker(Π), denoted by Arv(az), that
is, Arv(az) := {t ∈ R : Ff(t) = 0, f ∈ ker(Π)}. As we would expect, Arv(az) =
σ(H). This follows by a simple adaptation of the proof of Proposition 2.5 to the
mapping Π (note that Π(f) = 2πΦ(Ff)a1 via Proposition 2.2). Other standard
proofs using the approximate point spectrum of H also work.

Next we establish an abstract result on spectral independence which extends
that of [13], p. 147. Let X1, X2 be Banach spaces with X1 ∩X2 dense in each X1

and X2. Let (az
j )<z>0 be two holomorphic (C0)-semigroups in the corresponding

spaces L(Xj), j = 1, 2. Then they are said to be consistent if at
1x = at

2x for every
t > 0 and x ∈ X1 ∩ X2 ([13]). Let us write the infinitesimal generator of at

j as
−Hj , j = 1, 2.

Theorem 2.7. Assume that (az
j )<z>0 ⊂ L(Xj) with j = 1, 2 are two con-

sistent holomorphic (C0)-semigroups satisfying the growth property (Gα) for some
α > 0. Then σ(H1) = σ(H2).

Proof. For j = 1, 2 let Φj be the functional calculus associated to (az
j )<z>0,

with kernel Gν
j (u) and domain AC

(ν+1)
exp , ν > α. From the hypothesis Gν

1(u)x =
Gν

2(u)x if u > 0 and x ∈ X1 ∩X2 and therefore we get Φ1(f)x = Φ2(f)x for every
x ∈ X1 ∩ X2 and f ∈ AC

(ν+1)
exp . By density we obtain that ker(Φ1) = ker(Φ2).

On the other hand, Proposition 2.5 implies that σ(Hj) = Sp(Φj), j = 1, 2, so the
proof is completed.

Suppose now that (X1, X2) is a compatible couple of Banach spaces in the
sense that they are continuously embedded in a Hausdorff topological vector space.
Recall that X1 ∩X2 and X1 +X2 are Banach spaces endowed with the respective
norms max(‖x‖X1 , ‖x‖X2) if x ∈ X1 ∩X2, and inf{‖x‖X1 + ‖x‖X2 ; x1 ∈ X1, x2 ∈
X2, x1 + x2 = x} if x ∈ X1 + X2. Theorem 2.6 can be used to show spectral
invariance with respect to an interpolation space Y for (X1, X2). However we
give here another proof of this fact, because of its significance in applications.
The argument relies on the following result of E. Albrecht. For a morphism T of
(X1, X2) we write TY to denote its restriction to Y .

Let T be a morphism of (X1, X2) such that TX1∩X2 and TX1+X2 are decom-
posable. Then σ(TY ) = σ(Tj) for j = 1, 2 ([1], Corollary 2.6).

As before, assume that (az
j )<z>0 ⊂ L(Xj) are consistent on X1, X2. Then

there is a unique (az)<z>0 in L(X1 +X2) whose restriction az
Xj

on Xj equals az
j ,
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j = 1, 2, and such that az(Y ) ⊂ Y , <z > 0, for each interpolation space Y for
(X1, X2). Let us denote by −H and −HY the respective generators of az and az

Y ,
<z > 0.

Theorem 2.8. Let (X1, X2) be a compatible couple of Banach spaces such
that X1 ∩X2 is dense in Xj, j = 1, 2. Suppose that holomorphic (C0)-semigroups
(az

j )<z>0 in L(Xj), j = 1, 2, are consistent and satisfy (Gα) for some α > 0.
Then, if Y is an interpolation space for (X1, X2), we have

σ(HY ) = σ(H1) = σ(H2).

Proof. First, for a semigroup (az)<z>0 enjoying property (Gα) all the ele-
ments az, with <z > 1, are decomposable. This is because AC(ν)

exp is semisimple and
regular on its space of modular maximal ideals [0,∞). Therefore az = Φ(e−zu) is
super-decomposable (and so decomposable), for <z > 1 ([39], Theorem 2.3). Also
it is easy to check that az satisfies property (Gα) in L(X1 +X2). Thus Albrecht’s
result applies to yield that σ(az

Y ) = σ(az
j ) whenever <z > 1, j = 1, 2. On the

other hand, in all the spaces concerned, we have that σ(a2) \ {0} = e−2σ(H) for
every z ∈ C+, because az is holomorphic. Since σ(H) is real, both equalities above
yield that σ(HY ) = σ(Hj).

Theorems on spectral invariance related to interpolation also hold for oper-
ators other than decomposable ones. Interesting results of this type have been
obtained, for instance, using the theory of analytic multifunctions ([48], [8]). In
our case, the generality of this method would allow us to establish the constancy
of σ(H) for any operator H interpolated between H1 and H2, but we could not
ensure equalities including the “boundary points” such as σ(H) = σ(H1) = σ(H2),
or σ(H1) = σ(H2) ([8]).

3. NORM ESTIMATES FOR FUNTIONS OF eitH

Let us recall the abstract Cauchy problems of first and second order associated
to H;

(ACP1)
{
u′(t) = −iHu(t), t ∈ R,
u(0) = x0, x0 ∈ X;

(the abstract “Schrödinger type” equation for H) and

(ACP2)

{
u′′(t) = −Hu(t), t > 0,
u′(0) = x1,
u(0) = x0, x0, x1 ∈ X;

(the abstract “wave” equation for H). As is well known the formal solution of
(ACP1) is given by u(t) = e−itHx0 whereas u(t) = cos t

√
Hx0 + (

√
H)−1sin t

√
Hx1

is the formal solution of (ACP2). In most concrete cases (like those of differential
operators) eitH , t ∈ R, are not bounded operators and so it is relevant to find large
classes of functions f so that expresions like f(H)eitH , f(H)(

√
H)−1sin t

√
H, and

other related ones, have a sense as bounded operators on X. We approach this
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question from the general framework supplied by the C(k)
c -functional calculus, pro-

vided that the operator −H generates a semigroup satisfying properties (Gα) or
(HGα). As we shall see, the functions usually involved in the eitH estimates are
particularly well adapted to the AC(ν) calculations.

Lemma 3.1. Let (az)<z>0 be a holomorphic semigroup generated by −H and
let A denote the closed subalgebra in L(X) generated by this semigroup. Assume
that (az)<z>0 satisfies (Gα), for some α > 0, and let µ > α+ 1

2 . Then ait Φ(f) ∈ A
and ∥∥ait Φ(f)

∥∥ 6 C (1 + t2)
α
2

( ∞∫
0

|Wµf(u) e2u|2 du
) 1

2

for every t ∈ R and every function f on [0,∞) for which the integral is finite.

