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1. INTRODUCTION

A C∗-algebra A is said to be purely infinite if each non-zero hereditary C∗-
subalgebra B contains an infinite projection p i.e. a projection p for which there
is a partial isometry v in B with vv∗ = p and v∗v < p. For simple C∗-algebras
there are many equivalent conditions, as described in [10].

These definitions also make sense for real C∗-algebras, although an exami-
nation of the hereditary real C∗-subalgebras of a real C∗-algebra leads naturally
to a variant in which not all hereditary C∗-subalgebras are considered. Details
are given in Sections 2 and 3 below. It is then natural to conjecture that a real
C∗-algebra will be purely infinite if and only if its complexification is or, equiva-
lently, that, for each C∗-algebra A and involutory ∗-antiautomorphism Φ of A, A
will be purely infinite if and only if AΦ = {a ∈ A : Φ(a) = a∗} is. The purpose of
the present paper is to establish that whenever A is purely infinite, then so is AΦ.
The converse is also established under certain restrictive conditions.

The reader who is unfamiliar with real C∗-algebras is referred to [7] for the
basic theory and [15] for more specialised results. Much of the theory closely re-
sembles the complex case but there are significant differences. One such difference,
which arises in the present paper, is the looser link between algebraic and order
theoretic properties in the real case. For example, the positive cone in a real C∗-
algebra need not generate the algebra and there can be more than one algebra
with the same positive cone.
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2. HEREDITARY SUBALGEBRAS OF REAL C∗-ALGEBRAS

The problem posed above leads to a consideration of the relationship between
hereditary subalgebras of AΦ and A. It is not always true that the complexification
of a hereditary subalgebra of AΦ is hereditary in A, as is shown by taking A to

be M2(C) and Φ to map
(

a b
c d

)
to

(
d −b
−c a

)
. Then AΦ is isomorphic to the

algebra H of quaternions and R1 is a hereditary subalgebra of AΦ, although its
complexification C1 is not hereditary in A. As the following two easy propositions
show, this behaviour is related to the fact that both R1 and H have the same
positive cone and only H is of the form L ∩ L∗ for some left ideal L in H. The
first result is the real version of Theorem 1.5.2 of [11], in which all three maps are
bijections.

Proposition 2.1. Let R be a real C∗-algebra.
(i) The mapping B 7→ B+ is an order preserving surjection from the set of

hereditary C∗-subalgebras of R onto the set of closed hereditary cones of R+.
(ii) The mapping L 7→ L ∩ L∗ is an order preserving injection from the set

of closed left ideals of R into the set of hereditary C∗-subalgebras of R.
(iii) The composite mapping L 7→ (L ∩ L∗)+ is an order preserving bijection

from the set of closed left ideals of R onto the set of closed hereditary cones of R+

with inverse M 7→ L(M) = {x ∈ R : x∗x ∈ M}.

Proof. The proof of Theorem 1.5.2 of [11] applies without change.

Based on Proposition 2.1, define a regular hereditary C∗-subalgebra of a real
C∗-algebra R to be one of the form L ∩ L∗ for some closed left ideal L of R. The
simplest example of a non-regular hereditary C∗-subalgebra is R ⊆ H, which has no
non-trivial left ideals. As remarked above, the complexification of this non-regular
hereditary subalgebra is not hereditary. However, as the next proposition shows,
the complexification of a regular hereditary C∗-subalgebra is always hereditary.

Proposition 2.2. Let Φ be an involutory ∗-antiautomorphism of a C∗-
algebra A and let AΦ = {x ∈ A : Φ(x) = x∗}.

(i) The mapping L 7→ LC ∩ (LC)∗, where LC = {x + iy : x, y ∈ L}, is
a bijection from the closed left ideals of AΦ onto the Φ-invariant hereditary C∗-
subalgebras of A, with inverse B 7→ L(B) ∩AΦ = {x ∈ AΦ : x∗x ∈ B}.

(ii) The mapping B 7→ B ∩AΦ is a bijection from the Φ-invariant hereditary
C∗-subalgebras of A onto the regular hereditary real C∗-subalgebras of AΦ, with
inverse C 7→ C + iC.

