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Abstract. Let T and C be two Hilbert space operators. We prove that if T
is near, in a certain sense, to an operator completely polynomially dominated
with a finite bound by C, then T is similar to an operator which is completely
polynomially dominated by the direct sum of C and a suitable weighted uni-
lateral shift. Among the applications, a refined Banach space version of Rota
similarity theorem is given and partial answers to a problem of K. David-
son and V. Paulsen are obtained. The latter problem concerns CAR-valued
Foguel-Hankel operators which are generalizations of the operator considered
by G. Pisier in his example of a polynomially bounded operator not similar
to a contraction.
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1. INTRODUCTION

1.1. Preamble. A good part of the literature concerning similarity problems for
operators on a Hilbert space was motivated by a single problem. This problem
asks for a simple criterion to determine whether a Hilbert space operator is sim-
ilar to a contraction. The corresponding problems for similarity to isometries or
unitaries have been solved at the late 1940’s by Sz.-Nagy ([23]). The conjectured
([6]) characterization: “an operator is similar to a contraction if and only if it is
polynomially bounded” was recently shown to be false by G. Pisier ([16]). Recall
that T is said to be polynomially bounded if there exists a constant M such that

(1.1) ‖p(T )‖ 6 M sup{|p(z)| : |z| = 1}

for all polynomials p. We refer to [4] for the history of this counterexample.
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A positive answer for the similarity problem was given in [10]. The quan-
titative criterion of V. Paulsen ([10]) asserts that an operator T is similar to a
contraction if and only if T is a completely polynomially bounded operator, which
means that equation (1.1) holds for all matrix-valued polynomials. Moreover, the
similarity constant coincides with the smallest possible constant M in the ana-
logue of (1.1). A more general result for similarity of algebra homomorphisms to
completely contractive ones was proved in [11] (cf. also [12]).

Paulsen’s criteria are consistent with a variety of similarity results in operator
theory. They are also consistent with results in some areas of operator algebras and
operator spaces theory, areas where completely positive and completely bounded
maps have found to be central tools. Generalizations to Banach space operators
and to p-complete bounded homomorphisms are given in [14] (see also [15]).

We introduce in this paper the notion of operators T (completely) polyno-
mially dominated with finite bound by a given operator C. For instance, we will
say that T is polynomially dominated with finite bound by C if there exists M > 0
such that

‖p(T )‖ 6 M‖p(C)‖
for all polynomials p. Completely polynomially dominated operators with finite
bound generalizes completely polynomially bounded operators.

The main goal of this note is to show that an operator T near, in a certain
sense, to a Hilbert space operator completely polynomially dominated with a fi-
nite bound by a given operator C is similar to an operator which is completely
polynomially dominated by the direct sum of C with a suitable weighted unilateral
shift. The nearness condition for Hilbert space operators (called here β-quadratic
nearness) is defined in Section 2. In particular, the class of operators similar to
contractions is stable under quadratic nearness. A precursor of results of this type
is [8].

Applications to similarity problems for Hilbert space operators include two
partial results concerning an open question of K. Davidson and V. Paulsen ([5]).
The question mentioned in [5] asks for a characterization of those square summable
sequences for which the corresponding CAR-valued Foguel-Hankel operators are
similar to contractions. Note that the counterexamples of Pisier ([16]) are op-
erators of this type. It was this question which was the starting point of this
note.

Even if the emphasis here will be on Hilbert space operators, we will also
consider Banach space operators in Theorem 4.5. As an application, a refined
version of Rota’s ([20]) similarity result will be obtained. We will show that, given
p > 1 and a Banach space operator T on X with spectral radius less than one, T
is similar to an operator T1 on a Banach space which, in some sense, “looks like
X” such that T1 is completely polynomially dominated by the unilateral shift S
on `p(X). This is related to a conjecture of V.I. Matsaev concerning contractions
on Lp-spaces.

We also consider the (easiest) corresponding problem for operators near ones
which are similar to unitaries or isometries. We prove that operators asymptot-
ically near operators similar to unitaries/isometries are themselvs similar to uni-
taries or isometries. There are polynomially bounded operators which are asymp-
totically near to a contraction without being similar to a contraction.
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1.2. Organization of the paper. After this preamble we recall some nota-
tion, definitions and known results. We introduce in the next section the notions
of completely polynomially dominated operators and of asymptotically near and
quadratically near operators. The main results in the Hilbert space situation
are stated in Section 3. This section also contains an example of a polynomially
bounded operator which is asymptotically near to a contraction without being
similar to a contraction. In Section 4 the proof of Theorem 3.3 is reduced to the
proof of Theorem 4.1. A more general version of Corollary 4.4 is stated in the
Banach space context (Theorem 4.5). Section 5 contains several applications to
operators similar to contractions, including a sufficient condition for the similar-
ity to contractions of some CAR-valued Foguel-Hankel operators (Corollary 5.4.1)
and a Banach space Rota theorem (Corollary 5.1.1). The proof of Theorem 4.5 is
given in Section 6 while the last section contains proofs of the remaining results.

1.3. Preliminaries. We recall now some definitions and results and introduce
some notation. We refer to [15] and [12] for more information.

1.3.1. General notation. By H,K (and X,Y,E), with or without subscripts,
we will designate complex Hilbert (respectivelly Banach) spaces. We denote by
B(X) the algebra of all bounded linear operators on X. By operator we always
mean a bounded linear operator. The adjoint of a Hilbert space operator T is
denoted by T ∗.

1.3.2. Similarity. Two Hilbert space operators T1, T2 ∈ B(H) are called similar
if there exists an invertible operator L ∈ B(H) such that T2 = L−1T1L.

If A is a class of bounded linear operators, then the similarity constant
Csim(T1,A) of T1 with respect to A is defined by

Csim(T1,A) = inf{‖L−1‖ · ‖L‖ : L ∈ B(H), L−1T1L ∈ A}.
We recall that T ∈ B(H) is similar to a contraction if and only if there exists

a Hilbertian, equivalent norm on H with respect to which T is a contraction.

