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Abstract. A group-like unitary system U is a set of unitary operators such
that the group generated by the system is contained in TU , where T denotes
the unit circle. Every frame representation for a group-like unitary system is
(unitarily equivalent to) a subrepresentation of its left regular representation
and the norm of a normalized tight frame vector determines the redundancy
of the representation. In the case that a group-like unitary system admits
enough Bessel vectors, the commutant of the system can be characterized
in terms of the analysis operators associated with all the Bessel vectors.
This allows us to define a natural quantity (the frame redundancy) for the
system which will determine when the system admits a cyclic vector. A
simple application of this leads to an elementary proof to the well-known
time-frequency density theorem in Gabor analysis.
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1. PRELIMINARIES

Motivated by the incompleteness property in Gabor analysis, we investigate the
frame representations for group-like unitary systems.

Let A and B be two d × d invertible real matrices. A Gabor family is a
collection of functions gAm,Bn obtained by translating and modulating a fixed
function g in L2(Rd),

gAm,Bn(t) = e2πi〈Am,t〉g(t−Bn), n,m ∈ Zd.

Most of the investigations on Gabor representations concern the problem of ex-
panding L2(Rd)-functions f in terms of families {gAm,Bn : n,m ∈ Zd} for a fixed
function g in L2(Rd). This problem was mainly studied in the context of frames
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(cf. [2], [11], [6], [7], [18], [19] etc.). We refer to the book [8] by Feichtinger and
Strohmer, and a survey paper [3] by Pete Casazza for some recent developments
in Gabor analysis.

One of the important questions in Gabor analysis is the so-called density
(or incompleteness) problem: Under what conditions can we find a function g ∈
L2(Rd) such that the Gabor family {gAm,Bn} is a complete set of L2(Rd)? In the
one dimensional case, the answer is well known (cf. [5]): There is a function f
in L2(R) such that {fnα,mβ : n,m ∈ Z} (where A = α,B = β with α, β > 0)
is a complete sequence in L2(R) if and only if αβ 6 1. In higher dimensions,
analogous necessary condition have been established, see [19] and [17]. Recently
the second author and Y. Wang ([11]) proved the sufficiency by studying a problem
concerning lattice tiling in Rd.

A Gabor family can be viewed as a sequence obtained by applying a system
of unitary operators to a particular window function. Recall that ([4]) a unitary
system is a countable set of unitary operators U containing the identity opera-
tor and acting on a separable Hilbert space H. Letting group(U) be the group
generated by U and T = {λ ∈ C : |λ| = 1}, we call U a group-like unitary system if

group(U) ⊂ TU := {λu : λ ∈ T, u ∈ U}

and U is linearly independent in the sense that Tu 6= Tv whenever u and v are
different elements of U . We note that, in quantum mechanics theory a group-like,
unitary system is simply the image of a projective unitary representation for some
countable group.

If we consider the unitary system

UA,B := {UAmVBn : m,n ∈ Zd},

where Ux and Vy for x, y ∈ Rd are defined by

(Uxf)(t) = e2πi〈x,t〉f(t) and (Vyf)(t) = f(t− y)

for all f ∈ L2(Rd), then it is easy to check that UA,B is a group-like unitary system.
Let H be a separable Hilbert space. A family of vectors {xi}i∈I is called a

frame if there are two positive constants C1 and C2 such that

C1‖x‖2 6
∑
i∈I

|〈x, xi〉|2 6 C2‖x‖2

holds for all x ∈ H. The two optimal constants are called the frame bounds.
When C1 = C2 = 1, it is called normalized tight. The family is called Bessel
if we can allow C1 = 0. For a unitary system U , a vector ξ ∈ H is called a
frame vector (respectively normalized tight frame vector or Bessel vector) for U
if {uξ}u∈U is a frame (respectively normalized tight frame or Bessel family) for
[Uξ], where [ · ] denotes the closed linear span. When [Uξ] = H, then the frame
vector (respectively normalized frame vector) is said to be complete. In case that
{uξ : u ∈ U} is an orthonormal basis (respectively Riesz basis) for H, ξ is said to
be a complete wandering vector (respectively complete Riesz vector) for U .

Concerning the incompleteness question for Gabor analysis, we can ask:
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Question. Under what conditions do we have a vector x ∈ H such that Ux
is complete (respectively a frame) for H?

By investigating the frame representations and analyzing the commutant of
the system, we will provide an easily computable quantity which will lead to a nec-
essary condition for the above question. In particular, we are able to recapture the
incompleteness result in Gabor analysis, to answer a problem asked in Chapter 4
of [10] and to obtain some other new results. We remark that besides applications,
frame representations for group or group-like unitary systems are interesting and
natural objects to study from the operator algebra point of view (cf. [10]).

Let U be a group-like unitary system. There exists a function f : group(U) →
T and a mapping σ : group(U) → U such that w = f(w)σ(w) for all w ∈ group(U).
To see that f and σ are well defined, let w = λ1u1 = λ2u2 with u1, u2 ∈ U (λ1, λ2 ∈
T). Then u1 = u2 and λ1 = λ2 since U is an independent set. Hence both f and
σ are well defined. We will need the following basic properties for the mappings f
and σ:

Proposition 1.1. Let U , f and σ be as above.
(i) f(uσ(vw))f(vw) = f(σ(uv)w)f(uv), u, v, w ∈ group(U).
(ii) σ(uσ(vw)) = σ(σ(uv)w), u, v, w ∈ group(U).
(iii) σ(u) = u and f(u) = 1 if u ∈ U .
(iv) If v, w ∈ group(U), then

U = {σ(uv) : u ∈ U} = {σ(vu−1) : u ∈ U}
= {σ(vu−1w) : u ∈ U} = {σ(v−1u) : u ∈ U}.

(v) Let v, w ∈ U . Then the following mappings from U to U are injective:

u 7→ σ(vu) (respectively σ(uv), σ(uv−1), σ(v−1u), σ(vu−1), σ(u−1v), σ(vu−1w)).

A unitary representation π on H for a group-like unitary system U is a one-
to-one mapping from U into the set of unitary operators on some Hilbert space K
such that

π(u)π(v) = f(uv)π(σ(uv)), π(u)−1 = f(u−1)π(σ(u−1)),

where f and σ are the corresponding mappings associated with U .
Let eu be the element in l2(U) which takes value 1 at u and zero everywhere

else. Then {eu : u ∈ U} is the standard orthonormal basis for l2(U). For each
fixed u ∈ U , we define Lu ∈ B(l2(U)) such that

Luev = f(uv)eσ(uv), v ∈ U .

Then Lu is a well-defined unitary operator and the mapping L : u → Lu is a
unitary representation for U , which will be called the left regular representation
for U . Similarly, the right regular representation of U can be defined by

Ruev = f(vu−1)eσ(vu−1), v ∈ U .

It is easy to check the following:

RuRv = f(uv)Rσ(uv), (Ru)−1 = f(u−1)Rσ(u−1).
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Then, by our definition of unitary representations for group-like unitary systems,

the right regular representation is not necessarily a unitary representation for U .

We can call it a conjugate unitary representation. The reason for considering the

conjugate unitary representation is that we need the identity: LuRv = RvLu.

