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Abstract. We develop a theory of graph C∗-algebras using path groupoids
and inverse semigroups. Row finiteness is not assumed so that the theory
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1. INTRODUCTION

There is now a substantial literature on the C∗-algebra associated with a (count-
able) directed graph. Among the motivations for this are the Bratteli diagrams for
AF-algebras and especially the Cuntz-Krieger algebras, which can be interpreted
in graphical terms with the matrix A, determining such an algebra, regarded as
the incidence matrix of the graph. A helpful survey of the field up to 1998 has
been given by A. Kumjian ([9]). In the literature surveyed by Kumjian, the graphs
considered satisfy finiteness conditions on the edges coming into and going out of
a vertex. Usually, local finiteness has been required, viz. that at each vertex v,
only finitely many edges end at v, and only finitely many edges start at v. Many
of these results were shown to be valid in the row finite case, i.e. where we only
assume that finitely many edges start at v for each vertex v of the graph.

Recently, there has been interest in removing the finiteness requirements on
the graph. See, for example, [1], [5], [6], [7], [8], [13], [15], [19], [20], [21], [22].
Motivation for this is to be found even in the original paper ([3]) of Cuntz in
which he studied what are now called the Cuntz algebras On. These are graph
C∗-algebras, the natural graph associated with On being a bouquet of n circles
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(one vertex). When n < ∞, the graph is locally finite. When n = ∞, this is
no longer the case. (Indeed up to the work of Exel and Laca ([5]), O∞ was the
only known example that had been worked out of a Cuntz-Krieger algebra whose
matrix was not row-finite.) Even in the case of the Cuntz algebras, there is a
significant difference between the row finite/non-row finite cases. This is shown
by the fact that in [3], in a number of instances, proofs given for On with n < ∞
do not apply in the case of O∞, so that different proofs were required for that
case.

A representation of a directed graph E is determined by certain partial isome-
tries on a Hilbert space indexed by the vertices and edges. The C∗-algebra C∗(E)
of E is the universal C∗-algebra for such representations. In the locally finite case,
insight into this C∗-algebra is provided by the path groupoid G of E . This is an
r-discrete groupoid, and its units are just the infinite paths in E . Then (cf. [11]) if
E is locally (or even row) finite and has no sinks, we have C∗(E) ∼= C∗(G), and this
groupoid connection ennables one to interpret properties of C∗(E) in dynamical
terms.

When we look for this groupoid connection without assuming local finiteness,
we run into a problem since the space of infinite paths in E is not a locally compact
Hausdorff space in any obvious way. The main objective of this paper is to show
that, despite this problem with the infinite paths, there is a natural path groupoid
available in complete generality. A peculiarity of this groupoid is that we have to
include some finite paths. To determine what this groupoid is, we use an approach
based on inverse semigroups.

Indeed, there is a close connection between inverse semigroups and r-discrete
groupoids. This was first observed and studied by J. Renault in his monograph
([14]). Recently, the present author in his book ([12]) gave a detailed account
of this connection. One of the main results of [12], Chapter 4, is a construction
which associates with any (countable) inverse semigroup S a universal groupoid
H canonically related to S such that C∗(S) ∼= C∗(H). The path groupoid will be
a reduction of the universal groupoid for a certain inverse semigroup associated
with the graph. So we have to come up with an appropriate inverse semigroup S
for E .

In the On-case, the appropriate inverse semigroup is Sn which was introduced
by Renault in [14], p. 141. For a general directed graph E , a natural candidate for
such an inverse semigroup is the inverse semigroup of path pairs (α, β) considered
in [12], p. 158. As mentioned there, an unsatisfactory feature of this inverse semi-
group is that, unlike the Cuntz case, it is not generated by the edges. The way
out of this difficulty is suggested by the definition of a representation of E referred
to above. We have to include the vertices in the inverse semigroup.

The precise details of this are given in Section 2. The graph inverse semigroup
of E , denoted by SE , is defined as the inverse semigroup generated by the edges and
vertices of E subject to certain “Cuntz-like” relations. We show that S = SE can
be identified with an inverse semigroup of path pairs, where we permit vertices to
stand as surrogates for “paths” of zero length. This “path-pair” characterization
of S is useful for calculation purposes.

The universal groupoid H of S is then determined in the paper. We focus on
a natural reduction of this which we will call the graph groupoid G. This groupoid
is similar to the graph groupoid in the locally finite case and indeed is the same
groupoid in that case. The main difference is that we must include in the unit
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space G0 those finite paths ending in a vertex v ∈ V∞, where V∞ is the set of
vertices emitting infinitely many edges. Sequences of infinite paths can converge
to such finite paths, in particular to V∞-vertices. We write Vf for V \ V∞, the set
of vertices emitting only finitely many edges.

The representations of E correspond to a certain class of representations of
S, and using the canonical identification of C∗(S) with C∗(H) in [12], Chapter 4,
we show that in fact these representations correspond to the representations of G.
So we obtain that C∗(E) = C∗(G) just as in the locally finite case.

Next we turn to the issue of the amenability of C∗(E). A groupoid form of
Cuntz’s crossed-product argument for the nuclearity (and hence amenability) ofOn

was given by J. Renault in his book ([14], p. 138ff.). For the case of a locally finite
graph E , an ingenious adaptation of this groupoid argument was given by Kumjian,
Pask, Raeburn and Renault ([11]) to show that C∗(E) is always amenable. We
adapt this argument further to establish the same result in complete generality.
The technical difficulty is that of dealing with the paths of finite length in G0.

The last section of the paper deals with the simplicity of C∗(E). Kumjian,
Pask, Raeburn and Renault ([11]) characterized the simplicity of C∗(E) in terms
of condition (K) and cofinality in the locally finite case. (See below.) Recently,
W. Szymanski ([21], Theorem 12) characterized the simplicity of C∗(E) for general
E using the approach of Exel and Laca ([5]). He showed that C∗(E) is simple if
and only if (α) and (β) hold where:

(α) all loops in E have exits;
(β) for any v ∈ V , the smallest hereditary, saturated subset of V that contains

v is equal to V .

(In (β), a subset H of V is called hereditary if w ∈ H whenever there is a
path from some v ∈ H to w, and is called saturated if w ∈ H whenever w ∈ Vf

and every edge starting at w ends in H.)
We show first that for general E , the condition (K) of [11] — that there are no

vertices emitting exactly one loop — is equivalent to G being essentially principal
(i.e. every closed, invariant subset of G0 contains a dense subset of elements with
trivial isotropy). (This result is a counterpart to the result of Kumjian, Pask and
Raeburn ([10], Lemma 3.4) that, in the locally finite case (no sinks), the groupoid
G is essentially free if and only if every loop in E has an exit.) We then show
(Theorem 5.2) that C∗(E) is simple if (a), (b) and (c) hold, where:

(a) E has property (K);
(b) E is cofinal (i.e. given any v ∈ V and any infinite path z, then there is a

path from v to at least one of the vertices that z passes through);
(c) if v ∈ V and w ∈ V∞, then there is a path from v to w.