1.3.3. Completely bounded maps. Let S ⊂ B(H) be a subspace. Let ϕ :
S → B(K) be a linear map. Let Mn(S) and Mn(B(K)) be the spaces of matrices
with entries respectively in S and B(K). Endow them with the norm induced
respectively by B(`2n(H)) and B(`2n(K)). The map ϕ is called completely bounded
if there is a constant M such that

sup
n
‖IMn

⊗ ϕ : Mn(S) →Mn(B(K))‖ 6 M.

The completely bounded (cb) norm ‖ϕ‖cb is the smallest constant M for which
this holds. We call ϕ completely contractive if ‖ϕ‖cb 6 1. The map ϕ is completely
positive if IMn ⊗ ϕ is a positive map for each n.

The following (Wittstock-Paulsen-Haagerup) factorization theorem for com-
pletely bounded maps holds ([15], Chapter 3, and [12], Chapter 7). If S ⊂ B(H)
is a subspace and ϕ : S → B(K) is a linear completely bounded map, then there
exist a Hilbert space Hπ, a unital C∗-algebraic representation π : B(H) → B(Hπ)
and operators V2 : K → Hπ, V1 : Hπ → K, with ‖V1‖ ‖V2‖ 6 ‖ϕ‖cb, such that
ϕ(a) = V1π(a)V2 for any a ∈ S.
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Let A(D) be the disk algebra. For an operator T , let ΦT be the functional
calculus map p→ p(T ) defined on polynomials. Then T is completely polynomially
bounded if and only if ΦT extends to a completely bounded map on A(D), if and
only if T is similar to a contraction ([10]).

Let p > 1. Similar notions of p-complete bounded maps are defined in the
Banach space context ([15]). If S ⊂ B(X) is a subspace, a linear map ϕ : S → B(Y )
is p-completely bounded if

‖ϕ‖pcb := sup
n
‖IB(`n

p ) ⊗ ϕ : Mn(S) →Mn(B(Y ))‖ < +∞,

whereMn(B(Y )) andMn(S) are now equipped with the norms induced by B(`np (Y ))
and respectively B(`np (X)).

We refer to [14] and [15] for more on this, including a factorization theorem.

1.3.4. Banach spaces of class SQp. Let p > 1 be a real number. A Banach
space E is said to be a SQp-space if it is a quotient of a subspace of an Lp-space.

Let X be a Banach space. A Banach space E is said to be a SQp(X)-space if
it is (isometric to) a quotient of a subspace of an ultraproduct of spaces of the form
Lp(Ω, µ,X). Since ultraproducts of Lp-spaces is an Lp-space, the latter definition
is consistent with the former. The case p = 2 corresponds to the Hilbertian
situation.

SQp(X)-spaces are characterized by a theorem of Hernandez ([7]). See
also [14] for a different proof using p-completely bounded maps. Namely, E is
a SQp(X)-space if and only if

‖a‖p,E 6 ‖a‖p,X

for each n > 1 and each matrix a = [aij ] ∈Mn(C). Here∥∥[aij ]
∥∥

p,Y
= sup

[( ∑
i

∥∥∥∑
j

aijyj

∥∥∥p)1/p
]
,

where the supremum runs over all n-tuples (y1, . . . , yn) in Y which satisfy∑
‖yj‖p 6 1.

1.3.5. CAR-valued Foguel-Hankel operators. A polynomially bounded
operator which is not completely polynomially bounded was found in 1997 by
G. Pisier ([16]). The counterexample was a CAR-valued Foguel-Hankel type op-
erator (sometimes called a CAR-valued Foias-Williams-Peller type operator).

To be more specific, let Λ be a function from an infinite dimensional Hilbert
space H into B(H) satisfying the canonical anticommutation relations: for all
u, v ∈ H,

Λ(u)Λ(v) + Λ(v)Λ(u) = 0
and

Λ(u)Λ(v)∗ + Λ(v)∗Λ(u) = (u, v)I.

The range of Λ is isometric to Hilbert space. Let {en}n>0 be an orthonormal
basis for H, and let Cn = Λ(en) for n > 0. For an arbitrary sequence α =
(α0, α1, . . .) in `2, let Yα = [αi+jCi+j ] be a CAR-valued Hankel operator and
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R(Yα) =
[
S∗(∞) Yα

0 S(∞)

]
be the corresponding Foguel-Hankel operator ([16], [5]).

Here S(∞) is the unilateral forward shift of multiplicity dimH. The particular
choice of α made by Pisier was α2k−1 = 1 for k > 0 and αi = 0 otherwise. In this
case R(Yα) is polynomially bounded but not completely polynomially bounded.
The following more general result holds ([16], [5]):

1.4. Theorem. (Pisier, Davidson-Paulsen) Let α = (α0, α1, . . .) be a se-
quence in `2 and set

A = sup
k>0

(k + 1)2
∑
i>k

|αi|2 and B2 =
∑
k>0

(k + 1)2|αk|2.

The operator R(Yα) is polynomially bounded if and only if A is finite. If R(Yα) is
similar to a contraction, then B2 is finite.

It is an open problem if B2 finite implies R(Yα) similar to a contraction. A
partial answer will be proved in Corollary 5.4.1.

2. DOMINANCE AND NEARNESS

2.1. Dominance. We start with several definitions.

2.1.1. Completely polynomially dominated operators. Let T1 and T2 be
two Hilbert space operators, not necessarily acting on the same space. We say
that T1 is completely polynomially dominated by T2 if

‖ [pij(T1)]16i,j6n ‖ 6 ‖ [pij(T2)]16i,j6n ‖,

for all positive integers n and all n×nmatrices [pij ]16i,j6n with polynomial entries.
Recall that [pij(T )]16i,j6n is identified with an operator acting on the direct sum
of n copies of the corresponding Hilbert space in a natural way. Let CDOM(T )
be the class of all Hilbert space operators completely polynomially dominated by
T . Let M > 0 be a positive constant. We say that T1 is completely polynomially
dominated with bound M by T2 if

‖ [pij(T1)]16i,j6n ‖ 6 M‖ [pij(T2)]16i,j6n ‖,

for all positive integers n and all n × n matrices [pij ]16i,j6n with polynomial
entries. We say that T1 is completely polynomially dominated with finite bound by
T2 if it is completely polynomially dominated with bound M for a suitable M .
The least bound of complete dominance of T1 by T2 is denoted by Mcd(T1, T2). It
is the cb norm of the complete bounded map p(T2) → p(T1), p ∈ C[z].