Proof. Since for t ∈ R and u > 0 the integral

aitGµ(u) =
1

2πi

∫
<z=1

az+it

zµ+1
euz dz

is absolutely convergent, the operator aitGµ(u) belongs to A. It follows that

aitΦ(f) =
∞∫
0

Wµ+1f(u) aitGµ(u) du also belongs to A for every smooth function

with compact support. Note that aitΦ(f) can be written (cf. [20], Corollary 4.3)
as a limit in the operator norm, when h→ 0+, of the operators

aitΦh(f) =
1
h

∞∫
0

[
Wµf(u)−Wµf(u+ h)

]
aitGµ(u) du =

=
1
2π

∞∫
−∞

a1+i(s+t)

(1 + is)µ

1∫
0

e−lh(1+is) dl ĝ(s) ds,

where ĝ denotes the Fourier transform of the function g(u) = Wµf(u) eu for u > 0
and g(u) = 0 otherwise. The (Gα) condition, the Schwarz inequality and the
Plancherel formula give the norm estimate

∥∥aitΦh(f)
∥∥ 6

1
2π

( ∞∫
−∞

[
1 + (s+ t)2

]α (1 + s2)−µ ds
) 1

2

‖ĝ‖2 6 C (1 + t2)
α
2 ‖g‖2,

which implies the result.

The proof of the above lemma is a refinement of that of Theorem 1.2 (i). This
is a result on Sobolev type estimates, which automatically implies the following
more familiar formulation. In it, we write e−zH instead of az, for <z > 0, as well
as f(H) in place of Φ(f), for accommodation of standard notation. We also do
this freely in the sequel.
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Proposition 3.2. Let (e−zH)<z>0 be a holomorphic semigroup in X sat-
isfying (Gα) for some α > 0. Then for ν > α + 1

2 and every f in the Sobolev

space Hν(R), with support in
[

1
2 , 1

]
, the operator f(H) is bounded on X with

‖f(H)‖ 6 Cν‖f‖Hν(R).

Even in the abstract setting, the previous proposition may be alternatively
settled on the basis of Proposition 2.2; see [26], p. 438, [45], p. 960.

The next results concern property (HGα). For f ∈ AC(ν+ 1
2 )

2,1 define ‖f‖(α)
(ν),2,1

:=
∞∫
0

[
2y∫
y

|W ν+ 1
2 f(u)uν(1 + u2)

α
2 |2 du]

1
2

dy
y .

Theorem 3.3. Let (az)<z>0, H and A be as in Lemma 3.1 and assume that
(az)<z>0 satisfies (HGα), for some α > 0. Then aitΦ(f) ∈ A and ‖aitΦ(f)‖ 6

Cν(1+ t2)
α
2 ‖f‖(α)

ν;2,1 for t ∈ R, whenever ν > α, f ∈ AC(ν+ 1
2 )

2,1 , and ‖f‖(α)
(ν),2,1 <∞.

Proof. The first part of the argument is as in the proof of the lemma so
that we must estimate aitΦh(f). Now, take r > 0 and put this time g(u) =
Wµf(u)e

r
2 uχ[0,∞)(u). Applying the Hausdorff-Young inequality in

aitΦh(f) =
1
2π

∞∫
−∞

ar+i(rs+t)

rµ−1(1 + is)µ

1∫
0

e−λhr(1+is) dλĝ(−rs) ds,

one obtains

‖aitΦh(f)‖ 6
C

rν

[ ∞∫
−∞

(1 + (s+ t
r )2)α

(1 + s2)µ
ds

] 1
2

‖g‖2

6
C

rν

(
1 +

t2

r2

)α
2
( ∞∫
−∞

ds
(1 + s2)µ−α

) 1
2

‖g‖2

6 C(1 + t2)
α
2

(1 + r2)
α
2

rν+α

( ∞∫
0

|W ν+ 1
2 f(u) eru|2 du

) 1
2

6 C(1 + t2)
α
2 inf

r>0

(1 + r2)
α
2

rν+α

( ∞∫
0

|W ν+ 1
2 f(u) eru|2 du

) 1
2

.

Dividing (0,∞) into pieces [2k, 2k+1), the above infimum can be estimated as in
[20], p. 341 to deduce that ‖aitΦh(f)‖ 6 C(1 + t2)

α
2 ‖f‖(α)

(ν),2,1.

Remark 3.4. We know that AC(ν+1) ⊂ AC
(ν+ 1

2 )
2,1 , ν > 0. It will be useful

later on to have a criterion to decide if aitΦ(f) defines an element of A, in terms of
AC(ν+1) itself. Proceeding along the same lines as in the previous theorem, even
with a simpler proof, it can be shown that aitΦ(f) ∈ A and ‖aitΦ(f)‖ 6 C(1 +
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t2)
α
2 ‖f‖(α)

ν+1, t ∈ R, whenever ν > α, ‖f‖(α)
ν+1 :=

∞∫
0

|W ν+1f(u)|uν(1+u2)
α
2 du <∞

and f ∈ AC(ν+1).

Conditions like ‖f‖(α)
ν;2,1 <∞ or ‖f‖(α)

ν+1 <∞ are not superfluous hypotheses:
if A = AC(1), which is spanned by u → e−zu, and Φ is the inclusion AC(2) →
AC(1), then f(u) := (1 + u)−1 is in AC(2) but aitΦ(f) ≡ eitu(1 + u)−1 does not
belong to A.

In the rest of this section we write e−zH and f(H), as mentioned before.
Note that all operators which are listed as bounded in subsequent statements have
a previous sense as closed densely defined operators on X.

Corollary 3.5. Let (az)<z>0 be a holomorphic semigroup satisfying (HGα)
for some α > 0. Then, if <ν > α:

(i) eitHH−νϕ(H) ∈ L(X) and ‖eitHH−νϕ(H)‖ 6 Cν(1 + |t|α) for each
t ∈ R and ϕ in C

(∞)
c (R) such that ϕ(u) = 0 if u < 1

2 and ϕ(u) = 1 if u > 1.

(ii) Iν
t (H) :=

t∫
0

(t− s)ν−1eisH ds ∈ L(X) and ‖Iν
t (H)‖ 6 Cνt

<ν , for t > 0.

(iii) eitH(1 + H)−ν ∈ L(X) and ‖eitH(1 + H)−ν‖ 6 Cν(1 + t2)
α
2 , for each

t ∈ R.
(iv) (sin tH)H−1(1 +H)−ν+1 ∈ L(X) and, for every t ∈ R and 0 < ε < <ν,

‖(sin tH)H−1(1 +H)−ν+1‖ 6

{
Cν |t|(1 + |t|<ν−1) if <ν > 1 or ν = 1,
Cν,ε|t|<ν(1 + |t|−ε) if 0 < <ν 6 1, ν 6= 1.

Proof. (i) Take n > α and let f(u) = ϕ(u)u−ν for u ∈ R. Then Wn+1f(u) =

ν · · · (ν + n − 1)u−(ν+n+1) for u > 1, whence
∞∫
0

|Wn+1f(u)|un(1 + u2)
α
2 du < ∞.

Hence ‖eitHH−νϕ(H)‖ = ‖f(H)eitH‖ 6 C‖f‖(α)
n+1(1 + t2)

α
2 .