It is not difficult to show that (a), (b) and (c) together are equivalent to (α)
and (β) together, so that Theorem 5.2 is effectively just one of the implications in
Szymanski’s theorem. The point of including Theorem 5.2 in the present paper is
that it gives an alternative approach to the simplicity of C∗(E) using the groupoid
G of the paper. The groupoid proof that we give is just a variant of the method
used by J. Renault in his book ([14]); see also the approach of [11]) to establish
the simplicity of the Cuntz C∗-algebras: using G in place of the Cuntz groupoids,
Renault’s approach works for a completely general graph E .
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Another approach to the simplicity of graph C∗-algebras has been given
by Jürgen Schweizer ([17]). Schweizer introduces the concept of a continuous
measured diagram, in which we are given locally compact spaces D,X, Y with
continuous maps s : D → X, r : D → Y , together with certain measures on
D indexed by the elements of Y . The case where X = Y gives a natural C∗-
correspondence, which in turn determines a Cuntz-Pimsner algebra OD. The
discrete case of such a diagram is just that of a directed graph with set of vertices
X, and in that case, OD is the same as the graph C∗-algebra. Using [18], Schweizer
([17], Corollary 5.2) proves that when X is compact and r is onto, OD is simple
if and only if the continuous measured diagram is non-periodic and minimal. The
simplicity results of Schweizer and Szymanski are different. On the one hand,
Schweizer’s result is not restricted to the discrete (graphical) case, while on the
other hand, its compactness condition on X in the graphical situation forces the
vertex set to be finite. It would be interesting to relate the approach of Schweizer
to the groupoid approach.

2. SOME PRELIMINARIES

Let E be a directed graph. Its set of vertices is denoted by V and its set of edges
by E. For each edge e, s(e) is the initial vertex (source) of e and r(e) the terminal
vertex of e. It is assumed throughout the paper that V and E are countable sets.

The graph E is called row finite if for each v ∈ V , the set of edges starting
at v is finite. The graph is called locally finite if for each v ∈ V , the set of edges
starting at v is finite, and the set of edges terminating at v is finite. A vertex v
is called a sink if there are no edges starting at v. Throughout the paper we will
assume that there are no sinks in E (unless the contrary is explicitly specified).

A reason for this is as follows. We want to examine C∗(E) using a “path
groupoid” G, and the paths that make up the unit space of the appropriate
groupoid G are such that they cannot end at a sink. So if we want to use the
path groupoid to study C∗(E), then we cannot allow sinks in E . The C∗-algebra
C∗(E) still makes good sense whether there are sinks or not, and indeed, groupoid
techniques can still be used using the universal groupoid H introduced in the paper
rather than the path groupoid G. Further, as is pointed out in [1], it is technically
easy to reduce to the case where there are no sinks.

The set V of vertices is the disjoint union of the sets Vf and V∞, where v ∈ Vf

if there are finitely many edges starting at v, while v ∈ V∞ if there are infinitely
many edges starting at v.

The edge e with reversed orientation is denoted by e∗. So s(e∗) = r(e) and
r(e∗) = s(e). We write E∗ as the set of e∗’s.

A finite path is a sequence α of edges e1, . . . , ek where s(ei+1) = r(ei) for
1 6 i 6 k − 1. We write α = e1e2 · · · ek. The length l(α) of α is just k. Each
vertex v is regarded as a finite path of length 0. We define r(α) = r(ek) and
s(α) = s(e1). For v ∈ V , we set r(v) = v = s(v). The set of finite paths in E is
denoted by Y . Note that V ⊂ Y . The set of infinite paths z = z1z2 · · · in E is
denoted by Z. The length l(z) of z ∈ Z is defined to be ∞.

Given two vertices v, w, we say that v > w if there exists a path α such that
s(α) = v, r(α) = w. If z is a path in E and v ∈ V , then we write z > v to mean
that r(zi) > v for all i. We write z 6 v if r(zi) 6 v for all i.
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We now briefly discuss inverse semigroups. A semigroup S is called an inverse
semigroup if for all s ∈ S, there exists a unique element t ∈ S such that sts =
s, tst = t. We write the element t as s∗. Note that s∗∗ = s. Inverse semigroups can
be identified with semigroups of partial one-to-one maps on a set that contain their
inverses. Every element ss∗ belongs to the set I of idempotents of S. The set I is
a commutative subsemigroup of S and so is a semilattice. (In semigroup theory,
the semilattice of idempotents in S is usually denoted by E, but in this paper, E
stands for the set of edges in E .) Homomorphic images of inverse semigroups are
inverse semigroups.

A congruence ρ on a semigroup S is an equivalence relation for which (xa, xb),
(ax, bx) ∈ ρ whenever (a, b) ∈ ρ. If ρ is a congruence on S, then S/ρ is a semigroup
in the natural way.

We now recall the definition ([2], pp. 40–41) of the semigroup S generated
by a set X subject to the generating relations uλ = vλ, λ ∈ Λ. Let FX be
the semigroup of words in X with juxtaposition as product, and for λ ∈ Λ, let
uλ, vλ ∈ FX . Then S is just the quotient FX/ρ where ρ is the smallest congruence
on FX containing all of the pairs (uλ, vλ).

Throughout the paper, we will assume the theory of r-discrete groupoids as
presented, for example, in [14] and [12].

3. THE INVERSE SEMIGROUP OF A GRAPH AND THE PATH GROUPOID

Let z be an element not in V ∪E∪E∗. The graph inverse semigroup S = SE of the
graph E is defined to be the semigroup generated by (V ∪ E ∪ E∗) ∪ {z} subject
to the relations:

(i) z is a zero for S;
(ii) s(e)e = e = er(e), r(e)e∗ = e∗ = e∗s(e) for all e ∈ E;
(iii) ab = z if a, b ∈ V ∪ E ∪ E∗ and r(a) 6= s(b);
(iv) e∗f = z if e, f ∈ E and f 6= e.
Note that S is countable since E ∪ V is.
We will see in a moment that S is actually an inverse semigroup. But for the

present, we describe a model T for S. The elements of T are the pairs of finite
paths (α, β) with r(α) = r(β), together with a zero element z. An involution is
defined on T by: z∗ = z, (α, β)∗ = (β, α), and the product is determined by:

(α, α′µ)(α′, β) =(α, βµ)(3.1)
(α, α′)(α′µ, β′) =(αµ, β′).(3.2)