Let B(H) be the operator algebra of all the bounded linear operators on

H. A von Neumann algebra M is a ∗-subalgebra of B(H) such that I ∈ M and

M is closed in the weak operator (or strong operator) topology. By the double

commutant theorem, a ∗-subalgebra M is a von Neumann algebra if and only if

M = M′′, where M′ is the commutant of M. If M∩M′ = CI, then M is called a

factor. A von Neumann algebra is said to be finite if every isometry in the algebra

is unitary. Two projections P and Q in a von Neumann algebra M are said to be

equivalent if there is an operator T ∈M such that TT ∗ = P and T ∗T = Q. So M
is finite if there is no proper subprojection of I which is equivalent to I. If a von

Neumann algebra M admits a faithful trace, i.e., there is a linear functional Φ on

M with the properties that Φ(AB) = Φ(BA) and Φ(AA∗) > 0 for all A,B ∈ M,

and Φ(A∗A) = 0 only when A = 0, then M must be finite. We refer to [14] for

more information about von Neumann algebra theory. A vector x ∈ H is called

cyclic for M if [Mx] = H, and separating if the mapping M → H : A 7→ Ax is

injective. For any subset S of B(H), we use w∗(S) to denote the von Neumann

algebra generated by S.

Let L (respectively R) be the von Neumann algebra generated by {Lu : u ∈
U} (respectively {Ru : u ∈ U}). Then, similarly to the group case, the following

is true and will be used in the this paper:

Proposition 1.2. (i) The von Neumann algebra R is the commutant of L.

(ii) Both L and R are finite von Neumann algebras.
(iii) Suppose that U is a group-like unitary system. If either {σ(vuv−1) : v ∈

U} is infinite or {f(vuv−1) : v ∈ U} is infinite for each u 6= I, then both L and R
are factors. This extends the ICC condition for ICC groups to group-like unitary

systems.

Although Proposition 1.2 has an analogue in the group case, its proof is not

just a trivial generalization and sometimes tricky because of the involvement of the

mappings f and σ associated with the group-like unitary system. For the reader’s

convenience, we will include the sketched proofs for these Propositions 1.1 and 1.2

as an Appendix at the end of this paper.
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2. FRAME REPRESENTATIONS

In this section we discuss those unitary representations that admit frame vectors.
A frame representation is a unitary representation which admits a complete frame
vector. Suppose that S ⊂ B(H) and x ∈ H. The local commutant Cx(S) (see [4])
of U at x is defined to be the set

{T ∈ B(H) : TSx = STx, S ∈ S}.

Proposition 2.1. Suppose that U is a group-like unitary system and x is
cyclic for U . Then Cx(U) = U ′. Moreover, if ψ is a complete wandering vector
for U , then a vector η is a complete wandering vector for U if and only if there is
a (unique) unitary operator S ∈ U ′ such that η = Sψ.

Proof. Let A be the linear span of U . Then A is an algebra and x is also
cyclic for A. Thus Cx(U) = Cx(A). If T ∈ Cx(A), then TABx = ABTx = ATBx
for all A,B ∈ A. Hence T ∈ A′ since x is cyclic. So Cx(U) = Cx(A) = A′ = U ′.
The last statement follows from Proposition 2.3 in [4].

Proposition 2.2. Suppose that U is a group-like unitary system. Then, up
to unitary equivalence, there is only one unitary representation π of U such that
π(U) has a complete wandering vector.

Proof. We know that the left regular representation has complete wandering
vectors. Assume that π1 and π2 are two unitary representations of U such that
both π1(U) and π2(U) have complete wandering vectors. Choose ψi as a complete
wandering vector for πi(U), i = 1, 2. We can define a unitary operator W by

Wπ1(u)ψ1 = π2(u)ψ2, u ∈ U .

Then for any u, v ∈ U ,

Wπ1(u)π1(v)ψ1 = f(uv)Wπ1(σ(uv))ψ1 = f(uv)π2(σ(uv))ψ2

= π2(u)π2(v)ψ2 = π2(u)Wπ1(v)ψ1.

Thus Wπ1(u) = π2(u)W , as expected.

Corollary 2.3. Assume that U is a group-like unitary system which has
a complete wandering vector. Then, every complete frame vector for U is a Riesz
vector. In particular, every complete normalized tight frame vector is a complete
wandering vector.

Proof. By Proposition 2.2 and Proposition 1.2, we have that U ′ is a finite von
Neumann algebra. Fix a complete wandering vector ψ for U . Let η be a complete
frame vector for U . Define A by

Ax =
∑
u∈U

〈x, uη〉uψ, x ∈ H.

Then A is injective and A∗ ∈ Cψ(U) = U ′. So A ∈ U ′. Hence A is invertible since
U ′ is finite. Note that uη = A∗uψ for all u ∈ U . Thus η is a Riesz vector for U .



228 Jean-Pierre Gabardo and Deguang Han

We recall from [10] that two unitary systems U and V are called isomorphic
if there is a bijection h : U → V such that h(uv) = h(u)h(v) whenever u, v, uv ∈ U .
A unitary system U on H is said to have the dilation property if for every complete
normalized tight frame vector (we can assume that it is not a wandering vector
since, in that case, we do not need to dilate it) η for U , there exists a Hilbert space
K and a unitary system V on K such that V is isomorphic to U (say, by h) and
the unitary system {u⊕ h(u) : u ∈ U} has a complete wandering vector η ⊕ x on
H ⊕ K. It is known that unitary groups and Gabor type unitary systems have
dilation property (cf. [10]). The following is an natural extension of this result.

Proposition 2.4. Let U be a group-like unitary system on H. If U has a
cyclic Bessel vector, then U has a normalized tight frame vector for H. Moreover,
U is then unitarily equivalent to a subrepresentation of the left regular representa-
tion of U , and thus w∗(U) and U ′ are finite von Neumann algebras.

Proof. Let η be a cyclic Bessel vector for U . Define W : H → l2(U) by

Wx =
∑
u∈U

〈x, uη〉eu, x ∈ H.

Then W is bounded, and we also have Wux = LuWx for all x ∈ H. The partial
isometry in the polar decomposition of W will be a unitary intertwining operator
fromH onto the closed subspace generated byWH. Therefore U is unitarily equiv-
alent to the subrepresentation L|P of the left regular representation of U . Note
that every subrepresentation L|P admits a complete normalized tight frame vector
(for example, PeI). Hence U has a normalized tight frame vector, as claimed.

Proposition 2.5. Let U be a group-like unitary system on H. Suppose that
η, ξ ∈ H are cyclic vectors for U and that∑

u∈U
|〈ξ, uη〉|2 <∞.

Then U has a complete normalized tight frame vector.

Proof. For any x, y ∈ H, we write cxy = {〈y, ux〉}u∈U . Let

D = {x ∈ H : cηx ∈ l2(U)} and Γ = {x⊕ cηx : x ∈ D}.

If xn ∈ D are such that xn → x and cηxn
→ c = {cu} ∈ l2(U). Then for each

u, 〈xn, uη〉 → cu. Hence 〈x, uη〉 = cu, which implies that cηx ∈ l2(U). Thus Γ
is a closed subspace of H ⊕ l2(U). Let x ∈ D and u ∈ U . Then ux ∈ D and
(u ⊕ Lu)(x ⊕ cηx) = ux ⊕ cη(ux) ∈ Γ. Thus Γ is invariant under u ⊕ Lu for all
u ∈ U .