Similar notions can be defined in the Banach space context. For instance, we
say that T1 ∈ B(X1) is p-completely dominated with finite bound by T2 ∈ B(X2)
if the map p(T2) → p(T1), p ∈ C[z], is p-completely bounded.
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2.1.2. Example. The following example gives a (generic) class of com-
pletely dominated operators. Recall the following useful result ([21]). Let H be
a closed subspace of K and let T = PHR|H, T ∈ B(H), be the compression of
R ∈ B(K) to H. Here PH is the projection onto H. Then R is a dilation of T
(that is, Tn = PHR

n|H for all n) if and only if the subspace H is semi-invariant
for R, that is H = H1 	H2 for two invariant subspaces H1 and H2 of R.

Let T2 ∈ B(H2) be a Hilbert space operator and let π : B(H2) → B(Hπ)
be a unital C∗-representation. Let H1 be a semi-invariant subspace for π(T2).
Let T1 ∈ B(H1) be the compression of π(T2) on H1. Then T1 is completely
polynomially dominated by T2 since π is completely contractive.

The following theorem identifies Hilbert space completely polynomially dom-
inated operators with finite bound.

2.1.3. Theorem. A Hilbert space operator T1 is completely polynomially
dominated by T2 if and only if T1 is unitarily equivalent to the compression of an
operator R2 to a semi-invariant subspace, R2 being the image of T2 by a unital C∗-
representation. A Hilbert space operator T1 is completely polynomially dominated
by T2 with finite bound if and only if T1 is similar to an operator completely
polynomially dominated by T2 and the similarity constant is the least possible bound
of dominance.

Proof. Suppose that T1 ∈ B(H1) is completely polynomially dominated by
T2. Let ϕ be the linear map defined on the subspace of the polynomials of T2 ∈
B(H2) by

ϕ(p(T2)) = p(T1).

The relation of completely polynomially dominance shows that ϕ is well-defined,
unital and completely contractive. Then by Arveson’s theorem ([12], Corollary
6.6) ϕ has an extension ϕ̃ : B(H2) → B(H1) which is a unital completely positive
map. By Stinespring’s theorem ([12], Theorem 4.1) there are a Hilbert space K1,
an isometry V : H1 → K1 and a unital C∗-representation π : B(H1) → B(K1)
such that

ϕ̃ = V ∗πV.

Denote R2 = π(T2). We obtain

Tn
1 = ϕ̃(Tn

2 ) = V ∗Rn
2V

for each n > 0 and so ([21]) T1 is unitarily equivalent to the compression of R2 to
a semi-invariant subspace.

If T1 is completely polynomially dominated by T2 with finite bound, then ϕ
is completely bounded and, by Paulsen similarity theorem ([12], Theorem 8.1) ϕ
is similar to a completely contractive map with the similarity constant given by
the complete bounded norm of ϕ.

Using Paulsen’s criterion, T ∈ B(H) is completely polynomially bounded
(i.e. similar to a contraction) whenever T is completely polynomially dominated
with finite bound by a given contraction.

2.2. Nearness. We introduce the following definitions of nearness which will be
used in the statement of the main results.
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2.2.1. Definition. Two operators T1 and T2 acting on the same space are
said to be asymptotically near if

lim
n→∞

‖Tn
1 − Tn

2 ‖ = 0.

2.2.2. Definition. Let β : Z+ → R∗
+. Two operators T1 and T2 are said

to be β-quadratically near if

s :=
[

sup
N>0

∥∥∥ N∑
n=0

1
β(n)2

(Tn
1 − Tn

2 )(Tn
1 − Tn

2 )∗
∥∥∥]1/2

< +∞.

The two operators are simply called quadratically near if this condition holds with
β(n) = 1 for each n.

We denote s in the above definition by near2(T1, T2, β). If β(n) = 1 for each
n, we call s the nearness (or the 2-nearness) between T1 and T2.

The above definition of β-quadratic nearness uses the row Hilbert space op-
erator structure ([17]). The following result gives an equivalent definition.

2.2.3. Lemma. Let β : Z+ → R∗
+. T1 and T2 are β-quadratically near with

near2(T1, T2, β) 6 s if and only if

(2.1)
+∞∑
n=0

1
β(n)2

‖(Tn
1 − Tn

2 )∗y‖2 6 s2‖y‖2, y ∈ H.

If

(2.2)
+∞∑
n=0

1
β(n)2

‖Tn
1 − Tn

2 ‖2 = u2 < +∞,

then T1 and T2 are β-quadratically near with near2(T1, T2, β) 6 u.

Proof. For N > 0 set

AN =
N∑

n=0

1
β(n)2

(Tn
1 − Tn

2 )(Tn
1 − Tn

2 )∗.

Then T1 and T2 are β-quadratically near with near2(T1, T2, β) 6 s if and only
if sup

N
‖AN‖ 6 s2. On the other hand, inequality (2.1) holds if and only if

sup
N
ω(AN ) 6 s2, where

ω(A) = sup{|〈Ax|x〉| : x ∈ H, ‖x‖ = 1}

is the numerical radius of A. The stated equivalence follows now from the known
fact that ω(A) = ‖A‖ for normal operators A.

The second part follows from the fact that (2.2) implies (2.1).
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3. MAIN RESULTS: THE HILBERT SPACE CASE

The classes of operators similar to isometries or unitaries are stable under a com-
mon nearness condition.

3.1. Proposition. A Hilbert space operator asymptotically near an operator
similar to an isometry (or a unitary) is similar to an isometry (respectively a
unitary).