All other products in T are z. Note that for finite paths α, β, the expression αβ is
defined only when r(α) = s(β), and in that case, is just the finite path obtained
in the obvious way by juxtaposition. Recall that each vertex v is regarded as a
finite path. For any finite path µ, we specify that s(µ)µ = µ = µr(µ). Note that
the product of two pairs (α1, β1), (α2, β2) is non-zero if and only if β1 is an initial
segment of α2 or conversely. In this case, we say that β1, α2 are comparable. Note
that if αµ, βν are comparable, then so are α, β. The set I of idempotents of S is
just the set of pairs (α, α), and so can be identified with Y . The product on I of
two elements α, β 6= z is given by αβ = α = βα if β is an initial segment of α, and
is z if α, β are not comparable.
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A similar semigroup to T was suggested by the author in [12], p. 158, but
there is a significant difference: in [12], the paths α, β were of finite, non-zero
length, and the edges and vertices do not lie in the semigroup. However, as we will
see (Proposition 3.2), the edges and vertices lie inside and generate T .

Proposition 3.1. The set T , with the above involution and product, is an
inverse semigroup.

Proof. We first have to show that the product in T is associative. If one
of the terms is z, then this is obvious. So let (αi, βi) ∈ T , 1 6 i 6 3, w1 =
(α1, β1)((α2, β2)(α3, β3)) and w2 = ((α1, β1)(α2, β2))(α3, β3). We have to show
that w1 = w2.

The cases that give w1 6= z are as follows (for appropriate words µ, ν):

(1) β2 = α3µ, β1 = α2ν, w1 = (α1, β3µν);
(2) β2 = α3µ, α2 = β1ν, w1 = (α1ν, β3);
(3) α3 = β2µ, β1 = α2µν, w1 = (α1, β3ν);
(4) α3 = β2µ, α2µ = β1ν, w1 = (α1ν, β3).

One checks directly that in each of these four cases, w2 = w1. (In case (4),
one needs to consider separately the cases α2 = β1ξ and β1 = α2ξ.) So if w1 6= z,
then w1 = w2. Similarly, one shows that if w2 6= z, then w2 = w1. The associative
law then follows.

Next we have to show that for each t ∈ T , t∗ is the only element t′ for
which tt′t = t, t′tt′ = t′. If t = z, then this is trivial. If t = (α, β), then since
tt′t = t = (α, β), then t′ = (α′, β′) for some finite paths α′, β′, with β′, α and β, α′

comparable. If β′ = αµ with l(µ) > 0, then the second component of tt′t would be
longer than β, the second component of t, and we contradict tt′t = t. Similarly, by
considering t′tt′ = t′ we obtain that α is not of the form β′µ for any µ of positive
length. So β′ = α. Similarly, α′ = β and t′ = t∗. Obviously tt∗t = t, t∗tt∗ = t∗.

Proposition 3.2. The map Φ : S = SE → T where

Φ(v) = (v, v), Φ(e) = (e, r(e)), Φ(e∗) = (r(e), e), Φ(z) = z,

is a semigroup isomorphism.

Proof. Let W = V ∪E ∪E∗ ∪ {z}. Then Φ extends in the obvious way to a
homomorphism, also denoted Φ : FW → T . The map Φ : FW → T is onto since
every t ∈ T is a product of Φ(w)’s: for example, if α = α1 · · ·αk and β = β1 · · ·βl,
and t = (α, β) ∈ T , then

(α, β) = Φ(α1) · · ·Φ(αk)Φ(β∗l ) · · ·Φ(β∗1).

Let ∼ be the congruence on FW generated by the relations (i)–(iv) above. To
prove that Φ descends to a homomorphism Φ̃ from S = FW / ∼ onto T , we just
have to check that the elements of Φ(W ) satisfy the relations in T corresponding
to (i)–(iv). This is straightforward. (i) is trivially true. In (ii), for example, the
equalities

Φ(s(e))Φ(e) = Φ(e) = Φ(e)Φ(r(e))

are just
(s(e), s(e))(e, r(e)) = (e, r(e)) = (e, r(e))(r(e), r(e)).
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In (iii), if a = v ∈ V and r(a) 6= s(b), then either b = w ∈ V with w 6= v, or b = e
with v 6= s(e) or b = e∗ with v 6= r(e). Then Φ(a)Φ(b) is either (v, v)(w,w) or
(v, v)(e, r(e)) or (v, v)(r(e), e) and these are all z. The other possibilities for a are
dealt with similarly. For (iv), Φ(e∗)Φ(f) = (r(e), e)(f, r(f)) = z if e 6= f .

To show that Φ̃ : S → T is an isomorphism, suppose that for some s, s′ ∈ FW

we have Φ(s) = Φ(s′). We have to show that s ∼ s′. Using the relations (i)–(iv),
we can find t, t′ ∈ FW , where s ∼ t, s′ ∼ t′ and, either t = t′ = z, in which case
s ∼ s′, or, in an obvious notation, t = αβ∗, t′ = α′(β′)∗ for paths α, β, α′, β′ with
r(α) = r(β), r(α′) = r(β′). Then

(α, β) = Φ(t) = Φ(s) = Φ(s′) = Φ(t′) = (α′, β′)

and α = α′, β = β′. So t = t′ and s ∼ s′.

For the rest of the paper, we shall usually identify S with T .
As a very simple example of the inverse semigroup S of a graph E , con-

sider the case where E has exactly one edge e with initial and terminal vertices
v1, v2 respectively. (In this case, E has a sink.) The elements of S are then:
v1 = (v1, v1), v2 = (v2, v2), (e, v2), (v2, e), (e, e) and the zero z. Then the idempo-
tent set I of S is {v1, v2, (e, e), z}, and v1v2 = z, v1(e, e) = (e, e) and v2(e, e) = z.
The involution on S interchanges (e, v2) and (v2, e) and leaves every other ele-
ment of S fixed. The other non-zero products in S are: v1(e, v2) = (e, v2) =
(e, v2)v2, (e, v2)(v2, e) = (e, e), (v2, e)(e, e) = (v2, e), (v2, e)(e, v2) = v2 and the
equalities obtained from these by applying the involution.

