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Abstract. We study the commutators of operators on a Banach space X
to gain insight into the non-commutative structure of the Banach algebra
B(X) of all (bounded, linear) operators on X. First we obtain a purely alge-
braic generalization of Halmos’s theorem that each operator on an infinite-
dimensional Hilbert space is the sum of two commutators. Our result applies
in particular to the algebra B(X) for X = c0, X = C([0, 1]), X = `p, and
X = Lp([0, 1]), where 1 6 p 6 ∞. Then we show that each weakly compact
operator on the pth James space Jp, where 1 < p < ∞, is the sum of three
commutators; a key step in the proof of this result is a characterization of the
weakly compact operators on Jp as the set of operators which factor through
a certain reflexive, complemented subspace of Jp.
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1. INTRODUCTION

Throughout this note all vector spaces and algebras are assumed to be over the
field C of complex numbers.

The commutator of a pair of elements A and B in an algebra A is given by

[A,B] := AB −BA ∈ A.

We use the term operator to denote a bounded, linear map between Banach spaces.
For Banach spaces X and Y, we denote by B(X,Y) the collection of all operators
from X to Y. We write B(X) instead of B(X,X); this is a unital Banach algebra
with identity IX (the identity operator on X). Our aim is to gain insight into
the non-commutative structure of B(X) by studying the commutators of operators
on X. However, some of our methods are purely algebraic, and so we shall work
in that generality whenever possible.

The first important contribution to the study of commutators is due to
A. Wintner ([19]) who in 1947 proved the following theorem.
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Theorem 1.1. (Wintner) The identity element 1lA in a unital, normed al-
gebra A is not a commutator, that is, there are no elements A and B in A such
that 1lA = [A,B].

Like much good mathematics, Wintner’s theorem has its roots in physics.
Indeed, it was prompted by the fact that the linear maps P and Q representing
the quantum-mechanical momentum and position, respectively, satisfy the com-
mutation relation

[P,Q] = − ih
2π

I,

where h is Planck’s constant and I is the identity operator on the underlying
Hilbert space. Wintner’s theorem implies that the linear maps P and Q cannot
both be bounded (and this is in fact Wintner’s original statement; however, as
observed by P.R. Halmos, Wintner’s proof immediately generalizes to yield Theo-
rem 1.1, above).

As is also the case for much of the good mathematics that has grown out of
physics, the study of commutators of operators on Hilbert space has subsequently
developed a life of its own, completely independent of its quantum-mechanical
origin. Halmos has shown that each operator on an infinite-dimensional Hilbert
space is the sum of two commutators ([8]), and A. Brown and C. Pearcy have
characterized the set of operators on an infinite-dimensional Hilbert space which
are commutators ([1]). A nice exposition of these and some related results is given
in Chapter 24 of Halmos’s book ([9]).

The present note can be seen as a further step away from the quantum-
mechanical origin of the study of commutators of operators. Indeed, we replace
the Hilbert space by a Banach space X and study the commutators of operators
on X.

The note is organized as follows. In Section 2 we introduce traces and explain
their relation to commutators. In Section 3 the concept of a Mityagin decompo-
sition of a unital algebra is defined, and we show that each element in a unital
algebra with a Mityagin decomposition is the sum of two commutators. Examples
of algebras with a Mityagin decomposition include B(X) for X = c0, X = C([0, 1]),
X = `p, and X = Lp([0, 1]), where 1 6 p 6 ∞. In Section 4 we consider the com-
mutators of operators on the pth James space Jp for 1 < p < ∞. It is known that
the ideal W(Jp) of weakly compact operators on Jp has codimension 1 in B(Jp).
This implies that the identity operator on Jp has distance at least 1 to any sum
of commutators. Modifying techniques developed by G.A. Willis, we show that
an operator on Jp is weakly compact if and only if it factors through a certain re-
flexive, complemented subspace of Jp. This characterization enables us to deduce
that each weakly compact operator on Jp is the sum of three commutators. In
particular it follows that each trace on B(Jp) is a scalar multiple of the character
on B(Jp) induced by the quotient homomorphism of B(Jp) onto B(Jp)/W(Jp).
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2. TRACES AND COMMUTATORS

Definition 2.1. Let A be an algebra. A linear map τ : A → C satisfying
τ(AB) = τ(BA), A, B ∈ A

is called a trace on A.
We write comA for the linear subspace of A spanned by its commutators,

that is,

comA :=
{ n∑

k=1

[Ak, Bk] : A1, . . . , An, B1, . . . , Bn ∈ A, n ∈ N
}

.