The following example, build upon work by Pisier and Davidson and Paulsen,
shows that there is a polynomially bounded operator which is asymptotically near
to a contraction without being similar to a contraction.

3.2. Example. We use the notation recalled in Introduction. Let (αk) be
the sequence in `2 given by

αk = (k + 1)−3/2(log(k + 1))−1/2, k > 0.

Then
∑
k>0

(k + 1)2|αk|2 diverges and thus R(Yα) is not similar to a contraction

(cf. Theorem 1.4).
On the other hand, for k > 1, we have

∑
i>k

|αi|2 6

∞∫
k

1
t3 log t

dt 6
1

log(k)

∞∫
k

1
t3

dt 6
1

2 log(k)
1

(k + 1)2
.

Therefore lim
k→∞

(k + 1)2
∑
i>k

|αi|2 = 0 which, using results from [5], implies that

lim
k→∞

‖R(Yα)k − R(0)k‖ = 0. Thus R(Yα) is asymptotically near the contraction

R(0) = S∗(∞)⊕S(∞), without being similar to a contraction. Note also that R(Yα)
is polynomially bounded since quantity A is finite for this (αk).

The right condition of nearness for the class of operators similar to contrac-
tions follows from the following theorem.

Let β : Z+ → R∗
+. We denote by Sw(β) the forward weighted shift on `2,

Swen = wnen+1, with weights

w(β)n = wn =
β(n+ 1)
β(n)

, n > 0.

Then S = Sw(1) is the unilateral forward shift on `2 obtained for β(n) = 1, n > 0.

3.3. Theorem. Let T,R ∈ B(H) and C ∈ B(Hc). Suppose that R is
completely polynomially dominated with finite bound by C. Let M = Mcd(R,C)
be the least possible bound for this dominance. Let β : Z+ → R∗

+ and suppose
that T is β-quadratically near R. Let s = near2(T,R, β). Then T is similar
to an operator completelly polynomially dominated by C ⊕ Sw(β). Moreover, the
similarity constant satisfies

Csim(T,CDOM(C ⊕ Sw(β))) 6 M + β(0)s.

If β(n) = 1 for each n we obtain the following consequence.
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3.4. Corollary. Let T,R ∈ B(H) and C ∈ B(Hc). Suppose that T is
quadratically near R and that R is completelly polynomially dominated with finite
bound by C. Then T is similar to the compression of π(C⊕S) to a semi-invariant
subspace, where π is a unital C∗-representation defined on B(Hc ⊕ `2).

For similarity to contractions we have

3.5. Corollary. Suppose R ∈ B(H) is similar to a contraction. Let T ∈
B(H) and suppose that there exists C > 0 such that∑

n>0

‖(Tn −Rn)x‖2 6 C‖x‖2

for each x ∈ H. Then T is similar to a contraction.

Indeed, according to Lemma 2.2.3, T ∗ is quadratically near R∗. Note also
that T is similar to a contraction if and only if T ∗ is.

3.6. Remark. Operators having their spectrum in the open unit disk are
quadratically near 0 (the null operator). Therefore operators with spectral radius
smaller than 1 are similar to contractions (Rota’s theorem, [20]). The relation of
quadratic nearness is an equivalence relation. It is easy to see that the equivalence
class of the null operator is the class of all operators having their spectrum in the
open unit disk.

4. A REDUCTION OF THEOREM 3.3 AND A BANACH SPACE EXTENSION

The main result Theorem 3.3 is a consequence of the following result. It is a
generalization of a result of Holbrook ([8]).

4.1. Theorem. Let T ∈ B(H) and suppose that there exist Hilbert space K,
operators V2 : H → K, V1 : K → H, C1 ∈ B(K), and a function β : Z+ → R∗

+

such that

(4.1) sup
N>0

∥∥∥ N∑
n=0

1
β(n)2

(Tn − V1C
n
1 V2)(Tn − V1C

n
1 V2)∗

∥∥∥ = s2 < +∞.

Then T is similar to an operator completely polynomially dominated by C1 ⊕
Sw(β) ∈ B(K ⊕ `2). Moreover, the similarity constant satisfies

Csim(T,CDOM(C1 ⊕ Sw(β))) 6 ‖V1‖ ‖V2‖+ β(0)s.

4.2. Remarks. (i) If s = 0 in the above theorem, then Sw can be omitted
in the direct sum.

(ii) For an arbitrary T and any finite N , there are operators V1, V2 and C1

like in Theorem 4.1 such that Tn = V1C
n
1 V2 for n = 0, 1, . . . , N (cf. [6], p. 910).

4.3. Theorem 4.1 implies Theorem 3.3. Suppose that R is completely poly-
nomially dominated with finite bound by C ∈ B(Hc) and let M = Mcd(R,C)
be the least possible bound for this dominance. Let S ⊂ B(Hc) be the subspace
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of all operators p(C), p ∈ C[z]. Consider the map Φ : S → B(H) defined by
Φ(p(C)) = p(R). Since R is completely polynomially dominated with finite bound
by C, the map Φ is completely bounded with Φ(I) = I. According to the factor-
ization theorem, there is a Hilbert space K, a unital C∗-algebraic representation
π : B(Hc) → B(K) and operators V2 : H → K, V1 : K → H with ‖V1‖ ‖V2‖ 6 M
such that Φ(p(C)) = V1π(p(C))V2 for each polynomial p. Set C1 = π(C). We
obtain

Rn = Φ(Cn) = V1π(Cn)V2 = V1C
n
1 V2

with ‖V1‖ ‖V2‖ 6 M . Since π is completely contractive, Theorem 4.1 implies
Theorem 3.3.

We also obtain the follwing result.
4.4. Corollary. Let T ∈ B(H) and suppose that there exist Hilbert space

K, operators V2 : H → K, V1 : K → H, C1 ∈ B(K), and a function β : Z+ → R∗
+

such that
+∞∑
n=0

1
β(n)2

‖Tn − V1C
n
1 V2‖2 = u2 < +∞.

