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ABSTRACT. Suppose that g is a tuple of bounded holomorphic functions on
a strictly pseudoconvex domain D in C™ with smooth boundary. Viewed
as a tuple of operators on the Hardy space HP(D), 1 < p < oo, g is shown
to have property (8)s and therefore g possess Bishop’s property (). In the
case m = 1 it is proved that the same result also holds when p = cc.
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1. INTRODUCTION

Suppose that X is a Banach space and that a = (ay,...,a,) is a commuting tuple
of bounded linear operators on X. Let E be one of spaces X, £(C", X) or O(U, X),
where U C C™. Denote by K(z — a, E) the Koszul complex

0— A"EES A g 2ms L B N0p ),

with boundary map

P

(Sz_a(fS]) = 27TiZ(—1)k_1(Zik — aik)fsil VARERIVAN gik VARERIAN Sip)
k=1

where I = (41,...,1p) and p is an integer. Let Hq(z — a, E) be the corresponding
homology groups.

The Taylor spectrum of a, o(a), is defined as the set of all z € C™ such
that Ke(z — a,X) is not exact. If for all Stein open sets U in C" the natural
quotient topology of Hy(z — a, O(U, X)) is Hausdorff and H,(z —a,O(U, X)) =0
for all p > 0, then a is said to have Bishop’s property (). It has property
(B)e if the natural quotient topology of Hy(z — a,E(C™, X)) is Hausdorff and if
H,(z—a,&E(C", X)) =0 for all p > 0.
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By Theorem 6.2.4 in [9], the tuple a has Bishop’s property (5) if and only
if there exists a decomposable resolution, that is, if and only if there are Banach
spaces X; and decomposable tuples (see [9] for the definition) of operators a; on
X; such that

O—)XLXOL>L>XT—>O

is exact, da = apd and da; = a;41d. Property (8)s is equivalent to the existence of
a resolution of Fréchet spaces with Mittag-Leffler inverse limit of generalized scalar
tuples (that is tuples which admit a continuous C*°(C")-functional calculus), see
Theorem 6.4.15 in [9]. Property (3)¢ implies Bishop’s property (53), see [9].

Suppose that D is a strictly pseudoconvex domain in C™ with smooth bound-
ary. We consider the tuple T, = (Ty,,...,T,,), gx € H(D), of operators on
HP(D) defined by Ty, f = gi f, f € HP(D). The main theorem of this paper is the
following.

THEOREM 1.1. Suppose that D is a bounded strictly pseudoconvexr domain
in C™ with C*°-boundary and that g € H>(D)™. Then the tuple T, of Toeplitz op-
erators on HP(D), 1 < p < oo, satisfies property (8)e, and thus Bishop’s property

(8)-

In case g has bounded derivative this theorem has previously been proved in
[14], [16] and [17]. In case D is the unit disc in C, Theorem 1.1 also holds when
p = o0; this is proved in Section 4. As a corollary to Theorem 1.1 we have that T},
on the Bergman space OLP(D) has property (8)e, see Corollary 3.4.

Let us recall how one can prove that 7, on the Bergman space OL?(D) has
property ()¢ under the extra assumption that g has bounded derivative. Define
the Banach spaces By as the spaces of locally integrable (0, k)-forms w such that

lull B, = llullL2(p) + 19l 2Dy < o0.
Since g has bounded derivate we have the inequality

logulls, S sup (9(=)| + Be(=)]) ull,
z€g9(D)
for all ¢ € C>°(C™). Hence ¢ — T4 is a continuous C'*°(C™)-functional calculus,
where Ty, denotes multiplication by ¢ o g on By. Since we have the resolution
2 E) E} El
0— OL*(D)—>By— By —--+—B,, —0

by Hormander’s L%-estimate of the 0 equation, the tuple T, on OL?(D) has prop-
erty (8)g by the above mentioned Theorem 6.4.15 in [9].