If comA = A, then we say that A is spanned by its commutators.

Traces are closely related to commutators and the subspace they span as the
following easy observations show.

Proposition 2.2. Let A be an algebra. A linear map τ : A → C is a trace
if and only if comA ⊆ ker τ .

Corollary 2.3. Let A be an algebra. Then

comA =
⋂{

ker τ : τ : A → C is a trace
}
.

In particular A has no non-zero traces if and only if A is spanned by its commu-
tators.

Like commutators, traces are extensively studied in the Hilbert-space case,
that is, for C∗-algebras and von Neumann algebras, but for other non-commutative
(Banach) algebras, little is known about traces. We deduce results about traces
in Corollary 3.3, Proposition 3.7, and Corollary 4.8, below.

3. COMMUTATORS IN ALGEBRAS WITH MITYAGIN DECOMPOSITIONS

Definition 3.1. A Mityagin decomposition of a unital algebra A consists of
a (necessarily infinite) set I with a selected point k0 ∈ I, a bijection ρ : I → I\{k0},
and elements L,R,Ak, and Bk, k ∈ I, of A satisfying:

(i) BkAm = δk,m1lA for all k, m ∈ I, where δk,m is Kronecker’s delta symbol;
(ii) C = 0 is the only element in A such that BkC = 0 for each k ∈ I;

(iii) for each k ∈ I, BkL = Bρ(k) and

BkR =
{

0 for k = k0,
Bρ−1(k) for k ∈ I \ {k0};

(iv) for each element C in A, there is an element C̃ in A such that BkC̃ = CBk

for each k ∈ I.
The definition of a Mityagin decomposition is constructed to extract the key

properties of the algebra B(X) for a Banach space X which is weakly infinitely
divisible in the sense of B.S. Mityagin (see [14], Section 7.1, p. 94).

Mityagin decompositions are relevant for our purposes because they enable
us to generalize Halmos’s proof ([8]) that each operator on an infinite-dimensional
Hilbert space is the sum of two commutators to a purely algebraic situation; Ex-
ample 3.8 (iii), below, shows that our result does indeed imply Halmos’s theorem.
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Theorem 3.2. Each element in a unital algebra with a Mityagin decompo-
sition is the sum of two commutators.

Proof. Let A be a unital algebra with a Mityagin decomposition, and take
I, k0, ρ, L, R,Ak, and Bk, k ∈ I, as in Definition 3.1. A straightforward calculation
using properties (iii) and (i) yields that

Bk(LR−RL) =
{

Bk0 for k = k0,
0 for k ∈ I \ {k0}

}
= Bk(Ak0Bk0), k ∈ I.

This implies that LR−RL = Ak0Bk0 by (ii). Let C ∈ A be given, and take C̃ ∈ A
such that BkC̃ = CBk for each k ∈ I as in (iv). Then it follows that

BkC̃L = CBkL = CBρ(k) = Bρ(k)C̃ = BkLC̃, k ∈ I,

and hence C̃ commutes with L by (ii). We conclude that

[L,RC̃] + [Bk0 , Ak0C] = LRC̃ −RC̃L + Bk0Ak0C −Ak0CBk0

= (LR−RL)C̃ + C −Ak0Bk0C̃ = C,

as desired.

Corollary 3.3. There are no non-zero traces on a unital algebra with a
Mityagin decomposition.

Remark 3.4. For normed algebras, Theorem 1.1 implies that Theorem 3.2
is optimal in terms of the number of commutators required in the sum.

