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Dedicated to Professor G.K. Pedersen on his 60th birthday

Communicated by Şerban Strătilă

Abstract. We prove a general result on the strict approximability of nor-
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of L.G. Brown concerning the non-existence of non-zero separable hereditary
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INTRODUCTION

The systematic study of the multiplier algebra M(A) of a C∗-algebra A began in
the works [8] (for commutative A) and [9], [23], [2] (for general A). In the com-
mutative setting, for A the C∗-algebra C0(Ω) of all continuous complex functions
on a locally compact Hausdorff topological space Ω, vanishing at infinity, M(A)
identifies with the C∗-algebra Cb(Ω) of all bounded continuous complex functions
on Ω. In the general setting M(A) can be represented as the C∗-subalgebra

{x ∈ A∗∗ : xa, ax ∈ A for all a ∈ A}

of the second dual A∗∗. In particular, for A the C∗-algebra K(H) of all compact
linear operators on a complex Hilbert space H, we can identify M(A) with the
C∗-algebra B(H) of all bounded linear operators on H.
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A natural locally convex vector space topology on M(A), called the strict
topology β, is defined by the seminorms

x 7→ ‖xa‖ and x 7→ ‖ax‖, a ∈ A.

It is complete and compatible with the duality between M(A) and A∗. Hence the
strict topology is weaker than the norm-topology on M(A), but stronger than the
restriction to M(A) of the weak ∗-topology of A∗∗. Furthermore, A is a strictly
dense, norm-closed two-sided ideal of M(A). For Ω as above, on every bounded
subset of Cb(Ω) the strict topology coincides with the topology of the uniform
convergence on the compact subsets of Ω. On the other hand, for H a complex
Hilbert space, on every bounded subset of B(H) the strict topology coincides with
the s∗-topology.

For the basic facts concerning multipliers of C∗-algebras and the strict topol-
ogy on them we refer to 3.12 in [19] and Chapter 2 in [26].

We recall that if A0 is a C∗-subalgebra of a C∗-algebra A, which contains
an (increasing, positive) approximate unit (uι)ι for A, then M(A0) ⊂ M(A) (see
[2], Proposition 2.6 or [19], 3.12.12). Actually M(A0) is the strict closure of A0 in
M(A). We notice also that M(A0)∩A = A0 because ‖x−uιx‖ → 0 and uιx ∈ A0

whenever x ∈ M(A0) ∩ A. Therefore the corona algebra C(A0) = M(A0)/A0 is
canonically imbedded in C(A) = M(A)/A.

We recall also that a C∗-algebra is called σ-unital whenever it contains a
strictly positive element or, equivalently, it has a countable approximate unit (see
[19], 3.10.4, 3.10.5). A C∗-subalgebra A0 of a σ-unital C∗-algebra A contains an
approximate unit for A if and only if it contains a strictly positive element of A.
Indeed, if A0 contains an approximate unit (uι)ι for A and a is strictly positive
element of A then there is a sequence ι1 6 ι2 6 · · · with ‖a − uιj

a‖ 6 1
j and

it follows that already (uιj )j>1 ⊂ A0 is approximate unit for A (see e.g. [26],
Lemma 2.3.6), so

∑
j>1

2−juιj
∈ A0 is a strictly positive element of A.

Now let A be a C∗-algebra. We say that x ∈ M(A) belongs to the (atomic)
abelian strict closure of A if there exists a commutative C∗-subalgebra Cx of A
(generated by a family of mutually orthogonal projections) such that x belongs to
the strict closure of Cx in M(A). Every element in the abelian strict closure of A
is clearly normal.

Furthermore, we say that x ∈ M(A) belongs to the strong (atomic) abelian
strict closure of A if there exists a commutative C∗-subalgebra Cx of A as above,
which additionally contains an approximate unit for A. In this case the strict
closure of Cx in M(A) identifies with M(Cx).

Let us assume that the C∗-algebra A is σ-unital and x ∈ M(A) belongs to the
strong atomic abelian strict closure of A. Let further Cx denote a commutative
C∗-subalgebra of A, generated by a family of mutually orthogonal projections,
containing an approximate unit for A and satisfying x ∈ M(Cx). Then Cx contains
a strictly positive element of A, hence it is generated by a countable family of
mutually orthogonal projections, whose strict sum in M(A) is 1A∗∗ . Thus there
exists a countable family (ej)j of projections in A with∑

j

ej = 1A∗∗ and x =
∑

j

λjej ,
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where (λj)j is a bounded family in C and the series are strictly convergent.
Taking into account the above remark, the celebrated Weyl-von Neumann-

Berg-Sikonia theorem claims that, for H a separable complex Hilbert space and
A = K(H), every normal element y ∈ M(A) is of the form y = b + x with b ∈ A
and x belonging to the strong atomic abelian strict closure of A. This property was
extensively investigated for general C∗-algebras A of real rank zero (alias satisfying
the condition FS of G.K. Pedersen), which seems to be the natural frame for it
(see e.g. [17], [7], [27], [12], [14], [15], [16]).