The next objective is to identify the universal groupoid of S for general E .
The universal groupoid ([12], Chapter 4) H of a countable inverse semigroup S is
constructed as follows. The unit space H0 of H is just the set of non-zero semichar-
acters χ : I → {0, 1}, where I is the commutative semigroup of idempotents of S.
The topology on H0 is just the topology of pointwise convergence on I. There is a
dense subset I = {α : α ∈ I} of H0, where α(β) = 1 if and only if αβ = α. There
is a natural right action of S on H0 given as follows. First, an element x ∈ H0

is in the domain Ds of s ∈ S if x(ss∗) = 1. The element x · s ∈ H0 is given by:
x · s(α) = x(sαs∗). The map x → x · s is a homeomorphism from Ds onto Ds∗ .
The family of sets of the form Dα,α1,...,αn

, where

(3.3) Dα,α1,...,αn
= Dα ∩Dc

α1
∩ · · · ∩Dc

αr

(with c standing for “complement” and α, αi ∈ I, α > αi, 1 6 i 6 r) is a basis for
the topology of H0.

The universal groupoid H is the quotient

{(x, s) : x ∈ Ds, s ∈ S}/ ∼
where (x, s) ∼ (y, t) whenever x = y and there exists α ∈ I such that x(α) =
1 (= x(ss∗) = x(tt∗)) and αs = αt. The composable pairs are pairs of the
form ((x, s), (x · s, t)), where x ∈ Ds, x · s ∈ Dt, s, t ∈ S, while the product
and involution on H are respectively given by ((x, s), (x · s, t)) → (x, st) and
(x, s) → (x · s, s∗). Then H is an r-discrete groupoid and the map Ψ, where
Ψ(s) = {(x, s) : x ∈ Ds} = As is an inverse semigroup isomorphism from S into
the ample semigroup Ha of H. (Recall that for any r-discrete groupoid G, the
ample semigroup Ga is the inverse semigroup of compact, open, Hausdorff subsets
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of G.) Note that Ψ(α) = Dα for all α ∈ I. A basis for the topology of H is given
by sets of the form Dα,α1,...,αn

Ψ(s), where α, αi ∈ I, αi 6 α, s ∈ S.
We now specify the universal groupoid H = HE of S = SE . The discussion

parallels that for the Cuntz inverse semigroups Sn, 1 6 n 6 ∞, given in [12],
pp. 182f. We first determine the unit space H0 of H. For α ∈ I, we will write α in
place of α. The context will make clear if α is being regarded as an element of I

or as a semicharacter. Recall that Y and Z are respectively the sets of finite and
infinite paths in E .

Proposition 3.3. The unit space H0 of H is the disjoint union:

(3.4) H0 = Y ∪ Z ∪ {z}.

Then the topology for H0 is specified by:
(i) the singleton set {z} is both open and closed in H0;
(ii) a neighborhood basis at u ∈ Z is given by sets of the form Dα = {αγ ∈

Y ∪ Z : γ ∈ Y ∪ Z}, where α ∈ Y is an initial segment of u;
(iii) if y ∈ Yf , then {y} is an open set;
(iv) if y ∈ Y∞, then a neighborhood basis at y is given by sets of the form

Dy,ye1,...,yen
where e1, . . . , en are edges in E starting at r(y).

Proof. Let χ ∈ H0. If χ(z) = 1, then since αz = z for all α ∈ I, we have
χ(α) = 1, the constant non-zero semicharacter on E. Clearly χ = z (= z). The
set {z} is open in H0 since it is just {χ′ ∈ H0 : χ′(z) = 1}. This gives (i).

Suppose then that χ 6= z. Then χ(z) = 0. Recall that I is identified with
the set of finite paths α together with the zero z, and a product of two of these
paths is 6= z only when one path is an initial segment of the other, and in that
case, the product is just the longer path. The set of paths α for which χ(α) = 1
is a subsemigroup of I and so each such path is an initial segment of any other or
vice versa. There thus exists a path γ ∈ Y ∪ Z such that χ(α) = 1 if and only if
γ is of the form αµ. Identifying χ with γ gives (3.4). Note that if γ ∈ Y , then
χ = γ (= γ).

By the above, a basis for the topology on Y ∪ Z is given by sets of the
form Dα,α1,...,αn

. Suppose that u ∈ Z and that u ∈ Dα,α1,...,αn
. Then u starts

with α but not with any αi. So for some n, u1 · · ·un ∈ Dα,α1,...,αn , and so
Du1u2···un

= {u1 · · ·unγ ∈ Y ∪ Z : γ ∈ Y ∪ Z} ⊂ Dα,α1,...,αn
. So the sets of

the form Dα, α = u1 · · ·un, form a neighborhood base at u in Y ∪ Z. This
gives (ii).

For (iii), if y ∈ Yf and e1, . . . , en are all of the edges starting at r(y), then

{y} = Dy ∩Dc
ye1

∩ · · · ∩Dc
yen

= Dy,ye1,...,yen

is open in Y ∪ Z.
Lastly, suppose that y ∈ Y∞ and that y is in some Dα,α1,...,αn

. Then y begins
with α and the αi’s all begin with y and are longer than y. Write αi = yei · · ·.
Then y ∈ Dy,ye1,...,yen

⊂ Dα,α1,...,αn
and (iv) follows.
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It is instructive to specify the convergent sequences in Y ∪Z. If u ∈ Z, then
xn → u if and only if l(xn) →∞, and for each i, xn

i = ui eventually. Next, let us
say that a sequence {en} in E is wandering if, for any e ∈ E, en 6= e eventually.
Let α = α1α2 · · ·αN ∈ Y . Suppose that xn ∈ Y ∪ Z and that xn 6= α for any n.
Then xn → α if and only if, eventually, l(xn) > l(α), xn

i = αi for 1 6 i 6 N , and
{xn

N+1} is wandering. Note that in this case, α ∈ Y∞. It follows that each y ∈ Y∞
is a limit point of Z, and so we have the following proposition.

Proposition 3.4. The set Z of infinite paths is dense in Y∞∪Z. If α ∈ Y ,
then {α} is open in H0 if and only if α ∈ Yf .

Theorem 3.5. The universal groupoid H for S can be identified with the
union of {z} and the set of all triples of the form (αγ, l(α) − l(β), βγ) where
α, β ∈ Y , γ ∈ Y ∪ Z, and αγ, βγ ∈ Y ∪ Z. Multiplication on H is given by:
(x, m, y)(y, n, z) = (x,m + n, z) and inversion by (x,m, y)−1 = (y,−m,x). The
canonical map Ψ : S → Ha sends z to {z} and any element (α, β) to the (compact
open) set Aα,β of all triples of the form (αγ, l(α)− l(β), βγ). The locally compact
groupoid H is Hausdorff.