To prove Theorem 1.1 we will construct a complex
(1.1) 0— H?(D) -~ By % B, -% ... 2B, —0,
where Bj, are Banach spaces of (0, k)-forms on D. The spaces By, are defined in
terms of tent norms. We prove that ¢ — T4 is a continuous C°°(C")-functional
calculus, where T,,,, denotes multiplication by ¢ o g on By. If the complex (1.1)
were exact the proof of Theorem 1.1 would be finished. As we can solve the 0-
equation with appropiate estimates we will be able to prove that T, on H? has
property (83)e anyway. More precisely (1.1) is exact at Bg, k > 3. If f € By and
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df = 0 then there is a function v in another Banach space B} such that du = f.
Mutiplication by g is a bounded operator on Bj. If f € By and f’ € B such that
df + df" = 0 then there is a solution u € LP(9D) to the equation dpu = f + f'.
The construction of the complex (1.1) in the case p < oo is inspired by the
construction in [5] and in the case p = oo and m = 1 it is inspired by Tom Wolff’s
proof of the corona theorem. Let us recall the proof of the HP-corona theorem
in the unit disc of C. Suppose that g = (g1,...,9n) € H®(D)", where D is the

unit disc in C, and that 0 ¢ g(D). Consider the complex (1.1); the definitions of
the By-spaces can be found in the beginning of Section 3 and Section 4. Suppose
that f € HP(D). Then the equation dyu; = f has a solution in K (g, By), namely

u1 =Y. g fsk/lg|>. Hence 6,0u; = 0 as §, and 0 anticommute, and we can solve
k

the equation dgus = Ouy by defining us € Ko(g, By) as uj AQuy. Since uy satisfies
the condition
11 = [zNusllzp + (1 = [2])*Qualrr < o0,

by a Wolff type estimate there is a solution v in Ks(g, LP(0D)) to the equation
Opv = ug (here TY and T¥ denote certain tent spaces). Let uj = uj — dyv €
K1(g, L?(0D)), where u} is the boundary values of u;. Since dpuj = 0 there is a
holomorphic extension Uj of u} to D which satisfies the equation 6,U] = f.

The above proof also yields that o(T,) = g(D); the exactness of higher order

in the Koszul complex follows by similar resoning. That o(T}) = ¢(D) is proved
in [5] for the case D strictly pseudoconvex and p < oo. One main difference of
the proof of that T, has property (3)s and the proof of that o(7,) = g(D) is the
following. As a substitution of the explicit choices of u; and us one uses the fact
that T}, considered as an operator on By, has property (5)g, which in turn follows

from the fact that T, on By has a C°°(C™)-functional calculus.

2. PRELIMIARIES

Suppose that D is a bounded strictly pseudoconvex domain in C™ with C°°-
boundary given by a strictly plurisubharmonic defining function p. Let r = —p.
All norms below are with respect to the metric Q = riddlog(1/r), and we have

(P~ f G+ rlf AOr3+rf AOr|G+ | f Aor Adr|3,

where 8 = i00r, which is equivalent to the Euclidean metric.
The Hardy space HP is the Banach space of all holomorphic functions f on
D such that

£l =sup [ 1) dote) < oo,
e>0
r(z)=¢e
where o is the surface measure. It is wellknown that a function w in LP(9D) is the

boundary value of a function U in H? if and only if [ uh = 0forallh € C°,_,(D)
oD

n,n—1

such that Oh = 0.
Let d(-, -) be the Kordnyi pseudometric on 9D and let 2z’ be the point on
0D closest to z € D, where D, is a small enough neighbourhood of 9D in D. For
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a point ¢ on the boundary let A = {z € D, : d(2',¢) < r(2)}U(D\ D.). For a ball
B defined by B = {z € 8D : d(z,() < t} let, for small t, B ={z € D, : d(¢',() <
t —r(2)}, and, for large ¢, let B = {z € D, : d(z,¢) <t —r(2)} U (D\ D.). A
function f is in the tent space T7, where p < oo and ¢q < oo, if

i = ([ (] |f<z>|%<z>ml)p/qdff(o)l/pmo.