(ii) We follow the idea of [30], p. 9 or [52], p. 336. Choose ϕ as in part (i)

and set gν(u) :=
1∫
0

(1− s)ν−1eisu ds− e−
ν
2 πiΓ(ν)ϕ(u)u−νeiu, for u > 0. For u > 1,

we have |g(j)
ν (u)| 6 Cu−(j+min{1,<ν}), j = 0, 1, . . .. This estimate follows from the

equality

g(j)
ν (u) = Cνu

−(j+ν)

∞∫
0

(iu+ x)ν−1xje−x dx,

for every u > 1, <ν > 0 and j = 0, 1, . . . (for real ν > 0 it is established in [30];
the general case follows from analytic continuation on ν). Hence g ∈ AC(n+1) for
n > α and so we have that Iν

1 (H) = gν(H) + e−
ν
2 πiΓ(ν)ϕ(H)H−νeiH ∈ L(X) by

part (i). Moreover, if t 6= 0, the operator −tH is the generator of a semigroup
which also satisfies (HGα) with the same constant C. Hence ‖Iν

1 (tH)‖ is uniformly
bounded in t > 0. Since Iν

t (H) = tνIν
1 (tH) it follows that ‖Iν

t (H)‖ 6 Kt<ν , where
K is independent of t.

(iii) The argument of part (i) also works here.
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(iv) For t > 0, u > 0 and ν ∈ C, put ht,ν(u) := (1 + tu)ν−1(1 + u)−ν+1

and gt,ν := ht,ν − tν−1. Then the derivatives of gt,ν have the form g
(n)
t,ν (u) =

n∑
k=1

ck(t − 1)kht,ν−k(u)(1 + u)−(n+k), and so belong to AC(n) for all n ∈ N ([20],

Corollary 3.2). In fact, if t > 1, then
∞∫
0

|ht,ν−k(u)| un−1

(1 + u)n+k
du =

( 1∫
0

+

∞∫
1

)
(1 + tu)<ν−1−kun−1

(1 + u)n+<ν−1
du

6

t∫
0

t−nrn−1 dr
(1 + r)k+1−<ν

+ 2(<ν−1−k)+

∞∫
1

(tu)<ν−1−kun−1

(1 + u)n+<ν−1
du 6 Cνt

<ν−k−1,

for k = 1, . . . , n, whenever <ν > 0. Take now 0 < t < 1. If <ν > 1 then
∞∫
0

(1 + tu)<ν−1−kun−1

(1 + u)n+<ν−1
du 6

∞∫
0

(1 + u)(<ν−1−k)+
un−1 du

(1 + u)n+<ν−1
≡ Cν .

If 0 < <ν 6 1 and 1−<ν < δ < 1 then
∞∫
0

(1 + tu)<ν−1−kun−1

(1 + u)n+<ν−1
du 6 t−δ

∞∫
0

un−1−δ

(1 + u)n+<ν−1
du 6 Cδt

−δ.

In summary, if 0 < ε < <ν,

‖gt,ν‖(n) 6

{
Cν(1 + t<ν−1) if <ν > 1 or ν = 1,
Cν,εt

<ν−1(1 + t−ε) if 0 < <ν 6 1 and ν 6= 1.

Assume now that H satisfies (HGα). If <ν > α then (sinH)H−1(1 +H)−ν+1 =

sinH(1 + H)−ν +
1∫
0

cos sH(1 + H)−ν ds ∈ L(X) by (iii). Also, the operator

sin tH(tH)−1(1 + tH)−ν+1 is uniformly norm bounded in t > 0 as in (ii). We
have

sin tH
H(1 +H)ν−1

= t sin tH(tH)−1(1 + tH)−ν+1

(
1 + tH

1 +H

)ν−1

and, by the AC(n) functional calculus with n > α + 1 applied to gt,ν , we ob-
tain (iv).

Note that the constants Cν can be written explicitly as polynomials in terms
of ν, and that we can make the growth of ν in this dependency more accurate if
Theorem 3.3 is employed instead of its AC(n+1) version. The implication (HGα)
⇒ (iii) may be alternatively obtained using the Laplace transform of the semigroup
az [7]. The boundedness of Iν

t (H) in (ii) is in fact equivalent to property (HGν)
for every ν > α. This has been proved applying the integrated semigroup method
in [19], Theorem 2.3.

The AC(ν)-calculus provides us with a very practical way to define powers
Hθ for every θ > 0. Moreover, it turns out that −Hθ also generates a holomorphic
semigroup with the (HGν) property, for every ν > α+ 1

2 ([20], p. 343). So we get
the following result.
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Corollary 3.6. Let β, θ be real numbers such that β > 0, θ > 0. Let H be
as above and assume that the semigroup generated by −Hθ satisfies (HGβ). Then:

(i) eiHθ

H−µϕ(H) ∈ L(X) for each ϕ ∈ C
(∞)
c (R) such that ϕ(u) = 0 if

u < 1
2 and ϕ(u) = 1 if u > 1, whenever <µ > βθ;

(ii)
1∫
0

(1− s)µ−1eisHθ

ds ∈ L(X), if <µ > β;

(iii) eiHθ

(1 +Hρ)−µ ∈ L(X), if ρ > 0 and ρ<µ > βθ;
(iv) (sinHθ)H−θ(1 +Hρ)−µ ∈ L(X), if ρ > 0 and ρ<µ > (β − 1)θ.

Proof. (i) Put L = Hθ. Then ϕ(H)H−µeiHθ

= eiLf(L) where we take
f(u) = ϕ(u

1
θ )u−

µ
θ eiu. The result then follows via the same argument as in Corol-

lary 3.4 (i).
(ii) This is clear.
(iii) Choose ν such that (ρ<µ)θ−1 > <ν > β. Using the Φ-calculus, we

have eiHθ

(1 + Hρ)−µ = eiHθ

(1 + Hθ)−ν [h(Hθ) + 1], where the function h(u) =
(1 + u)−ν(1 + u

ρ
θ )−µ − 1 is in AC(n+1) for all n. The result then follows from the

boundedness of eiHθ

(1 +Hθ)−ν and h(Hθ) + 1.
(iv) This is similar to (iii).

Under the hypothesis (HGα) on H the previous results hold for every β >
α+ 1

2 . However, it seems to be more convenient to keep the statements for general
β because there are cases where β for Hθ is better than α for H. This occurs
when H = −∆ is the Laplacian on Rn: it is well known that β = n−1

2 for θ = 1
2 ,

whereas α = n
2 ([20], p. 348). Estimates of “(HGα) type” connecting H and

√
H

have on the other hand been considered in [19] in order to treat (ACP2), in the
language of β-times integrated cosine functions. Note that −H generating such a

cosine function corresponds to the boundedness of
1∫
0

(1− s)β−1e−is
√

H ds.

4. (Gα)-GROWTH AND RESOLVENTS

Let bt = e−tH be a strongly continuous (C0)-semigroup on a Banach space
X such that sup

t>0
‖bt‖ < ∞ and σ(H) ⊂ [0,∞). Then, for fixed λ > 0 and

<z > 0, the bounded operator az := (λ + H)−z can be expressed by subordi-

nation as az =
∞∫
0

Iz(u)bu du where Iz(u) =
uz−1

Γ(z)
e−u, for u > 0,<z > 0, is the

fractional semigroup in L1(R+). It is then clear that (az)<z>0 is a holomorphic
(C0)-semigroup in L(X). Without more specific information on X, this formula
is not suitable in order to get properties such as (Gα), or similar ones, since
‖Iz‖L1(R+) = O(e

π
2 |=z|), as |=z| → ∞ ([51]). But, if we suppose that (bt)t>0

has a (unique) analytic extension to C+ with property (HGα), then the AC(ν+ 1
2 )

2,1 -
calculus can be used to deduce that az satisfies (HGβ) for any β > α + 1

2 (recall
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Section 3; note in this respect that property (Gα) is not enough because the func-

tion u→ (1+u)−1 does not belong to AC(ν+ 1
2 )

exp,2 ). We are going to prove a converse
involving property (Gα). This is a fact which we find interesting. For instance, its
proof is related to Hadamard fractional integro-differentiation ([50]), as the first
lemma shows.