Proof. The proof is close to that for the Cuntz semigroup Sn in [12], pp. 182–
186. We can restrict consideration to H ∼ {z}. Let s = (α, β), x ∈ Ds. This
means that x(ss∗) = x(α) = 1. If α′ ∈ I is such that x(α′) = 1, α′ 6 ss∗, then
α′ = αδ ∈ Y , and α′s = (αδ, βδ). Then x = αδγ for some γ and (αδγ, l(αδ) −
l(βδ), βδγ) = (αδγ, l(α)− l(β), βδγ). So the map (x, s) → (αδγ, l(α)− l(β), βδγ)
is constant on the equivalence class of (x, s) in H, and so defines a map on H.
The argument reverses to give that this map is a bijection. We now prove that H

is Hausdorff, leaving the remaining verifications of the theorem to the reader.
Let a = (α, l(α)− l(β), β), b = (α′, l(α′)− l(β′), β′) belong to H with a 6= b.

If Aα,β ∩ Aα′,β′ = ∅, then we can separate a and b using Aα,β , Aα′,β′ . Suppose
then that Aα,β ∩Aα′,β′ 6= ∅. Then there exist γ, γ′ such that

(αγ, l(α)− l(β), βγ) = (α′γ′, l(α′)− l(β′), β′γ′).

Then l(α)−l(β) = l(α′)−l(β′) and α, α′ and β, β′ are comparable. We can suppose
that for some µ, α′ = αµ. Then β′ = βν where l(µ) = l(ν), and ν = µ since both
are initial segments of γ. Since a 6= b, we have l(µ) > 0. Then Aα,β∩Ac

α′,β′ , Aα′,β′

separate a and b. So H is Hausdorff.

We next set X = Y∞ ∪ Z ⊂ H0. Then (Proposition 3.3) X is a closed
invariant subset of H0 and so is a locally compact Hausdorff space in its own
right. Let GE = G be the reduction of H to X. We will call G the path groupoid
of E . (The groupoid G coincides with the usual path groupoid of a graph in the
locally finite case (e.g. [11]).) Then G is a closed subgroupoid of H, and is an
r-discrete groupoid in its own right with counting measures giving a left Haar
system. For α, β ∈ Y , we define A′(α, β) = A(α, β) ∩G and D′

α = Dα ∩X.
We now relate the representations of G to those of H.
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Proposition 3.6. Each representation σ of Cc(G) determines a represen-
tation σ′ of Cc(H) by: σ′(f) = σ(f |G). A representation Π of Cc(H) is of the
form σ′ for some representation σ of Cc(G) if and only if

(3.5) Π(χ{z}) = 0 = Π(χ{α})

for all α ∈ Yf .

Proof. If σ is a representation of Cc(G) on a Hilbert space H then σ′ :
Cc(G) → B(H) is a ∗-homomorphism. Since the homomorphism f → f |G from
Cc(H) into Cc(G) is continuous for the I-norm, it immediately follows that σ′ is
I-norm continuous and so is a representation of Cc(H). It is obvious from the
definition that σ′ satisfies (3.5) (with σ′ in place of Π).

Conversely, suppose that Π : Cc(H) → B(H) is a representation satisfying
(3.5). By the proof of [12], Theorem 3.1.1, the representation Π extends to a
continuous representation Π̃ of (Bc(H), ‖ · ‖I) where Bc(H) is the convolution
algebra of bounded Borel functions on H with compact supports. Let σ be the
restriction of Π̃ to Cc(G) ⊂ Bc(H). Then σ is a representation (a priori possibly
degenerate) of Cc(G) on H. Let f ∈ Cc(H) and U be an open subset of H with
compact closure and which contains the support of f . We have to show that
Π(f) = Π̃(f |G) (= σ(f |G)). Let ξ ∈ H. As in Theorem 3.1.1 from [12], there
exists a positive regular Borel measure µ on H such that for all g ∈ Bc(H) with
supp(g) ⊂ U , we have

(3.6)
〈
Π̃(g)ξ, ξ

〉
=

∫
U

g dµ.

Now H \G is the reduction of H to Yf ∪ {z} and is countable. For a ∈ H \G, we
have a = ar(a) with r(a) ∈ Yf∪{z}. So Π(χ{a}) = Π(χ{a})Π(χ{r(a)}) = 0 by (3.5).
From (3.6), µ({a}) = 0. Since H \ G is countable, it follows that µ(H \ G) = 0,
and for f ∈ Cc(G), 〈

Π̃(f)ξ, ξ
〉

=
∫
U

f |G dµ = 〈Π̃(f |G)ξ, ξ〉,

and Π(f) = σ(f |G).

The requirement (3.5) of the preceding proposition can be replaced by the
corresponding requirement in which α ∈ Yf is replaced by v ∈ Vf :

(3.7) Π(χ{z}) = 0 = Π(χA(v,v))−
∑

s(e)=v

Π(χA(e,e)).

To show this, Π(χA(v,v))−
∑

s(e)=v

Π(χA(e,e)) = Π(χ{v}) and one way follows trivially

since v ∈ Yf . For the other way, we just use the fact that χ{α} = χ{α} ∗ χ{r(α)}
and the fact that Π is a homomorphism.

We now give the definition of a representation of the graph E . The definition
is taken from [7]. Note that in the O∞ case, condition (iii) below assumes the

form ([3], p. 174)
r∑

i=1

SiS
∗
i 6 1 for all r > 1. Further, 1 is just Pv where v is the

sole vertex of the directed graph which is the infinite bouquet of circles.
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Definition 3.7. A representation of E on a Hilbert space H is given by a
family {Pv : v ∈ V } of mutually orthogonal projections, and a family {Se : e ∈
E} of partial isometries such that the family of projections SeS

∗
e are mutually

orthogonal and
(i) S∗

eSe = Pr(e) for all e ∈ E;
(ii) if v ∈ Vf , then

(3.8) Pv =
∑

s(e)=v

SeS
∗
e ;

(iii) Ps(e)SeS
∗
e = SeS

∗
e for all e ∈ E.

By multiplying both sides of (i) on the right by S∗
e we get

(3.9) S∗
e = Pr(e)S

∗
e .

Similarly, using (iii), we get that

(3.10) Ps(e)Se = Se.

In the following, representations of graphs and inverse semigroups are assumed
to be non-degenerate in the obvious sense. (Representations of locally compact
groupoids are “non-degenerate” almost by definition.)

Theorem 3.8. There are natural one-to-one correspondences between:
(a) the class RE of representations of E;
(b) the class RS of representations of S that vanish on z and on elements of

the form v −
∑

s(e)=v

(e, e) for all v ∈ Vf ;

(c) the class RG of representations of the locally compact groupoid G.

Proof. Let Q = {{Pv}, {Se}} ∈ RE and be realized on a Hilbert space H.
For α = e1e2 · · · en ∈ Y , define Sα = Se1Se2 · · ·Sen . Condition (i) in Definition 3.7
above generalizes to:

(3.11) S∗
αSα = Pr(α).