Let Q be the operator with domain H defined by

x→ x⊕ 0 → x′ ⊕ cηx′ → cηx′ ,

where the second arrow is the orthogonal projection from H ⊕ l2(U) onto Γ. If
Qx = 0, then cηx′ = 0. Hence x′ = 0 since η is cyclic for U . Therefore x is
orthogonal to D. Note that the closure of D is H since vξ ∈ D for all v ∈ U and ξ
is cyclic for U . Thus x = 0, which implies that Q is injective on H.
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Now we check that Q intertwines u and Lu for every u ∈ U . In fact, for
x ∈ H, we have (ux)′ = ux′ since Γ is invariant under u⊕ Lu. Thus

Qux = cη(ux)′ =
∑
v∈U

〈ux′, vη〉ev =
∑
v∈U

f(u−1v)〈x′, σ(u−1v)η〉ev

= Lu
∑
v∈U

〈x′, σ(u−1v)η〉eσ(u−1v) = LuQx.

ThereforeQ intertwines u and Lu. From the polar decomposition ofQ we obtain an
isometric intertwining operator from H to the closure of QH. Thus U is unitarily
equivalent to the subrepresentation L|P , where P ∈ R is the orthogonal projection
onto [QH], the closure of QH. Hence U has a complete normalized tight frame
vector.

By Proposition 2.4, frame representations can be viewed as subrepresenta-
tions of the left regular representation. Suppose that a frame representation π of U
is unitarily equivalent to two subrepresentations L|P and L|Q for some projections
P,Q ∈ R. Then P and Q are equivalent projections in R. So each frame repre-
sentation π corresponds to an equivalent class, say [π], of projections in R. Two
frame representations π1 and π2 are unitarily equivalent if and only if [π1] = [π2].

The following is an extension of Lemma 6.2 in [10] which tells us when a
direct sum of frame representations is also a frame representation.

Proposition 2.6. Suppose that πi, i = 1, 2, . . . , n < ∞, are frame repre-
sentations of U . Then π1 ⊕ π2 ⊕ · · · ⊕ πn is a frame representation if and only if
there exist Pi ∈ [πi] such that Pi ⊥ Pj when i 6= j.

Proof. First assume that there exist Pi ∈ [πi] such that Pi ⊥ Pj when i 6= j.
Then P1eI⊕· · ·⊕PneI is a complete normalized tight frame vector for L|P1⊕· · ·⊕
L|Pn. Hence π1⊕· · ·⊕πn is a frame representation due to the unitary equivalence.

For the converse, let η1⊕· · ·⊕ηn be a complete normalized tight frame vector
for the direct sum representation. Let

Tixi =
∑
u∈U

〈xi, uηi〉ueI , xi ∈ Hi.

Then Pi ∈ [πi], where Pi is the orthogonal projection from l2(U) onto TiHi. By
Theorem 2.8 in [10], we have that Pi ⊥ Pj if i 6= j.

Corollary 2.7. Let π be a frame representation for U . Then

(i)
∞⊕
i=1

π is not a frame representation;

(ii)
n⊕
i=1

π, n <∞, is a frame representation if and only if there are Pi ∈ [π]

such that Pi ⊥ Pj, i 6= j;

(iii)
n⊕
i=1

π, n <∞, has a complete wandering vector if and only if there exists

an orthogonal family of projection {Pi}ni=1 ⊂ [π] with the property that
n∑
i=1

Pi = I.
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Proof. Statements (ii) and (iii) follow from Proposition 2.6. For (i), if
∞⊕
i=1

π

is a frame representation, then, by Proposition 2.6, there is an orthogonal se-

quence {Pi}∞i=1 of projections in [π]. This implies that
∞∑
i=1

Pi is equivalent to a

proper subprojection
∞∑
i=1

P2i, which is impossible since R is a finite von Neumann

algebra.
Now we give the characterization (in terms of analysis operators) of π(U)′

for unitary representations that admit enough Bessel vectors. Let Bπ be the set
of all Bessel vectors for a unitary representation π on a Hilbert space K. Then
Bπ is a linear subspace invariant under π(U) and π(U)′. For ξ ∈ Bπ, the analysis
operator with respect to ξ is defined by:

Tξ(x) =
∑
u∈U

〈x, π(u)ξ〉eu, x ∈ K.

Then T ∗ξ eu = π(u)ξ for all u ∈ U , and ξ is a normalized tight frame vector if
and only if T ∗ξ Tξ is a projection. Moreover, ξ is a complete frame vector (re-
spectively complete normalized tight frame vector) if and only if Tξ is injective
with closed range (respectively isometry). We give a characterization of the frame
representations in term of the special structure of the commutants.

Theorem 2.8. Let π be a unitary representation of U with the representing
Hilbert space K. Then π is a frame representation if and only if π(U)′ = {T ∗ξ Tη :
ξ, η ∈ Bπ}.

Proof. For each v ∈ U , we have

T ∗ξ Tηπ(v)x =
∑
u∈U

〈π(v)x, π(u)η〉π(u)ξ =
∑
u∈U

〈x, π(v)−1π(u)η〉π(u)ξ

=
∑
u∈U

〈x, f(v−1) f(σ(v−1)u)π(σ(σ(v−1)u))η〉π(u)ξ

= π(v)
∑
u∈U

〈x, f(u−1)f(σ(v−1)u)π(σ(σ(v−1)u))η〉π(v)−1π(u)ξ

= π(v)
∑
u∈U

〈x, π(σ(σ(v−1)u))η〉π(σ(σ(v−1)u))ξ = π(v)T ∗ξ Tηx,

where x ∈ K, ξ, η ∈ Bπ. So we always have that T ∗ξ Tη ∈ π(U)′ for all ξ, η ∈ Bπ.
Now assume that π is a frame representation and let η be a complete nor-

malized tight frame vector. Let A ∈ π(U)′. Then Aη ∈ Bπ and

T ∗AηTηx =
∑
u∈U

〈x, π(u)η〉π(u)Aη = A
∑
u∈U

〈x, π(u)η〉π(u)η = Ax, x ∈ K.

Hence T ∗AηTη = A and thus π(U)′ = {T ∗ξ Tη : ξ, η ∈ Bπ}.
For the sufficiency, since I = T ∗ξ Tη for some ξ, η ∈ Bπ, we have that

x =
∑
u∈U

〈x, π(u)η〉π(u)ξ, x ∈ K.

Thus both η and ξ are cyclic vectors for π. Hence π is a frame representation by
Proposition 2.5.
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For a unitary representation π, if A ∈ π(U)′ and ξ, η ∈ Bπ, then AT ∗ξ Tη =
T ∗AξTη and T ∗ξ TηA = T ∗ξ TA∗η. Thus span{T ∗ξ Tη : ξ, η ∈ Bπ} is a subalgebra (in
fact a two-sided ideal) of π(U)′. The above result tells us that if π is a frame
representation, then {T ∗ξ Tη : ξ, η ∈ Bπ} is a linear subspace. But this is not true
in general. For instance, let π be as in the following Corollary 2.9 such that it
is not a frame representation. Then Theorem 2.8 and Corollary 2.9 below imply
that {T ∗ξ Tη : ξ, η ∈ Bπ} is not a linear subspace.