oD  z€A¢

The function f is in T% if f is continuous with limits along A; at the boundary
almost everywhere and such that

1/p
1 fllze = ( [ s If(Z)I”do—(C)) ‘.
5D ZGA(

A function f is in T° if

w (15 / o)

z€B

Note that f € T¥ if and only if r~/Pf € LP(D) by Fubini’s theorem. From [8] we
have the inequality

(2.1) [ 1897 5 18l lgly
q
D

[fllzee =

< 00.
L= (dD)

for 1 < p,q < oo, where p’ and ¢ denote dual exponents. By [8] Tg’,,, where
1 < p<ooand 1l < g < oo, is the dual of TP with respect to the pairing

(f.g) — [ fgr~!. Suppose that f € TP, g€ Tye and let ¢ = (qg1 +¢;')~"'. Then
D

for all h € Tg’,, we have

/ Fahlr™ S 1l gl < 117y Nolrge [
D

by (2.1) and Hélder’s inequality. Thus by the duality for T(f// we get the inequality
(2.2) ||f9||T§ S Hf”T;O HgHquf

for 1 < p and 1 < ¢ < oo. Since the inequality (2.2) is equivalent to

1£gllzge S Wflzes ol

tqy

for 0 < t < 00, (2.2) holds if 0 < p, qo, q1.
We will use the inequality (see [12])

(2.3) [fllrz, < I1fllee, P >0
and (see e.g. [7] for p < oo and [3] for p = o0)
(2.4) 120 lry S I fllny 2> 0.
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Moreover, we use that [0f| < r~1/2if f € H™.
There is an integral operator K : C§%,, (D) — Co ¢(D), ¢ > 0 (see [5]) such
that 0Ku + Kou = u, u € C5%(D), s > 1,

(2.5) Ir"Kullze S |77 2ullyy - and | Kulloony S 7/ ?ullr
if 7> 0and 1 <p < oco. Furthermore,
(2.6) 1K ullLoony S lIr'ullzy + llroulizy.

To see that the inequality (2.5) follows from [5], note that by the definition of
W=1/P in [1], [rullze = |lullwi-1/». By [4] the adjoint P of K satisfies

|PY|| Dy S 1¥lle=@py and |[r/2LPY|12(py S I1¥]lr2om)

(where £ is an arbitrary smooth (1,0)-vectorfield). The L2-result is proven by
means of a T'1-theorem of Christ and Journé. By [10] it now follows that

(2.7) 1PYllre S MIllLeopy, P> 1,
and
(2.8) [rLPYllre < [¥llzrop), P> 1.

The inequality (2.6) follows from (2.7) and (2.8).

In Section 4 we use completed tensor products of locally convex Hausdorff
spaces, see e.g. Appendix 1 in [9]. Suppose that E and F are locally convex
Hausdorff spaces. We denote by L(FE, F) the space of all continuous and linear
maps from F to F. The topology m on E® F is defined as the finest locally convex
topology such that the canonical bilinear map F x F — E ® F' is continuous.
We denote by E®F the space F ® F' with the topology m and we denote the

completion of E®F with E®F There is another topology on ' ® F, the

topology ¢; in case FE is nuclear this topology coincides with the topology 7 and
we therefore omit the index 7 in this case. The Fréchet space £(C™) is nuclear
and we have the isomorphism £(C", E) = £(C") ® E.

3. PROPERTY ()¢ FOR TOEPLITZ OPERATORS WITH H°°-SYMBOL ON HP

First we need to define the sequence (1.1) and prove that there is a continuous
C>°(C™)-functional calculus on each of the spaces By.
Define the norms || - ||5,, k = 0, by
(3.1 llullz, = llullzz, + 7/ dullzy + [[rddullyy  on C(D),
(32)  llullp, = Ir"ullzy + [Ir dullzp on Gy (D)
and
(83)  lullz, = ™ 2ullry + [ 2Bully on C33(D) for k > 2
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Let By be the completion of C§5 (D) with respect to the norm ||-||,. We also

define Bf as the completion of C§9 (D) with respect to the norm | - || B/, defined
by

1/2

lullg; = lIr'2ullzy + llroullzy-

The injection i : H? — By is well defined and continuous by (2.3) and (2.4).

