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Abstract. By giving some necessary and sufficient conditions for the dual
of operator subspaces to have the Schur property, we improve the results of
Brown, Ülger and Saksman-Tylli in the Banach space setting. In particular,
under some conditions on Banach spaces X and Y , we show that for a sub-
space M of operator ideal U(X, Y ), M∗ has the Schur property iff all point

evaluations M1(x) = {Tx : T ∈ M1} and fM1(y
∗) = {T ∗y∗ : T ∈ M1} are

relatively norm compact, where x ∈ X, y∗ ∈ Y ∗ and M1 is the closed unit
ball of M.
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1. INTRODUCTION

A Banach space X has the Schur property if every weakly null sequence in X
converges in norm. The simplest Banach space with this property is l1. Following
a work of S.W. Brown ([1]), A. Ülger ([10]) proved that if M∗ the dual of a
closed subspace M of K(H) has the Schur property, then for all x ∈ H, the
point evaluations M1(x) = {Tx : T ∈ M1} and M̃1(x) = {T ∗x : T ∈ M1} are
relatively norm compact in H. This result has been generalized for the reflexive
Banach spaces by E. Saksman and H.O. Tylli ([9]). Conversely, S.W. Brown ([1]),
E. Saksman and H.O. Tylli ([9]), have proved that the relatively compactness of
all point evaluations is also sufficient for the Schur property of M∗, where M is
the closed subspace of K(H) or K(lp) with 1 < p < ∞. Here we study the Schur
property of the dual of closed subspaces of Banach operator ideals between Banach
spaces and improve the results of [1], [9] and [10] to larger classes of Banach spaces
and operators between them.
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The notations and terminologies concerning Banach spaces are standard.
Throughout this article H is a Hilbert space and X,Y and Z denote arbitrary
Banach spaces. The closed unit ball of a Banach space X is denoted by X1 and
X∗ is the dual of X. The duality between X and X∗ is denoted by 〈x, x∗〉 and T ∗

refers to the adjoint of the operator T . (U , A) is always a (Banach) operator ideal
U with norm A and its components are denoted by U(X,Y ). For arbitrary Banach
spaces X and Y we use L(X,Y ),W (X,Y ) and K(X,Y ) for Banach spaces of all
bounded linear, weakly compact and compact linear operators between Banach
spaces X and Y respectively, and Kw∗(X∗, Y ) is the space of all compact weak∗-
weak continuous operators from X∗ to Y . The abbreviation K(X) is used for
K(X,X). The projective tensor product of X and Y is denoted by X⊗̃πY . We
refer the reader to [3], [4] and [5] for undefined terminologies.

2. NECESSARY CONDITIONS FOR THE SCHUR PROPERTY

In this section we prove that for a closed subspace M ⊆ U(X,Y ), the Schur
property of M∗ imply the relatively compactness of all point evaluations M1(x) =
{Tx : T ∈ M1} and M̃1(y∗) = {T ∗y∗ : T ∈ M1}, provided that one of the
following is satisfied:

(1) X∗ and Y are weakly sequentially complete (wsc);
(2) X∗∗ and Y ∗ contain no copy of l1.

In order to prove a key result of this section we give a necessary and sufficient
condition for Banach spaces whose duals have the Schur property.

Theorem 2.1. For each Banach space X, the following are equivalent:
(i) X∗ has the Schur property;

(ii) L(X,Y ) = K(X,Y ), for every wsc Banach space Y ;
(iii) W (X,Y ) = K(X,Y ), for every Banach space Y .

Proof. (i) ⇒ (ii) Assume that X∗ has the Schur property. Then in particular,
X contains no copy of l1. If T ∈ L(X,Y ) and (xn) ⊆ X1 is an arbitrary sequence in
X1, then by Rosenthal’s l1-theorem ([3]), (xn) has a weakly Cauchy subsequence
(xnk

). Thus (Txnk
) is weakly Cauchy and so is weakly convergent in Y . This

shows that T is weakly compact, therefore T ∗ is also weakly compact. But by our
hypothesis on X∗, T ∗ and so T is compact. Hence L(X,Y ) = K(X,Y ).

(ii) ⇒ (iii) Since, by Davis-Figiel-Johnson-Pe lczynski’s theorem ([3]), every
weakly compact operator factors through a reflexive (and so wsc) Banach space,
this implication is clear.