Our next result (Proposition 3.7) serves two purposes:

(i) it provides us with a large stock of examples of Banach spaces X such
that B(X) has a Mityagin decomposition (e.g., see Examples 3.8 and 3.9);

(ii) its proof highlights the intuition behind the definition of a Mityagin de-
composition of B(X) for a Banach space X: (AkBk)k∈I is a family of pairwise
orthogonal projections which decomposes X into a “direct sum” of subspaces iso-
morphic to X, and with respect to this decomposition, the operators L and R act
as a “left shift” and a “right shift”, respectively, and C̃ is the “diagonal operator”
induced by the operator C.

First we require a definition.

Definition 3.5. Let E be a Banach space with a normalized, unconditional
basis (en)∞n=1 of unconditional constant 1 (see [12], p. 18, for the definition).

We say that the basis (en)∞n=1 is shiftable if it is equivalent to the basic
sequence (en)∞n=2 in the sense of Definition 1.a.7 from [12].

For each sequence (Xn)∞n=1 of Banach spaces, we set( ∞⊕
n=1

Xn

)
E

:=
{

(xn)∞n=1 : xn ∈ Xn for each n ∈ N and

∞∑
n=1

‖xn‖en is norm-convergent in E
}

.
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This is a Banach space with respect to the coordinatewise-defined vector space
operations and the norm∥∥(xn)∞n=1

∥∥ :=
∥∥∥∥ ∞∑

n=1

‖xn‖en

∥∥∥∥, (xn)∞n=1 ∈
( ∞⊕

n=1

Xn

)
E
.

In the case where X1 = X2 = · · · def= X, we write E(N,X) instead of
( ∞⊕
n=1

Xn

)
E

.

Symmetric and subsymmetric bases are easy examples of shiftable bases. On
the other hand, W.T. Gowers has constructed a Banach space which has an un-
conditional basis, but is not isomorphic to its hyperplanes (see [7]), so in particular
its basis cannot be shiftable.

Shiftable bases are useful because they guarantee the existence of left and
right shift operators on E(N,X) as the following elementary lemma shows.

Lemma 3.6. Let E be a Banach space with a normalized, unconditional basis
(en)∞n=1 of unconditional constant 1. The basis (en)∞n=1 is shiftable if and only if,
for each Banach space X, there are operators L′ and R′ on E(N,X) satisfying

(3.1) L′(xn)∞n=1 = (x2, x3, . . .) and R′(xn)∞n=1 = (0, x1, x2, . . .),

for each (xn)∞n=1 ∈ E(N,X).

Proposition 3.7. Let X be a Banach space such that X is isomorphic to
E(N,X) for some Banach space E with a shiftable, normalized, unconditional basis
of unconditional constant 1. Then the algebra B(X) has a Mityagin decomposition.

It follows that each operator on X is the sum of two commutators and that
there are no non-zero traces on B(X).

Proof. (cf. Lemma 8 from [14]) For each k ∈ N, let Jk : X → E(N,X) and
Pk : E(N,X) → X denote the canonical kth coordinate embedding and projection,
respectively. Take operators L′ and R′ on E(N,X) satisfying (3.1), and take an
isomorphism U : X → E(N,X). Define I := N, k0 := 1, ρ : k 7→ k + 1, N → N \ {1},
L := U−1L′U , R := U−1R′U , Ak := U−1Jk, and Bk := PkU , k ∈ N. Then it is
straightforward to check that properties (i)–(iii) in Definition 3.1 hold. Moreover,
for C ∈ B(X), let

diag(C) : (xn)∞n=1 7−→ (Cxn)∞n=1, E(N,X) −→ E(N,X),

be the diagonal operator on E(N,X) induced by C, and set C̃ := U−1 diag(C)U .
Then BkC̃ = CBk for each k ∈ N, verifying property (iv).

Example 3.8. Suppose that one of the following three conditions holds:
(i) E = c0 and either X = c0 or X = C([0, 1]);

(ii) E = `p and either X = `p or X = Lp([0, 1]), where 1 6 p < ∞;
(iii) E = `2 and X is an infinite-dimensional Hilbert space.

Then the standard basis of E satisfies the conditions in Proposition 3.7, and X is
isomorphic to E(N,X). It follows that B(X) has a Mityagin decomposition and
that each operator on X is the sum of two commutators.