Corollary 2.9. Assume that π =
n⊕
i=1

πi, n <∞, where each πi is a frame

representation. Then
π(U)′ = {T ∗ξ1Tη1 + · · ·+ T ∗ξn

Tηn : ξi, ηi ∈ Bπ}.

Proof. Take a complete normalized tight frame vector ηi for πi. Then T ∗η1Tη1+
· · ·+T ∗ηn

Tηn
= I, where I is the identity operator on the direct sum Hilbert space.

Hence, for each A ∈ π(U)′, we have:
A = A(T ∗η1Tη1 + · · ·+ T ∗ηn

Tηn
) = T ∗Aη1Tη1 + · · ·+ T ∗Aηn

Tηn
.

For general unitary representations we have:

Theorem 2.10. Let π be a unitary representation of U . Then π(U)′ is the
closure (in the weak operator topology) of span{T ∗ξ Tη : ξ, η ∈ Bπ} if and only if
Bπ is dense in H.

Proof. Let M be the weak closure of span{T ∗ξ Tη : ξ, η ∈ Bπ}. Then M
is a weakly closed ∗-subalgebra of B(H). Thus it is reflexive in the sense that
M = {T ∈ B(H) : Tx ∈ [Mx], x ∈ H}, where [ · ] denotes the norm closure.

For necessity, let x ∈ H be arbitrary. By our assumption, I is in the weak
closure of A := span{T ∗ξ Tη : ξ, η ∈ Bπ}. Thus there is a net {Aλ} ∈ A such that
Aλ converges to I in the weak operator topology. In particular, Aλx converges to
x weakly. Note that if ξ, η ∈ Bπ, then T ∗ξ Tηx =

∑
u∈U

〈x, π(u)η〉π(u)ξ. Thus Aλx is

in the closure of Bπ. So x is in the weak closure (which is the norm closure) of
Bπ. Therefore Bπ is dense in H.

Conversely, suppose that Bπ is dense in H. Let A ∈ π(U)′. We need to show
that A ∈ M. By the reflexivity of M, it suffices to prove that Ax ∈ [Mx] for
every x ∈ H. Choose xn ∈ Bπ such that xn → x. Let Hn be the closed subspace
generated by π(U)xn. Then, by Proposition 2.5, π has a normalized tight frame
vector ηn such that Hn = [π(U)xn]. So we have that

T ∗Aηn
Tηn

xn =
∑
u∈U

〈xn, π(u)ηn〉π(u)Aηn = A
∑
u∈U

〈xn, π(u)ηn〉π(u)ηn = Axn.

Note that ‖T ∗Aηn
Tηn‖ 6 ‖A‖. Since the unit ball of M is compact in the weak

operator topology, we can assume that T ∗Aηn
Tηn converges to an operator T ∈M.

Thus Tx = Ax, as expected.

We remark that it is possible for Bπ to be {0}. For example, if U is the cyclic
group generated by Mz, where Mz is the multiplication (by z) unitary operator on
L2(T, µ) such that µ is singular with respect to the Lebesgue measure, then zero
is the only Bessel vector for U .
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3. REDUNDANCY AND INCOMPLETENESS PROPERTY

In this section we investigate the frame redundancy for group-like unitary repre-
sentations and use it to answer the question asked in Section 1.

Let A be a von Neumann algebra. A trace τ on A is said to be normal if it
is continuous in the ultra-weak operator topology. For a faithful trace τ , τ(I)−1τ

is a normalized faithful trace, i.e. it takes the value 1 at I.
If π is a frame representation for a group-like unitary system U , then, by

Proposition 2.4, both w∗(π(U)) and π(U)′ are finite von Neumann algebras, and
thus admit faithful traces. We can construct a faithful normalized trace for U ′ in
the following way: Let ξ be a complete normalized tight frame vector for π(U) and
let Tξ : H → l2(U) be the analysis operator defined by

Tξx =
∑
u∈U

〈x, π(u)ξ〉eu, x ∈ H.

Let P be the orthogonal projection from l2(U) onto TξH. Then P is in R and
π(U) is unitarily equivalent to L|P , and T ∗ξ Peu = π(u)ξ. Let η = PeI/‖PeI‖.
Then τ(A) = 〈Aη, η〉 is a faithful trace for PRP . Consider Tξ as a unitary from
H onto TξH. Then π(U)′ = T ∗ξ PRPTξ. Hence we can get a faithful trace for U ′

by simply letting Φ(A) = 〈TξAT ∗ξ η, η〉 = 1
‖ξ‖2 〈Aξ, ξ〉. Thus we have:

Proposition 3.1. Suppose that π is a frame representation of U . Then for
each complete normalized tight frame vector ξ of π(U), τ(A) = 1

‖ξ‖2 〈Aξ, ξ〉 defines
a normalized faithful trace for π(U)′.

Corollary 3.2. Let π be a frame representation of U . Then tr(T ∗xTy) =
〈x, y〉, x, y ∈ Bπ, defines a faithful normal trace for π(U)′.

Proof. Let ξ be a complete normalized tight frame vector for π(U). By
Proposition 3.1 and Theorem 2.8, it suffices to check that 〈T ∗xTyξ, ξ〉 = 〈x, y〉 if
x, y ∈ Bπ. This is true since

〈T ∗xTyξ, ξ〉 = 〈Tyξ, Txξ〉 =
∑
u∈U

〈ξ, uy〉〈ux, ξ〉 =
∑
u∈U

〈x, u−1ξ〉〈u−1ξ, y〉

=
〈 ∑
u∈U

〈x, f(u−1)σ(u−1)ξ〉f(u−1)σ(u−1)ξ, y
〉

=
〈 ∑
u∈U

〈x, uξ〉uξ, y
〉

= 〈x, y〉

where f and σ are the corresponding mappings associated with U .

Note that Corollary 3.2 implies that all complete normalized tight frame
vectors for π(U) have the same norm

√
tr(I). Corollary 3.2 can be extended

considerably.
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Proposition 3.3. Suppose that π is a unitary representation of U with the
representing Hilbert space K such that Bπ is dense in K. Then tr(T ∗ξ Tη) = 〈ξ, η〉
defines a faithful trace on span{T ∗ξ Tη : ξ, η ∈ Bπ}.

Proof. First, we show that tr( · ) is well-defined. Assume that T ∗ξ1Tη1 + · · ·
+T ∗ξn

Tηn
= 0. It suffices to show that 〈ξ1, η1〉+ · · ·+ 〈ξn, ηn〉 = 0. Let x be a (not

necessarily complete) normalized tight frame vector for π(U), and let Px be the
orthogonal projection from K onto Hx := [π(U)x]. Then〈 n∑

i=1

T ∗ξi
Tηix, x

〉
=

n∑
i=1

( ∑
u∈U

〈x, π(u)ηi〉〈π(u)ξi, x〉
)

=
n∑
i=1

( ∑
u∈U

〈π(u)−1x, ηi〉〈ξi, π(u)−1x〉
)

=
n∑
i=1

( ∑
u∈U

〈ξi, π(σ(u−1))x〉π(σ(u−1))x, ηi〉
)

=
n∑
i=1

( ∑
u∈U

〈ξi, π(u)x〉π(u)x, ηi〉
)

=
n∑
i=1

〈Pxξi, ηi〉.