For arbitrary C∗-algebra A, not necessarily rich in projections, it seems rea-
sonable to cancel the word “atomic” in the above statement and to look for the
elements of M(A) which belong modulo A to the strong abelian strict closure of A.
It would be interesting to describe these elements and the main result of the first
section can be considered a step toward this goal: we prove that, modulo A, every
separable C∗-subalgebra of M(A) can be appropriately decomposed in two C∗-
subalgebras of M(A), each one of them having all normal elements in the strong
abelian strict closure of A. As an application we reprove a result of L.G. Brown
concerning the non-existence of non-zero separable hereditary C∗-subalgebras of
the corona algebras of σ-unital C∗-algebras ([5], Corollary 7) by reducing the prob-
lem to the commutative case, in which an appropriate classical result of E. C̆ech
can be used.

In the second section we investigate the structure of the separable hereditary
C∗-subalgebras of the so called SAW ∗-algebras, a class of C∗-algebras containing
all corona algebras of σ-unital C∗-algebras (see [21], Theorem 13), but also all
quotients of AW ∗-algebras by norm-closed two-sided ideals.

1. ABELIAN STRICT APPROXIMATION FOR MULTIPLIERS
OF σ-UNITAL C∗-ALGEBRAS

For any subset S of a C∗-algebra A we denote by HerA(S) the hereditary C∗-
subalgebra of A generated by S. We recall that for a surjective ∗-homomorphism
π : A → B between C∗-algebras and S ⊂ A we have

HerB(π(S)) = π(HerA(S))

(see [19], 1.5.11).
The main result of this section is the following

Theorem 1.1. (On abelian strict approximability) Let A be a σ-unital C∗-
algebra, 0 6 a 6 1A∗∗ a strictly positive element of A, and B ⊂ M(A) a separable
C∗-subalgebra. Then there are, for j = 1, 2:

(i) a continuous function fj : [0, 1] → [0, 1] vanishing only at 0,
(ii) a separable C∗-subalgebra Aj ⊂ A,

such that fj(a) is in the centre of Aj (it is necessarily strictly positive in A); and
(iii) a separable C∗-subalgebra Bj ⊂ M(Aj) ∩ (A + HerM(A)(B)) satisfying

{x ∈ Bj : x normal} ⊂ abelian strict closure of Aj (hence ⊂ strong abelian strict
closure of Aj), such that

B ⊂ A + B1 + B2.

For the proof we need quasi-central approximate units (see [24], [3], [1]).
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More precisely, we shall use the following version, essentially identical to
Theorem 2.2 of [22]:

Lemma 1.2. If A is a σ-unital C∗-algebra, 0 6 a 6 1A∗∗ a strictly positive
element of A, (xk)k>1 a sequence in M(A) and (εn)n>1 ⊂ (0,+∞), then there
are:

(i) continuous functions fn : [0, 1] → [0, 1], n > 1,
(ii) 1 > λ1 > λ′1 > λ2 > λ′2 > · · · > 0, λn 6 εn,

such that

(a) fn(λ) =
{

1 for λ > λn,
0 for λ 6 λ′n;

(b) ‖fn(a)xk − xkfn(a)‖ 6 εn for all 1 6 k 6 n.

The following result is actually folklore for the experts (cf. e.g. [18], 2.3, 2.4,
2.5), but we have no reference for it as formulated below:

Lemma 1.3. Let A be a σ-unital C∗-algebra, 0 6 a 6 1A∗∗ a strictly positive
element of A, and B ⊂ M(A) a separable C∗-subalgebra. Then there are:

(i) continuous functions gn : [0, 1] → [0, 1], n > 1,
(ii) 1 = µ1 = µ′1 > µ2 > µ′2 > · · · > 0, lim

n→∞
µn = 0,

such that

supp gn ⊂ [µ′n+1, µn] for n > 1, and
∞∑

n=1

gn(λ)2 = 1 for λ ∈ (0, 1]

and, for every J ⊂ {1, 2, . . .},
(a)

∑
n∈J

gn(a)xgn(a) converges strictly and
∥∥∥ ∑

n∈J

gn(a)xgn(a)
∥∥∥ 6 ‖x‖

for x ∈ M(A),
(b)

∑
n∈J

gn(a)xgn(a) converges in the norm topology for x ∈ A,

(c)
∑

n∈J

gn(a)xygn(a)− x
∑

n∈J

gn(a)2y ∈ A for x, y ∈ B.