Proof. (i) LC is clearly a closed left ideal of A and so LC∩(LC)∗ is a hereditary
C∗-subalgebra, which is Φ-invariant because Φ(LC) = (LC)∗. The map LC 7→ LC∩
(LC)∗ is injective by Theorem 1.5.2 of [11] and the map L 7→ LC is injective because
LC ∩ AΦ = L. If B is a Φ-invariant hereditary C∗-subalgebra of A, then {x ∈
AΦ : x∗x ∈ B}C ⊆ {x ∈ A : x∗x ∈ B}. Conversely let (x + iy)∗(x + iy) ∈ B with
x, y ∈ AΦ. From the Φ-invariance of B, (x∗+iy∗)(x−iy) = Φ(x+iy)Φ(x+iy)∗ ∈ B,
so both x∗x+y∗y+i(x∗y−y∗x) ∈ B and x∗x+y∗y−i(x∗y−y∗x) ∈ B. Thus x∗x ∈ B
and y∗y ∈ B and so {x ∈ AΦ : x∗x ∈ B}C = {x ∈ A : x∗x ∈ B}. From Theorem
1.5.2 of [11], it follows that {x ∈ AΦ : x∗x ∈ B}C ∩

(
{x ∈ AΦ : x∗x ∈ B}C)∗ = B.
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(ii) By part (i) and Proposition 2.1 the map B 7→ AΦ ∩ L(B) ∩ L(B)∗ =
AΦ∩B is a bijection from the Φ-invariant hereditary C∗-subalgebras of A onto the
regular hereditary real C∗-subalgebras of AΦ with inverse D 7→ L(D)C∩

(
L(D)C)∗.

Clearly DC ⊆ L(D)C ∩
(
L(D)C)∗. Conversely, given x ∈ L(D)C ∩

(
L(D)C)∗,

x = 1
2 (x + Φ(x∗)) − i

2 (ix + Φ((ix)∗)), where x + Φ(x∗) and ix + Φ((ix)∗) both
belong to L(D)C ∩ (L(D)C)∗ ∩AΦ = D, as required.

It follows from part (ii) of the proposition that, for each positive element x
in AΦ, the closure of xAΦx, which is equal to xAx ∩ AΦ, is a regular hereditary
subalgebra of AΦ. However the hereditary real C∗-subalgebra generated by x may
be a proper subset, as illustrated by the case x = 1 and AΦ = H.

3. REAL STRUCTURES IN PURELY INFINITE ALGEBRAS

Following the local version of the usual complex definition, we will say that a
real C∗-algebra R is purely infinite if, for each non-zero positive element x, the
hereditary real C∗-algebra xRx contains an infinite projection. Note that it is
possible, if somewhat unlikely, that some non regular hereditary real C∗-subalgebra
B will not contain a projection which is infinite in B, even though the set of
projections of such an algebra is equal to the set of projections of the regular
hereditary real C∗–algebra C sharing the same positive cone, and B thus contains
a projection which is infinite in C.

The aim of the present section is to establish, using the method of proof
of Theorem 3 of [8], that whenever A is purely infinite then so is AΦ for each
involutory ∗-antiautomorphism Φ of A. The first preparatory lemma, which is
a minor variant of Lemma 1.1 of [9], shows that involutory ∗-antiautomorphisms
share some of the properties of properly outer automorphisms.

Lemma 3.1. Let A be a C∗-algebra and let Φ be an involutory ∗-antiauto-
morphism of A. For any non-zero hereditary C∗-subalgebra B of A and for any
a ∈ A with Φ(a) = a, inf{‖xaΦ(x)‖ : 0 6 x ∈ B, ‖x‖ = 1} = 0. When A is
non-unital then, in addition, inf{‖xΦ(x)‖ : 0 6 x ∈ B, ‖x‖ = 1} = 0.

Proof. Suppose, to obtain a contradiction, that inf{‖xaΦ(x)‖ : 0 6 x ∈
B, ‖x‖ = 1} = δ > 0 or that inf{‖xΦ(x)‖ : 0 6 x ∈ B, ‖x‖ = 1} = δ >
0. The first part of the proof of Lemma 1.1 of [9] applies without change to
the antilinear automorphism α = Φ ◦ ∗ of A, to produce a pure state ϕ of B,
with GNS representation, (πϕ,Hϕ,Ωϕ), and an antiunitary operator V on Hϕ

with V πϕ(x)V ∗ = πϕ(α(x)) for each x ∈ A. If E is the projection onto the
closed subspace [πϕ(B)Ωϕ] = [πϕ(B)Hϕ] then, for any unit vector h ∈ EHϕ,
|(πϕ(a)V h, h)| > δ or |(V h, h)| > δ. For each x ∈ A, V 2πϕ(x)V 2 = V πϕ(Φ(x∗))V ∗

= πϕ(x), so V 2 = λI for some λ ∈ C with |λ| = 1. Then V 3 = V 2V = λV and
also V 3 = V V 2 = V (λI) = λV , so λ = λ and therefore λ = ±I.