Lemma 4.1. For u,<z > 0 and 0 < ε < 1, put

J =

∞∫
1

e−zu − e−zus

(log s)ε+1

ds
s
.

Then

|J | 6 Cε,θ max{1,<zu}
∣∣∣∣ z<z

∣∣∣∣θe−<zu

for every θ with ε < θ < 1.

Proof. For θ as above and s > 1 let us write f(s) =
s∫
1

(t− 1)θ−1e−zut dt and

g(s) =
∞∫
s

[(t− 1)θ−1− (t− s)θ−1]e−zut dt. We have that |f(s)| 6 θ−1(s− 1)θe−<zu,

if 1 < s < 2, and |f(s)| 6 Γ(θ)e−<zu(<zu)−θ, if s > 2. Also,

|g(s)| 6
∞∫

s

[(t− s)θ−1 − (t− 1)θ−1]e−<zut dt

6 Γ(θ)e−<zus(<zu)−θ − e−<zu

∞∫
s−1

tθ−1e−<zut dt

6 Γ(θ)(<zu)−θ|e−<zus − e−<zu|+ e−<zu

s−1∫
0

tθ−1e−<zut dt,

for every s > 1. So |g(s)| 6 Γ(θ)(<zu)1−θe−<zu(s−1)+θ−1e−<zu(s−1)θ, whenever
1 < s < 2, whereas |g(s)| 6 3Γ(θ)(<zu)−θe−<zu, if s > 2. Thus it follows that

(zu)−θΓ(θ)−1J =

∞∫
1

( ∞∫
0

tθ−1e−zut dt
)

e−zu − e−zus

(log s)ε+1

ds
s

=

∞∫
1

( ∞∫
1

(t− 1)θ−1e−zut dt−
∞∫

s

(t− s)θ−1e−zut dt
)

ds
(log s)ε+1s

=

∞∫
1

(f(s) + g(s))
ds

(log s)ε+1s
,
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and then

|zu|−θ|J | 6 Cε,θe−<zu

2∫
1

(s− 1)θ + (<zu)1−θ(s− 1)
(log s)ε+1

ds
s

+ Cε,θ(<zu)−θe−<zu

∞∫
2

ds
(log s)ε+1s

6 Cε,θ[1 + (<zu)1−θ + (<zu)−θ]e−<zu.

Hence

|J | 6 C[(<zu)θ + (<zu) + 1]
∣∣∣∣ z<z

∣∣∣∣θe−<zu 6 Cmax{1,<zu}
∣∣∣∣ z<z

∣∣∣∣θe−<zu.

In the next two results the following inequality will be used,
∞∫

δ

uNe−ρu du 6 C(N)ρ−(N+1)
(
1 + (ρδ)N

)
e−ρδ

(N, δ, ρ > 0). By [γ] we denote the integer part of any real number γ.

Lemma 4.2. If hz(v) = exp (−zev), for v,<z > 0, and ν > − 1
2 , θ > ν − [ν],

then

|W ν+1hz(v)| 6 Cν max{1, (<z)[ν]+2}
∣∣∣∣ z<z

∣∣∣∣[ν]+θ+1

e([ν]+2)v exp (−<zev).

Proof. Write m = [ν] + 1, ε = ν − [ν] and take k such that 0 6 k 6 m. First
of all we note that

∞∫
1

sk − 1
(log s)ε+1

e−<zus ds
s

6 e−<zu

2∫
1

sk − 1
(log s)ε+1

ds
s

+ C

∞∫
2

sk−1e−<zus ds

6 C1e−<zu + C2(k)(<zu)−k
(
(<zu)k−1 + 1

)
e−2<zu

6 C1e−<zu + C(k)
(
1 + (<zu)−k

)
e−2<zu

for every u > 0. Then, for u = ev, v > 0, if

Jk : =

∞∫
0

exp (−zev)− ekt exp (−zev+t)
t1+ε

dt

=

∞∫
1

e−zu − e−zus

(log s)ε+1

ds
s

+

∞∫
1

1− sk

(log s)ε+1
e−zus ds

s

we obtain

|Jk| 6 C1(1 + <zu)
∣∣∣∣ z<z

∣∣∣∣θe−<zu + C2(k)
(
1 + (<zu)−k

)
e−2<zu
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by Lemma 4.1 and the initial observation in this proof. Take now v > 0, and
u = ev again. Since ν + 1 = m + ε, Marchaud’s formula ([20], p. 312) applied to
W εhz gives us

W ν+1hz(v) = (−1)m dm

dvm

∞∫
0

hz(v)− hz(v + t)
t1+ε

dt = (−1)m
m∑

k=0

ckz
kekvJk,

where c0 = 1 if m = 0, c0 = 0 if m > 0. Therefore

|W ν+1hz(v)|

6 C

( m∑
k=0

|ck| |z|kuk

)
(1+<z)

∣∣∣∣ z<z
∣∣∣∣θue−<zu+C

m∑
k=0

|ck| |z|kuk
(
1+(<zu)−k

)
e−2<zu

6 C(1 + <z)(1 + |z|m)
∣∣∣∣ z<z

∣∣∣∣θum+1e−<zu + C(1 + <zm)
∣∣∣∣ z<z

∣∣∣∣mume−2<zu

6 Cmax{1,<zm+1}
∣∣∣∣ z<z

∣∣∣∣m+θ

um+1e−<zu.

Let consider again the fractional integral semigroup Iz in L1(R+). A stan-
dard argument shows us that the closed span of the family {In}n∈N is the whole
of L1(R+). To see this take F in the dual space L∞(R+) of L1(R+) and suppose

that
∞∫
0

In(t)F (t) dt = 0 for every n ∈ N. The expression inside the integral can be

seen up (to a constant) to be the n−1 derivative at z = 1
2 of the analytic function

∞∫
0

e−zte−
t
2F (t) dt on C+. By the identity principle, F (t) = 0 a.e. on R+ and the

assertion follows from the Hahn-Banach theorem.
We are ready to give a result on (Gα) estimates coming from corresponding

bounds for the resolvent function.

Proposition 4.3. Let (bt)t>0 be a strongly continuous (C0)-semigroup in
L(X) with infinitesimal generator −H such that sup

t>0
‖bt‖ <∞ and σ(H) ⊂ [0,∞).

Suppose that there exist Q > 0 and α > 0 such that the resolvent semigroup
az := (1 +H)−z, z ∈ C+, satisfies sup

<z>Q

‖az‖ |z|−α <∞. Then bt has a (unique)

analytic extension bz to C+ such that

‖bz‖ 6 Cmax
{
(<z)−N , (<z)[ν]+1

}∣∣∣∣ z<z
∣∣∣∣ν+ 1

2

,

<z > 0, for every ν > α, where N = [ν] + 3
2 +Q.