In particular, x−
∞∑

n=1
gn(a)xgn(a) ∈ A for x ∈ B.

Proof. Choose a dense sequence (xk)k>1 in the unit ball of B and put εn =
4−n, n > 1. Let now fn, λn, λ′n be as in Lemma 1.2 and define g1 = f

1/2
1 , gn =

(fn − fn−1)1/2 for n > 2, and µ1 = µ′1 = 1, µn = λn−1 and µ′n = λ′n−1 for n > 2.
Clearly, the functions gn are continuous, 1 = µ1 = µ′1 > µ2 > µ′2 > · · · > 0,

µn 6 41−n, supp gn ⊂ [µ′n+1, µn] and
∞∑

n=1
gn(λ)2 = lim

n→∞
fn(λ) = 1 for λ ∈ (0, 1].

We notice that, according to the proof of Lemma 2.4 from [18], the weak∗ sum∑
n∈J

gn(a)xgn(a) exists in A∗∗ for every J ⊂ {1, 2 . . .} and x ∈ A∗∗, having

(1.1)
∥∥∥∥ ∑

n∈J

gn(a)xgn(a)
∥∥∥∥ 6 ‖x‖.

Now let J ⊂ {1, 2, . . .} be arbitrary.
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For x ∈ M(A) the sum
∑

n∈J

gn(a)xgn(a) converges strictly. Indeed, by

(1.1) and by [26], Lemma 2.3.6, it is enough to prove the norm convergence of∑
n∈J

gn(a)xgn(a)a, which follows from∑
n∈J

‖gn(a)xgn(a)a‖ 6 ‖x‖
∑
n∈J

‖gn(a)a‖ 6 ‖x‖
∑
n∈J

µn 6 ‖x‖
∑
n∈J

41−n < +∞.

Moreover, for x ∈ A we have norm convergence. Indeed, by (1.1){
x ∈ A :

∑
n∈J

gn(a)xgn(a) norm convergent
}

is a norm closed linear subspace of A and, by the condition on the supports of

the gn’s, it contains every positive x ∈ A which is majorized by
n∑

j=1

gj(a)2 for

some n. But
( n∑

j=1

gj(a)2
)1/2

, n = 1, 2, . . . is an approximate unit for A, so every

0 6 x 6 1A∗∗ in A is norm limit of
( n∑

j=1

gj(a)2
)1/2

x
( n∑

j=1

gj(a)2
)1/2

6
n∑

j=1

gj(a)2,

n = 1, 2, . . ..
It remains only to prove the last statement of the lemma. Since{

(x, y) ∈ B ×B :
∑
n∈J

gn(a)xygn(a)− x
∑
n∈J

g(a)2y ∈ A

}
is a norm closed cone in B ×B, it is enough to prove that it contains (xk, xl) for
any k, l > 1. Further, this will follow once we prove that∑

n>k,l

‖gn(a)xkxlgn(a)− xkgn(a)2xl‖ < +∞.

But, according to [18], Lemma 2.1, we have for all n > k, l

‖gn(a)xkxlgn(a)− xkgn(a)2xl‖ = ‖[gn(a), xk]xlgn(a)− xkgn(a)[gn(a), xl]‖
6 ‖[gn(a), xk]‖+ ‖[gn(a), xl]‖ 6

√
2
(
‖[gn(a)2, xk]‖1/2 + ‖[gn(a)2, xl]‖1/2

)
=
√

2
(
‖[fn(a), xk]− [fn−1(a), xk]‖1/2 + ‖[fn(a), xl]− [fn−1(a), xl]‖1/2

)
6
√

2 · 2(εn + εn−1)1/2 < 4
√

εn−1 = 8 · 2−n.

Proof of the Theorem 1.1. Let gn, µn, µ′n be as in Lemma 1.3. Then the inter-
vals [µ′n+1, µn], n > 1 odd, are mutually disjoint, hence there exists an increasing
continuous function f1 : [0, 1] → [0, 1] with

f1(λ) =
1
n

for λ ∈ [µ′n+1, µn], n > 1 odd.

Similarly, there exists an increasing continuous function f2 : [0, 1] → [0, 1] with

f2(λ) =
1
n

for λ ∈ [µ′n+1, µn], n > 1 even.
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Let us consider the separable C∗-subalgebras

A1 = C∗
(
{f1(a)} ∪

⋃
n>1 odd

gn(a)Bgn(a)
)
⊂ A,

A2 = C∗
(
{f2(a)} ∪

⋃
n>1 even

gn(a)Bgn(a)
)
⊂ A,

B1 = C∗
({ ∑

n>1 odd

gn(a)xgn(a) : x ∈ B

})
⊂ M(A),

B2 = C∗
({ ∑

n>1 even

gn(a)xgn(a) : x ∈ B

})
⊂ M(A),

where C∗(S) denotes the C∗-subalgebra of M(A) generated by S ⊂ M(A).
Clearly, f1 and f2 vanish only at 0. For every odd n > 1 we have

gn(a)f1(a) = f1(a)gn(a) =
1
n

gn(a),

so f1(a) commutes with all gn(a)xgn(a), x ∈ A∗∗. Consequently f1(a) belongs to
the centre of A1. Similarly, f2(a) belongs to the centre of A2.

