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THE FLIP IS OFTEN DISCONTINUOUS
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Abstract. Let A be a Banach algebra. The flip on A ⊗ Aop is defined
through A ⊗ Aop 3 a ⊗ b 7→ b ⊗ a. If A is ultraprime, È (A), the algebra
of all elementary operators on A, can be algebraically identified with A ⊗
Aop, so that the flip is well defined on È (A). We show that the flip on
È (A) is discontinuous if A = K(E) for a reflexive Banach space E with the
approximation property.
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1. THE PROBLEM AND THE RESULT

A linear operator T on an algebra A is called elementary if there are a1, b1, . . . ,
an, bn ∈ A such that

(∗) Tx =
n∑

j=1

ajxbj , x ∈ A.

The set of all elementary operators on A is denoted by E`(A); equipped with the
composition of operators as multiplication, E`(A) is an algebra. Let Aop denote
the opposite algebra of A, i.e. the algebra we obtain by reversing the multiplication

on A. The canonical map that assigns to an element
n∑

j=1

aj ⊗ bj ∈ A ⊗ Aop the

operator T defined in (∗) is an algebra homomorphism from A⊗ Aop onto E`(A).
Let A be a Banach algebra. Then E`(A) consists of bounded operators, and

thus is a normed algebra in a natural way. If A ⊗ Aop is equipped with the
projective norm, the canonical map from A ⊗ Aop onto E`(A) is continuous. If A
is ultraprime, i.e. if there is C > 0 such that

sup{‖axb‖ : x ∈ A, ‖x‖ 6 1} > C‖a‖ ‖b‖, a, b ∈ A,
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the canonical map is even an (algebraic) isomorphism ([7], Theorem 5.1). Exam-
ples of ultraprime Banach algebras are all prime C∗-algebras ([6]), as well as, for
an arbitrary Banach space E, all closed subalgebras of B(E) containing the finite
rank operators and all closed ideals of factors ([7], p. 305).

The flip on A ⊗ Aop is defined through A ⊗ Aop 3 a ⊗ b 7→ b ⊗ a. It is
obviously continuous with respect to the projective norm. If A is ultraprime, the
normed algebras A⊗ Aop and E`(A) are algebraically isomorphic, so that the flip
is well defined on E`(A). It has been an open problem whether the flip on E`(A) is
continuous (with respect to the operator norm).

It is the purpose of this note to give a negative answer to this question for
certain ultraprime Banach algebras:

Theorem Let E be a reflexive Banach space with the approximation prop-
erty. Then the flip on E`(K(E)) is continuous if and only if dim E < ∞.

Let E be a Banach space as in Theorem 1.1, and let A be any closed sub-
algebra of B(E) containing K(E) (so that A is ultraprime). There is a canonical
embedding of E`(K(E)) into E`(A). Since E∗ has the bounded approximation prop-
erty, K(E) has a bounded approximate identity ([4], Theorem 3.3). Consequently,
the operator norm on E`(K(E)) and the norm it inherits as a subalgebra of E`(A)
are equivalent. Since E`(K(E)) viewed as a subalgebra of E`(A) is invariant under
the flip, we get the following extension of Theorem 1.1:

Corollary Let E be a reflexive Banach space with the approximation prop-
erty, and let A be a closed subalgebra of B(E) containing K(E). Then the flip on
E`(A) is continuous if and only if dim E < ∞.

2. THE PROOF

If A is a normed algebra, its second dual can be equipped with two natural products
extending the product on A: the first and the second Arens product (see [8], 1.4
for details).

The following proposition is essentially the discussion on [5], p. 49. For any
Banach space E, let I(E) denote the integral operators and N (E) the nuclear
operators on E; for the composition of operators we write ◦.

Proposition Let E be a Banach space such that E∗ has the bounded ap-
proximation property and I(E∗) = N (E∗). Then:

(i) K(E)∗∗ and B(E∗∗) are canonically isomorphic as Banach spaces;
(ii) the first Arens product ◦1 on K(E)∗∗ is given by

S ◦1 T = S ◦ T, S, T ∈ B(E∗∗);

(iii) the second Arens product ◦2 on K(E)∗∗ is given by

S ◦2 T = (j∗ ◦ S∗∗ ◦ i∗∗) ◦ T, S, T ∈ B(E∗∗),

where i : E → E∗∗ and j : E∗ → E∗∗∗ are the canonical embeddings.

Note that I(E∗) = N (E∗) is always satisfied if E∗ has also the Radon-
Nikodým property ([2], 16.6, Theorem). It is an immediate consequence of Propo-
sition 2.1(i), that K(E)∗∗ equipped with the first Arens product has an identity.
For the second Arens product, we have the following:
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Corollary Let E be a Banach space such that E∗ has the bounded approx-
imation property and I(E∗) = N (E∗). Then K(E)∗∗ equipped with the second
Arens product has an identity if and only if E is reflexive.

Proof. If E is reflexive, K(E) is Arens regular ([8], Corollary, p. 103), so that
◦1 and ◦2 coincide.

For the converse, first note that, by Proposition 2.1 (iii), idE∗∗ is a left
identity for (K(E)∗∗, ◦2). Hence, if (K(E)∗∗, ◦2) has an identity, it must be idE∗∗ .
From Proposition 2.1 (iii), we thus obtain

S = j∗ ◦ S∗∗ ◦ i∗∗ = (i∗ ◦ S∗ ◦ j)∗, S ∈ B(E∗∗).

This means that every bounded, linear operator on E∗∗ is the adjoint of a bounded,
linear operator on E∗, which is possible only if E∗ is reflexive. It follows that E
is reflexive.