(iii) ⇒ (i) Let (x∗n) be a weakly null sequence in X∗ and define T : X → c0
by Tx = (x∗n(x))n. By representation of weakly compact operators into c0 ([3],
p. 114), T is weakly compact and therefore by our hypothesis it is compact. But
again by representation of compact operators into c0, the sequence (x∗n) converges
in norm to zero.
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Remark 2.2. The proof of theorem shows that the conditions of theorem
are equivalent to the following condition that: For all reflexive Banach space Y ,
L(X,Y ) = K(X,Y ). This is also equivalent to W (X, c0) = K(X, c0). Note that
the weak sequentially completeness condition in part (ii) of theorem is necessary.
In fact if Y = c0, by using the Josefson-Nissenzweig theorem ([3]), for every infinite
dimensional Banach space X there exists a non compact bounded linear operator
T : X → c0.

We deduce now an improvement of Theorem 1 of [10] and Theorem 4 of [9]
from Theorem 2.1.

Theorem 2.3. Suppose that X∗ and Y are wsc and M is a closed linear
subspace of U(X,Y ). If M∗ has the Schur property, then all of the point evalua-
tions M1(x) and M̃1(y∗) are relatively (norm) compact in Y and X∗ respectively,
for all x ∈ X and y∗ ∈ Y ∗.

Proof. For each x ∈ X and y∗ ∈ Y ∗, consider the point evaluation operators
ϕx : M → Y and ψy∗ : M → X∗ by ϕx(T ) = Tx and ψy∗(T ) = T ∗y∗. It
is clear that these operators are bounded and by Theorem 2.1 are compact. So
M1(x) = ϕx(M1) ⊆ Y and M̃1(y∗) ⊆ X∗ are relatively compact.

If X and Y are Banach lattices, X contains no complemented copy of l1 and
Y contains no copy of c0, then X∗ and Y are wsc ([7], V.II) and we can apply
Theorem 2.3 for closed subspace M ⊆ U(X,Y ). As another corollary, if instead
of X and Y , the closed subspace M ⊆ U(X,Y ) is a Banach lattice, we have the
following corollary:

Corollary 2.4. Suppose that X contains no complemented copy of l1 and
Y contains no copy of c0. If M ⊆ U(X,Y ) is a Banach lattice such that M∗

has the Schur property, then all of the point evaluations M1(x) and M̃1(y∗) are
relatively compact.

Proof. Since X∗ and Y contain no copy of c0, by Theorem I.2 (c) of [6], there
are wsc Banach lattices Z and Z ′, bounded operators R : M → Z, S : Z → Y ,
R′ : M → Z ′ and S′ : Z ′ → X∗ such that ϕx = SR and ψy∗ = S′R′. Since Z
and Z ′ are wsc, by Theorem 2.1, the operators R and R′ and so ϕx and ψy∗ are
compact, for all x ∈ X and y∗ ∈ Y ∗.

We recall that an operator is completely continuous if it takes weakly con-
vergent sequences into norm convergent sequences.

Theorem 2.5. Suppose that X∗∗ and Y ∗ contain no copy of l1 and M ⊆
U(X,Y ) is a closed subspace. Then for the following assertions:

(i) M∗ has the Schur property;
(ii) for every Banach space Z, every bounded linear operator T : Z → M∗

is completely continuous;
(iii) the natural restriction operator R : U(X,Y )∗ →M∗ is completely con-

tinuous;
(iv) all point evaluations M1(x) and M̃1(y∗) are relatively compact;

the implications (i) ⇔ (ii) ⇒ (iii) ⇒ (iv) are valid.
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Proof. Since M∗ has the Schur property iff the identity operator on M∗ is
completely continuous, the implication (i) ⇔ (ii) is clear. (ii) ⇒ (iii) is obvious.
For the proof of (iii) ⇒ (iv), note that ‖T‖ 6 A(T ) for all T ∈ U(X,Y ) and so the
operator ψ : X∗∗⊗̃πY

∗ → U(X,Y )∗ defined by

v 7→
(
T 7→ tr(T ∗∗v) :=

∞∑
n=1

〈T ∗∗x∗∗n , y∗n〉
)

is linear and continuous, where T ∈ U(X,Y ) and v ∈ X∗∗⊗̃πY
∗ has a representa-

tion v =
∞∑

n=1
x∗∗n ⊗ y∗n. So the operator ϕ = R ◦ ψ defined by 〈ϕ(v), T 〉 = tr(T ∗∗v)

is completely continuous.
Fix now an arbitrary element x ∈ X and define the operator Ux : Y ∗ →

X∗∗⊗̃πY
∗ by Ux(y∗) = x⊗ y∗. Since ϕ ◦ Ux : Y ∗ →M∗ is completely continuous

and Y ∗ contains no copy of l1, by Rosenthal’s l1- theorem, ϕ ◦Ux is compact. But
ϕ∗x = ϕ ◦ Ux. So ϕx is compact and M1(x) is relatively compact in Y .