When V 2 = I then (πϕ(a)V h, h) = (h, V ∗πϕ(a∗)h) = (h, V πϕ(a∗)h) =
(h, πϕ(Φ(a))V h). Thus, using the condition Φ(a) = a, (πϕ(a)V h, h) ∈ R. Also
(V h, h) ∈ R. Then, after replacing V by −V if necessary, (Eπϕ(a)V Eh, h) =
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(πϕ(a)V h, h) > δ or (V h, h) > δ for each unit vector h ∈ EHϕ. It follows, as in
the proof of Lemma 1.1 of [9], that Eπϕ(a)V E > δE or EV E > δE and then that

(3.1) πϕ(b∗)πϕ(a)V πϕ(b) > δπϕ(b∗b) or πϕ(b∗)V πϕ(b) > δπϕ(b∗b)

for each b ∈ B.
When V 2 = −I then (πϕ(a)V h, h) = −(h, πϕ(a)V h) and so (πϕ(a)V h, h) ∈

iR. Similarly (V h, h) ∈ iR. Again replacing V by −V if necessary, i(πϕ(a)V h, h) >
δ or i(V h, h) > δ for each unit vector h in EHϕ, so iEπϕ(a)V E > δE or iEV E >
δE and then

(3.2) iπϕ(b∗)πϕ(a)V πϕ(b) > δπϕ(b∗b) or iπϕ(b∗)V πϕ(b) > δπϕ(b∗b)

for each b ∈ B.
In both cases (V 2 = I and V 2 = −I), the real C∗-algebra generated by

πϕ(A) and V consists of elements of the form πϕ(x)+V or πϕ(x)+πϕ(y)V , where
x, y ∈ A. The representation of each element is unique because each πϕ(x) is linear
whereas V is antilinear. Hence β : R → R can be defined by β(πϕ(x)+πϕ(y)V ) =
πϕ(x) − πϕ(y)V and β(πϕ(x) + V ) = πϕ(x) − V and it is easily checked that
β is a ∗-automorphism of R. Applying β to both sides of (3.1) or (3.2) then
gives the required contradiction. (Although β is not necessarily complex linear,
β(iπϕ(b∗)) = β(πϕ(ib∗)) = πϕ(ib∗) = iπϕ(b∗) for b ∈ B.)

Lemma 3.2. Let A be a purely infinite C∗-algebra, let Φ be an involutory
∗-antiautomorphism of A and let ε > 0. Then there exists a projection p ∈ A with
‖pΦ(p)‖ < ε.

Proof. By Lemma 3.1 there exists x ∈ A with x > 0, ‖x‖ = 1 and ‖xΦ(x)‖ <
ε
4 . As described in the proof of Theorem V.5.5 of [4], let

f(t) =

{
0 if 0 6 t 6 1− ε

4 ,

1− 4(1−t)
ε if 1− ε

4 < t 6 1.

There exists an infinite projection p in the hereditary C∗-subalgebra f(x)Af(x)
and, as in the proof of Theorem V.5.5 of [4], note that p 6 Ex[1− ε

4 , 1], where the
right hand side denotes the spectral projection of x corresponding to the interval
[1 − ε

4 , 1]. Consideration of the commutative W ∗-algebra generated by x reveals
that ‖xEx − Ex‖ 6 ε

4 and thus

‖ExΦ(Ex)‖ 6 ‖xExΦ(xEx)‖+ ‖(Ex − xEx)Φ(xEx)‖+ ‖Ex(Φ(Ex)− Φ(xEx))‖

6 ‖xΦ(x)‖+
ε

4
+

ε

4
< ε.

Thus, using pEx = p = Exp,

‖pΦ(p)‖ = ‖pExΦ(pEx)‖ = ‖pExΦ(Ex)Φ(p)‖ 6 ‖ExΦ(Ex)‖ 6 ε.