The following example will be important for us in Section 4.
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Example 3.9. Let E be a Banach space with a normalized, symmetric basis
of symmetric constant 1 (see [12], p. 113 for the definition), and let (Xn)∞n=1 be a
sequence of finite-dimensional Banach spaces such that

sup
{
dBM(Xm ⊕ Xn,Xm+n) : m,n ∈ N

}
< ∞,

where dBM is the Banach-Mazur distance. (In particular dim Xm + dim Xn =

dim Xm+n for each pair (m,n) of natural numbers.) Set X :=
( ∞⊕
n=1

Xn

)
E

. Then X

is isomorphic to E(N,X) by Corollary 7 (i) from [3], so that B(X) has a Mityagin
decomposition, and each operator on X is the sum of two commutators.

Example 3.10. Proposition 3.7 remains true if we replace the E-direct sum
E(N,X) by the corresponding `∞-direct sum. Indeed, suppose that X is a Banach
space isomorphic to

`∞(N,X) :=
{

(xn)∞n=1 : xn ∈ X for each n ∈ N and sup
{
‖xn‖ : n ∈ N

}
< ∞

}
.

Then, exactly as in the proof of Proposition 3.7, we can show that B(X) has
a Mityagin decomposition. In particular it follows that B(`∞) has a Mityagin
decomposition and that each operator on `∞ is the sum of two commutators. The
same holds for L∞([0, 1]) because L∞([0, 1]) is isomorphic to `∞ (see [15]).

Example 3.11. Let X := `p ⊕ c0 or X := `p ⊕ `q, where p, q ∈ [1,∞[ are
distinct. Then B(X) does not have a Mityagin decomposition. This is shown by
Mityagin in [14], Section 7.2A, p. 95, for X = `2⊕c0, but his proof applies verbatim
to all the spaces X listed above.

Examples 3.8 and 3.11 show that the class of Banach spaces X such that B(X)
has a Mityagin decomposition is not closed under finite direct sums. However, the
class of Banach spaces X such that the commutators span B(X) is indeed closed
under finite direct sums.

Proposition 3.12. Let n > 2 be an integer, and let X1, . . . ,Xn be Banach
spaces such that B(X1), . . . ,B(Xn) are spanned by their commutators. Then the
algebra B(X1 ⊕ · · · ⊕ Xn) is spanned by its commutators. Moreover, if there is a
natural number N such that each operator on Xk is the sum of N commutators
for each k ∈ {1, . . . , n}, then each operator on X1 ⊕ · · · ⊕ Xn is the sum of N + 1
commutators.

Proof. Set X := X1 ⊕ · · · ⊕ Xn. There is a standard algebra isomorphism
between B(X) and the set of (n×n)-matrices (Tk,m)n

k,m=1 with Tk,m ∈ B(Xm,Xk).
We shall identify operators on X with (n× n)-matrices via this isomorphism.

Let T = (Tk,m)n
k,m=1 ∈ B(X) be given. Take a natural number N such that,

for each k ∈ {1, . . . , n}, there are operators A
(k)
1 , . . . , A

(k)
N , B

(k)
1 , . . . , B

(k)
N on Xk

satisfying

Tk,k =
N∑

m=1

[A(k)
m , B(k)

m ].
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Then it follows that

N∑
m=1

[Am, Bm] =


T1,1 0 · · · 0

0 T2,2 0
...

. . .
...

0 0 · · · Tn,n

 ,

where we have introduced

Am :=


A

(1)
m 0 · · · 0
0 A

(2)
m 0

...
. . .

...
0 0 · · · A

(n)
m

 and Bm :=


B

(1)
m 0 · · · 0
0 B

(2)
m 0

...
. . .

...
0 0 · · · B

(n)
m


for each m ∈ {1, . . . , N}. Set

Ck,m :=
{

kIXk
for k = m,

0 for k 6= m, and Dk,m :=
{

0 for k = m,
Tk,m/(k −m) for k 6= m.