The following lemma is certainly well known, but we could find it nowhere in
the literature; it follows immediately from the separate w∗-continuity properties
of the first and the second Arens product:

Lemma Let A and B be Banach algebras, and let θ : A → B be a continuous
anti-homomorphism. Then, if A∗∗ is equipped with the first Arens product and
B∗∗ is equipped with the second Arens product, θ∗∗ : A∗∗ → B∗∗ is also an anti-
homomorphism.

Obviously, if θ is an anti-isomorphism, then so is θ∗∗. As an immediate
consequence, we obtain:

Corollary Let A be a Banach algebra which is topologically anti-isomorphic
to itself. Then A∗∗ has an identity with respect to the first Arens product if and
only if it has an identity with respect to the second Arens product.

This can be used to rule out the existence of certain anti-isomorphisms:

Lemma Let E be a reflexive, infinite-dimensional Banach space with the
approximation property. Then K(K(E)) is not topologically anti-isomorphic to
itself.

Proof. First note that, since E is reflexive, it does in fact have the metric
approximation property ([2], 16.4, Corollary 4). Since E is reflexive, the same is
true for E∗ ([2], 5.7, Corollary). Since

K(E)∗ ∼= N (E∗) ∼= E∗⊗̂E,

it is easily checked that K(E)∗ has also the metric approximation property. More-
over, N (E∗) has the Radon-Nikodým property ([3], p. 219), so that I(K(E)∗) =
N (K(E)∗), i.e. the hypotheses of Proposition 2.1 are satisfied. Assume towards
a contradiction that K(K(E)) is topologically anti-isomorphic to itself. Since
K(K(E))∗∗ equipped with the first Arens product has an identity, Corollary 2.4
implies that the same is true for K(K(E))∗∗ equipped with the second Arens
product. This, however, means that K(E) is reflexive by Corollary 2.2. Since
K(E)∗∗ ∼= B(E), again by Proposition 2.1, it follows that every bounded, linear
operator on E must be compact, i.e. dim E < ∞.
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By Theorem 33.3(i) from [1], E`(K(E)) is contained in K(K(E)) for any
Banach space E. As well shall see, for the spaces E we are interested in, E`(K(E))
is even dense in K(K(E)):

Proposition Let E be a reflexive Banach space with the approximation
property. Then E`(K(E)) is norm dense in K(K(E)).

As preparation for the proof, we need two lemmas, which are certainly known,
but for which we could not find an explicit reference. For convenience, we include
proofs.

For any normed space E, we write F(E) for the bounded finite rank operators
on E.

Lemma Let E be a normed space, and let T ∈ F(E). Then there is a
projection P ∈ F(E) such that PT = TP = T .

Proof. Let x1, . . . , xn ∈ E and ϕ1, . . . , ϕn ∈ E∗ be such that

T =
n∑

j=1

xj ⊗ ϕj .

Choose finite-dimensional subspaces X of E and Y of E∗ with x1, . . . , xn ∈ X
and ϕ1, . . . , ϕn ∈ Y such that (X, Y ) forms a dual systems, i.e. the bilinear form
X × Y 3 (x, ϕ) 7→ 〈x, ϕ〉 is non-degenerate; note that necessarily dim X = dim Y .
Choose bases x′

1, . . . , x
′
m of X and ϕ′

1, . . . , ϕ
′
m of Y such that

〈x′
j , ϕ

′
k〉 = δj,k, j, k = 1, . . . ,m.

Define

P :=
m∑

j=1

x′
j ⊗ ϕ′

j .

It is easily seen that PT = TP = T .

Lemma Let E be a normed space, and let F be a finite-dimensional subspace
of F(E). Then there is a projection p ∈ F(E) such that F ⊂ pF(E)p.

Proof. Since F(E) ∼= E ⊗ E∗, we may find finite-dimensional subspaces X
of E and Y of E∗ such that F ⊂ X ⊗ Y . Making X and Y larger, if necessary,
we may suppose that (X, Y ) forms a dual system. Defining p analoguously to P
in the proof of Lemma 2.7, we obtain the desired projection.

Proof of Proposition 2.6. Let T ∈ K(K(E)). As have already seen in the
proof of Lemma 2.5, K(E)∗ has the (metric) approximation property, so that
K(K(E)) ∼= K(E)

∨
⊗ K(E)∗. Since F(E)⊗K(E)∗ is norm dense in K(E)

∨
⊗ K(E)∗,

we may suppose that T ∈ F(E) ⊗ K(E)∗ ∼= F(F(E)). Let P ∈ F(F(E)) as
specified in Lemma 2.7. Furthermore, since dim PF(E) < ∞, Lemma 2.8, yields
a projection p ∈ F(E) such that PF(E) ⊂ pF(E)p = pK(E)p =: A. Then
A is a subalgebra of K(E) such that TA ⊂ A. Obviously, A ∼= B(pE). Since
B(pE) is ultraprime and finite-dimensional, it follows from Theorem 5.1 in [7] and
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the elementary fact that A ⊗ Aop and B(A) have the same finite dimension that
E`(A) = B(A). Hence, there are a1, b1, . . . , an, bn ∈ A such that

Tx =
n∑

j=1

ajxbj , x ∈ A.

From the choice of p, it follows that T (pxp) = Tx for all x ∈ K(E), so that

Tx = T (pxp) =
n∑

j=1

ajpxpbj =
n∑

j=1

ajxbj , x ∈ K(E),

i.e. T ∈ E`(K(E)).

With all these preparations made, a proof of Theorem 1.1 is now a matter
of a few lines:

Proof of Theorem 1.1. First, observe that the flip is an anti-automorphism
of E`(K(E)) which is its own inverse. Suppose that the flip is continuous on
E`(K(E)). By Proposition 2.6, it then extends to a topological anti-automorphism
of K(K(E)). By Lemma 2.5, this is possible only if E is finite-dimensional.
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