Similarly, for y∗ ∈ Y ∗ the operator (ψy∗)∗ = ϕ ◦ Vy∗ : X∗∗ → M∗ is
completely continuous and so is compact, where Vy∗ : X∗∗ → X∗∗⊗̃πY

∗ via
Vy∗(x∗∗) = x∗∗ ⊗ y∗. This shows that M̃1(y∗) is also relatively compact in X∗.

3. SUFFICIENT CONDITIONS FOR THE SCHUR PROPERTY

In this section by the technique given in [1], we improve the results of [1] and [9].
In particular we show that an analogous result of Corollary 4 of [9] is valid for the
lp-direct sum and c0-direct sum of finite dimensional Banach spaces.

If V is a complemented subspace of a Banach space X, the projection of X
onto V is denoted by PV and PV ′ = I −PV is the projection onto complementary

subspace V ′ of V . If
∞∑

n=1
⊕Xn and

∞∑
n=1

⊕Yn are Schauder decompositions of X and

Y respectively, and M ⊆ U(X,Y ) is a closed subspace, we say that M has the
P-property if for all integers m0 and n0 and every operators T, S ∈M,

‖PWTPV + PW ′SPV ′‖ 6 max{‖PWTPV ‖, ‖PW ′SPV ′‖},

where V = X1⊕· · ·⊕Xm0 and W = Y1⊕· · ·⊕Yn0 . Finally, if
∞∑

n=1
⊕Xn is a shrink-

ing Schauder decomposition for X ([7]), we denote the corresponding Schauder

decomposition of X∗ by
∞∑

n=1
⊕X ′

n.

Theorem 3.1. Let X and Y have monotone shrinking finite dimensional

Schauder decompositions (FDD)
∞∑

n=1
⊕Xn and

∞∑
n=1

⊕Yn respectively, and M be a

closed subspace of Kw∗(X∗, Y ) which has the P-property. If all point evaluations
M1(x∗) and M̃1(y∗) are relatively compact in Y and X respectively, then M∗ has
the Schur property.

For the proof of this theorem we need two lemmas.
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Lemma 3.2. Let X and Y have Schauder decompositions
∞∑

n=1
⊕Xn and

∞∑
n=1

⊕Yn respectively, such that the decomposition of X is shrinking. If K1, . . . ,Kn∈

Kw∗(X∗, Y ) and ε > 0, then there are integers m0 and n0 such that

‖PW ′Ki‖ 6 ε and ‖KiPV ′‖ 6 ε, i = 1, 2, . . . , n,

where V = X ′
1⊕· · ·⊕X ′

m0
and W = Y1⊕· · ·⊕Yn0 , V

′ and W ′ are complementary
subspaces of V and W in X∗ and Y respectively.

Proof. Without loss of generality, we may assume that n = 1 and K =
K1 ∈ Kw∗(X∗, Y ). Set C = sup ‖PW ′‖, where the supremum is taken over all
W ′ =

∑
n>N

⊕Yn, for N > 1.

If {z1, . . . , zl} is an ε/2C-covering of K(X∗
1 ) in Y and each zi has a repre-

sentation zi =
∞∑

k=1

yik
, choose an integer n0 > 0 such that

∥∥∥ ∑
k>n0

yik

∥∥∥ < ε/2, for

all 1 6 i 6 l.
Now for each x∗ ∈ X∗

1 and suitable 1 6 i 6 l,

‖PW ′Kx∗‖ 6 ‖PW ′(Kx∗ − zi)‖+ ‖PW ′zi‖ 6 ‖PW ′‖ ‖Kx∗ − zi‖+
∥∥∥ ∑

k>n0

yik

∥∥∥ < ε.