Since Bπ is dense in K and K is separable, we can find a (possibly finite) sequence
{xi} of normalized tight frame vector such that Hxi ⊥ Hxj , i 6= j, and

∑
j

Pxj = I.

Thus
n∑
i=1

〈ξi, ηi〉 = 0 if
n∑
i=1

T ∗ξi
Tηi = 0. Hence tr( · ) is well defined.

If A :=
n∑
i=1

Tξi
Tηi

is a non-zero positive operator, then there is a normalized

tight frame vector x for π(U) such that 〈Ax, x〉 > 0. Choose normalized tight frame

vectors {xj} such that x1 = x and
∞∑
j=1

Pxj
= I. Then

n∑
i=1

〈Px1ξi, ηi〉 = 〈Ax, x〉 > 0

and
n∑
i=1

〈Pxjξi, ηi〉 = 〈Axj , xj〉 > 0 for all j > 2. Therefore

tr(A) =
n∑
i=1

〈ξi, ηi〉 =
n∑
i=1

〈 ∞∑
j=1

Pxjξi, ηi

〉
=

∞∑
j=1

〈Axj , xj〉 > 0.

So, tr( · ) is faithful.

Now assume that A,B ∈ π(U)′ such that B =
n∑
i=1

T ∗ξi
Tηi for some ξi, ηi ∈ Bπ.

Then AB =
n∑
i=1

T ∗Aξi
Tηi

and BA =
n∑
i=1

T ∗ξi
TA∗ηi

. Thus

tr(AB) =
n∑
i

〈Aξi, ηi〉 =
n∑
i=1

〈ξi, A∗ηi〉 = tr(BA),

as expected.

From the proof of Proposition 3.3 we have:
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Corollary 3.4. Suppose that π is a unitary representation for U such that

Bπ is dense in K. Then there exist frame representations πi such that π =
n⊕
i=1

πi

(where n can be ∞).

In general, tr( · ) may not be extended to a faithful trace to π(U)′. For
example, if π1 is a frame representation of U on K, then π(u) = π1(u)⊗ I defines
a unitary representation of U on K⊗ l2(N) such that Bπ is dense in K⊗ l2(N). But
π(U)′ = π1(U)′ ⊗B(l2(N)), which is not a finite von Neumann algebra. Hence, in
this case, it is impossible to extend tr( · ) as a faithful trace on π(U)′.

Let xi be normalized tight frame vector for π such thatHxi
⊥ Hxj

when i 6= j

and K be generated by {Hxi
: i ∈ N}. Then I =

∞∑
i=1

T ∗xi
Txi

, where the convergence

is in the strong operator topology. We claim that
∞∑
i=1

‖xi‖2 is independent of the

choices of xi. In fact, let I =
∞∑
i=1

T ∗yi
Tyi for yi ∈ Bπ. Write An =

n∑
i=1

T ∗yi
Tyi and

Pn =
n∑
i=1

T ∗xi
Txi

. Then

tr(AnPm) =
m∑
i=1

〈Anxi, xi〉 =
n∑
j=1

〈Pmyj , yj〉.

Thus
∞∑
i=1

〈Anxi, xi〉 =
n∑
j=1

〈yj , yj〉.

Note that {An} is bounded (by the uniformly bounded principle) sequence
of positive operators. A very elementary argument shows that

∞∑
i=1

〈xi, xi〉 =
∞∑
i=1

〈yi, yi〉.

Therefore we can always use tr(I) to denote
∞∑
i=1

‖xi‖2. Certainly tr(I) can be

infinity in our notation. However if tr(I) < ∞, then, for any A ∈ π(U)′, we can

define φ(A) =
∞∑
i=1

〈Axi, xi〉, where {xi} are fixed normalized tight frame vectors

as above. So φ is continuous in the ultra-weak operator topology. The above
computation tells us that φ agrees with tr( · ) on span{T ∗xTy : x, y ∈ Bπ}. Thus φ
is a normal faithful trace on π(U), which is independent of the choices of {xi}. So
we can use tr(A) as a substitute for φ(A). Moreover, since tr( · ) is ultra-weakly

continuous, we have that tr(A) =
∞∑
i=1

〈ξi, yi〉 if A =
∞∑
i=1

T ∗ξi
Tyi

for xi, yi ∈ Bπ.

Consider a unitary representation π of U . If Bπ is dense in K, then we will
define the redundancy of π, denoted by r(π), to be 1

tr(I) , where tr(I) =
∑
i

‖xi‖2

when
∑
i

T ∗xi
Txi

= I. For our convenience, we will say that the redundancy of π is
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zero if Bπ is not a dense subset. The following is immediate from the definition
and the fact that a normalized tight frame vector is a wandering vector if and only
if it has norm one.

Corollary 3.5. (i) Let ξ be a complete normalized tight frame vector for
a frame representation π of U on K. Then r(π) = 1

‖ξ‖2 > 1.
(ii) A frame representation π of U has a complete wandering vector if and

only if r(π) = 1.

We remark that the converse of Corollary 3.5 (i) is not true. For instance,
let U be an abelian group and let L be its left regular representation. Choose a
projection P ∈ R such that 〈PeI , eI〉 6 1

2 . Then π = L|P ⊕ L|P is a unitary
representation of U such that r(π) > 1. We claim that π is not a frame repre-
sentation. Assume, to the contrary, that π has a complete normalized tight frame
vector ξ⊕η. Let H be the range of P . Then ξ and η are complete normalized tight
frame vectors for L|P . Note that PeI is also a complete normalized tight frame
vector for L|P . Then, by Proposition 3.13 in [10], there exist unitary operators A
and B in the commutant of L|P (U) such that ξ = APeI and η = BPeI . Then
π(U)(ξ ⊕ η) = {(A⊕B)(Peu ⊕ Peu) : u ∈ U} which can not generate H ⊕H. So
ξ ⊕ η can not be cyclic for π, which leads to a contradiction.

The following result tells us that if U is a group-like unitary system such that
r(π) < 1, then Ux can never be complete in H.

Theorem 3.6. Let π be a unitary representation of a group-like unitary
system U such that Bπ is dense in K. If π(U) has a cyclic vector, then r(π) > 1.

Proof. Let ψi ∈ Bπ such that ψi → ψ, where ψ is a cyclic vector for π(U).
By Proposition 2.5, for each i there is a normalized tight frame vector ξi such that
[Uξi] = [Uψi]. Note that Pi := T ∗ξi

Tξi
is the orthogonal projection from H onto

[Uξi]. Thus Piψi = ψi.

Let I =
∞∑
i=1

T ∗xi
Txi

such that xi are normalized tight frame vectors with the

property that Hxi
⊥ Hxj

, i 6= j. Write Aj = T ∗xj
Txj

. Then, as discussed before,

〈Pixj , xj〉 = tr(T ∗Pixj
Txj ) = tr(PiT ∗xj

Txj
) = tr(T ∗xj

Txj
Pi)

= tr(T ∗Ajξi
Tξi

) = 〈T ∗xj
Txj

ξi, ξi〉.

Write Qm =
m∑
i=1

T ∗xi
Txi . Then Qm is an orthogonal projection and

m∑
j=1

〈Pixj , xj〉 = 〈Qmξi, ξi〉 6 1.

Thus
m∑
j=1

‖xj‖2 = lim
i→∞

m∑
j=1

〈Pixj , xj〉 6 1.