Then the matrices C := (Ck,m)n
k,m=1 and D := (Dk,m)n

k,m=1 satisfy:

[C,D] =


0 T1,2 · · · T1,n

T2,1 0 · · · T2,n

...
. . .

...
Tn,1 Tn,2 · · · 0

 ,

and hence we have:

T = (Tk,m)n
k,m=1 =

N∑
m=1

[Am, Bm] + [C,D],

as desired.

Prompted by Proposition 3.7, A. Villena has raised the following question.

Question 3.13. Let X be a Banach space such that X is isomorphic to
X⊕ X. Are there any non-zero traces on B(X)?

Definition 3.14. A unital algebra A is properly infinite if there are ele-
ments A1, A2, B1, and B2 in A satisfying BkAm = δk,m1lA for k,m ∈ {1, 2}.

Definition 3.1 (i) shows that a unital algebra with a Mityagin decomposition
is properly infinite.

For a Banach space X, we have: B(X) is properly infinite if and only if
X contains a complemented subspace isomorphic to X ⊕ X. This suggests the
following algebraic generalization of Villena’s question.

Question 3.15. Is it true that there are no non-zero traces on each unital,
properly infinite algebra?

Let A be a unital, properly infinite C∗-algebra. T. Fack has shown that
each self-adjoint element in A can be written as a sum of five commutators ([6],
Theorem 2.1). It follows that A is spanned by its commutators, and thus the
answer to Question 3.15 is positive at least for C∗-algebras. Recently, Fack’s
result has been improved and simplified by C. Pop who has given a very short and
elegant proof that each element in a unital, properly infinite C∗-algebra is the sum
of two commutators (see [16]).
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4. COMMUTATORS OF OPERATORS ON JAMES SPACES

Throughout this section, we fix a real number p in the open interval ]1,∞[.

Definition 4.1. For each sequence x = (αk)∞k=1 of complex numbers, set

‖x‖Jp
:= sup

{(n−1∑
m=1

|αkm
− αkm+1 |p

) 1
p

: n, k1, . . . , kn ∈ N, n > 2,

k1 < k2 < · · · < kn

}
.

The pth James space is

Jp :=
{

(αk)∞k=1 : αk∈C for each k∈N,
∥∥(αk)∞k=1

∥∥
Jp

<∞, and αk → 0 as k →∞
}
.

Then
(
Jp, ‖ · ‖Jp

)
is a Banach space with respect to the coordinatewise-

defined vector space operations. It has a monotone basis (ek)∞k=1 given by ek =
(δk,m)∞m=1 for each k ∈ N, and this basis is shrinking, so that the biorthogonal
functionals (fk)∞k=1 associated with (ek)∞k=1 form a basis of the dual space J∗p.

A fundamental property of Jp is that it is quasi-reflexive, that is, the canon-
ical image of Jp in its bidual space J∗∗p has codimension 1; for p = 2, this is shown
in [10]. An immediate consequence of the quasi-reflexivity of Jp is that the ideal
W(Jp) of weakly compact operators has codimension 1 in B(Jp), and hence the
quotient homomorphism from B(Jp) onto B(Jp)/W(Jp) gives rise to a character
on B(Jp), that is, a surjective algebra homomorphism ϕ : B(Jp) → C. Specifically,
ϕ is given by

(4.1) ϕ(ζIJp + T ) = ζ, ζ ∈ C, T ∈ W(Jp).

It is shown in [11] that W(Jp) is the only maximal ideal in B(Jp); in particular ϕ
is the only character on B(Jp). The aim of this section is to show that the only
traces on B(Jp) are the scalar multiples of ϕ.

It follows from Corollary 2.3 that B(Jp) is not spanned by its commutators.
More precisely, we have the following result.

Proposition 4.2. The identity operator on Jp has distance 1 to the linear
subspace spanned by the commutators of B(Jp) :

inf
{
‖IJp

− T‖ : T ∈ comB(Jp)
}

= 1.

Proof. It is clear that the distance is at most 1 because 0 is a commutator.
Conversely, suppose that T ∈ comB(Jp). Then ϕ(T ) = 0, and hence

‖IJp
− T‖ >

∣∣ϕ(IJp
− T )

∣∣ = 1.