Then T is similar to an operator completely polynomially dominated by C1 ⊕
Sw(β) ∈ B(K ⊕ `2). Moreover, the similarity constant satisfies

Csim(T,CDOM(C1 ⊕ Sw(β))) 6 ‖V1‖ ‖V2‖+ β(0)u.

In fact the following Banach space version of Corollary 4.4 holds (for sim-
plicity, we will not deal with estimates of the similarity constant here).

We introduce some notation. Consider the space `p(β,X) of elements z =
(z0, z1, . . .), zk ∈ X, endowed with the norm

‖z‖`p(β,X) =
( ∑

k

β(k)p‖zk‖p
)1/p

.

The shift operator S acts on `p(β,X) by
S(z0, z1, . . .) = (0, z0, z1, . . .).

4.5. Theorem. Let p and q be real numbers greater than 1 such that 1
p + 1

q =
1. Let T ∈ B(X) and suppose that there exist a SQp(X)-space Y , operators
V1 : Y → X, V2 : X → Y , and C1 ∈ B(Y ), and a function β : Z+ → R∗

+ such that
+∞∑
n=0

1
β(n)q

‖Tn − V1C
n
1 V2‖q = sq < +∞.

Then there is a Banach space E which is a SQp(X)-space and an isomorphism
L : E → X such that, if T1 = L−1TL ∈ B(E), then T1 is p-completely polynomially
dominated by C1 ⊕ S ∈ B(E ⊕ `p(β,X)).

4.6. Remark. As was communicated to the author by V. Paulsen, it is
possible to prove in a different way Corollary 4.4 using Theorem 2.1.3. We have
chosen to present a direct proof of its Banach space version because of the appli-
cations of Theorem 4.5 which are of independent interest. A Banach space version
of Theorem 3.3 can be given using Theorem 4.5 and the factorization theorem for
p-completed bounded maps of Pisier ([14], [15]). We will not develop this idea
here.
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5. SEVERAL APPLICATIONS

We present now briefly several applications of the main results.

5.1. A Banach space Rota theorem. It has already been mentioned that
Rota’s theorem is a consequence of Corollary 3.5. The following application of
Theorem 4.5 is a refined Banach space version of Rota theorem.

5.1.1. Corollary. Let X be a Banach space and suppose that T ∈ B(X)
has a spectral radius smaller than 1. Then, for every p > 1, there exist a Banach
space E which is a quotient of `p(X) and an isomorphism L : E → X such that,
if T1 = L−1TL ∈ B(E), then

(5.1) ‖p(T1)‖B(E) 6 ‖p(S)‖B(`p(X))

for each analytic polynomial p; even more generally,∥∥[pij(T1)]
∥∥
B(`n

p (E))
6

∥∥[pij(S)]
∥∥
B(`n

p (X))

for all matrices of polynomials.

Equation (5.1) shows in particular that T1 is a contraction. It was conjectured
in 1966 by V.I. Matsaev (see [13]) that

‖p(T1)‖ 6 ‖p(S)‖B(`p)

holds for all contractions T1 on an infinite dimensional Lp-space. Several partial
results are now known ([13]) but the conjecture is still open. The above theorem
shows that if the spectral radius r(T ) of T ∈ B(X) is smaller than one, then
T is similar to an operator on a quotient E of `p(X) completely polynomially
dominated by S on `p(X).

If we ask only for a SQp(X)-space E and not for a quotient of `p(X), the
proof of Corollary 5.1.1 follows easily from Theorem 4.5. Indeed, if r(T ) < 1, and
1
p + 1

q = 1, then ∑
n>0

‖Tn‖q < +∞

and thus Theorem 4.5 is applicable with C1 = 0. We postpone the proof of
Corollary 5.1.1 (with E a quotient of `p(X)) to the last Section.

5.2. Operators of class Cρ. Let ρ > 0. Operators of class Cρ are defined as
operators having ρ-dilations: T ∈ B(H) is in Cρ if there exists a larger Hilbert
space K ⊃ H and a unitary operator U on K such that

Tnh = ρPHU
nh, h ∈ H.

Thus contractions are operators of class C1. An operator T is in C2 if and only if
ω(T ) 6 1. We refer to [24] for more information on operators of class Cρ.

A more general class of operators can be constructed as follows ([19]). Let
(ρn)n>1 be a sequence of positive numbers. We say that T ∈ B(H) is of class
Cρ1,ρ2,... if there exists a larger Hilbert space K ⊃ H and a unitary operator U on
K such that

(5.2) Tnh = ρnPHU
nh, h ∈ H,
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for all n > 1. The operator T satisfies (5.2) if and only if the spectrum of T is in
the closed unit disc and

Re
[
I +

∑
n>1

2λn

ρn
Tn

]
> 0, |λ| < 1.

5.2.1. Corollary. (Rácz) Let (ρn)n>1 be a sequence of positive numbers.
Suppose that there exist k > 1 and M > 0 such that

∞∑
n=1

(ρnk −M)2 <∞.

Then every operator of class Cρ1,ρ2,... is similar to a contraction.

For the proof, denote S = T k. Then Sn = ρnkV
∗UnkV with a suitable

isometry V and a unitary U . It follows that
‖Sn −MV ∗UnkV ‖ 6 ‖Sn − ρnkV

∗UnkV ‖+ |ρnk −M |.
Using Theorem 4.1, with C1 = Uk, it follows that S = T k is similar to a contraction
and thus T has the same property (cf. [6]).

If M = ρ1 = ρ2 = · · · = ρ, we obtain the following result originally proved
by Sz.-Nagy and Foias in 1967.

5.2.2. Corollary. (Sz.-Nagy–Foias) Every operator of class Cρ is similar
to a contraction.

5.3. Completely bounded maps on zdA(D). Let d > 1 be an integer and
let zdA(D) be the non-unital subalgebra of the disc algebra A(D) consisting of all
functions f ∈ A(D) such that f(0) = f ′(0) = · · · = f (d−1)(0) = 0.

What happens if the inequality of complete dominance with finite bound
holds only for polynomials in zdA(D) ? We consider for simplification only Hilbert
space operators. We refer to [15], p. 80, and to [9] for related results in the Banach
space situation.