So tr(I) =
∞∑
j=1

‖xj‖2 6 1, and thus r(π) > 1, as expected.
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4. SOME APPLICATIONS IN GABOR ANALYSIS

The incompleteness property (Theorem 3.6) can have many simple applications
in different concrete situations. In this section we discuss some applications in
Gabor analysis. We first restrict ourselves to one dimensional Gabor systems. Let
α, β > 0. Recall that Uα and Vβ are unitary operators defined by

(Uαg)(x) = e2πiαxg(x) and (Vβg)(x) = g(x− β)

for g ∈ L2(R). Let π be the identity representation of Uα,β , i.e. π(u) = u for every
u ∈ Uα,β .

Lemma 4.1. The redundancy of π is 1
αβ .

Proof. It suffice to find normalized tight frame vectors ξi such that I =
k∑
i=1

T ∗ξi
Tξi

and
k∑
i=1

‖ξi‖2 = αβ. If αβ 6 1, then ξ =
√
αχ[0,β] is a complete nor-

malized tight frame vector. Thus T ∗ξ Tξ = I. Clearly ‖ξ‖2 = αβ. If αβ > 1,
choose continuous disjoint intervals Ej , j = 1, . . . , k, such that the length of each

Ej is less than or equal to 1
α and

k⋃
j=1

Ej = [0, β). Let ξi =
√
αχEj

. Then each ξi

is a normalized tight frame vector (but not complete) and
k∑
j=1

T ∗ξj
Tξj

= I. Also

k∑
j=1

‖ξj‖2 = αβ.

From Theorem 3.6 and Lemma 4.1, we immediately have:

Theorem 4.2. The following statements are equivalent:
(i) αβ 6 1;
(ii) Uα,β has a complete normalized tight frame vector;
(iii) Uα,β has a complete frame vector;
(iv) Uα,β has a cyclic Bessel vector;
(v) Uα,β has a cyclic vector.

For a unitary representation π of a group-like unitary system U , the cyclic
multiplicity of π is defined to be the minimal cardinality of the sets S ⊂ K such
that span{π(u)x : u ∈ Ux, x ∈ S} is dense in K. Note that for each x ∈ K,
[π(U)x] is invariant under π(U). So if π has cyclic multiplicity n, then there exist
vectors x1, . . . , xn ∈ K such that [π(U)xi] are orthogonal each other and generate
the whole Hilbert space K.

Corollary 4.3. The following are equivalent:
(i) n− 1 < αβ 6 n;
(ii) Uα,β has multiplicity n.
In this case, Uα,β has normalized tight frame vectors ξ1, . . . , ξn such that

T ∗x1
Tξ1 + · · ·+ T ∗xn

Txn
= I.

Proof. From the proof of Lemma 4.1, we have that if αβ 6 n, then π has
cyclic multiplicity at most n. On the other hand, let us assume that π has cyclic
multiplicity n. Let {x1, . . . , xn} be a cyclic set for π such that Hi := [π(U)xi]
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are orthogonal each other. Then, by Theorem 3.6, tr(Pi) 6 1, where Pi is the
orthogonal projection onto Hi which is in the commutant of π(U). Thus αβ =

tr(I) = tr
( n∑
i=1

Pi

)
=

n∑
i=1

tr(Pi) 6 n. Hence (i) and (ii) are equivalent. The last

statement follows from the proof of Lemma 4.1.

Now we consider the higher dimensional case. Let A and B be d×d invertible
real matrices. We associate with them the unitary system

UA,B := {UAkVBl : k, l ∈ Zd}.
As in the one dimensional case we need to compute the redundancy of the system.

Lemma 4.4. The redundancy of UA,B is 1
|detAB| .

Proof. Let W be the unitary operator f(ξ) →
√
|detB−1|f(B−1ξ). Then

W ∗UA,BW = UBtA,I , where Bt is the transpose of B. So it suffices to consider
the case when B = I. Let Ω = {(x1, . . . , xd) : 0 6 xi < 2π, i = 1, . . . , d} and
let Gn = AtΩ ∩ (Ω + 2nπ) for every n ∈ Zd. Note that {Ω + 2nπ : n ∈ Zd} is
a partition of Rd. Thus

⋃
n∈Zd

Gn = AtΩ, i.e.,
⋃

n∈Zd

(At)−1Gn = Ω. Write En =

(At)−1Gn. Then {En : n ∈ Zd} is a partition of Ω. Let fn =
√
|detA|χEn .

Since AtEn − 2nπ = Gn − 2nπ ⊆ Ω, we can show that {ei〈Ak,ξ〉fn : k ∈ Zd} is a
normalized tight frame for L2(En). In fact, for any f ∈ L2(Rd), we have

〈f, e−i〈Ak,ξ〉f0〉 =
√
|detA|

∫
Rd

ei〈k,Atξ〉χE0(ξ)f(ξ) dξ

=
1√
|detA|

∫
Rd

ei〈k,ξ〉χE0((A
t)−1ξ)f((At)−1ξ) dξ

=
1√
|detA|

∫
Rd

ei〈k,ξ〉χAtE0(ξ)f((At)−1ξ) dξ

=
1√
|detA|

∫
Ω

ei〈k,ξ〉χAtE0(ξ)f((At)−1ξ) dξ

since AtE0 = G0 ⊂ Ω. Thus∑
k∈Zd

|〈χE0f, e
−i〈Ak,ξ〉〉|2 =

1
|detA|

∫
Ω

|χAtE0(ξ)f((At)−1ξ)|2 dξ

=
1

|detA|

∫
AtΩ

|f((At)−1ξ)|2 dξ

=
∫
E0

|f(ξ)|2 dξ = ‖f‖2L2(E0)
.

So {ei〈Ak,ξ〉f0 : k ∈ Zd} is a normalized tight frame for L2(E0) and similarly for the
other En. Therefore UA,Ifn is a normalized tight frame for L2

( ⋃
k∈Zd

(En + 2kπ)
)
.
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Let Fn =
⋃
k∈Zd

(En + 2πk). Then {Fn} is a partition of Rd. Thus I =∑
n∈Zd

T ∗fn
Tfn

, which implies that

tr(I) =
∑
n∈Zd

‖fn‖2 = |detA|
∑
n∈Zd

µ(En) = |detA|µ(Ω) = |detA|,

where µ is the Lebesgue measure on Rd. Therefore the redundancy of UA,I is
1

|detA| .

From Theorem 3.6 and Lemma 4.4 we have:

Corollary 4.5. If |detAB| > 1, then UA,B does not have any cyclic vector.

We can also consider the direct sum representations of a group-like unitary
system which are related to the concept of strongly disjoint frames introduced
in [10] (or, equivalently, to the concept of orthogonal multiframes introduced by
R. Bălan in [1]). In particular, we can answer one question posed in [10].

Corollary 4.6. Suppose that Ai and Bi are invertible d× d real matrices
such that At

iBi = At
jBj for all i, j. Let U = {UA1kVB1l ⊕ · · · ⊕ UAnkVBnl :

k, l ∈ Zd}. If |detA1B1| > 1
n , then U does not admit any cyclic vector in H =

L2(Rd)⊕ · · · ⊕ L2(Rd).