For example, if α = e1e2, then using (i), (iii) and (3.10), we have S∗
αSα =

S∗
e2

[S∗
e1

Se1 ]Se2 = S∗
e2

Ps(e2)Se2 = (S∗
e2

Se2) = Pr(e2) = Pr(α). It immediately fol-
lows from (3.10) and (3.9) that:

(3.12) Ps(α)Sα = Sα, Pr(α)S
∗
α = S∗

α.

Define a ∗-map Π : S → B(H) by:

Π(v) = Pv, Π(α, β) = SαS∗
β , Π(z) = 0.

Then Π is a ∗-homomorphism. The proof is simple. One checks that Π(st) =
Π(s)Π(t) for the different kinds of product using (3.11) and (3.12). For example,
to prove that Π(α, βµ) = Π(α, α′µ)Π(α′, β), one argues: Π(α, α′µ)Π(α′, β) =
SαS∗

µS∗
α′Sα′S∗

β = SαS∗
µPr(α′)S

∗
β = SαS∗

µS∗
β = Π(α, βµ). Since Π(z) = 0, SeS

∗
e =

Π((e, e)) and Π vanishes on elements of the form
(
v −

∑
s(e)=v

(e, e)
)

for v ∈ Vf , it

follows from (3.8) that Π ∈ RS .
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Conversely, any Π′ ∈ RS determines an element of RE by taking Pv =
Π′(v, v), Se = Π′(e, r(e)). Since SeS

∗
e = Π′((e, r(e))(r(e), e)) = Π′(e, e), (ii) of

Definition 3.7 follows. (i) and (iii) follow since Π′ is a ∗-homomorphism on S.
This establishes the correspondence between the representations of (a) and (b).

The correspondence between the representations in (b) and (c) is imple-
mented by using the natural bijection between representations of S and (H,Ψ)
(the universal groupoid of S) established in [12], Chapter 4. We now recall what
this bijection is.

Let ρ be a representation of S on a Hilbert space H. Then there is a repre-
sentation Π of Cc(H) determined by:

Π(χΨ(s)) = ρ(s)

for all s ∈ S where Ψ(s) is given in Theorem 3.5. Further, the map ρ → Π is
one-to-one and onto. It remains then to show that the representations ρ of S that
satisfy the conditions of (b) correspond to the representations Φ of Cc(G). This
follows by Proposition 3.6 (and the remark following that proposition), and so we
have established the correspondence between RS and RG.

We now translate (a), (b) and (c) of the preceding theorem into C∗-algebra
terms. The C∗-algebra determined by the groupoid representations of (c) is just
the groupoid C∗-algebra C∗(G). The C∗-algebra associated with (b) is obtained
on the semigroup algebra `1(S) as follows. Every representation Π of S gives
a bounded representation Π of `1(S) in the natural way, and C∗(S) is just the
enveloping C∗-algebra of `1(S) obtained by taking the biggest C∗-norm coming
from such Π’s. The C∗-algebra that we want here, which we will denote by C∗

0 (S),
is obtained in the same way only using Π’s for which Π(z) = 0 = Π

(
v−

∑
s(e)=v

(e, e)
)

for all v ∈ Vf . It is easy to show that C∗
0 (S) is the enveloping C∗-algebra of

`1(S)/I, where I is the closed ideal of `1(S) generated by elements of the form z
and v −

∑
s(e)=v

(e, e), with v ∈ Vf .

We take C∗(E) to be the universal C∗-algebra for the representations of E .
By the above, we then obtain the following corollary to Theorem 3.8.

Corollary 3.9. C∗(E) ∼= C∗
0 (S) ∼= C∗(G).

In the case of O∞, the graph E is a bouquet of circles {en : n > 1} (one
vertex v). The inverse semigroup SE in this case is the set of pairs (α, β) where
α, β are finite words in P together with the identity v and zero z. Then G is the
groupoid O∞ of [12], p. 184f.

Now let E be a general directed graph and S = SE as before. For the purposes
of the next section, we need to use a related inverse semigroup Sn with associated
groupoid Gn. Here, n ∈ P, Y n = {y ∈ Y : 0 6 l(y) 6 n} and Sn is the inverse
subsemigroup of S given by:

Sn = {(αµ, βµ) ∈ S : α, β ∈ Y n, l(α) = l(β)} ∪ {z}.
It is easy to check that Sn is an inverse subsemigroup of S and that I(Sn) = I(S).
We now describe the universal groupoid Hn of Sn and the related groupoid Gn.
The proofs of the assertions below are very similar to the corresponding proofs for
S, and are left to the reader.
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The universal groupoid Hn for Sn can be identified with the union of {z} and
the set of all pairs of the form (αγ, βγ), where α, β ∈ Y n, l(α) = l(β), γ ∈ Y ∪ Z,
and αγ, βγ ∈ Y ∪ Z. Identify (αγ, βγ) ∈ Sn with (αγ, 0, βγ) ∈ H. Then Hn is a
subgroupoid of H with the same unit space, and the multiplication and inversion
for Hn are just those that Hn inherits as a subgroupoid of H. The canonical map
Ψn : Sn → (Hn)a is just the restriction of the map Ψ of Theorem 3.5 to Sn. The
groupoid Gn is defined to be the reduction of Hn to X.

The principal transitive equivalence relation on a (discrete) set with k ele-
ments (1 6 k 6 ∞) is denoted by Tk. (In less elaborate language, this is the
equivalence relation for which any element of the set is equivalent to any other.)
For the following definitions, see [14], p. 123. An r-discrete groupoid is called ele-
mentary if it is isomorphic to the disjoint union of a sequence of groupoid products
of the form Tk×Q for some k and some locally compact space Q, and is called AF
if its unit space is totally disconnected and it is the inductive limit of a sequence
of elementary groupoids.

Proposition 3.10. The locally compact groupoid Gn is an AF-groupoid.

Proof. Obviously, the unit space G0 of Gn is totally disconnected. Enumerate
E as e1, e2, . . ., and let N ∈ P. Let F = {e1, . . . , eN}. For 0 6 r 6 n, let Ar be
the set of all finite paths of the form ep1 · · · epr

where each epi
∈ F . We take

A0 = s(F ). Let Br be the set of pairs (αγ, βγ) ∈ Gn where α, β ∈ Ar and γ is
arbitrary. Clearly, Br is a compact, open subgroupoid of Gn (being a finite union
of Ψn(α, β)’s). For each v ∈ r(F ), let

Xv = {γ ∈ X : s(γ) = v}.

Then Xv = A(v, v) is a compact, open subset of X. Note that if α, β ∈ Ar with
r(α) = v = r(β), then (αγ, βγ) ∈ Br if and only if γ ∈ Xv. Let

LN =
n⋃

r=0

Br.

Then LN is also a compact, open subgroupoid of Gn. We will show that LN is
elementary.