The main result can now be proved using the method of proof of Theorem 3
of [8].
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Theorem 3.3. Let A be a purely infinite C∗-algebra, let Φ be an involutory
∗-antiautomorphism of A and let AΦ = {x ∈ A : Φ(x) = x∗}. Then AΦ is purely
infinite.

Proof. Let 0 < ε < 1
10 , let B be a regular hereditary real C∗-subalgebra of AΦ

and let BC = B + iB be the Φ-invariant hereditary C∗-subalgebra of A associated
with B as in Proposition 2.2 (ii). By Lemma 3.2 applied to BC there exists a
projection p in BC with ‖pΦ(p)‖ < ε. By Lemma 2.7 of [6] p̃ = p ∨ Φ(p) ∈ BC

and hence, by Proposition 2.2 (ii), p̃ ∈ BC
+ ∩ AΦ = B+. From the purely infinite

property of BC there exists a partial isometry, v in BC with v∗v = p, vv∗ = e <
p, v = ev and v = vp. As in the proof of Theorem 3 of [8], put w = v+Φ(v∗). Then
w∗w = v∗v + Φ(v∗v) + v∗Φ(v∗) + Φ(v)v = p + Φ(p) + v∗Φ(v∗) + Φ(v)v. Note that
‖v∗Φ(v∗)‖ = ‖Φ(v)v‖ = ‖Φ(ev)ev‖ = ‖Φ(v)Φ(e)ev‖ 6 ‖Φ(e)e‖ = ‖Φ(pe)pe‖ =
‖Φ(e)Φ(p)pe‖ 6 ‖Φ(p)p‖ < ε and that, by Lemma 2 of [8], ‖p + Φ̃(p) − p̃‖ <
4ε/

√
1− 2ε < 8ε. Thus ‖w∗w − p̃‖ < 10ε < 1. However, using vp = v and

Φ(v∗)Φ(p) = Φ(v∗), wp̃ = [v + Φ(v∗)](p∨Φ(p)) = v(p∨Φ(p)) + Φ(v∗)(p∨Φ(p)) =
v + Φ(v∗) = w. Thus w∗wp̃ = w∗w and hence also p̃w∗w = w∗w, so w∗w ∈ BC

p̃ =
p̃BCp̃. From ‖w∗w − p̃‖ < 1, w∗w is invertible in BC

p̃ . Let its inverse be y and let
u = wy1/2. Then u∗u = y1/2w∗wy1/2 = p̃ and uu∗ = wyw∗. As observed above,
‖Φ(e)e‖ < ε so ẽ = e∨Φ(e) ∈ BC and ẽw = (e∨Φ(e))(v+Φ(v∗)) = v+Φ(v∗) = w.
Hence w∗ẽ = w∗ and ẽuu∗ = uu∗ = uu∗ẽ.

If ẽ = p̃ then (p− e)ẽ = p− e but

‖(p− e)ẽ‖ 6 ‖ẽ− e− Φ(e)‖+ ‖(p− e)(e + Φ(e)‖ <
4ε√

1− 2ε
+ ‖(p− e)Φ(e)‖

=
4ε√

1− 2ε
+ ‖(p− e)pΦ(p)Φ(e)‖ <

4ε√
1− 2ε

+ ε < 1.

Hence uu∗ 6 ẽ < p̃, showing that p̃ is an infinite projection in BC. From the
definition of w,Φ(w) = w∗ so w ∈ BC ∩AΦ which, by the regularity of B, is equal
to B and therefore y ∈ B and u ∈ B. Thus p̃ is an infinite projection in B.

4. THE COMPLEXIFICATION OF CERTAIN PURELY INFINITE REAL ALGEBRAS

It is natural to conjecture that the converse of Theorem 3.3 is also true. However
a natural difficulty arises when trying to establish the existence of an infinite
projection in a hereditary C∗-subalgebra B of A with B ∩AΦ = {0}. The algebra
A can be regarded as a subalgebra of M2(AΦ) but there are difficulties establishing
that a projection in A which is infinite in M2(AΦ) is infinite in A, just as there are
differences between the K-theory of a real algebra AΦ and its complexification A.
In the present section a partial converse will be obtained by making the restrictive
assumptions that A is simple, unital and has real rank zero. It is natural to
conjecture that the latter property can be deduced from the fact, to be noted
below, that AΦ has real rank zero. However, in an analogous way to the discrete
crossed product situation discussed after Proposition 3.6 of [3], it is not obvious
how to link the real rank of an algebra and its complexification.
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The method to be employed in establishing the partial converse is to observe
that Rørdam’s proof, that if A is a purely infinite simple C∗-algebra then M(A⊗
K)/A ⊗ K is simple, can be carried over to the real setting. The first step is to
observe the equivalence in the real case of the definition of purely infinite used in
[14] and that given above.