Proof. Let −A be the infinitesimal generator of az. Since the semigroup
az satisfies property (Gα) (on <z = Q instead of <z = 1) the functional cal-
culus yields bounded operators f(A) on X if f is a smooth function such that
∞∫
0

|W ν+ 1
2 f(v) eQv|2 dv <∞, where ν > α (we could alternatively consider cz =

aQz on <z = 1). Put fz(v) := ezhz(v) = exp(−z(ev − 1)), v ∈ R, <z > 0.
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Our claim is that bt = ft(A) for every t > 0. The following is perhaps the
shortest way to demonstrate this assertion. First let us write AC(m+1)

exp Q , m ∈ N, for

the Banach space on [0,∞) defined by the norm
∞∫
0

|Wm+1f(v)|eQv dv (when it is

finite). Then ft ∈ AC(m+1)
exp Q with ‖ft‖ 6 Ct−Qet, t > 0, and so the Bochner vector

integral
∞∫
0

In(t)tpe−2tft dt, where p = [Q]+1, gives us an element in AC(m+1)
exp Q . At

each point v,

Γ(n)

∞∫
0

In(t)tpe−2tft(v) dt = Γ(n+ p)

∞∫
0

In+p(t) exp(−(1 + ev)t) dt

= Γ(n+ p)(2 + ev)−(n+p) = Γ(n+ p)e−(n+p)v(2e−v + 1)−(n+p)

if v > 0, <z > 0. For m big enough, the calculus acts continuously on AC
(m+1)
exp Q

and we get Γ(n)
∞∫
0

In(t)tpe−2tft(A) dt = Γ(n + p)an+p(2a1 + 1)−(n+p). On the

other hand it is apparent that

Γ(n)

∞∫
0

In(t)tpe−2tbt dt = Γ(n+ p)

∞∫
0

In+p(t)e−2tbt dt

= Γ(n+ p)(3 +H)−(n+p)

= Γ(n+ p)(1 +H)−(n+p)(2(1 +H)−1 + 1)−(n+p)

= Γ(n+ p)an+p(2a1 + 1)−(n+p).

Finally note that the (vector valued) function t→ tp(bt−ft(A))e−2t is continuous
and bounded on (0,∞). Since the family {In}n∈N generates L1(R+), taking linear
functionals and using once again the Hahn-Banach theorem, we deduce that bt =

ft(A) for every t > 0, as claimed.
Therefore bz = fz(A) is an analytic extension of bt on C+. For fixed ν > α,

take µ ∈ R such that [µ] = [ν], α < µ < ν and choose θ so that µ− [µ] < ν− [µ] =

θ < 1. Then

‖bz‖=‖fz(A)‖ 6 e<z

( ∞∫
0

|Wµ+ 1
2hz(v)|2e2Qv dv

) 1
2

6Cmax
{
1,<z[ν]+ 3

2
}
e<z

∣∣∣∣ z<z
∣∣∣∣[ν]+θ+ 1

2
( ∞∫

0

exp
((

[ν]+
3
2

)
2v−2<zev

)
e2Qv dv

) 1
2

by Lemma 4.2. Now, making the substitution u = ev in the integral and using the



408 José E. Galé, Pedro J. Miana and Tadeusz Pytlik

bound which immediately preceeds Lemma 4.2, it readily follows that

‖bz‖ 6 Cmax
{
1,<z[ν]+ 3

2
}∣∣∣∣ z<z

∣∣∣∣ν+ 1
2

e<z

( ∞∫
1

u2([ν]+Q+1)e−2<zu du
) 1

2

6 Cmax
{
(<z)−N , (<z)[ν]+1

}∣∣∣∣ z<z
∣∣∣∣ν+ 1

2 ,

where N = [ν] + 3
2 +Q, as we wanted to show.

5. EXAMPLES, APPLICATIONS AND COMMENTS

For the introduction to this section, as well as for general notions, we refer
the reader to [10], [12], [23], [43], [49]. The examples that we are considering
concern Lp-spaces, more particularly, those defined on Lie groups. In this setting
questions about estimates for Cauchy problems or about spectral independence
are very closely related to multiplier theory.

Let M be a metric measure space and let H be a positive definite operator
on L2(M). By the spectral theorem we get bounded operators m(H) on L2(M),
for every bounded Borel function m : [0,∞) → C. In particular the heat kernel
(pz)<z>0 of H is defined as pz = e−z(·)(H) ≡ e−z(H). We are mostly dealing with
Lie groups M = G and H = ∆, the sub-Laplacian on G. Let G be a connected
Lie group with left (right) invariant measure dξ and Lie algebra g. Suppose that
X1, . . . , Xk is a collection of right (left) invariant vector fields on G which generate

g algebraically. Then the expression ∆ = −
k∑

j=1

X2
j is called the sub–Laplacian

associated to X1, . . . , Xk. If, moreover, the family {X1, . . . , Xk} is a linear basis
of g then ∆ is called the Laplacian. Regarded as an (unbounded) operator on
L2(G) = L2(G,dξ), a sub-Laplacian ∆ is formally self-adjoint and non negative
and so the spectral theorem holds in the same sense as above ([49]).

Multipliers. The multiplier problem forH, onM , consists of finding appropriate
conditions on m in order that m(H) : Lp(M)∩L2(M) → L2(M) can be extended
as a bounded operator m(H) : Lp(M) → Lp(M), for 1 6 p 6 ∞, p 6= 2. If the
holomorphy of m is a necessary condition, then H is said to have a holomorphic
Lp functional calculus. If, on the contrary, real differentiability of m, of compact
support, up to a certain order is enough, then we say that H admits a differentiable
Lp functional calculus ([43], pp. 685–686). Motivated by earlier classical results on
Rn, a natural goal for the differentiable calculus is to obtain theorems of so-called
Marcinkiewicz-Mikhlin-Hörmander type, for which it is also relevant to seek the
lowest degree of differentiability required of m. In this context, Müller and Stein
have proved a remarkable theorem [44] and [43] (see also references therein):

Let Hn be the Heisenberg group Cn × R endowed with group law (z, t) ·
(z′, t′) := (z + z′, t+ t′ − 1

2=z · z
′). The left invariant vector fields U := ∂

∂u , Xj :=
∂

∂xj
− 1

2yj
∂

∂u , Yj := ∂
∂yj

+ 1
2xj

∂
∂u , j = 1, . . . , n, form a basis of the Lie algebra of
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Hn, and the sub-Laplacian L :=
n∑

j=1

(X2
j + Y 2

j ) is homogeneous of degree 2 with

respect to the dilations (x, u) → (rx, r2u), r > 0. Note that Hn has homogeneous
dimension 2n + 2 whereas its Euclidean dimension is d = 2n + 1. Considering
the wave equation (ACP2) when H = L and X = Lp(Hn), Müller and Stein have
proved the following fact.

The closed operator ei
√
L(1+L)

−α
2 extends to a bounded operator on L1(Hn)

when α > d−1
2 (Lp estimates follow from interpolation as usually).