Since the sum
∑

n>1 odd

gn(a)xgn(a) is strictly convergent for any x ∈ M(A),

the C∗-algebra B1 is contained in the strict closure of A1 in M(A), which can
be identified with M(A1), as noticed at the beginning of this section. Similarly,
B2 ⊂ M(A2).

Let π denote the quotient ∗-homomorphism M(A) → C(A) = M(A)/A.

For every positive element x ∈ B, taking into account that x−
∞∑

n=1
gn(a)xgn(a)

∈ A, we get successively

π

( ∑
n>1 odd

gn(a)xgn(a)
)

6 π

( ∞∑
n=1

gn(a)xgn(a)
)

= π(x),

π

( ∑
n>1 odd

gn(a)xgn(a)
)
∈ HerC(A)(π(B)) = π(HerM(A)(B)),

∑
n>1 odd

gn(a)xgn(a) ∈ π−1(π(HerM(A)(B)))

and, similarly, ∑
n>1 even

gn(a)xgn(a) ∈ π−1(π(HerM(A)(B))).

Consequently B1, B2 ⊂ π−1(π(HerM(A)(B))) = A + HerM(A)(B). On the other

hand, for every x ∈ B we have x ∈ A +
∞∑

n=1
gn(a)xgn(a) ⊂ A + B1 + B2, so that

B ⊂ A + B1 + B2.
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Thus it remains only to show that every normal y ∈ Bj belongs to the abelian
strict closure of Aj . We prove this for j = 1, the treatment of the case j = 2 being
completely similar.

Choose for any odd n > 1 a continuous function hn : [0, 1] → [0, 1] such that

hn(λ) = 1 for λ ∈ [µ′n+1, µn],
hn · hm = 0 for n 6= m.

D1 =
{ ∑

n>1 odd

gn(a)xgn(a) : x ∈ M(A)
}

is a ∗-subalgebra of M(A) and, for every

odd n > 1, we get a ∗-homomorphism πn : D1 → gn(a)M(A)gn(a) ⊂ A by putting

πn(y) = yhn(a) = hn(a)y.

Moreover, for all y ∈ D1 we have

y =
∑

n>1 odd

πn(y),

where the sum converges strictly. Indeed, the set of all y ∈ D1 for which the above
statement holds, is norm closed and plainly contains D1.

Now B1 ⊂ D1 and each πn carries B1 into A1. Therefore, for every normal
y ∈ B1, the element πn(y) is normal and C∗({πn(y)}) are mutually orthogonal
commutative C∗-subalgebras of A1, so

Cy = C∗({f1(a)} ∪ {πn(y) : n > 1 odd })
is a commutative C∗-subalgebra of A1, containing the strictly positive element
f1(a) of A. Since y =

∑
n>1 odd

πn(y) ∈ strict closure of Cy, the element y belongs

to the abelian strict closure of A1.

The above theorem implies the following structure result for σ-unital hered-
itary C∗-subalgebras of corona algebras:

Corollary 1.4. Let A be a σ-unital C∗-algebra, and D a σ-unital heredi-
tary C∗-subalgebra of C(A) = M(A)/A. Then there are separable C∗-subalgebras
A1, A2 of A, whose centers contain strictly positive elements of A, as well as sep-
arable C∗-subalgebras B1 ⊂ M(A1), B2 ⊂ M(A2), such that, denoting by π the
quotient ∗-homomorphism M(A) → C(A), {x ∈ Bj : x normal} ⊂ the strong
abelian strict closure of Aj, j = 1, 2,

D = HerC(A)(π(B1) ∪ π(B2)).

In particular, D is generated as hereditary C∗-subalgebra of C(A) by a countable
family of elements of the form π(x) with x in the strict closure of some separable
commutative C∗-subalgebra of A, containing a strictly positive element of A.

Proof. Let 0 6 a 6 1A∗∗ be a strictly positive element of A, and 0 6 x ∈
M(A) with π(x) strictly positive in D, so that

D = HerC(A)({π(x)}) = π(HerM(A)({x})).

Putting B = C∗({x}), let f1, f2, A1, A2, B1, B2 be as in Theorem 1.1. Since

B1 ∪B2 ⊂ A + HerM(A)(B) = A + HerM(A)({x}),
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we have

HerC(A)(π(B1) ∪ π(B2)) ⊂ D.