Proposition 4.1. A unital simple real C∗-algebra A different from R, C or
H is purely infinite if and only if for all non-zero positive x ∈ A there exists r ∈ A
with r∗xr = 1.

Proof. The proof of Theorem V.5.5 of [4] (together with the proofs of its
antecedents Theorem V.5.1, Exercise V.9 and Lemma V.5.4) applies without sub-
stantial change to the real case. It should however be noted that the proof relies
on the regularity of the appropriate hereditary subalgebra B in order to show
that a given partial isometry SP belongs to B: this is necessary to show that the
projection P is infinite in B.

Other results which hold in the real case by the same proofs as in the complex
case (from Theorem 2.6 of [3] and Proposition 14 of [12]) are the equivalence of
the conditions HP, FS and real rank zero. Furthermore, a purely infinite real
C∗-algebra has the real rank zero for the same reasons as in the complex case,
described in Lemma 1.1, Corollary 1.3 and Theorem 1.2 of [18], together with the
underlying Theorem 4.23 of [2] and Theorem 2.1, Lemmas 2.2 to 2.5, Corollary 2.6
and Theorem 3.1 of [1]. (The constructions in these results are compatible with the
actions of the appropriate antiautomorphisms.) It also follows as in the complex
case, described in Theorems 2.10 and 2.5 of [3], that the n×n matrix algebra over
a real C∗-algebra with the property FS also has this property. This then leads to
the following real version of a well-known result.

Lemma 4.2. If R is a purely infinite real C∗-algebra then so is Mn(R).

Proof. Let A be the complexification of R and identify R with AΦ = {x ∈
A : Φ(x) = x∗} for an appropriate involutory ∗-antiautomorphism Φ of A. By
Lemma 1.2 of [16], if p, q are projections in Mn(A) then there are projections e, f
in Mn(A) such that [f ] 6 [p], [e] 6 [1− p] and q = e+ f , where 1 is the identity of
M(Mn(A)). An inspection of the proofs shows that if Φ̃ is the antiautomorphism
of Mn(A) corresponding to Mn(AΦ) and if Φ̃(p) = p and Φ̃(q) = q then, using the
FS property of AΦ, e and f can be chosen with Φ̃(e) = e and Φ̃(f) = f . Also
the partial isometries v = (qpq)−1/2(qp) and w = (e(1 − p)e)−1/2e(1 − p) satisfy
Φ̃(v) = v∗ and Φ̃(w) = w∗, as required to show that [q] 6 [p] and [e] 6 [1 − p]
in M(Mn(AΦ)). Let B be a regular hereditary real C∗-subalgebra of Mn(AΦ).
Then, by the FS property, B contains a non-zero projection q. If r is a non-zero
projection in AΦ and 1 − p = diag(r, 0, 0, . . . , 0) then, as described above there
exists e 6 q in Mn(AΦ) with [e] 6 [1− p]. If f 6 1− p with [e] = [f ] then f is of
the form diag(s, 0, . . . , 0) where, by the purely infinite property of AΦ, s is infinite.
Thus f is infinite in Mn(AΦ). Hence so is e and therefore q. It then follows from
the regularity of B that q is infinite in B.

The other main input needed for the real analogue of Rørdam’s result is a
real version of Theorem 2.8 of [14] and hence a real version of Theorem 3.1 of [5].
The following lemma supplies this.
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Lemma 4.3. Let A be a unital C∗-algebra, let Ψ be an involutory ∗-antiauto-
morphism of A and let Ψ̃ = Ψ⊗Tr be the associated antiautomorphism of A⊗K,
where Tr denotes the transpose map on K given by some choice of orthonormal
basis of the underlying space. For every Y ∈ M(A⊗K) with Ψ̃(Y ) = Y ∗ there is
a diagonal element X ∈ M(A⊗K)+ with Ψ̃(X) = X∗ such that I(X) + A⊗K =
I(Y ) + A⊗K.