This shows that ‖PW ′K‖ < ε where W = Y1 ⊕ · · · ⊕ Yn0 .

Since K∗ : Y ∗ → X is compact and
∞∑

n=1
⊕Xn is a decomposition of X, we

can deduce that there exists an integer m0 such that ‖PK∗‖ < ε where P is
the canonical projection of X onto

∑
k>m0

⊕Xk. Set V = X ′
1 ⊕ · · · ⊕ X ′

m0
. Since

PV ′ = P ∗ we have

‖KPV ′‖ = ‖K∗∗P ∗‖ = ‖PK∗‖ < ε.

Lemma 3.3. Let X and Y have shrinking FDDs
∞∑

n=1
⊕Xn and

∞∑
n=1

⊕Yn

respectively. Let m0 and n0 be arbitrary integers, V = X ′
1 ⊕ · · · ⊕ X ′

m0
and

W = Y1 ⊕ · · · ⊕ Yn0 and ε > 0 be given. If M ⊆ Kw∗(X∗, Y ) is a closed sub-
space such that all point evaluations M1(x∗) and M̃1(y∗) are relatively compact,
then there exists a norm closed subspace G of M of finite codimension such that
‖GPV ‖ 6 ε and ‖PWG‖ 6 ε for all G ∈ G1.

Proof. We first construct a norm closed subspace E of M of finite codi-
mension such that ‖GPV ‖ 6 ε, for all G ∈ E1. For each 1 6 i 6 m0, let
{x∗ij : 1 6 j 6 ni} be a normalized basis of X ′

i and choose a constant C > 0

such that for all x∗ =
∞∑

i=1

x∗i ∈ X∗
1 with x∗i =

ni∑
j=1

cijx
∗
ij ;

ni∑
j=1

|cij | 6 C, for all

1 6 i 6 m0. Fix 1 6 i 6 m0 and 1 6 j 6 ni. By assumption the point
evaluation operator ϕij : M → Y defined by ϕij(T ) = Tx∗ij is compact. Set

η = ε/(m0C(KY + 2)), where KY denotes the decomposition constant of
∞∑

n=1
⊕Yn
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and choose an η-covering {z1, . . . , zl} of ϕij(M1). If zk =
∞∑

n=1
ykn

we can choose

an integer p such that
∥∥∥ ∑

n>p
ykn

∥∥∥ < η, for all 1 6 k 6 l. Let Zij :=
∑

n>p
⊕Yn, then

sup{‖y‖ : y ∈ Zij ∩ ϕij(M1)} 6 ε/m0C.

It is easy to check that

E :=
m0⋂
i=1

ni⋂
j=1

ϕ−1
ij (Zij)

is norm closed and of finite codimension in M. Let now G ∈ E1. Then ‖Gx∗ij‖ 6

ε/m0C, for all 1 6 j 6 ni and 1 6 i 6 m0. If x∗ =
∞∑

i=1

x∗i ∈ X∗
1 then

‖GPV x
∗‖ =

∥∥∥G m0∑
i=1

x∗i

∥∥∥ 6
m0∑
i=1

∥∥∥G( ni∑
j=1

cijx
∗
ij

)∥∥∥ 6
m0∑
i=1

ni∑
j=1

|cij | ‖Gx∗ij‖ 6 ε.

Thus ‖GPV ‖ 6 ε.
By a similar method to the previous case, using the finite dimensional decom-

position
∞∑

n=1
⊕Y ′n of Y ∗ and relative compactness of all M̃1(y∗) in X, we construct

a norm closed subspace F of M of finite codimension such that ‖G∗P‖ 6 ε,
for all G ∈ F1; where P : Y ∗ → Y ′1 ⊕ · · · ⊕ Y ′n0

is the canonical projection. If
PW : Y → Y1⊕ · · · ⊕Yn0 is the canonical projection, it is straightforward to check
that P = P ∗W . So ‖PWG‖ = ‖G∗P ∗W ‖ = ‖G∗P‖ 6 ε. Now set G = E ∩ F .

Proof of Theorem 3.1. Since the decompositions of X∗ and Y are monotone,
by notation of Lemma 3.3, ‖PV ‖ = ‖PW ‖ = 1, ‖PV ′‖ 6 2 and ‖PW ′‖ 6 2.