That 0 : By, — Byy1, k > 0 is continuous follows immediately from the definitions.
Thus we have defined a complex
(3.4) 0— H?(D) -~ By % B, % ... 2B, —0.

LEMMA 3.1. Suppose that g € H*(D)". Then one can define Ty, : By, — By
by Ty,u = giu, 1 < i < n, for all k > 0. The tuple Ty on By, k > 0, has a
continuous C°(C")-functional calculus and property (B)s.

Proof. That Ty, can be defined on By, follows from the calculation below (let
v(z) = z; below). We begin with the case k = 0. Suppose that ¢ € C*(C") and
u € C*°(D). From (2.2) we have

/2

udgllry S llullzz Ir'/*gllzs,
Ir|dul [8g| lz» S llr/? dullzy ||7/2 09|75

and

lrulogllzy < llullzz, I710g]? |75
Since [|7/20g| g < oo by the inequality (2.4) we thus get

(oo g)uln < sup fole) o, + 2l o gyl + 10 0) A duly
zeg

+ [ro(p o g) A ulle + [[rdd(¢ o g)ullr»

S sup (lp(2)] + De(2)] + [ D*0(2))) [l 5,
z€g(D)

where Dy and D?¢ denotes all derivates of ¢ of order 1 and 2 respectively. Note
that (pog)u & C*°(D) in general. Let g; € C°°(D)"NO(D)"™ be such that g; — g
in HP(D)™ with g; uniformly bounded as | — oo and suppose that u is fixed. We
have the equalities

dpogi—pog) =Y ¢ioadg —piogdg' +¢;0qdg; — 5o gdg'
7

and
00(pogi—pog)=> ¢;;0qdg Ndgi — ;0 gdg’ Adg',
0,J
where the index in ¢; denotes partial derivate and the upper index in g; and g¢°
denotes ith component. Hence we get

ld(pogi—pog)| <|Dypogl|dg — 0g|+ |Dypog — Dygogl||dg|,
and
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100(¢ 0 g1 — p o g)| <|D*¢ o gi||0g — dg|(|0gi| + 19g]) + |D* 0 gy — D*p o g |0g|*.
By (2.3) we have

(¢ 0 90— @ o glullze + Ir'/*(w 0 g1 — o g) dullzy (¢ 0 g — ¢ 0 9)0Dul|7r
Sleog—wogllre Slla—gllre < g —gllue

We also have that
[P /2d(p 0 g1 — @ o g)ullzy + |Ir|d(w 0 g0 — @ 0 )| dul |7

S Ir2d(p o g — @ o g)ll 7

S IF'?|Dg o gi| 1091 — Dgl |y + 7'/ Dep o i = D o g| |09l Iy < llg — gllas
by (2.2),(2.3) and (2.4). Furthermore,

[798( © g1 — @ © g)ull 7>
< 1D 0 gif 1890 — 0g[(|0g1| + 10g)) |z + |Ir|D?¢ 0 gi — D*¢ 0 g| [9g || 72

S g —gllar
by (2.2),(2.3) and (2.4). Thus |[(po g — ¢ o g)ullg, — 0 as I — oo and therefore
we have that (¢ o g)u is in the completion of C°°(D) with respect to the norm
|l lB,- We extend the map u — (p o g)u : C°°(D) — By to a continuous map
©(Ty) : Bo — By, bounded by a constant times sup (|¢(z)|+]D¢(2)|+|D?*p(2)]).

z€g(D)

Hence Tj, on By has a continuous C°°(C™)-functional calculus.