Via the factorization e−(1+i)
√
L = [e−i

√
L(1 +

√
L)−ν ][(1 +

√
L)νe−

√
L], the

homogeneity of L entails that this result is equivalent to saying that ‖e−z
√
L‖ 6

Cα

( |z|
<z

)α

, for any α > d−1
2 . Sharp theorems on multipliers of Hn follow from the

above, on the basis of Sobolev estimates [43].
In fact, the general method of proving a multiplier theorem usually involves

appropriate estimates of the heat kernel, though the explicit use, in this respect,
of bounds for ‖p1+iy‖ is quite recent (see [24], [25], [26], [44], [45], [47] and, by
contrast, [10]). A direct relationship between property (HGα) and theorems of
Marcinkiewicz-Mikhlin-Hörmander type has been given in [17] and [18].

Solvable Lie groups. In practice the multiplier problem is also linked to growth
properties of M . From now on we will restrict our discussion to Lie groups. An
arbitrary connected Lie group G has always either polynomial or exponential vol-
ume growth and, for some time, certain results supported the idea that polynomial
volume growth would correspond to differentiable functional calculus whereas the
exponential growth would be associated with necessary holomorphy of a multiplier
m (see the above subsection). Nevertheless, Hebisch eventually gave an example
of a solvable Lie group of exponential volume growth which admits a differentiable
L1 calculus ([23]). More results of this nature were established subsequently, for
different solvable Lie groups and sub-Laplacians ([10], [24], [25], [26], [27], [45]).
It is to be noticed that an example of a solvable group has recently been given,
for which a certain Laplacian does not have a differentiable Lp calculus ([9]). See
also [21].

Let us describe the groups of [23] and [10] in some detail. For a noncompact
and semisimple Lie group G, denote by G = ANK an Iwasawa decomposition of
G in standard notation, and put S = AN . Set Br = {x ∈ S : |x| < r} where |x|
is the distance to the identity of S. Then ξ(Br) 6 Crneκr for every r > 0 where
n is the dimension of S and κ is a certain constant. Moreover, if ϕ0 denotes the
basic spherical function on S then ‖χBr

ϕ0‖22 :=
∫

Br

|ϕ0(x)|2 dξ(x) 6 Cmax{rn, rδ},

where δ is the pseudo-dimension of S, δ > n. Fix now a distinguished Laplacian
∆ on S as in [10]. Its heat kernel pt lies in L1(S) and

‖χBr
pt‖1 6 ‖χBr

ϕ0‖2 ‖χBr
pt‖2 6 Cmax

{
r

n
2 , r

δ
2
}
‖pt‖2,

for t > 0 ([10], p. 107). When G is complex then n = δ and the Banach algebra A
generated by pt is isomorphic to the algebra L1

rad(Rn) of integrable radial functions
on Rn. The isomorphism is provided by the identification of pt with the Gaussian
semigroup in Rn, and therefore ∆ has a differentiable functional calculus. This is
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the Hebisch result mentioned above ([23]). As a consequence pz satisfies property
(HGα) for α = n

2 . We observe that the Hebisch theorem also solves in the negative
Problem 5.10 of [51].

For real G, pz also enjoys a type of (HGα) property. We are going to prove
this as an application of our results of Section 4. The assertion is not surprising but
we have not found explicit mention to it in references. As ∆ is strongly elliptic,
pointwise Gaussian estimates for (pz)<z>0 in complex time can be obtained by
applying a theorem of Davies ([12], p. 180 and [49], p. 183). Thus we might try
to control ‖pz‖ directly as in [17], p. 422 using polar coordinates (instead of the
argument of [10], p. 110, which inspired the proof given here). This would give
a better order of derivation W ν for the calculus associated to pz. But, it is not
clear to us how to get in this way the polynomial growth of ‖p1+iy‖, |y| → ∞, in
all cases.

Weighted Lp-spaces are included in the discussion. For ωβ(u) = (1 + u2)
β
2 ,

with u > 0, β ∈ R, let L1
β(S) denote the convolution Banach algebra of measurable

functions f on S such that fωβ(| · |) ∈ L1(S), endowed with the norm ‖f‖1,β =∫
S

|f |ωβ(|·|) dξ. It is known that there exists λ > 1 such that
∫
S

|pt(x)|e|x| dξ(x) 6 λt

for all t > 0 ([34]). Put qt = λ−tpt. Recall that Iz(u) =
uz−1

Γ(z)
e−u, for u > 0,<z >

0, is the fractional semigroup in L1(R+). Put β+ = max{β, 0}.
Proposition 5.1. For (qt)t>0 as above, let (az)<z>0 be the resolvent semi-

group defined by

az =

∞∫
0

Iz(u)qu du.

Then az ∈ L1
β(S) and ‖an

2 +iy‖1,β = O(|y| δ
2+β+) as |y| → ∞.

Proof. Since L1(R+) 3 h →
∞∫
0

h(u)qu du ∈ L1
β(S) is a bounded algebra ho-

momorphism one has that (az)<z>0 is an analytic semigroup in L1
β(S). Moreover,

the map (0,∞) 3 u → qu ∈ L2(S) is continuous, with ‖qu‖22 6 ‖qu‖∞‖qu‖1 6
Cu

−n
2 ‖qu‖1 ([49], p. 183).
Then, for Q = n

4 ,

az+Q =

∞∫
0

Iz+Q(u)qu du =
Γ(z)

Γ(z +Q)

∞∫
0

Iz(u)uQqu du ∈ L2(S)

because
∞∫
0

|Iz(u)|uQ‖qu‖2 du 6

∞∫
0

|Iz(u)|uQu−Q‖qu‖
1
2
1 du 6 ‖Iz‖L1(R+) <∞.

Thus
‖a2Q+iy‖2 6 ‖aQ+iy‖2→2‖aQ‖2

6 C sup
u>0

|(1 + log λ+ u)−(Q+iy)| 6 C(1 + log λ)−Q
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by the spectral theorem. Finally, for r > 1 we have

‖a2Q+iy‖1,β =
∫
Br

|a2Q+iy(x)|ωβ(|x|) dξ(x) +
∫
Bc

r

|a2Q+iy(x)|ωβ(|x|) dξ(x)

6 (1 + r2)
β+
2 ‖χBr

ϕ0‖2‖a2Q+iy‖2 +
∫
Bc

r

|a2Q+iy(x)|ωβ(|x|)e|x|e−|x| dξ(x)

6 Cr
δ
2+β+ + ( sup

|x|>r

e−|x|
(
1 + |x|2

) β
2 )

∫
Bc

r

|a2Q+iy(x)|e|x| dξ(x)

6 Cr
δ
2+β+ + C e−

r
2

∞∫
0

|I2Q+iy(u)|
∫
Bc

r

qu(x)e|x| dξ(x) du

6 C(r
δ
2+β+ + e−

r
2 e

π
2 |y|) = O(|y| δ

2+β+)

by taking r = π|y|.
Corollary 5.2. Let (pz)<z>0 be the heat kernel of the Laplacian ∆ on S

defined as above. Put qz = λ−zpz if z ∈ C+. Then

‖qz‖1,β 6 Cν max{(<z)−N , (<z)[ν]+1}
∣∣∣ z<z ∣∣∣ν+ 1

2
,

for every z ∈ C+, ν > δ
2 + β+, where N = [ν] + 3

2 + n
2 .