Let (Γi) ⊆ M∗ be a normalized weakly null sequence in M∗. Let (εi) be a
sequence of positive numbers such that

∑
iεi < ∞. Suppose that Λ1 = Γ1, and

choose K1 ∈M1 such that 〈K1,Λ1〉 > 1/3. Inductively, assume that Λ1, . . . ,Λn ∈
(Γi) and K1, . . . ,Kn ∈ M1 have been chosen. To obtain Λn+1 and Kn+1, by
Lemmas 3.2 and 3.3 we find finite dimensional subspaces V and W of X∗ and Y
respectively, and norm closed subspace G of finite codimension in M such that

‖KiPV ′‖ 6 εn+1 and ‖PW ′Ki‖ 6 εn+1 for all i = 1, 2, . . . , n,
‖GPV ‖ 6 εn+1 and ‖PWG‖ 6 εn+1 for all G ∈ G1.

By the technique given in the proof of Theorem 1.1 of [1], we can choose
Λn+1 ∈ (Γi) and Kn+1 ∈M1 such that

|〈Ki,Λn+1〉| < 2−n−1 for i = 1, 2, . . . , n,
〈Kn+1,Λn+1〉 > 1

3 and 〈Kn+1,Λj〉 = 0 for j = 1, 2, . . . , n.

Also ‖Kn+1PV ‖ < εn+1 and ‖PWKn+1‖ < εn+1. These properties yield that∥∥∥PW

n∑
i=1

KiPV −
n∑

i=1

Ki

∥∥∥ 6 4nεn+1 and ‖PW ′Kn+1PV ′ −Kn+1‖ 6 5εn+1.
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Hence ∥∥∥ n+1∑
i=1

Ki

∥∥∥ 6
∥∥∥ n∑

i=1

Ki − PW

n∑
i=1

KiPV

∥∥∥ + ‖Kn+1 − PW ′Kn+1PV ′‖

+
∥∥∥PW

n∑
i=1

KiPV + PW ′Kn+1PV ′

∥∥∥
6 (4n+ 5)εn+1 + max

{∥∥∥ n∑
i=1

Ki

∥∥∥, 4}
,

where the last inequality holds by P-property of M. This shows that the sequence

Tn =
n∑

i=1

Ki is bounded and so has a weak∗ limit point T ∈ M∗∗. For each j,

choose an integer n > j such that |〈T − Tn,Λj〉| < 1/2j . Therefore

|〈T,Λj〉| >
∣∣∣ j∑

i=1

〈Ki,Λj〉| −
1
2j

> |〈Kj ,Λj〉
∣∣∣− j−1∑

i=1

|〈Ki,Λj〉| −
1
2j

>
1
3
− j

2j
>

1
4
,

for sufficiently large j. Hence 〈T,Λj〉 and so 〈T,Γj〉 does not tend to zero. Thus
the sequence (Γj) does not converge weakly to zero and the proof is completed.

As a corollary, since K(X,Y ) isometrically isomorphic to Kw∗(X∗∗, Y ), via
T 7→ T ∗∗ ([8]), if we replace the role of X in the above theorem by X∗, we obtain
an analogous result for closed subspaces of K(X,Y ). By a proof similar to that
of the Theorem 3.1, one can deduce the following theorem for K(X,Y ):

Theorem 3.4. Let X and Y have monotone shrinking FDDs, M be a closed
subspace of K(X,Y ) which has the P-property. If all of the point evaluations
M1(x) and M̃1(y∗) are relatively compact in Y and X∗ respectively, then M∗ has
the Schur property.

There are several Banach spaces that are (isometrically) isomorphic or (iso-
metrically) embed into Kw∗(X∗, Y ) ([8]), and one can obtain similar results as
Theorem 3.1 for these spaces.

In the following two corollaries we give a large class of Banach spaces such
that the space of compact operators between them possesses the P-property.

Corollary 3.5. Let X be an lp-direct sum and Y be an lq-direct sum of
finite dimensional Banach spaces and 1 < p 6 q <∞. If M is a closed subspace of
K(X,Y ) such that all of the point evaluations M1(x) and M̃1(y∗) are relatively
compact in Y and X∗ respectively, then M∗ has the Schur property.

Proof. By Theorem 3.4, it is enough to prove that K(X,Y ) has the P-
property. It is clear that for arbitrary bounded operators U1 : X1 → Y1 and
U2 : X2 → Y2, the direct sum operator U1⊕U2 : X1⊕p X2 −→ Y1⊕q Y2 has norm
equal to max{‖U1‖, ‖U2‖}, where X1 ⊕p X2 is the lp-direct sum of X1 and X2.