Next we consider the case k = 1. Suppose that ¢ € C*(C") and u € C§59 (D).
From (2.2) and (2.4) we have the inequality

Ir10g| [ul 72 S [Ir20gllrge |7 Pullze S 17 2ullze.
Hence we get

[(pog)ulle, < sup |@(z)||[ullB, + [[rd(eeg) Aullrr
z€g(D)

S osup (le(2)] + [De(2)]) [[ull 5, -
z€9(D)

As in the case k = 0 we prove that (¢ o g)u is in the completion of Cg9 (D).

When we extend the map u +— (¢ o g)u : C*(D) — Bj by continuity to a map

©(Ty) : B1 — B; bounded by sup (|¢(2)| + |D¢(z)|) and hence we have proved
z€g(D)

that T, on B; has a C'°°(C")-functional calculus.
In case k > 2 we suppose that ¢ € C*(C") and u € Cg5(D). Since
|0g] < /2 we have

1@ e g)ulls, < sup lo(2)] llullg, + I7*/271/28(p 0 g) A ull7r
zEyg

S sup (le(2)] + [De(2)])||ull 5, -
z€g(D)
As in the case k = 0 it follows that T, on By, k > 2, has a C°°(C")-functional
calculus.
That each of the tuples T, has property (3)s now follows from Proposi-
tion 6.4.13 in [9].
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We can extend the integral operator K : Cg%.,,(D) — Cox(D), k > 1,
to a continuous operator K : Byxi1 — By, k > 2, and a continuous operator
K : By — Bj. This because

(3.5) 152 Kullze < (Ir¥2 4 2 ull e < lull B,
and

220K u gy = 22 (w — KOu)llrp S Ilull By

for all u € CF5, (D) by (2.5), (3.3) and (3.5). Also observe that Ku is in the
completion of Cg%, (D) under the norm |||/, (or |- || B;) by dominated conver-
gence and the fact that one can find f; € Cg5, (D) such that f; — Ku, 0f; — 0Ku
pointwise and |f;],|9f;| < 1 (as Ku,0Ku € C(D)). Approximation in By yields
that 0Ku + KOu = u for all u € By, 1, k > 1. Thus the complex (3.4) is exact in
higher degrees.

Extend K : C§5(D) — C(0D) to continuous maps K : B; — LP(8D) and
K : B} — LP(0D), which is possible by (2.5) and (2.6). Define the (1, 0)-vector
field £ by the equation

L=x> or2 20 0

0z 0z ’

where x is equal to 1 in a neighbourhood of D and 0 on the set where dr = 0.
Suppose that u € C*°(D) and let f = Ju. By integration by parts we have

aéuhD/fAh;V(f,h)

and
/uh:/f/\hz/O(r)fAh+/r£(fAh)=:W(f,h)
oD D D D

for all h € G2, 1 (D) such that h = 0. We extend V to elements f in Bj and W

to elements in B;. We say that the equation dpu = f + f’, where u € LP(OD), f €
B; and f’ € Bf, holds if and only if

/uh: W(f.h) + V(' h)
oD

for all h € C52,,_1 (D) such that dh = 0.

LEMMA 3.2. If f € By, f' € B and Of +0f =0 thenu = Kf+Kf' solves
the equation Owu = f + f'. Moreover, if ¢ € H>®(D) then Oy(pu) =T, f + T, f .

Proof. Suppose that f, f' € C§%(D). Since K (f + f' )+ Ko(f+f') = f+ [’

we have

(3.6) /(Kf+Kf’)h =W(f,h) + V(' h) —/K(5f+5f')Ah
D

oD
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for all h € Cg?,,,_ (D) such that dh = 0. For fixed h, we can estimate each term
of the above equality by a constant times || f||p, +[|f'||5;. Thus approximation in
B; and Bj yields that if f € By and f’ € Bf then

/uh=W(f,h)+V(f’,h)—/K(5f+5f’)/\h
D

oD

for all h € Cp° (D) such that Oh = 0. Hence the equation d,u = f + f’ holds

m,m—1 - < T
since we also have that 0f + df' = 0. Suppose that ¢ € C>°(D) N O(D) are
chosen such that o5, — ¢ in H'(D). Replace h in (3.6) by oh and approximate
to get