W.J. Davis, T. Figiel, W.B. Johnson, and A. Pe lczyński have shown that
an operator is weakly compact if and only if it factors through a reflexive Banach
space ([5]). Our first aim is to show that all weakly compact operators on Jp factor
through the same reflexive Banach space and that this reflexive Banach space can
be chosen to be a complemented subspace of Jp (see Theorem 4.3, below).
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For each natural number n, let J
(n)
p denote the n-dimensional linear subspace

of Jp spanned by the first n basis vectors e1, . . . , en, and set

J(∞)
p :=

( ∞⊕
n=1

J(n)
p

)
`p

.

Then J
(∞)
p is reflexive, and Jp contains a complemented subspace isomorphic to

J
(∞)
p . (For p = 2, this is shown by P.G. Casazza, Bor-Luh Lin, and R.H. Lohman

in Section 1 from [4]; the general case is treated in Proposition 4.4 (iv) from [11].)
Moreover, since the Banach-Mazur distance between J

(m)
p ⊕ J

(n)
p and J

(m+n)
p is

uniformly bounded in (m,n) ∈ N 2, Example 3.9 shows that

(4.2) J(∞)
p

∼= `p(N, J(∞)
p ).

For Banach spaces X and Y, let facY(X) denote the set of operators on X

which factor through Y, that is,

facY(X) :=
{
ST : T ∈ B(X,Y), S ∈ B(Y,X)

}
.

It follows from (4.2) and Corollary 3.7 in [11] that fac
J
(∞)
p

(Jp) is an ideal in B(Jp).
By Propositions 4.4 (iv) and 4.18 in [11], fac

J
(∞)
p

(Jp) is a dense subset of W(Jp).
Modifying techniques developed by G.A. Willis in [18], we shall show that these
two sets are actually equal.

Theorem 4.3. An operator on Jp is weakly compact if and only if it factors
through J

(∞)
p :

W(Jp) = fac
J
(∞)
p

(Jp).

Proof. Only the inclusion W(Jp) ⊆ fac
J
(∞)
p

(Jp) requires a proof. We proceed
as in the proof of Proposition 6 from [18]. Each weakly compact operator T on Jp

can be written as T = K + R, where K is a compact operator on Jp and R is an
operator on Jp whose “matrix” (Rk,m)∞k,m=1 :=

(
fk(Rem)

)∞
k,m=1

satisfies:

∞∑
m=1

Rk,m = 0, k ∈ N

and there are only finitely many non-zero entries in each row and column of
(Rk,m)∞k,m=1. This follows from Lemma 2.1 in [13] for p = 2 and from equa-
tion (4.4) in [11] in the general case.

For each strictly increasing sequence (jn)∞n=1 of natural numbers, Willis con-
siders in [18] an idempotent operator S[jn]. This operator is related to the idem-
potent operator Pj defined in Section 4 from [11] by S[jn] = IJp

−Pj, where j0 := 0
and j := (jn)∞n=0. In particular it follows from Proposition 4.4 in [11] that

(4.3) IJp
− S[jn] ∈ fac

J
(∞)
p

(Jp).
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Continuing along the lines of Willis’s proof of Proposition 6 in [18], we can
construct operators L and V on Jp and strictly increasing sequences (in)∞n=1 and
(i′n)∞n=1 of natural numbers such that(

IJp
− S[in]

)
(K − L) = K − L,

(
IJp

− S[in + 1]
)
L = L,(

IJp − S[i′n]
)
(R− V ) = R− V,

(
IJp − S[i′n + 1]

)
V = V.

(The construction of the operator V requires the observations that there is a formal
inclusion operator from `p into Jp and that Willis’s lemma ([18], p. 255) is valid for
any p ∈ ]1,∞[ provided that the number 2 is replaced by p throughout.) By (4.3),
this implies that T ∈ fac

J
(∞)
p

(Jp) because fac
J
(∞)
p

(Jp) is an ideal in B(Jp).