To this end we “disjointify” the Br’s. Let Cr be the unit space B0
r of Br.

The elements of Cr are of the form αγ for α ∈ Ar, γ ∈ Xr(α). Clearly Cn ⊂
Cn−1 ⊂ · · · ⊂ C0 = {x ∈ X : s(x) ∈ A0}. Let C ′

n = Cn and, for 0 6 r < n, let
C ′

r = Cr \ Cr+1. Let

B′
r = {(αγ, βγ) ∈ Br : α, β ∈ Ar, αγ, βγ ∈ C ′

r}.

Then LN is the disjoint union of the compact, open subgroupoids B′
r of Gn.

The fact that LN is elementary will follow once we have shown that each B′
r is

elementary. To this end, fix r, and for each v ∈ r(F ), let

Wv = {(αγ, βγ) ∈ B′
r : α, β ∈ Ar, v = r(α) = r(β) = s(γ)}.

Then B′
r is the disjoint union of the compact, open subgroupoids Wv, and for each

v, Wv is isomorphic to Tkv
× (Xv)′, where (Xv)′ is an open subset of Xv, and kv

is the number of α’s in Ar with r(α) = v and such that αγ ∈ C ′
r for some γ. So

B′
r, and hence LN , is elementary.
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We now claim that Gn is the inductive limit of the LN ’s and hence is an
AF-groupoid. To this end (cf. [14], pp. 122–123), Gn is a union of the increasing
sequence of elementary, open subgroupoids LN . It is easily checked that a set
V ⊂ Gn is open in the inductive limit topology if and only if it is open in Gn,
so that the inductive limit topology on Gn coincides with the given topology on
Gn. Further, the counting measure left Haar system on Gn is compatible with the
counting measure left Haar systems on the LN ’s. So Gn is the inductive limit of
the LN ’s.

At the Sn level, for O∞, Cuntz observes ([3], 1.5) that F∞ is an AF C∗-
algebra.

4. GRAPH GROUPOIDS ARE AMENABLE

In [3], Cuntz showed that On (n > 2) is isomorphic to the crossed product of an
AF-algebra by an automorphism, cut down by a projection. It follows ([3], [16])
that On is therefore nuclear (=amenable). Cuntz used a separate argument to deal
with the case n = ∞. Renault ([14], p. 138f.) showed that the Cuntz groupoids
On, n < ∞, are amenable as locally compact groupoids. (The amenability of On

then follows.) The groupoid case when n = ∞ remained unclear.
Kumjian, Pask, Raeburn and Renault ([11]) adapted Renault’s original argu-

ment to establish the amenability of the groupoid G = GE when E is locally finite.
In this section, we further adapt the argument of [11] to show that G is amenable
in complete generality. In particular, this covers the groupoid case for O∞.

As in [11], we assume initially that every vertex receives an edge. For each
v ∈ V , fix an edge e(v) ∈ E for which r(e(v)) = v. Next we consider the following
space X of two-sided paths. The elements of X are sequences x = {xi} of edges,
where −∞ < i < k 6 ∞ with k depending on x and r(xi) = s(xi+1) whenever
that makes sense. So the sequence x is infinite to the left, and may or may not
be infinite to the right. If the sequence x is finite to the right, then r(x) makes
sense in the obvious way, and we require that r(x) ∈ V∞. Define a function
h : X → Z ∪ {∞} as follows: h(x) = ∞ if x is infinite to the right, and otherwise,
is the largest i for which xi is defined.

For each n ∈ Z, we now define a subset Pn of X by specifying that x ∈ Pn if
and only if h(x) > (n− 1) and xi = e(s(xi+1)) for all i < n. If h(x) = n− 1, then
we require xn−1 to be some e(v). The set of x’s in Pn for which h(x) = n− 1 can
be identified with V∞ by sending x to r(x). Note that Pn ⊂ Pn−1.

Let n > 1. There is a natural bijection f−n : P−n → X = G0 defined by
translating to the right by n+1 and chopping off what is to the left of 1. Precisely,
f−n(x)m = x−n+m−1 if h(x) > (−n− 1) and f−n(x) = r(x) when h(x) = −n− 1.
We give P−n the topology for which fn is a homeomorphism.

Note that P−n is an open subset of P−n−1. Indeed f−n−1(P−n) is the (open)
set of elements of X of the form e(s(x))x for some x ∈ X.

Let Rn be the equivalence relation on P−n defined by: (x, y) ∈ Rn if and
only if h(x) = h(y), and if h(x) = −n − 1 then r(x) = r(y), while if h(x) > n,
then xi = yi for i > n. Note that when h(x) = −n − 1, then xRny if and
only if x = y. Note also that if h(x) > n, then since xn+1 = yn+1, we have
r(xn) = s(xn+1) = s(yn+1) = r(yn). The unit space of Rn is P−n. Of course, we
give Rn the product topology that it inherits as a subset of P−n × P−n.
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Proposition 4.1. The equivalence relation groupoid Rn is an AF groupoid.

Proof. The map (x, y) → (fn(x), fn(y)) is an isomorphism of locally com-
pact groupoids from Rn onto G2n+1 and therefore is an AF groupoid by Proposi-
tion 3.10.

Clearly, Rn is an open subset of Rn+1, and the topology on Rn is the relative
topology that it inherits as a subset of Rn+1. Also, the canonical left Haar system
{λn+1(u)} (counting measure on the (Rn+1)u’s) gives by restriction the left Haar
system {λn(u)} on Rn.

It follows as in [14], p. 122, that R =
⋃

n>1

Rn is an r-discrete groupoid in the

inductive limit topology. (As pointed out in [11], this notion of inductive limit is
more general than the r-discrete case considered by Renault inasmuch as the unit
spaces of the Rn’s are increasing rather than being fixed.) It also follows that R
is amenable since each Rn is AF and therefore amenable ([14], p. 123).

The argument for the amenability of G now proceeds almost exactly as in
[11] (to which the reader is referred for further details). We will be content with
a sketch of the argument in the present context to indicate the minor changes
needed.

Let P =
∞⋃
1

P−n be the unit space of R. Then P is the inductive limit of

the P−n’s. The left shift map h on P , where h({xi})j = xj+1, is a homeomor-
phism on P since it maps P−n homeomorphically onto P−n−1, and it induces a
homeomorphism σ on R, where σ(u, v) = (h(u), h(v)), which is also a groupoid ho-
momorphism. One then considers the semi-direct product R×σ Z. This groupoid
consists ([11]) of triples (u, v, k) ∈ R × Z with r(u, v, k) = u, s(u, v, k) = h−kv,
inverse by (u, v, k)−1 = (σ−k(v, u),−k) and product by:

(u, hk(p), k)(p, q, l) = (u, hk(q), k + l).