/ G(Kf + K f)h = W(f.ho) + V([ hip) — / PK(Bf +3f) Ah
oD D

for all h € C2,, 1 (D) such that 0h = 0, if f, /' € C§3 (D). We estimate the terms
to the right,

W (f.ho)| < / P2 ] ol + / rlofl ol + / rI] Bglr
D D D
< 11l @l st

V(' he)| < / A2 ol S 1 e el

D
and
[ oK @r + ) A 1| 1K@ + 91y ol
D

Sof +0f Isallel g < Ufls + 1 Il o

for fixed h by (2.1), (2.3) and (2.4). Hence approximation in By and Bj yields
that

[ e =W .+ VTLs B

oD
for all f € By, f € Bj such that f + df' = 0 and h € C7,, (D) such that
Oh=0. 1

Next we prove that functions in By has boundary values in L?(9D).

LEMMA 3.3. There is a continuous and linear operator u — u* from By to
LP(OD) such that u* is the restriction of u to D if u € C°(D) and (Tyu)* = f*u*
if f € H*(D).

Proof. Suppose that u € C*°(D). Then |jurop) < ||ullB, and hence the
restriction operator can be extended to a continuous operator from By to LP(9D).
Suppose that u € By and f € H*(D). Let u; € C*°(D) and f € C~(D)NO(D)



416 SEBASTIAN SANDBERG

be such that w; — w in By and f; — f in H?(D) with f; uniformily bounded.
Then
/" u® = (Tyu)*|| Lo o)
S u = fruflleop) + 11 up = fruglleop) + [[(frw)™ — (fw)*|lzeap)
+ 1(fw)” = (Tyu)*|| Lrop) — 0
if one first let ¥ — oo and then | — co. 11

Note that if u € By then

(3.7) u*h = W (0u, h)
!

for all h € Cy?,,, 1 (D) such that dh = 0 by approximation in By and Lemma 3.3.

Proof of Theorem 1.1. We will prove that the complex K, (z—T,,E(C", HP))
has vanishing homology groups of positive order and that > (z; — T,,)E(C™, HP)

is closed in £(C™, HP).

Suppose that uf € Ki(z — T,,£(C™, HP)) and 6, ,u* — ug in E(C", HP).
By Lemma 3.1 there is a u; € Ki(z — Ty, E(C", By)) such that iug = .7, u1.
Again by Lemma 3.1 we can recursively find u; € K;(z — Ty, E(C", B;_1)) such
that 0. 7,uiy1 = Ou; for i > 1. Then we have that Ou,,,; = 0. Define v,,,1 €
Kpi1(z — T4, E(C", Bri—2)) by vmi1 = Kumq1. Recursively define v;, i > 2,
by v; = Ku; — K6, _1,viy1. Thus v; € Ki(z — T4, E(C",B; o)) if i > 4, vz €
A3E(C™, B}) and the equation dv; = u; — 0-—1,vit1 holds for ¢ > 3. Furthermore
vy € A2E(C", LP(dD)) satisfies the equation dyvy = uz — 0._7,v3 by Lemma 3.2.

Let u} = uj — 0._g4+v2. By Lemma 3.2 we have that 5b5z,g*v2 = 0,_T,U
and thus [ 6,_g-voh = W(d.-1,uz2,h) for all h € C3¥ (D) such that oh = 0.

oD

m—1

Since by equation (3.7) [ ujh = W (dus, h) we have proved that

oD
/u’lh:()

oD
for all h € Cy?,,, 1 (D) such that h = 0. Thus U] € K(z —T,, £(C", H?)), where

U] is the unique holomorphic extension of u}. Since ug = d._7,U; by Lemma 3.3
we have proved that > (z; — T,,)E(C™, HP) is closed in £(C™, HP).