Proof. Apply Propositions 4.3 and 5.1 to qz = bz.

Paying attention on the proof, one observes that Proposition 5.1 actually
holds for any (C0)-semigroup (bt)t>0 ⊂ L1

β(S) such that ρ
1
2 bt is K-invariant (see

[10], p. 108) and
∫
S

|bt(x)|2 dµ(x) ∼t→0+ t−m,
∫
S

|bt(x)|e|x| dµ(x) < kt, t > 0, for

some constants m, k. It would be interesting to know if there is such a semigroup,
generated by a strict sub-Laplacian.

Denote by G any of the solvable Lie groups appearing in [24], [25], [26], [27]
or [45]. What is precisely proven in these papers is that the sub-Laplacian ∆
constructed on G, in each case generates a holomorphic semigroup with property
(Gα). In [27] a result about multipliers on certain solvable G is given which involves
conditions of the type f ∈ AC(ν)

2,1 . Then e−z∆ satisfies (HGα) in this example.

Representations. The preceding results can be applied to representations of
Lie groups. Let U : G → L(X) be a strongly continuous representation of a Lie
group G into a Banach space X. Choose a basis ζ1, . . . , ζn in the Lie algebra of G
and define Ai ≡ dU(ζi) as the infinitesimal generator of the strongly continuous
one-parameter group R 3 t → U(e−tζi), i = 1, . . . , n. For a complex polynomial
P (u1, . . . , un) over Rn the differential operator D := P (A1, . . . , An) is densely
defined and closable on X. It is said to be affiliated with (X,G,U). Note that
P (ζ) ≡ P (ζ1, . . . , ζn) is affiliated with U = L, the left regular representation of G
in Lp(G). Operator D can be also written as D = dU(P (ζ)) by identification with
its closure ([49], pp. 11–12).
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On the other hand U is always of exponential growth, i.e., ‖U(x)‖ 6 Cek|x|,
x ∈ G, for some constants C, k > 0 and therefore it gives rise to a bounded
homomorphism (still denoted by U) of “regularisations” U : L1(G, ek|·|) → L(X)
given by U(ϕ) =

∫
G

U(x)ϕ(x) dξ(x) for all ϕ ∈ L1(G, ek|·|) ([49], p. 12). The heat

kernel (pz)<z>0 of a subelliptic operator P (ζ) is included in L1(G, ek|·|) and the
closure of D = P (A1, . . . , An) is the infinitesimal generator of the semigroup U(pz)
in L(X) ([49], pp. 301–302, 323). This observation may be useful in a number of
situations concerning the growth of holomorphic semigroups which are introduced
via representations. Here we apply it to the groups S = AN , G and sub-laplacians
∆ defined on them.

So let U : S → L(X) be a strongly continuous representation and assume
that U is polynomially bounded, that is, ‖U(x)‖ = O(|x|β) as |x| → ∞, for some
fixed β > 0. Let P be the polynomial over Rn which yields the distinguished
Laplacian ∆ on S and write pz = e−z∆ as above. Denote by H the strongly
elliptic operator affiliated with (X,S,U) and which corresponds to P . Take λ > 1
as used in Proposition 5.1 and set σ = log λ.

Corollary 5.3. The operator −(σ+H) is the infinitesimal generator of a
holomorphic semigroup az in L(X) such that

‖az‖ 6 Cν max{(<z)−N , (<z)[ν]+1}
∣∣∣∣ z<z

∣∣∣∣ν+ 1
2

,

for every z ∈ C+, ν > δ
2 + β, where N = [ν] + 3

2 + n
2 .

Proof. From the assumptions the homomorphism U : L1(S, ek|·|) → L(X),
defined by U(ϕ) =

∫
S

U(x)ϕ(x) dξ(x) for every ϕ ∈ L1(S, ek|·|), automatically

admits a bounded extension L1
β(S) → L(X). If az := U(pz) we have that az =

e−zH , z ∈ C+. Then it suffices to apply Corollary 5.2.

In the same way we get the following.

Corollary 5.4. Let U : G → L(X) be a uniformly bounded representation
and set H = dU(∆). Then (e−zH)<z>0 satisfies (Gα) for some α > 0.

Norm estimates. The approach generally followed to analyse solutions to the
Cauchy problems (ACP1), (ACP2) has consisted of proving the boundedness of
auxiliary operators such as those of Section 3. This has been done for Laplacians or
more general elliptic operators on Rn in [42], [46], [38], [52], [30], [44] for instance.
The main tools used in these papers come from the theory of multipliers in Rn,
which allow one to obtain sharp estimates. Our Corollary 3.4 is a partial, though
quite general, extension of these results. Estimates for more general expressions
of the type f(H)eitH have been established for Schrödinger operators H on Rn

in [36], [35] by the methods of amalgams, multiplier theorems again, or using the
Sjöstrand-Helffer formula (see also [15], [19] for methods based on regularized,
integrated or smooth distribution semigroups).

There are many concrete semigroups on Lp spaces, mainly defined on Lie
groups, with the property (HGα) or similar ones; [12], [13], [14], [17], [18], [41],
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[20], [47], [23], [27], [44], etc. Hence, Theorem 3.3 holds in all these cases, and so it
extends and generalises to this context results of [36], [35], [15]. Likewise, getting
bounds for oscillatory expressions ϕ(H)H−µe−iHθ

is of interest in multiplier theory
([41]). Among those semigroups with property (HGα) we have e−zL on Hn. In
[44] bounds for eitL are obtained via the study of the wave equation for L in Hn.
Thus, it seems worthwhile to write Theorem 3.3 in this specific case.

Corollary 5.5. Let Hn,L be as before. Take t ∈ R. Then
(i) f(

√
L)eit

√
L ∈ L1(Hn) with ‖f(

√
L)eit

√
L‖ 6 C(1 + t2)

α
2 ‖f‖(α)

(ν),2,1 when-

ever ‖f‖(α)
(ν),2,1 <∞, α > d−1

2 , ν > α.

(ii) f(L)eitL ∈ L1(Hn) with ‖f(L)eitL‖ 6 C(1 + t2)
α
2 ‖f‖(α)

(ν),2,1 provided that

‖f‖(α)
(ν),2,1 <∞, α > d

2 , ν > α.

Proof. Apply Theorem 3.3 and the remark above to Corollary 3.5.

Part (ii) of the above result can be improved for t = 0 thanks to the interplay
between L and

√
L, and the bounds obtained in [44].

Corollary 5.6. Let ν > n
2 , n > 1. Then f(L) ∈ L1(Hn) for every f ∈

AC
(ν)
2,1 .

Proof. Put az = e−z
√
L, z ∈ C+. Therefore ‖az‖ 6 C

(
|z|
<z

)n
2

and it follows

that g(
√
L) ∈ L1(Hn) for every g ∈ AC(ν)

2,1 , with ν > n
2 , by Theorem 1.2. Moreover,

AC
(ν)
2,1 is invariant under changes of variable of the type u → uγ ; u > 0, γ > 0

([20]). Then, for f ∈ AC
(ν)
2,1 , we have f(L) = g(

√
L) ∈ L1(Hn) for g(u) = f(u2),

u > 0.