Proof. By our assumption U is a group-like unitary system. Let IH denote

the identity operator on H. Then, by Lemma 4.4, tr(IH) =
n∑
i=1

|detAiBi| =

n|detA1B1|. Hence, by Theorem 3.6, U does not admit any cyclic vector.

Remark. In the case that At
iBi 6= At

jBj for some i 6= j, the direct sum uni-
tary system U in Corollary 4.5 is not a group-like unitary system. Thus Lemma 4.5
can not be applied in this situation.

However, we still have the following weaker result:

Proposition 4.7. Assume that
n∑
i=1

|detAiBi| > 1. Then the unitary sys-

tem U = {UA1kVB1l ⊕ · · · ⊕ UAnkVBnl : k, l ∈ Zd} does not admit any complete
normalized tight frame vector for H = L2(Rd)⊕ · · · ⊕ L2(Rd).

Proof. Suppose, on the contrary that U has a complete normalized tight
frame vector F = (f1, . . . , fn). Then fi is a complete normalized tight frame

vector for UAi,Bi
. Thus, by Lemma 4.5, |detAiBi| = ‖fi‖2. Hence

n∑
i=1

|detAiBi| =
n∑
i=1

‖fi‖2 = ‖F‖2 6 1, which contradicts our assumption.

We still do not know, even in the one dimensional case, whether the condition
n∑
i=1

|detAiBi| > 1 imply that U does not admit any cyclic vector.

Now we answer a question asked in Remark 4.11 of [10].
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Corollary 4.8. Suppose that αi, βi > 0 such that αiβi = αjβj for all i, j.
Let U = {Uα1kVβ1l⊕ · · · ⊕UαnkVβnl : k, l ∈ Z}. Then the following are equivalent:

(i)
n∑
i=1

αiβi 6 1;

(ii) U has a complete normalized tight frame vector;
(iii) U has a cyclic Bessel vector;
(iv) U has a cyclic vector.

Moreover, U has a complete wandering vector if and only if
n∑
i=1

αiβi = 1.

Proof. By Corollary 4.7, it suffices to check that (i)⇒ (ii). Due to the unitary
equivalence, we can assume that α1 = · · · = αn = α and β1 = · · · = βn = β. Let
fi =

√
αχ[(i−1)β,iβ) for i = 1, . . . , n. Then f1 ⊕ · · · ⊕ fn is a complete normalized

tight frame vector for U , and it is a complete wandering vector when αβ = 1
n .

Remark. After this paper was complete, we learned from R. Bălan that he
and Z. Landau recently obtained the following result:

Uα,β admits a maximal number of functions (windows) g1, . . . , gk (maximal
with respect to k) such that Uα,βg1 ∪ · · · ∪ Uα,βgk forms an orthonormal set if and
only if [αβ] = k, where [αβ] denotes the integer part of αβ. Moreover, for the
given g1, . . . , gk, there is one complementary window function h such that Uα,βh
is a frame for the orthogonal complement of Uα,βg1 ∪ · · · ∪ Uα,βgk.

We remark that this can also be obtained as a consequence of Lemma 4.1.
We include a sketch of the proof here. First, assume that [αβ] = k. Then tr(I) =
αβ < k+1. Clearly there exist f1, . . . , fk such that Uα,βf1 ∪ · · · ∪Uα,βfk forms an
orthonormal set. (One can choose suitable (normalized) characteristic functions
to play this role.) If there exist g1, . . . , gm such that Uα,βg1∪· · ·∪Uα,βgm forms an
orthonormal set and m > k, then I > T ∗g1Tg1 + · · ·+ T ∗gm

Tgm . Thus αβ = tr(I) >
tr(T ∗g1Tg1 + · · ·+ T ∗gm

Tgm
) = m, which is a contradiction. Thus k is maximal.

Conversely, suppose that k is the maximal integer such that there exist
g1, . . . , gm with the property that Uα,βg1 ∪ · · · ∪ Uα,βgk forms an orthonormal
set. Let n 6 αβ < n + 1. Then, by the above argument, k must be n. Hence
[αβ] = k.

To get the last statement, let g1, . . . , gk be functions such that Uα,βg1 ∪
· · · ∪ Uα,βgk forms an orthonormal set with k maximal. Then k = [αβ]. Let fi =√
αχ[(i−1)/α,i/α) for i = 1, . . . , k, and let h =

√
αχ[k/α,β]. Then Uα,βf1∪· · ·∪Uα,βfk

forms an orthonormal set and Uα,βh is a normalized tight frame for the space
L2(

⋃
n∈Z

([k/α, β] + nβ)), which is the orthogonal complement of Uα,βf1 ∪ · · · ∪

Uα,βfk. Let P and Q be the orthogonal projections onto the subspaces generated
by Uα,βf1∪· · ·∪Uα,βfk and Uα,βg1∪· · ·∪Uα,βgk, respectively. Define an operator
W : WUnαV

m
β fi = UnαV

m
β gi for all n,m ∈ Z, 1 6 i 6 k and Wf = 0 for all

f ∈ P⊥L2(R). Then W is in the commutant of Uα,β and has the property that
W ∗W = P and WW ∗ = Q. Hence P and Q are equivalent projections in the
finite von Neumann algebra U ′α,β . Therefore P⊥ and Q⊥ are also equivalent. Let
S ∈ U ′α,β be such that S∗S = P⊥ and SS∗ = Q⊥. Then Uα,βSh is a normalized
tight frame for Q⊥L2(R), as expected.
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5. APPENDIX

In this section we provide the sketch of proofs for Propositions 1.1 and 1.2 .

Proof of Proposition 1.1. The statement (iii) is trivial, while (i) and (ii)
follow from the equality

f(uσ(vw))f(vw)σ(uσ(vw)) = u(vw) = (uv)w = f(uv)f(σ(uv)w)σ(σ(uv)w)

and the assumption that U is independent.
For each g ∈ U , we have σ(σ(gv−1)v) = σ(gσ(v−1v)) = σ(g) = g. Hence the

first equality in (iv) holds. Note that

vσ(g−1v)−1 = f(g−1v)v(g−1v)−1 = f(g−1v)g.

Hence σ(vσ(g−1v)−1) = g since g ∈ U . Similarly, σ(vσ(wg−1v)−1w) = g. Thus
the rest of (iv) holds.

For (v), assume that σ(vu−1
1 w) = σ(vu−1

2 w) for some u1, u2 ∈ U . Then

f(vu−1
1 w)vu−1

1 w = f(vu−1
2 w)vu−1

2 w.

Hence f(vu−1
2 w)u1 = f(vu−1

1 w)u2. So u1 = u2 by the independence of U , which
implies the injectivity of the mapping u → σ(vu−1w). Similarly, one can easily
check the injectivity for the other mappings in (v).

Proof of Proposition 1.2. (i) By using Proposition 1.1, it is easy to check that
LuRv = RvLu for all u, v ∈ U . Let T ∈ R′ and S ∈ L′. To show that L′ = R, it
suffices to prove that ST = TS. Write

SeI =
∑
u∈U

aueu, T eI =
∑
u∈U

bueu.

Then for any v ∈ U , we have

Sev = Sf(v)LveI = SLveI = LvSeI = Lv
∑
u∈U

aueu =
∑
u∈U

auf(vu)eσ(vu).

Replacing u by σ(v−1u) in the last expression, we get

Sev =
∑
u∈U

aσ(v−1u)f(vσ(v−1u))eσ(vσ(v−1u)) =
∑
u∈U

aσ(v−1u)f(vσ(v−1u))eu.