5.3.1. Corollary. Let T ∈ B(H) and C ∈ B(Hc) be two Hilbert space
operators such that

‖ [pij(T )]16i,j6n ‖ 6 M
∥∥ [pij(C)]16i,j6n

∥∥,
for all positive integers n and all n × n matrices of polynomials pij in zdA(D).
Then T is similar to an operator completely polynomially dominated by C ⊕ S ∈
B(Hc ⊕ `2).

For the proof, note that the map P (C) → P (T ) defined on the subspace
{P (C) : P ∈ zdA(D), P polynomial}

is completely bounded. By the factorization theorem ([15], Theorem 3.6) we can
write

P (T ) = V1π(P (C))V2, P ∈ zdA(D)
with suitable operators V1, V2 and a unital C∗-algebraic representation π on B(Hc).
Let C1 = π(C). We obtain

T k = V1C
k
1V2, k > d.

This shows that T is quadratically near C1. The conclusion follows now from
Corollary 4.4.
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5.3.2. Corollary. (Paulsen criterion for zdA(D)) Let d > 1. Let T ∈
B(H) and suppose that

‖ [pij(T )]16i,j6n ‖ 6 M sup
|z|=1

‖ [pij(z)]16i,j6n ‖,

for all positive integers n and all n × n matrices of polynomials pij in zdA(D).
Then T is similar to a contraction.

5.4. CAR-valued Foguel-Hankel operators. We use notation as above.

5.4.1. Corollary. Let α = (α0, α1, . . .) be a sequence in `2 such that

B3 :=
∑
k>0

(k + 1)3|αk|2 < +∞.

Then R(Yα) is similar to a contraction.

Proof. Set R(0) = S∗(∞) ⊕ S(∞). Using the notations of [5], we have
‖R(Yα)n −R(0)n‖ 6 ‖Yα(zn)‖. It was proved in [5] that

‖Yα(zn)‖ 6 (n+ 1)
[∑

i>n

|αi|2
]1/2

.

We obtain ∑
n>0

‖R(Yα)n −R(0)n‖2 6
∑
n>0

(n+ 1)2
[∑

i>n

|αi|2
]
.

By a Abel summation method, the series
∑

n>0

(n+ 1)2
[ ∑

i>n

|αi|2
]

is convergent if

∑
n>0

[ ∑
06i6n

(i+ 1)2
]
|αn|2

it is. It is indeed convergent because of our assumption on B3. Therefore R(Yα)
is quadratically near the contraction R(0) and thus similar to a contraction.

We still don’t know if B2 finite implies R(Yα) similar to a contraction. Nev-
ertheless, the following similarity result holds.

5.4.2. Corollary. Let α = (α0, α1, . . .) be a sequence in `2 such that

B2 :=
∑
k>0

(k + 1)2|αk|2 < +∞.

Then R(Yα) is similar to an operator completely polynomially dominated by R(0)⊕
D, where D ∈ B(`2) is the Dirichlet shift, i.e. the weighted unilateral shift with
weights wn =

√
(n+ 2)/(n+ 1).

Note that R(0) is a contraction while the Dirichlet shift is expansive; it is
however a 2-isometry ([1]), that is I − 2D∗D +D∗2D2 = 0.
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The proof is similar to the proof of the precedent corollary: if β(n) =
√
n+ 1,

then
1

β(n)
‖R(Yα)n −R(0)n‖ 6

√
n+ 1

[∑
i>n

|αi|2
]1/2

.

This shows that∑
n>0

1
n+ 1

‖R(Yα)n −R(0)n‖2 6
∑
n>0

(n+ 1)
[∑

i>n

|αi|2
]

and the right hand side is convergent if B2 < +∞. Apply Corollary 4.4 with
β(n) =

√
n+ 1 and C1 = R(0).

5.4.3. Remark. Corollary 5.4.1 was obtained as a particular case of a
general theorem. Using other methods, Vern Paulsen and the author improved
Corollary 5.4.1 as follows: R(Yα) is similar to a contraction if there exists ε > 0
such that

B2+ε :=
∑
k>0

(k + 1)2+ε|αk|2 < +∞.

Details will be given elsewhere ([2]). A different sufficient condition for the sim-
ilarity to contractions of operator-valued Foguel-Hankel operators was given by
G. Blower ([3]).

6. PROOF OF THEOREM 4.5

Put, for simplicity, C1 = C. Let γ be a positive constant. We will chose this
constant in the proof of Theorem 4.1 in the next section when estimating the
similarity constant.

Set

(6.1) |x|p = inf
{
γp

∥∥∥ ∑
n>0

CnV2xn

∥∥∥p

Y
+

∑
n>0

β(n)p‖xn‖p : x =
∑
k>0

T kxk

}
,

the inf being taken over all (finite) decompositions of x as sums of powers of T
applied to elements of X.

6.1. | · | is a seminorm. Take two decompositions

x =
d∑

k=0

T kxk and y =
d∑

k=0

T kyk

for fixed x and y in X. By adding eventually xk = 0 or yk = 0, we may assume
that decompositions have the same length d + 1. This will be always used in the
sequel without any further comment.

Using the triangle inequality ‖a+ b‖ 6 ‖a‖+ ‖b‖ in `d+1
p (X) for

a =
(
γ

d∑
n=0

CnV2xn, β(0)x0, β(1)x1, . . . , β(p)xp

)
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and

b =
(
γ

d∑
n=0

CnV2yn, β(0)y0, β(1)y1, . . . , β(p)yp

)
and taking the infimum over all representations of x and y, we get

|x+ y| 6 |x|+ |y|.

The proofs of the inequality |λx| 6 |λ| |x| and its converse are left to the
reader.

6.2. | · | is an equivalent norm. The representation x = x0 +Tx1 with x0 = x
and x1 = 0, gives

|x|p 6 γp‖V2x‖p + β(0)p‖x‖p 6 (γp‖V2‖p + β(0)p)‖x‖p

and therefore

(6.2) |x| 6 [γp‖V2‖p + β(0)p]1/p ‖x‖.