Suppose that ukZ € Ki(z —1T,,E(C", HP)) is 0._7,-closed. Then there is a
upt1 € Kpy1(z2 — Ty, E(C", By)) such that up = 6.7, upy1. Let ugy1 solve the
equation 8,7, uit1 = Ou; with w11 € K;y1(z — Ty, E(C™, Bi—,)) . Then we have
that Oumirr1 = 0. Let vpips1 = Ktpmips1 and v; = Ku; — K6, 7,viy1. Thus
51}1‘ = U; _627Tgvi+1 and gb’l}lﬁ,g = Uk+2 _6Z7Tgvk+3 since g(uz — 6z7Tg'Ui+1> =0.
Define U$c+1 by the equation u§6+1 =uj,,— 0, 71,Vk+2- Asin the case above we see
that U,’€+1 is a solution of the equation uy = 5Z_Tg U,’Hl, and hence the theorem is
proved. 1



PROPERTY (3)g FOR TOEPLITZ OPERATORS WITH H*°-SYMBOL 417

We now prove the analogue of Theorem 1.1 with the Hardy space replaced
by the Bergman space. In the case of when g has bounded derivate this is proved
in Theorem 8.1.5 in [9].

COROLLARY 3.4. Suppose that D is a bounded strictly pseudoconvex domain
in C™ with C*°-boundary and that g € H*>®(D)"™. Then the tuple Ty of Toeplitz
operators on the Bergman space OLP(D), 1 < p < 0o, satisfies property (8)e and
Bishop’s property (3).

_Proof. Let p be a strictly plurisubharmonic defining function for D and
let D = {(v,w) € C™*!: p(v) + |w|> < 0}. Define the operators P : HP(D) —
OLP(D) and I : OLP(D) — HP(D) by Pf(v) = f(v,0) and If(v,w) = f(v) re-
spectively. The operator P is continuous by the Carleson-Hormander inequality

since the measure with mass uniformly distributed on D N {w = 0} is a Carleson
measure. The operator I is continuous since

[ 1#@Poto.w) ~ i [(-pw) - WPyl
aD D

~ lim [ (=p(0))°[f(v)[?

e—0

D
- / F@)P,
D

where o is the surface measure. Let g(v,w) = g(v). Then Tj; has property (8)e
and since PI = id, T;1 = IT, and PT; = T4P it is easy to see that T, has
property (B)e.

4. PROPERTY ()¢ FOR TOEPLITZ OPERATORS
WITH H®°-SYMBOL ON UNIT DISC

In this section we will use the Euclidean norm. Let r(w) = 1 — |w|? and let D be
the unit disc in C. Let By be the Banach space of all functions v € L (D) such
that

ull By = llull Lo (py + lIr dull oo (py + IIr dullzge + [[r*00u| e < oc.

Since ||r dul| . (p)y < 00, By consists of continuous functions on D. We define B;
as the Banach space of all locally integrable (0, 1)-forms u such that

lull B, = llrull L= oy + lIrullrge + r*0ullrge < oo.

Suppose that u € C(D) and h € C>°(dD). Then the Wolff trick (see the
proof of Theorem 1.1) yields

/uh dw = /g(uPh dw) = /O(r)g(uPh dw) + /r/.’,g(uPh dw) := S(u, h),
oD D D D
where Ph is the Poisson integral of h.

As in Section 3 we need to know that functions in By has well defined bound-
ary values.
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LEMMA 4.1. Ifu € By then there is a u* € L>®(0D) such that

/u*hdw = S(u, h)
oD
for all h € L?(0D) and (fu)* = f*u* if f € H*(D).
Proof. We have the estimate |S(u, h)| < ||ul|, |2 2(ap). Hence there is a
function u* € L?(0D) such that f u*hdw = S(u, h) for all h € L?(dD). Suppose

that h € C*(9D). Let u; be the dllatlon ur(w) = u(tw). Since

1S — u, B)| S / wr =l + [ ridus = wP + [ 108w ~w)
D D
for fixed h we have that f ufhdw — f u*hdwast / 1. Therefore ||u*| 1~ op) <

lu|lB, since wuj is umformly bounded by [[ullz~(py. Let fs(w) = f(sw) be the
dilation of f. Then we have that