On the other hand, since B ⊂ A + B1 + B2, so π(B) ⊂ π(B1) + π(B2), we have
also

D = HerC(A)(π(B)) ⊂ HerC(A)(π(B1) ∪ π(B2)).

The above result allows us to give an alternate proof for Corollary 7 of [5] by
using reduction to the commutative case, much in spirit of the proof of Theorem 2.7
in [2]:

Corollary 1.5. (L.G. Brown) Let A be a σ-unital C∗-algebra, and D a
separable hereditary C∗-subalgebra of C(A). Then D = {0}.

Proof. Let us assume that D 6= {0}. By Corollary 1.4 there exists a com-
mutative C∗-subalgebra A0 ⊂ A, containing a strictly positive element of A, and
x ∈ M(A0), such that the canonical image π(x) of x in C(A) is non-zero and
belongs to D. Therefore D0 = HerC(A0)({π(x)}) ⊂ D is a non-zero separable
hereditary C∗-subalgebra of C(A0).

Now let Ω be the Gelfand spectrum of A0, and βΩ its Stone-C̆ech com-
pactification. Then C(A0) is ∗-isomorphic to C(βΩ \ Ω) and D0 corresponds to
C0((βΩ \ Ω) \ F0) with F0 some closed subset of βΩ \ Ω. Since D0 is non-zero
and separable, (βΩ \ Ω) \ F0 is non-empty and metrizable. Let ω0 be any ele-
ment of (βΩ \ Ω) \ F0. Then {ω0} is a Gδ-set in (βΩ \ Ω) \ F0, hence, F0 being
compact, also in βΩ \ Ω. But the σ-unitality of A0 means that Ω is σ-compact,
or equivalently, that βΩ \ Ω is a Gδ-set in βΩ. Consequently {ω0} is a Gδ-set in
βΩ. This contradicts a classical result of E. C̆ech, claiming that no point in the
corona of a completely regular topological space can be Gδ-set in the Stone-C̆ech
compactification (see e.g. [11], Corollary 9.6 or [25], Corollary 3.7).

The above result yields immediately, as already noticed by L.G. Brown (and
in the commutative case by E. C̆ech), that any separable C∗-algebra A is the
greatest separable two-sided ideal of M(A). Consequently, if A and B are separable
C∗-algebras then any ∗-isomorphism of M(A) onto M(B) carries A onto B. Here
the separability of both A and B is essential. Indeed, the separable C∗-algebra
c0(Z) and l∞(Z) = M(c0(Z)) are not ∗-isomorphic, but their multiplier algebras
are identical. The separability is essential even in the case A = B. Indeed,
putting A =

{
(λn)n ∈ l∞(Z) : lim

n→+∞
λn = 0

}
, the map (λn)n 7→ (λ−n)n is a

∗-automorphism of M(A) = l∞(Z) which does not carry A into A.
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2. SEPARABLE HEREDITARY C∗-ALGEBRAS OF GENERAL SAW∗-ALGEBRAS

In this section we investigate the separable hereditary C∗-subalgebras of the so
called SAW ∗-algebras, considered by G.K. Pedersen in [21]. We recall that an
SAW ∗-algebra is a C∗-algebra A such that for any positive x, y ∈ A with xy = 0
there is a positive e ∈ A with ex = x (i.e. e is a local unit for x) and ey = 0.
Defining f : [0,+∞) 7→ [0, 1] by

f(λ) =
{

λ for λ 6 1,
1 for λ > 1,

we have
f(e)x = f(1)x = x and f(e)y = f(0)y = 0,

so in the above definition we always can choose e 6 1A∗∗ .
Corona algebras of σ-unital C∗-algebras are SAW ∗-algebras (see [21], The-

orem 13 or [18], 3.2).
For any Borel set S ⊂ R we denote by χS its characteristic function. Thus,

for a a self-adjoint element of a C∗-algebra A, the symbol χS(a) will stand for the
spectral projection of a in A∗∗ corresponding to S.

First we complete the list of the basic facts about SAW ∗-algebras in [21] by
showing that adjoining a unit to an SAW ∗-algebra we get still an SAW ∗-algebra:

Lemma 2.1. Let A be an SAW ∗-algebra. For every 0 6 x ∈ A and y∗ = y ∈
A with xy = x there is 0 6 e 6 1A∗∗ in A such that xe = x and ey = e. Therefore
the C∗-algebra Ã generated by A and 1A∗∗ is an SAW ∗-algebra.