Now for the bounded linear operators PWTPV |V : V → W (restriction of
PWTPV to V ) and PW ′SPV ′ |V ′ : V ′ →W ′ we have

‖PWTPV |V ⊕ PW ′SPV ′ |V ′‖ = max{‖PWTPV |V ‖, ‖PW ′SPV ′ |V ′‖}
6 max{‖PWTPV ‖, ‖PW ′SPV ′‖}.
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Since V ⊕p V
′ and W ⊕qW

′ are isometrically isomorphic to X and Y respectively,
and the operator PWTPV |V ⊕ PW ′SPV ′ |V ′ as an operator from X to Y is equal
to PWTPV + PW ′SPV ′ , the proof is completed.

By Theorem 2.5 and Corollary 3.5, we can conclude that for a closed subspace
M of K(X,Y ) the four assertions of Theorem 2.5 are equivalent, where X and Y
are lp and lq-direct sum of finite dimensional Banach spaces respectively.

Corollary 3.6. Let X have a monotone shrinking FDD and Y be a c0-
direct sum of finite dimensional Banach spaces. If M is either a closed subspace
of K(X,Y ) or Kw∗(X∗, Y ) such that all of the corresponding point evaluations are
relatively compact, then M∗ has the Schur property.

Proof. We will show that M again has the P-property. For each x ∈ X1

(respectively x∗ ∈ X∗
1 ) since PWTPV x and PW ′SPV ′x belong to W and W ′

respectively, according to the definition of c0-norm in Y ,

‖PWTPV x+ PW ′SPV ′x‖ = max{‖PWTPV x‖, ‖PW ′SPV ′x‖}
6 max{‖PWTPV ‖, ‖PW ′SPV ′‖}.

So for each V and W described in the definition of P-property,

‖PWTPV + PW ′SPV ′‖ 6 max{‖PWTPV ‖, ‖PW ′SPV ′‖}.

Remarks 3.7. (i) By Pitt’s theorem, K(lp, lq) for p > q > 1 is reflexive
and so has no infinite dimensional closed subspace with (dual) Schur property;
but if we apply Corollary 3.5 to K(lp, lq) for 1 < p 6 q < ∞, we see that this
corollary extends Corollary 4 of [9]. For the non-reflexive case, by Corollary 3.6
one can obtain another improvement of Corollary 4 of [9] to the space K(lp, c0)
where 1 < p <∞.

(ii) Saksman and Tylli ([9]), have constructed a closed subspace ∆ ⊆ K(lp⊕
lq), 1 < p < q < ∞, such that all point evaluations are relatively compact but
the dual of ∆ does not have the Schur property. This shows that the condition
of finite dimension in the above theorems is necessary and secondly, lp ⊕ lq does
not have any representation of the form lr-direct sum of finite dimensional Banach
spaces where 1 < r <∞ is arbitrary.

(iii) By Theorem 7 of [10] if H is a Hilbert space and A is a closed subalgebra
of K(H) such that all left and right multiplication operators on A to be compact,
then A∗ has the Schur property. Since its proof is based on the fact that relatively
compactness of all point evaluations imply the Schur property of dual subspace,
by Corollaries 3.5 and 3.6, we have an analogous result of Theorem 7 of [10] for
closed subalgebra A of K(X) where X is either an lp or c0-direct sum of finite
dimensional Banach spaces with 1 < p <∞.

(iv) If H1 and H2 are two Hilbert spaces and M is a closed subspace of
K(H1,H2), then M∗ has the Schur property iff all point evaluations M1(x) and
M̃1(y) are relatively compact, for all x ∈ H1 and y ∈ H2. In fact, its necessary
proof is an application of Theorem 2.3 or Theorem 2.5 and the sufficient proof is
completely similar to [1].
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(v) The proof of Corollaries 3.5 and 3.6 also shows that L(X,Y ) and all its
closed subspaces have the P-property, where either X and Y are lp and lq-direct
sum of Banach spaces respectively, with 1 < p 6 q < ∞ or X has a Schauder
decomposition and Y is a c0-direct sum of Banach spaces. However we do not
know what another (closed subspaces of) operator ideals between Banach spaces
have the P-property.
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