For the converse inequality, suppose that x = x0 +Tx1 + · · ·+T dxd. We have

‖x‖ =
∥∥∥ d∑

k=0

V1C
kV2xk +

d∑
k=0

(T k − V1C
kV2)xk

∥∥∥
6

1
γ
‖V1‖γ

∥∥∥ d∑
k=0

CkV2xk

∥∥∥ +
d∑

k=0

1
β(k)

‖T k − V1C
kV2‖β(k)‖xk‖.

By using the Hölder inequality, the last quantity is less or equal than[
1
γq
‖V1‖q+

d∑
k=0

1
β(k)q

‖T k−V1C
kV2‖q

]1/q[
γp

∥∥∥ d∑
k=0

CkV2xk

∥∥∥p

+
d∑

k=0

β(k)p‖xk‖p

]1/p

.

Taking the infimum over all representations of x, we obtain

(6.3) ‖x‖ 6

[
‖V1‖q

γq
+ sq

]1/q

|x|.

Thus | · | is a norm equivalent to the original one and, using (6.2) and (6.3), we
have

(6.4)
[
‖V1‖q

γq
+ sq

]−1/q

‖x‖ 6 |x| 6
[
γp‖V2‖p + β(0)p

]1/p

‖x‖.

We denote by E the Banach space X endowed with the new norm | · |.

6.3. The Banach space E is a SQp(X)-space. Let xj ∈ X, j = 1, . . . , n, with
their decompositions

xj =
∑
k>0

T kx
(k)
j .
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Let a = [aij ] ∈Mn(C) be a matrix such that ‖a‖p,X 6 1. This means that

(6.5)
∑

i

∥∥∥∑
j

aijyj

∥∥∥p

6
∑

j

‖yj‖p

for all yj ∈ X, j = 1, . . . , n. We will then have
n∑

j=1

aijxj =
∑

k

T k
( ∑

j

aijx
(k)
j

)
.

By Hernandez theorem we have to prove that ‖a‖p,E 6 ‖a‖p,X . Recall that Y is
a SQp(X)-space. We have∑

i

∣∣∣ ∑
j

aijxj

∣∣∣p 6
∑

i

(
γp

∥∥∥∑
k

CkV2

( ∑
j

aijx
(k)
j

)∥∥∥p

Y
+

∑
k

β(k)p
∥∥∥∑

j

aijx
(k)
j

∥∥∥p
)

=γp
∑

i

∥∥∥∑
j

aij

( ∑
k

CkV2x
(k)
j

)∥∥∥p

Y
+

∑
k

β(k)p
∑

i

∥∥∥∑
j

aijx
(k)
j

∥∥∥p

6γp
∑

j

∥∥∥∑
k

CkV2x
(k)
j

∥∥∥p

Y
+

∑
k

β(k)p
∑

j

‖x(k)
j ‖p

(by using equation (6.5) for X and Y )

=
∑

j

(
γp

∥∥∥∑
k

CkV2x
(k)
j

∥∥∥p

+
∑

k

β(k)p‖x(k)
j ‖p

)
.

By taking infimum over all possible decompositions we get∑
i

∣∣∣ ∑
j

aijxj

∣∣∣p 6
∑

j

|xj |p

and therefore E = (X, | · |) is a SQp(X)-space.

6.4. The operator T with respect to | · |. Let x be decomposed as

x =
∑
k>0

T kxk and let P (z) =
d∑

s=0
asz

s be a fixed polynomial. Then P (T )x =∑
k

T k
( ∑

i+j=k

aixj

)
is a decomposition of P (T )x. We obtain |P (T )x|p 6 Σ1 + Σ2,

where the two sums are given by

Σ1 = γp
∥∥∥∑

k

CkV2

( ∑
i+j=k

aixj

)∥∥∥p

and Σ2 =
∑

k

β(k)p
∥∥∥ ∑

i+j=k

aixj

∥∥∥p

.

6.4.1. The first sum. Since∑
k

CkV2

( ∑
i+j=k

aixj

)
=

∑
m

amC
m

( ∑
n

CnV2xn

)
,

we have

Σ1 = γp
∥∥∥P (C)

( ∑
n

CnV2xn

)∥∥∥p

6 γp‖P (C)‖p
B(Y )

∥∥∥∑
n

CnV2xn

∥∥∥p

.
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6.4.2. The second sum. The shift operator on `p(β,X), also denoted by S, acts
by

S(z0, z1, . . .) = (0, z0, z1, . . .).
Denote x̃ = (x0, x1, . . .) ∈ `p(β,X), where xk are the elements occuring in the
(finite) decomposition of x. The nth component of P (S)x̃ ∈ `p(β,X) is

∑
i+j=n

aixj ;

hence
Σ2 =

∑
k

β(k)p
∥∥∥ ∑

i+j=k

aixj

∥∥∥p

= ‖P (S)x̃‖p
`p(β,X)

6 ‖P (S)‖p
B(`p(β,X))

( ∑
n>0

β(n)p‖xn‖p
)
.

Combining now the estimates for the two sums, we obtain

|P (T )x|p 6max
(
‖P (C)‖p, ‖P (S)‖p

B(`p(β,X))

)(
γp

∥∥∥ ∑
n>0

CnV2xn

∥∥∥p

+
∑
n>0

β(n)p‖xn‖p
)
.

Taking the infimum over all representations of x we get

|P (T )x| 6 max
(
‖P (C)‖B(Y ), ‖P (S)‖B(`p(β,X))

)
|x|.

Therefore
‖P (T )‖B(E) 6 max

(
‖P (C)‖B(Y ), ‖P (S)‖B(`p(β,X))

)
.

In an analogous way it can be proved that∥∥[Pij(T )]
∥∥

B(`n
p (E))

6 max
(∥∥[Pij(C)]

∥∥
B(`n

p (Y ))
,
∥∥[Pij(S)]

∥∥
B(`n

p (β,X))

)
for all polynomials with matrix coefficients. We omit the details.