Proof. Let fn : R → [0, 1], n > 1 be continuous functions such that fn ↗
χR\{0,1}. Then

fn(y) ↗ χR\{0,1}(y) = s(y)− χ{1}(y),

where s(y) denotes the support projection of y in A∗∗.
Since xy = x, we have xf(y) = f(1)x for any continuous function f : R → R,

so xfn(y) = 0 for all n > 1. Therefore x and
∞∑

n=1
2−nfn(y) are orthogonal positive

elements of the SAW ∗-algebra A and it follows that there exists a positive element
a ∈ A satisfying xa = x and

a
∞∑

n=1

2−nfn(y) = 0 ⇐⇒ afn(y) = 0 for all n > 1 ⇐⇒ as(y) = aχ{1}(y).

In particular, ay = aχ{1}(y), hence ay2 = ay. Thus b = yay is a positive element
of A and

xb = xyay = xay = xy = x,

by = yay2 = yay = b.

Now, defining f : [0,+∞] → [0, 1] by

f(λ) =
{

λ for λ 6 1,
1 for λ > 1,

and putting e = f(b) ∈ A, we have 0 6 e 6 1A∗∗ and xe = x, ey = e.
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In order to prove that Ã is an SAW ∗-algebra, let x, y ∈ Ã be arbitrary
positive elements with xy = 0. Then either x or y, say x, must belong to A. If
also y belongs to A, we have nothing to prove, so let us assume that y = λ01A∗∗−y0

with 0 6= λ0 ∈ R and y∗0 = y0 ∈ A. Then 1
λ0

y0 is a self-adjoint element of A and

x
( 1

λ0
y0

)
= x− 1

λ0
xy = x.

By the first part of the proof there exists 0 6 e 6 1A∗∗ in A with xe = x and
e
(

1
λ0

y0

)
= e, hence ey = λ0e− ey0 = 0. We have also

0 6 1A∗∗ − e 6 1A∗∗ , x(1A∗∗ − e) = 0, y(1A∗∗ − e) = y.

We notice that Ã can be SAW ∗-algebra without A being SAW ∗-algebra.
For example, if M is an atomless, countably decomposable, commutative W ∗-
algebra and A is a maximal ideal of M , then Ã = M is an SAW ∗-algebra, while
A is not. Indeed, if e1, e2, . . . is a maximal family of mutually orthogonal non-
zero projections in A then

∑
n>1

2−nen ∈ A has no local unit in A, so A is not an

SAW ∗-algebra according to [21], Proposition 4.
Now we characterize SAW ∗-algebras in terms of the existence of almost

spectral projections:

Theorem 2.2. (On the characterization of SAW ∗-algebra) Let A be a C∗-
algebra. Then A is an SAW ∗-algebra if and only if, for every a∗ = a ∈ A and every
open set D ⊂ R not containing 0, there exists e ∈ A with χD(a) 6 e 6 χD(a).
Moreover, A is an SAW ∗-algebra of real rank zero if and only if in the above
situation e always can be chosen as a projection.

Proof. Let fn, gn : R → [0, 1], n > 1 be continuous functions such that
fn ↗ χD and gn ↗ χR\D, so that

fn(a) ↗ χD(a) and gn(a) ↗ χR\D(a) in A∗∗.

Putting

x =
∞∑

n=1

2−nfn(a) ∈ A, y =
∞∑

n=1

2−ngn(a) ∈ Ã,

we have x, y > 0 and xy = 0. Therefore there exists 0 6 e 6 1A∗∗ in A with
ex = x and ey = 0. Indeed, if y ∈ A then we have just to use the fact that A

is an SAW ∗-algebra, while if y ∈ Ã \ A then we get by Lemma 2.1 an element
0 6 e 6 1A∗∗ in Ã with the above properties and notice that

y ∈ Ã \A, ey = 0 =⇒ e ∈ A.

Now ex = x, that is (1A∗∗ − e) x = 0 implies successively that

(1A∗∗ − e)fn(a) = 0 for all n > 1,

(1A∗∗ − e)χD(a) = 0 and χD(a) = eχD(a) 6 e.

On the other hand, ey = 0 implies similarly that

egn(a) = 0 for all n > 1, eχR\D(a) = 0, e = eχD(a) 6 χD(a).
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Let us next additionally assume that A is of real rank zero. Then, the compact
projection χ{1}(e) ∈ A∗∗ and the closed projection χ[0,1/2](e) ∈ A∗∗ being orthog-
onal, by [6], Theorem 1 there is a projection p ∈ A with χ{1}(e) 6 p 6 χ( 1

2 ,1](e).
But χD(a) 6 e 6 1A∗∗ implies that χD(a) 6 χ{1}(e) 6 p, while e 6 χD(a) implies
that

p 6 χ(
1
2 ,1

](e) 6 s(e) 6 χD(a).