We note in passing the following consequence of Theorem 4.3. For p = 2, it
is due to P.G. Casazza ([2], Corollary VII) who used it as a key step in his proof
that J2 is primary.

Corollary 4.4. A complemented subspace of Jp is reflexive if and only if
it is isomorphic to a complemented subspace of J

(∞)
p .

Proof. The reflexivity of J
(∞)
p implies that each subspace of J

(∞)
p is reflexive.

Consequently, each subspace of Jp isomorphic to a subspace of J
(∞)
p is reflexive.

Conversely, let P : Jp → Jp be an idempotent operator with reflexive image.
Then P is weakly compact, and hence we can take operators T : Jp → J

(∞)
p and

S : J
(∞)
p → Jp such that P = ST . It follows from Lemma 3.6 (ii) in [11] that the

operator TSTS : J
(∞)
p → J

(∞)
p is idempotent and that the images of P and TSTS

are isomorphic.

Lemma 4.5. Let X and Y be Banach spaces such that X contains a comple-
mented subspace isomorphic to Y and B(Y) is spanned by its commutators. Then
each operator in facY(X) is a sum of commutators of operators in facY(X). More-
over, if there is a natural number N such that each operator in B(Y) is the sum of
N commutators, then each operator in facY(X) is the sum of N + 1 commutators
of operators in facY(X).

Proof. Let R ∈ facY(X) be given, and take T ∈ B(X,Y) and S ∈ B(Y,X)
such that R = ST . Since TS is an operator on Y, we can find a natural number

N and operators A1, . . . , AN , B1, . . . , BN on Y such that TS =
N∑

k=1

[Ak, Bk]. The

fact that X contains a complemented subspace isomorphic to Y implies that there
are operators U : X → Y and V : Y → X with UV = IY. For each k ∈ {1, . . . , N},
set Ck := V AkU and Dk := V BkU , and set CN+1 := SU and DN+1 := V T . Then
C1, . . . , CN+1, D1, . . . , DN+1 belong to facY(X), and we have that

N+1∑
k=1

[Ck, Dk] =
N∑

k=1

(V AkBkU − V BkAkU) + ST − V TSU = ST = R,

as desired.
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Theorem 4.6. Each weakly compact operator on Jp is the sum of three com-
mutators of weakly compact operators on Jp.

Proof. Each operator on J
(∞)
p is the sum of two commutators by (4.2) and

Proposition 3.7. Now the result follows from Theorem 4.3 and Lemma 4.5 because
J

(∞)
p is isomorphic to a complemented subspace of Jp.

Corollary 4.7. W(Jp) = comW(Jp) = comB(Jp).

Corollary 4.8. A map τ : B(Jp) → C is a trace if and only if it is a scalar
multiple of the character ϕ given by (4.1).

Proof. It is clear that a scalar multiple of a character is a trace. Conversely,
suppose that τ is a trace. Then W(Jp) ⊆ ker τ by Proposition 2.2 and Corol-
lary 4.7. This implies that

τ(ζIJp
+ T ) = ζ τ(IJp

) = τ(IJp
) · ϕ(ζIJp

+ T ), ζ ∈ C, T ∈ W(Jp),

and therefore τ = τ(IJp
) · ϕ.

Question 4.9. Is there a weakly compact operator on Jp which is not the
sum of any two commutators? In other words, is the upper bound 3 on the number
of commutators in the sum obtained in Theorem 4.6 optimal?

The results presented so far might convey the impression that the commu-
tators of operators on a Banach space X always span a “large” subspace of B(X)
and thus that there are only “few” traces on B(X). We conclude with an example
to show that this is not true in general.

Example 4.10. In [17], C.J. Read constructs a Banach space R with the
following properties:

(i) there is an ideal I in B(R) of codimension 1;
(ii) the ideal W(R) of weakly compact operators on R has infinite codimen-

sion in B(R);
(iii) the “square” I2 := span

{
ST : S, T ∈ I

}
of I is contained in W(R).

It follows that
comB(R) = com I ⊆ I2 ⊆ W(R),

and hence comB(R) has infinite codimension in B(R). In particular there are
infinitely many linearly independent traces on B(R).
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