7. REMAINING PROOFS

7.1. Proof of Theorem 4.1. Set again C1 = C. Consider the equivalent norm
| · | as defined in the previous proof (p = q = 2, X = H and γ to be precised later
on). Since the class of Hilbert spaces is stable by taking subspaces, quotients and
ultraproducts of spaces of the form L2(µ;H), E is Hilbertian, that is, the new
norm | · | comes from an inner product. Also, the unilateral shift S on `2(β) is
unitarily equivalent to the weighted shift Sw(β) on `2 ([22]). The other parts of the
preceding proofs, excepting the inequality corresponding to (6.3), are the same.
The proof of the inequality

‖x‖ 6

[
‖V1‖2

γ2
+ s2

]1/2

|x|

runs as follows.
Suppose x = x0 + Tx1 + · · ·+ T dxd. We have

‖x‖ =
∥∥∥ d∑

k=0

V1C
kV2xk +

d∑
k=0

(T k − V1C
kV2)xk

∥∥∥
6

1
γ
‖V1‖

∥∥∥ d∑
k=0

γCkV2xk

∥∥∥ +
∥∥∥ d∑

k=0

(T k − V1C
kV2)xk

∥∥∥.
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Let y ∈ H. It follows from Lemma 2.2.3 that
+∞∑
n=0

1
β(n)2 ‖(T

n − V1C
n
1 V2)∗y‖2 6

s2‖y‖2. We obtain∣∣∣〈 d∑
k=0

(T k−V1C
kV2)xk, y

〉∣∣∣ =
∣∣∣ d∑

k=0

〈β(k)xk,
1

β(k)
(T k − V1C

kV2)∗y〉
∣∣∣

6
[ ∑

k

β(k)2‖xk‖2)1/2
][ d∑

n=0

1
β(n)2

‖(Tn − V1C
n
1 V2)∗y‖2

]1/2

6
[ ∑

k

β(k)2‖xk‖2)1/2
]
s‖y‖.

Therefore
∥∥∥ d∑

k=0

(T k − V1C
kV2)xk

∥∥∥ 6 s
[ ∑

k

β(k)2‖xk‖2
]1/2

. Another application of

the Cauchy-Schwarz inequality yields

‖x‖ 6
1
γ
‖V1‖

∥∥∥ d∑
k=0

γCkV2xk

∥∥∥ + s
[ ∑

k

β(k)2‖xk‖2
]1/2

6
[ 1
γ2
‖V1‖2 + s2

]1/2
[∥∥∥∑

k

γCkV2xk

∥∥∥2

+
∑

k

β(k)2‖xk‖2
]1/2

.

Taking the infimum over all representations of x, we obtain

‖x‖ 6

[
‖V1‖2

γ2
+ s2

]1/2

|x|.

This gives the similarity statement.
We prove now the estimate for the similarity constant. From Equation (6.4)

and the proof given above we have

Csim(T,CDOM(C ⊕ Sw(β))) 6

[
‖V1‖2

γ2
+ s2

]1/2[
γ2‖V2‖2 + β(0)2

]1/2

.

By assuming C = 0 if necessary, we may assume that V2 is not the null operator.
If s 6= 0, choose

γ =
[
β(0)‖V ∗1 ‖
s‖V2‖

]1/2

.

We then have

Csim(T,CDOM(C ⊕ Sw(β)))2 6 (‖V ∗1 ‖ ‖V2‖+ β(0)s)2.

If s = 0, then Tn = V1C
nV2 and thus T is completely polynomially dom-

inated by C with bound ‖V1‖ · ‖V2‖. Apply now Theorem 2.1.3. Note that in
this case Sw(β) is absent from the direct sum. The proof of Theorem 4.1 is now
complete.
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7.2. Proof of Corollary 5.1.1. The proof of this version of Rota theorem is
similar to the proof of Theorem 4.5. Indeed, if C = 0, then the new norm | · | is
given by

|x|p = inf
{ ∑

n>0

β(n)p‖xn‖p : x =
∑
k>0

T kxk

}
,

the inf being taken over all (finite) decompositions of x as sums of powers of T
applied to elements of X. This is the quotient norm of `p(X)/Ker(ψ), where the
onto map ψ is given by

`p(X) 3 (x0, x1, . . .) 7→ ψ(x0, x1, . . .) =
∑

k

T kxk ∈ X.

Take E to be X with this new norm. The rest of the proof is the same.

7.3. Proof of Proposition 3.1. For the first part of the theorem, it is sufficient
to prove that an operator asymptotically near an isometry is similar to an isometry.
Indeed, if we suppose that lim

n→∞
‖Tn − L−1V nL‖ = 0, with V an isometry, then

‖(LTL−1)n − V n‖ = ‖L(Tn − L−1V nL)L−1‖ tends to 0 as n goes to infinity and
so we will obtain the similarity of LTL−1, so of T , to an isometry.

Now, if T is asymptotically near an isometry V , then for each r ∈]0, 1[ there
exists k ∈ Z+ such that sup

n>k

‖Tn − V n‖ 6 r. Set R = T k and W = V k (W is an

isometry). We obtain sup
m>1

‖Rm−Wm‖ 6 r < 1. This implies that, for each x and

each m > 1,

(1− r)‖x‖ = ‖Wmx‖ − r‖x‖ 6 ‖Wmx‖ − ‖Rmx−Wmx‖ 6 ‖Rmx‖ 6 (1 + r)‖x‖.

By a theorem of Sz.-Nagy ([23]), R = T k is similar to an isometry and this implies
(Corollary 4.2, [18]) that T is similar to an isometry.

Suppose now that T is asymptotically near a unitary U . By the first part of
the proof, T is similar to an isometry. Therefore we can write V ∗ = L−1T ∗L, with
V an isometry, for a suitable invertible operator L. But T ∗ is asymptotically near
the isometry U∗ and so T ∗ is similar to an isometry. This implies that T ∗ and V ∗
are injective and so the isometry V is also onto. Therefore V is unitary and so T
is similar to a unitary.
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