For the first converse statement take arbitrary positive elements x, y ∈ A with
xy = 0. Then a = x− y is self-adjoint in A and if e ∈ A satisfies χ(0,+∞)(a) 6 e 6
χ[0,+∞)(a), then

x2 = xχ(0,+∞)(a)x 6 xex 6 xχ[0,+∞)(a)x = x2, x(1A∗∗ − e)x = 0, ex = x

and
0 = yχ(0,+∞)(a)y 6 yey 6 yχ[0,+∞)(a)y = 0, ey = 0.

The second converse statement follows from the first one and from (iv) ⇒
(i) of Theorem 2.6 in [7].

We notice that if in the above D = (λ, +∞), then 0 6 e − χ(λ,+∞)(a) 6
χ{λ}(a), so

a
(
e− χ(λ,+∞)(a)

)
= λ

(
e− χ(λ,+∞)(a)

)
is self-adjoint and it follows that e commutes with a. Thus the above theorem
implies that a C∗-algebra A is an SAW ∗-algebra of real rank zero if and only if
it satisfies the so called spectral axiom considered in Section 2 of Chapter III from
[28], p. 1048:

(S)

{ for every a∗ = a ∈ A and every λ > 0 there exists a projection e ∈ A
commuting with a and such that

ae > λe, a (1A∗∗ − e) 6 λ (1A∗∗ − e) .

Corollary 2.3. Let A be an SAW ∗-algebra.
If 0 6 a ∈ A with spectrum σ(a) generates a separable hereditary C∗-

subalgebra of A then σ(a) ∩ (ε, +∞) is finite for every ε > 0.
If a projection e ∈ A generates a separable hereditary C∗-subalgebra of A

then eAe is finite-dimensional.
In particular, any separable hereditary C∗-subalgebra of A is the norm closed

linear span of the minimal projections of A contained in it. Therefore A contains
non-zero separable hereditary C∗-subalgebras if and only if it contains minimal
projections.

Proof. Assume that σ(a) ∩ (ε, +∞) contains infinitely many distinct λ1,
λ2, . . .. Passing to a subsequence, if necessary, we can assume that the sequence
λ1, λ2, . . . is monotone, so we can choose mutually disjoint open sets D1, D2, . . . ⊂
(ε, +∞) with λj ∈ Dj , j > 1. By Theorem 2.2, for every set J ⊂ {1, 2, . . .} there
exists in A some eJ

χ ⋃
j∈J

Dj
(a) 6 eJ 6 χ ⋃

j∈J

Dj

(a) 6 χ[ε,+∞)(a) 6
1
ε
a

and then eJ ∈ HerA({a}).
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Let J0, J ⊂ {1, 2, . . .} be such that there exists j0 ∈ J0 \ J. Then Dj0 and⋃
j∈J

Dj are disjoint, so χDj0
(a) · eJ = 0, and it follows that

(eJ0 − eJ)2 > (eJ0 − eJ)χDj0
(a)(eJ0 − eJ) = eJ0 · χDj0

(a) · eJ0 = χDj0
(a),

‖eJ0 − eJ‖2 > ‖χDj0
(a)‖ = 1.

Thus {x ∈ HerA({a}) : ‖x − eJ‖ < 1/2}, J ⊂ {1, 2, . . .} are uncountably many
disjoint non-empty open sets in HerA({a}), which therefore can not be separable.

For the second statement we have only to notice that HerA({e}) = eAe is
an SAW ∗-algebra (see [21], Proposition 4), so its separability implies its finite-
dimensionality (see [21], Corollary 2).

Using the above result, we can give a somewhat simpler variant of our proof
for Corollary 1.5, without using the result of E. C̆ech on the remainder points of
Stone-C̆ech compactifications:

Indeed, according to Corollary 2.3 we have to prove that, for every σ-unital
C∗-algebra A, the corona algebra C(A) does not contain any minimal projection e.
Let us assume the contrary. Applying Corollary 1.4 with D = C · e, it follows that
there exists a commutative C∗-subalgebra A0 ⊂ A, containing a strictly positive
element of A, and x ∈ M(A0), such that the canonical image π(x) of x in C(A) is
equal to e. Therefore C(A0) ⊂ C(A) contains the minimal projection e. Denoting
by Ω the Gelfand spectrum of A0, and by βΩ its Stone-C̆ech compactification, x
corresponds to some f ∈ C(βΩ), and e to some isolated point ω0 of βΩ \ Ω, such
that

f(ω0) = 1 and f(ω) = 0 for ω0 6= ω ∈ βΩ \ Ω.