/f hdw—/(f —f )uthdw—&-/f hdwaaéf*u*hdw

as s,t /' 1, by dominated convergence. Since we also have [ (fu);hdw —
oD

[ (fu)*hdw ast /1 we see that (fu)* = f*u*. 1

oD

Let
W (u,h) = /O(r)u A hdw + /rﬁ(u A hdw)
D
for u € By and h € H', where O(r) is the same O(r) as in the definition of S(u, h).
LEMMA 4.2. If f € E(C™, By) then there is a u € E(C™, L>°(0D)) such that
Ovu = f, that is
/u(z)hdw =W(f(2),h)
oD

for all h € HY(D) and z € C".

Proof. Consider the bilinear map W : By x H' — C. This map is continu-
ous since we have the estimate |[W(f, h)| < ||f|l B, ||R]| g1, which is used in Wolff’s
proof of the corona theorem. By the universal property for m-tensor products
(see 41.3 (1) in [13]) there is a corresponding linear and continuous map Wi from

B1®H! to C. Since

E(C" By) = £(C) B B, = L(E(C™), By)
by Appendix 1 in [9], f ® id is a continuous map &'(C")® H' — B, @Hl.

™
Compose with the map W) to get a continuous functional on £(C") & H'. The



PROPERTY (8)¢ FOR TOEPLITZ OPERATORS WITH H°°-SYMBOL 419

injection & (C™")® H' — £'(C™)® L*(dD) is a topological monomorphism, and
hence we can extend with Hahn-Banach Theorem to a continuous functional on
E'(C™)® L*(dD). Since the dual space of £&'(C*)® L' (D) is isomorphic to the
space £(C™, L>°(0D)) by Theorem A1.12 in [9] we have a u € £(C", L>*(0D)). If
h € H' then

[u@hdw =ws).n
and thus u is a solution to the equation d,u = f in the sense of this lemma.

THEOREM 4.3. Let D be the unit disc in C and suppose that g € H>(D)".

Then the tuple Ty of Toeplitz operators on H*(D) satisfies property (8)g, and
thus Bishop’s property ().

Proof. The tuple T, considered as operators on By or B; has a C*°(C")-
functional calculus (the proof of this is similar to Lemma 3.1). Hence they satisfies

property (8)s by Proposition 6.4.13 in [9]. Consider the well-defined complex

(4.1) 0— H® — By -2 B, — 0.
Suppose that u® € 3 (2;—Ty,)E(C™, H*®) and u*F — g in E(C", H*). As T, on By

has property (8)e¢ there is a u; € K1(z —T,,E(C", By)) such that ug = 8.7, u1.
Since T, on By has property (8)g, there is a uy € Ko(z — T,,E(C", By)) such
that §,_7,us = Ou;. By Lemma 4.2 there is a v € A?£(C", L>(8D)) such that

[ vhdw = W (ug, h) for all h € H*(D). Therefore we have that
oD

/ 0z—g=vhdw = W(0,_1,uz, h)
oD

for all h € HY(D). Define v} € Ki(z — g*,£(C",L>°(dD))) by the equation
uy =uj —8,_g+v. Then [ wihdw =0 for all h € H' since
oD

/u’{hdw = S(uy,h) = W(duy, h)

oD
by Lemma 4.1. Thus U] € Ki(z — Ty, E(C", H*)), where U] is the holomorphic
extension. Since ug = d._7,U; by Lemma 4.1 we have proved that 0. 7, K1(z —
g,E(C™, H*)) is closed.

Suppose that uy € K (z — Ty, E(C", H*)) is §._1,-closed. Then there is a
solution upy1 € Kpy1(z — Ty, E(C", By)) to the equation 6, 1, upy1 = ug since
T, on By has property (8)s. Continuing in exactly the same way as above we
see that we can replace ujy1 with Uy, € Kipi1(2 — Ty, £(C", H*)) such that
0.-1,Uj 1 = ug. Thus the theorem is proved. 1
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