Then R ×σ Z is amenable ([14], p. 96) and hence ([14], p. 92) so is its reduction
G′ to the closed subset P1 of P .

We now claim that G′ is isomorphic to the graph groupoid G (so that G
is also amenable). Firstly, the unit space P1 of G′ can be identified with X by
sending · · · e(s(z1))z1z2 · · · to z = z1z2 · · ·. The natural isomorphism F : G → G′

is given by (cf. [11], Proposition 4.4):

F (xz, k, yz) = (xz, h−k(yz),−k).

Here, x = x1 · · ·xr, y = y1 · · · yr−k and xz, yz on the right-hand side are abbrevi-
ations for · · · e(s(x1))xz, · · · , e(s(y1))yz ∈ P1.

Checking that F is a groupoid isomorphism is straighforward. That F is
a homeomorphism follows effectively from the way that we defined the topology
of P−n in terms of X. To check that F is a homomorphism, one argues (k =
l(x)− l(y), l = l(y1)− l(a), yz = yy′z′ = y1z

′):

F (xz, k, yz)F (yz, l, az′) = (xz, h−k(yz),−k)(yz, h−l(az′),−l)

= (xz, h−k[h−l(az′)],−k − l)

= (xz, h−(k+l)(az′),−(k + l))

= F ((xz, k, yz)(y1z
′, l, az′)).
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The other facts to be checked are left to the reader.
This deals with the case where every vertex v is r(e) for some e ∈ E. For

the general case, one considers a larger graph E ′ obtained by adding an infinite
left tail to each v ∈ V for which r−1({v}) = ∅, applies the preceding result to E ′
and performs a reduction to obtain that G is amenable. (Note that G0 = G(E)0

is a closed subset of G(E ′)0.) We therefore have:

Theorem 4.2. For any directed graph E, the graph groupoid G is amenable.

5. THE SIMPLICITY OF C∗(E)

In this section we will use the groupoid G to obtain conditions sufficient for C∗(E)
to be simple. As discussed in the Introduction, the result obtained (Theorem 5.2)
is effectively due to W. Szymanski who also proved the converse. (It seems likely
that the approach to the converse for the row finite case in [1] can be adapted to
apply within the groupoid context of the present paper.)

For v ∈ V , a loop based at v is a finite path α = e1 · · · en such that r(α) =
s(α) = v and r(ei) 6= v for 1 6 i < l(α). The subsets V0, V1, V2 of V are the sets
of vertices v such that there are respectively no loops based at v, exactly one loop
based at v and at least two distinct loops based at v. The graph E is said to satisfy
condition (K) ([11], Section 6) if V1 = ∅.

Recall that a locally compact groupoid H is called essentially principal ([14],
p. 100) if whenever F is a closed invariant subset of H0, then the set of u’s in F
with trivial isotropy group is dense in F . It is shown in Proposition 6.3 of [11],
that if E is row finite and satisfies condition (K), then G is essentially principal.
We now show that for general E , G is essentially principal if and only if E satisfies
condition (K).

Proposition 5.1. The r-discrete groupoid G is essentially principal if and
only if E satisfies condition (K).

Proof. Suppose that E satisfies condition (K). Let F be a closed invariant
subset of G. Note that any finite path y ∈ Y has trivial isotropy. So we need only
consider infinite paths. The proof of Proposition 6.3 from [11] then goes through
verbatim to give that G is essentially principal.

Conversely, suppose that G is essentially principal and that V1 6= ∅. Let
v ∈ V1 and α be the loop in E based at v. Let

C = {z ∈ Z : z > v}.

Note that γ = αα · · · belongs to C. Let F = C, the closure of C in X. We claim
that F is a closed invariant subset of X.

Trivially, F is closed. To prove invariance, let {zi} be a sequence in C and
zi → x ∈ X. Suppose that x is equivalent to y ∈ Y . Either l(x) = ∞ or
l(x) < ∞. Suppose first that l(x) = ∞. Then for some α′ and some z ∈ Z, we
have x = α′z, y = βz. Then eventually, every zi = α′wi, and so βwi ∈ C and
βwi → y. So y ∈ F . If l(x) < ∞, then r(x) = r(y), and a similar argument gives
that y ∈ F . So F is invariant. Note that if x ∈ F , then x > v for all v (so that
F ∩ Z = C).
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We will contradict the assumption V1 6= ∅ by showing that if x ∈ F and
s(x) = v, then x = γ. (For then any sequence in F converging to γ will eventually
coincide with γ and so eventually, the terms of the sequence will not have trivial
isotropy.) We can suppose that x ∈ C since each x′ ∈ F of finite length and with
s(x′) = v is the limit of a sequence of such infinite paths x. For each n, there is
a path y starting and finishing at v obtained by following x until we reach r(xn)
and then taking a path from r(xn) to v. Since α is the only loop based at v, y is
of the form αα · · ·α. It follows every initial segment of x is an initial segment of
γ and so x = γ.

The groupoid G is called minimal ([14], p. 35) if the only open invariant
subsets of G0 are G0 and the empty set. Since G is amenable, we have C∗(G) =
C∗

red(G) ([14], p. 92). Assume that E satisfies condition (K). Then by the above,
the r-discrete groupoid G is essentially principal. So by Proposition 2.4.6 on p.
103 from [14] we have that C∗(G) is simple if and only if G is minimal. We now
give a groupoid proof of the simplicity result for C∗(E) ([21], Theorem 12).

Theorem 5.2. The graph C∗-algebra C∗(E) is simple if (a), (b) and (c)
hold, where:

(a) E has property (K);
(b) E is cofinal ([11]) in the sense that given v ∈ V and z ∈ Z, there exists

an n such that v > r(zn);
(c) if v ∈ V and w ∈ V∞, then there is a path from v to w.

Proof. Suppose that G satisfies (a), (b) and (c). By the preceding comments,
we just need to show that G is minimal.

Let U 6= ∅ be an open invariant subset of X. By Proposition 3.4, U ∩ Z 6=
∅. By considering a neighborhood in X of some z ∈ U ∩ Z and using (ii) of
Proposition 3.3, we have that for some α, D′

α ⊂ U . Let z ∈ Z. By (b), there is a
path β from r(α) to r(zn) for some n. Then z′ = αβzn+1 · · · ∈ D′

α ⊂ U . Since z′

is tail equivalent to z and U is invariant, we have z ∈ U . Next let y ∈ Y∞. By (c),
there is a path β′ from r(α) to r(y). Then αβ′ is equivalent to y, and αβ′ ∈ U .
So y ∈ U . So U = Z ∪ Y∞ = X and G is minimal.
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