On the other hand, since A0 is σ-unital, there exist relatively compact open subsets
U1, U2, . . . of Ω such that Un ⊂ Un+1 and

⋃
n>1

Un = Ω. We can construct by

induction a sequence (ωk)k>1 in Ω and a sequence 1 = n1 < n2 < · · · of natural
numbers such that, for all k > 1, ωk ∈ Unk+1 \Unk

, |1− f(ωk)| < 1/k. Every limit
point ω of (ωk)k>1 belongs to βΩ \Ω and, since f(ω) is limit point of (f(ωk))k>1,
hence f(ω) = 1, it follows that ω = ω0. Thus, by the compactness of βΩ, we
have ωk → ω0. Now let gk : Ω → [0, 1] be a continuous function with gk(ωk) = 1
and with support contained in Unk+1 \ Unk

. Then, for every bounded sequence
(λk)k>1 in C, the function g =

∑
k>1

λkgk belongs to Cb(Ω) and satisfies g(ωk) = λk

for all k > 1. Since g extends by continuity to βΩ and ωk → ω0, it follows that
the sequence (λk)k>1 converges. But this is obviously not true for every bounded
sequence (λk)k>1 in C.

Corollary 2.3 enables us to prove the lack of non-zero separable hereditary
C∗-subalgebras also in corona algebras of a wide class of non σ-unital C∗-algebras.

Let M be an AW ∗-algebra (for their theory, which will be freely used, we
refer to [4]), and A an essential, norm closed, two-sided ideal of M . Then M can
be naturally identified with M(A) (see [13] or [20]). Using [1], Proposition 2.3, it
is easy to verify that C(A) = M/A is a unital SAW ∗-algebra of real rank zero. We
notice that, for example, if M is a type II∞ factor and A is the norm closed linear
span of all finite projections of M, then A is not σ-unital (see [1], Proposition 4.5).



Abelian strict approximation in multiplier C∗-algebras 111

Actually, since in the proof only the orthogonal additivity of the trace is used, the
above statement holds assuming only that M is a type II∞ AW ∗-factor.

Corollary 2.4. Let M be an AW ∗-algebra, and A an essential, norm
closed, two-sided ideal of M . Then every separable hereditary C∗-subalgebra of
M/A is the norm closed linear span of the minimal projections of M/A contained
in it. Moreover, any minimal projection of M/A is the canonical image of an
abelian projection e of M , for which A ∩ eMe is a maximal ideal of eMe.

Proof. The first statement follows immediately from Corollary 2.3.
Let π denote the quotient ∗-homomorphism M → M/A. By a well known

result, every projection in M/A lifts to a projection in M (see e.g. [28], Chapter III,
Corollary 2.5). Let e0 ∈ M be a projection such that π(e0) is a minimal projection
of M/A.

According to the geometry of projections in AW ∗-algebras, there are or-
thogonal central projections p0 and pℵ, ℵ > 1 cardinal number, in M such that
e0Me0p0 is continuous, e0Me0pℵ is of type Iℵ, ℵ > 1 and p0 ∨

∨
ℵ>1

pℵ = 1M .

It is easy to see that there are decompositions in mutually orthogonal pro-
jections

e0p0 = f0 + g0, f0 ∼ g0,
e0pℵ = fℵ + gℵ + hℵ, fℵ ∼ gℵ � hℵ, ℵ > 2

(actually we can take hℵ = 0 unless ℵ is an odd natural number > 3). Then

e = e0p1, f0 ∨
∨
ℵ>2

fℵ, g = g0 ∨
∨
ℵ>2

gℵ, h =
∨
ℵ>2

hℵ

are mutually orthogonal and

e0 = e + f + g + h, f ∼ g � h.

Since π(e0) is minimal, we have π(f) = π(g) = π(h) = 0, so π(e0) = π(e).
But e is an abelian projection of M and the codimension of ker(π|eMe) =

A ∩ eMe in eMe is one.

Corollary 2.5. Let M be an AW ∗-factor, and A an essential, norm closed,
two sided ideal of M . Then C(A) = M/A does not contain any non-zero separable
hereditary C∗-subalgebra.

Proof. Let us assume the contrary. Then Corollary 2.4 implies the existence
of an abelian projection e of M , for which the codimension of A ∩ eMe in eMe is
one. Since M is factor, e is minimal, so A∩ eMe = {0}. But then e is orthogonal
to A, in contradiction with the essentiality of A.
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In contrast to Corollary 1.5, in the proof of Corollary 2.5 we did not make
use of abelian strict approximation. Instead we used the geometry of projections
available in AW ∗-algebras. We notice that we were forced to do this, because
in relevant cases commutative C∗-subalgebras of C∗-algebras can have very poor
strict closures. For example, if M is a type II∞ factor and A is the norm closed
linear span of all finite projections of M , then any commutative C∗-subalgebra of
A is strictly closed in M(A) = M (see [10]). This is surprising since, assuming M
to be additionally of countable type, every normal element y ∈ M is of the form
y = b + x with b ∈ A and x belonging to what we could call the “strong atomic
abelian s∗-closure” of A (see [29]).
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