Proof. Each stage of the construction in the proof of Theorem 3.1 of [5] can
be made compatible with the given ∗-antiautomorphisms.

The proof of Theorem 3.2 of [14] can now be applied to yield the following
result.

Theorem 4.4. Let A be a simple C∗-algebra, let Ψ be an involutory ∗-
antiautomorphsim of A and let Ψ̃ = Ψ⊗Tr be the associated antiautomorphism of
A⊗K. If AΨ is purely infinite then M((A⊗K)

Ψ̃
)/(A⊗K)

Ψ̃
is simple.

Proof. Let I be an ideal of M(A ⊗ K)
Ψ̃

properly containing (A ⊗ K)
Ψ̃
, so

that its complexification IC is a Ψ̃-invariant ideal of M(A⊗K) properly containing
A ⊗ K. There exists Y ∈ IC with Y /∈ A ⊗ K and Ψ̃(Y ) = Y ∗. Then, by
Lemma 4.3, there exists a positive diagonal X = Diag(x1, x2, . . .) with Ψ̃(X) = X∗

and X /∈ A⊗K. The construction in the proof of Theorem 3.2 of [14], using the
result of Lemma 4.2 that each matrix algebra over AΨ is purely infinite, shows
that IC ⊇ I(X) = M(A⊗K) and so I = M((A⊗K)

Ψ̃
.

It follows from Theorem 4.4 that the centre of M((A ⊗ K)
Ψ̃
)/(A ⊗ K)

Ψ̃
is

isomorphic to either R or C. The second case seems unlikely and is ruled out
under restrictive conditions in the following proposition.

Proposition 4.5. Let A be a σ-unital simple C∗-algebra with real rank zero
and let Φ be an involutory ∗-antiautomorphism of A with extension Φ̃ to M(A)/A.
Then if (M(A)/A)

Φ̃
is simple its centre is isomorphic to R.

Proof. If the centre of (M(A)/A)
Φ̃

is isomorphic to C, then M(A)/A is iso-
morphic to (M(A)/A)

Φ̃
⊕ (M(A)/A)op

Φ̃
via the isomorphism (x, y) 7→ (x + y∗)/2 +

i(x − y∗)/2I (where I is used for the element of the center of (M(A)/A)
Φ̃

corre-
sponding to the imaginary unit). However this contradicts Corollary 6.3 of [17],
which states that, under the hypotheses of the proposition, the intersection of any
finite number of nonzero closed ideals of M(A)/A is non-zero.

The partial converse to Theorem 3.3 can now be obtained.

Theorem 4.6. Let A be a simple, unital C∗-algebra with real rank zero and
let Φ be an involutory ∗-antiautomorphism of A. If AΦ is purely infinite then so
is A.

Proof. By Theorem 4.4, M((A ⊗K)
Φ̃
)/(A ⊗K)

Φ̃
is simple, where Φ̃ is the

antiautomorphism Φ ⊗ Tr and, by Proposition 4.5, its centre is isomorphic to
R. Thus M((A ⊗ K)Φ)/(A ⊗ K)

Φ̃
is a central simple R-algebra (as defined in

Section 12.4 of [13]). It follows from Lemma 6 in Section 12.4 of [13] that M(A⊗
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K)/(A ⊗ K), which is isomorphic to [M((A ⊗ K)
Φ̃
)/(A ⊗ K)

Φ̃
] ⊗R C, is simple.

Hence, by Theorem 3.2 of [14], A is either isomorphic to Mn(C) for some n, which
contradicts the conditions on AΦ, or is purely infinite, as required.
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15. H. Schröder, K-theory for Real C∗-Algebras and Applications, Pitman Res. Notes

Math. Ser., vol. 290, Longman, 1993.
16. S. Zhang, A Riesz decomposition property and ideal structure of multiplier algebras,

J. Operator Theory 24(1990), 209–225.
17. S. Zhang, C∗-algebras with real rank zero and the internal structure of their corona

and multiplier algebra. III, Canad. J. Math. 42(1990), 159–190.
18. S. Zhang, Certain C∗-algebras with real rank zero and their corona and multiplier

algebras. I, Pacific J. Math. 155(1992), 169–197.

P.J. STACEY
Department of Mathematics

La Trobe University
Victoria, 3086
AUSTRALIA

E-mail: P.Stacey@latrobe.edu.au

Received August 8, 2000.