There are analogues of the last two corollaries for the semigroup e−z∆ in
L1(S) for complex S (we only have to notice that e−z

√
∆ is the image in A of the

Poisson semigroup in L1
rad(Rn)). In particular, it extends Corollary 4 of [23].

The situation is more involved for real S. Boundedness conditions of the
type ‖e−zH‖ 6 Cmax{(<z)−N , (<z)m}

∣∣∣ z
<z

∣∣∣α, where N,m,α > 0, do not provide

us with a AC(ν)-calculus for H although they give more precise information than
property (Gα): it is readily seen, using an argument similar to that of Theorem

3.3, that f operates on H if
∞∫
0

[ 2y∫
y

|W ν+ 1
2 f(u)(uν+N + um−ν)|2 du

] 1
2 dy

y <∞ for

ν > α. As a consequence we get the following.

Corollary 5.7. Let ∆, S be as before. Then f(σ + ∆) ∈ L1
β(S) for every

f such that
∞∫
0

[ 2y∫
y

|W ν+ 1
2 f(u)(ur + us)|2 du

] 1
2 dy
y
<∞
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and eit(σ+∆)f(σ + ∆) ∈ L1
β(S) for all t ∈ R and f such that

∞∫
0

[ 2y∫
y

|W ν+ 1
2 f(u)(ur + us)|2(1 + u2)α+ 1

2 du
] 1

2 dy
y
<∞

where α > δ
2 + β, ν > α+ 1

2 , r = ν + [α] + 3+n
2 and s = [α] + 1− ν.

Details, norm bounds and analogous versions for representations of S are left
to the reader.

Is it possible, in Corollary 5.7, to find better ν for f(
√

∆) ? We finish this
subsection with a question concerning this point (which is more or less implicit in
the literature).

The appeal to
√
H is not infrequent. In certain cases estimates for e−z

√
H are

better than corresponding estimates for e−zH which then allows us to improve the
functional calculus for H. Examples of such operators H are the usual Laplacian
on Rn ([20], p. 348), or the operators ∆ on S ([23]), and L on Hn ([44]), as seen
before. Furthermore, this fact seems to be behind obtaining the proper degree of
derivation in Lp multiplier theorems ([43], p. 686). In this respect one should recall
the use of cos t

√
H in arguments linked to the finite propagation speed property

([43]), or in the study of the wave equation ([46] and [19]).
We wonder if this is a general fact. In other words, let ∆ be a sub-Laplacian

on a Lie group G such that (e−z∆)<z>0, (e−z
√

∆)<z>0, are holomorphic semigroups
in L1(G). Assume that ‖e−(1+iy)∆‖ = O(|y| d

2 ), as |y| → ∞. Does this imply that
‖e−(1+iy)

√
∆‖ = O(|y| d−1

2 ), as |y| → ∞?
The question can also be posed in other situations, for Laplace-Beltrami

operators on Riemannian manifolds, for instance.

Spectral independence. We now discuss the question of spectral independence.
Let M be a metric measure space and suppose that H is the infinitesimal generator
of a semigroup e−tH in L(L2(M)) which can be extended to a semigroup (T t

p)t>0 of
bounded operators on Lp(M), for 1 6 p <∞. By Hp we denote the infinitesimal
generator of T t

p, i.e., T t
p = e−tHp .

Problem. Does the spectrum σ(Hp) depend on p?

In general the answer to this question is yes ([9], [14], p. 536), but there are
also many important cases where there is independence of σ(Hp) with respect to
p. This was proved by Hempel and Voigt for a variety of Schödinger operators
on Lp(Rn), thereby solving a question posed by B. Simon. Their result has been
extended in a number of works, mostly for second order differential operators ([14],
p. 538, [32], [40], [37]; see also [2], [3], [4], [31] for other directions). Recently, as
pointed out in the introduction to this paper, E.B. Davies has suggested a new
approach to the subject which includes a quite general class of spaces Lp(M)
([12], [14], [54]). The examples which are covered by Davies’ method are required
to satisfy a couple of hypotheses, namely that e−tH is given by convolution with
an integral kernel of Gaussian type, and that M has polynomial growth (these
assumptions can be refined ([18])). Both requirements imply (HGα) for ε+H and
all ε > 0, and then the functional calculus applies.
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There are also results on spectral independence where the underlying space
M is not of polynomial but of subexponential growth ([53] and [37]). In such cases
the arguments are different from those of [12]. So, it seems reasonable to try to
complete the picture by obtaining results on independence of the spectrum, for M
of exponential growth, by just using the calculus Θ ≡ Φ.

Let G be any of the solvable Lie groups S or G considered earlier in this
paper. Set pz = e−z∆ where ∆ is the associated sub-Laplacian on G. Suppose
that X1, X2 are two Banach spaces such that X1 ∩X2 is dense in each one.

Corollary 5.8. Let Uj : G → L(Xj) be polynomially bounded represen-
tations (or uniformly bounded if G = G) and put Hj = dUj(∆) for j = 1, 2. If
U1(pz)x = U2(pz)x for all x ∈ X1 ∩X2, then σ(H1) = σ(H2).

Proof. For G = S the action of Uj on pz comes from the extension Uj :
L1

β(S) → L(Xj) for some β > 0. Thus it suffices to apply Corollary 5.3 and
Theorem 2.6 to the semigroups e−z(σ+Hj) = Uj(e−σzpz), j = 1, 2. If G = G we use
the extension Uj : L1(G) → L(Xj), and the same argument works, as Uj(pz) again
verifies the hypotheses of Theorem 2.6 ([24], [25], [26], [45] and [49], p. 301).

The above proof relies upon property (Gα). In this respect, note that all
we can deduce from Corollary 5.3 and the subordination formula for the resolvent
function of ∆p is that ‖(w −H)−γ‖ 6 Cmax{〈w〉ν+ 1

2+N , 〈w〉ν−[ν]− 1
2 }|=w|ν+ 1

2+γ

in place of property (Rα).
Taking Xj as the proper Lp spaces and U as the left representation in the

corollary, we obtain invariance of the spectrum of ∆p on G with respect to p,
1 6 p < ∞, and also with respect to β ∈ R if G = S. For G = S and β = 0,
or for G = G in [25], this is due to Hulanicki ([34], Proposition 5.3 and [22],
Corollary 1.4).

More generally, ∆p is decomposable (as it satisfies (Gα)) and Lp spaces can
be obtained by interpolation. Thus, the constancy of σ(∆p) follows from the result
of Albrecht ([1], Corollary 2.6); see Theorem 2.7. See also the comments in the
introduction.
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416 José E. Galé, Pedro J. Miana and Tadeusz Pytlik

3. E. Albrecht, W.J. Ricker, Functional calculi and decomposability of unbounded
multiplier operators in Lp(RN ), Proc. Edinburgh Math. Soc. 38(1995), 151–
166.

4. E. Albrecht, W.J. Ricker, On p-dependent local spectral properties of certain
linear differential operators in Lp(RN ), Studia Math. 130(1998), 23–52.

5. W. Arveson, The harmonic analysis of automorphism groups, Proc. Sympos. Pure
Math., vol. 38, Amer. Math. Soc., Providence 1982, pp. 199–269.
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