Thus the equality 〈S∗ew, ev〉 = 〈ew, Sev〉 implies that

S∗ew =
∑
u∈U

aσ(u−1w)f(uσ(u−1w))eu

for all w ∈ U .
Now we compute Tev. Assume that σ(x−1) = v for some x ∈ U . Then, by

the definition of σ and f , x−1 = f(x−1)v. Hence v−1 = f(x−1)x. This implies
that x = σ(v−1) and f(v−1) = f(x−1). Thus

Tev = Tf(x−1)RxeI = f(x−1)RxTeI =
∑
u∈U

buf(x−1)f(ux−1)eσ(ux−1).
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Again, replacing u by σ(ux), gives

Tev =
∑
u∈U

bσ(ux)f(x−1)f(σ(ux)x−1)eu

=
∑
u∈U

bσ(uσ(v−1))f(v−1)f(σ(uσ(v−1))σ(v−1)−1)eu.

Therefore,

T ∗ew =
∑
u∈U

bσ(wσ(u−1))f(u−1)f(σ(wσ(u−1))σ(u−1)−1)eu

for all w ∈ U .
Note that wσ(u−1) = f(u−1)wu−1 = f(u−1)f(wu−1)σ(wu−1). Thus we

have that σ(wσ(u−1)) = σ(wu−1) and f(wσ(u−1)) = f(u−1)f(wu−1). Similarly

σ(uσ(v−1)) = σ(uv−1), f(uσ(v−1)) = f(v−1)f(uv−1).

Since (by Proposition 1.1)

f(vσ(v−1u))f(v−1u) = f(σ(vv−1)w)f(vv−1) = f(w)f(I) = 1,

it follows that f(vσ(v−1u)) = f(v−1u). Similarly we have

f(uσ(u−1w)) = f(u−1w),

f(σ(uσ(v−1))σ(v−1)−1) = f(uσ(v−1)) = f(v−1)f(uv−1),

f(σ(wσ(u−1))σ(u−1)−1) = f(wσ(u−1)) = f(u−1)f(wu−1).

Therefore,

(5.1) 〈TSev, ew〉 =
∑
u∈U

aσ(v−1u)bσ(wu−1)f(v−1u)f(wu−1)

and

(5.2) 〈STev, ew〉 =
∑
u∈U

aσ(u−1w)bσ(uv−1)f(u−1w)f(uv−1).

If we replace u by σ(vu−1w) in (5.1) and note that {σ(vu−1w) : u ∈ U} = U ,
then we have

〈TSv, ew〉 =
∑
u∈U

aσ(u−1w)bσ(wσ(vu−1w)−1)f(v−1σ(vu−1w))f(wσ(vu−1w)−1).

However, since

wσ(vu−1w)−1 = wf(vu−1w)w−1uv−1 = f(vu−1w)f(uv−1)σ(uv−1),

it follows that
σ(wσ(vu−1w)−1) = σ(uv−1)

and
f(wσ(vu−1w)−1) = f(vu−1w)f(uv−1).
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Similarly, we also have f(v−1σ(vu−1w)) = f(vu−1w)f(u−1w). So

〈TSev, ew〉 =
∑
u∈U

aσ(u−1w)bσ(uv−1)f(u−1w)f(uv−1)f(vu−1w)f(vu−1w)

=
∑
u∈U

aσ(u−1w)bσ(uv−1)f(u−1w)f(uv−1)

since f(vu−1w)f(vu−1w) = 1. Hence 〈TSev, ew〉 = 〈STev, ew〉, as required.
(ii) We first note that L (respectively R) can be easily extended to a mapping

from group(U) to group(Lu;u ∈ U) (respectively group(Ru : u ∈ U)) with the
property that LuLv = f(uv)Lσ(uv) (respectively RuRv = f(uv)Rσ(uv)) whenever
u, v ∈ group(U). Let φ(A) = 〈AeI , eI〉. We show that φ is a faithful trace for L.
Let u, v ∈ group(U). Then

φ(LuLv) = 〈LuLveI , eI〉 = f(uv)〈Lσ(uv)eI , eI〉

and
φ(LvLu) = 〈LvLueI , eI〉 = f(vu)〈Lσ(vu)eI , eI〉.

Note that if σ(uv) = I, then uv = f(uv)I. So, by multiplying with v and v−1

on both sides, we have vu = f(uv)I. Thus σ(uv) = I if and only if σ(vu) = I,
and in this case we have f(uv) = f(vu). Therefore φ(LuLv) = φ(LvLu) = 0
whenever σ(uv) 6= I and = 1 whenever σ(uv) = I. By taking the weak-limit, we
get φ(AB) = φ(BA) for all A,B ∈ L. If A ∈ L is positive and φ(A) = 0, then
A

1
2 eI = 0. For any v ∈ U , let σ(w−1) = v for some w ∈ U . Then

A
1
2 ev = A

1
2 f(w−1)RweI = f(w−1)RwA

1
2 eI = 0.

So A
1
2 = 0, which implies that A = 0. Thus φ is a faithful trace. Similarly

τ(T ) = 〈TeI , eI〉, T ∈ R, is also a faithful trace for R. Therefore both L and R
are finite von Neumann algebras.

(iii) Let T ∈ L ∩R. Then TLv = LvT and TRv = RvT for all v ∈ U . Write
TeI =

∑
u∈U

aueu. Fix v ∈ U and let σ(x−1) = v for some x ∈ U . Then x = σ(v−1)

and f(x−1) = f(v−1). Thus

TLveI = Tev = f(x−1)TRxeI = f(x−1)RxTeI

=
∑
u∈U

auf(x−1)f(ux−1)eσ(ux−1)

=
∑
u∈U

aσ(ux)f(x−1)f(σ(ux)x−1)eu

=
∑
u∈U

aσ(uv−1)f(v−1)f(σ(uσ(v−1))σ(v−1)−1)eu

and
LvTeI =

∑
u∈U

auf(vu)eσ(vu) =
∑
u∈U

aσ(v−1u)f(vσ(v−1u))eu.

Thus

aσ(uv−1)f(v−1)f(σ(uσ(v−1))σ(v−1)−1) = aσ(v−1u)f(vσ(v−1u)).
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Replacing u by σ(vu) in the above equality, we get that

aσ(vuv−1)f(v−1)f(σ(vuv−1)σ(v−1)−1) = auf(vu).

Note that

σ(vuv−1)σ(v−1)−1 = f(vuv−1)vuv−1f(v−1)v = f(vuv−1)f(v−1)f(vu)σ(vu).

Thus
f(σ(vuv−1)σ(v−1)−1) = f(vuv−1)f(v−1)f(vu).

Therefore
aσ(vuv−1)f(vuv−1) = au.

Assume that u 6= I. If {σ(vuv−1) : v ∈ U} is infinite, then au = 0 since
∑
u∈U

|au|2 <

∞. If {σ(vuv−1) : v ∈ U} is finite, then au = aσ(vuv−1) for all but a finite number
of v. Since {f(vuv−1) : v ∈ U} is infinite, it follows that au must be zero. Hence
TeI = aIeI . This implies that Tev = LvTeI = aIev for all v ∈ U . So T = aII, as
expected.
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