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Abstract. Motivated by Herrero’s conjecture on finitely hypercyclic oper-
ators, we define countably hypercyclic operators and establish a Countably
Hypercyclic Criterion that is surprisingly similar to the well known Hyper-
cyclicity Criterion. Our results support the idea that there is a countable
version of Herrero’s Conjecture for invertible operators.

We use our criterion to characterize the hyponormal operators whose
adjoints are countably hypercyclic and to give examples of countably hyper-
cyclic operators that are not cyclic.
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1. INTRODUCTION

A bounded linear operator T : X → X on a separable Banach space X is hyper-
cyclic if it has a vector with dense orbit. That is, if there exists a vector x ∈ X
such that its orbit {Tnx : n > 0} is dense in X. We shall denote the orbit of x
under T by Orb(T, x). Examples of hypercyclic operators abound, they arise in
the classes of backward weighted shifts ([17]), adjoints of multiplication operators
on spaces of analytic functions ([11]), composition operators ([4]), and adjoints of
hyponormal operators ([9]). In 1992, Herrero ([12]) made the conjecture that a
finitely hypercyclic operator is necessarily hypercyclic. That is, if there exists a

finite set of vectors, say {x1, . . . , xn}, such that
n⋃

k=1

Orb(T, xk) is dense, then T

must be hypercyclic. That this is so, was proven independently by Costakis ([5])
and Peris ([16]), also see Bourdon and Feldman ([3]).

A natural question, raised by V. Miller ([15]) and (privately) by W. Wogen
asks if there is a version of Herrero’s conjecture involving countably many vectors.

A sequence of vectors (xk)∞k=1 is separated if there exists an ε > 0 such that
‖xn − xk‖ > ε for all n 6= k. We shall call an operator countably hypercyclic if
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there is a bounded separated sequence (xk)∞k=1 such that
∞⋃

k=1

Orb(T, xk) is dense.

Our results support the following question:

Question 1.1. If T is invertible and both T and T−1 are countably hyper-
cyclic, then T must be hypercyclic.

If an operator T is invertible and finitely hypercyclic, then one can easily show
that T−1 is also finitely hypercyclic. Thus our conjecture is a natural extension of
Herrero’s finitely hypercyclic conjecture, in the invertible case.

However, we also shall show that there are (invertible) countably hyper-
cyclic operators on Hilbert space that are not cyclic. Nevertheless, there is strong
evidence that if both T and T−1 are countably hypercyclic, then T should be hy-
percyclic. Also, it is surprising how many operators have the property that they
are countably hypercyclic. We shall present a “Countably Hypercyclic Criterion”
very similar to the well known Hypercyclicity Criterion due to Kitai, Gethner and
Shapiro ([13] and [10]).

We use our criterion to give a local spectral theory condition for an operator
to be countably hypercyclic and use this to characterize the hyponormal operators
with countably hypercyclic adjoints. We also prove that hyponormal operators
cannot be countably hypercyclic, and that a backward weighted shift is countably
hypercyclic if and only if it is hypercyclic.

We also address the more general question of when an operator has a bounded
set with dense orbit.

In what follows X will denote a separable infinite dimensional complex Ba-
nach space, B(X) will denote the algebra of all bounded linear operators on X, D
will denote the open unit disk in the complex plane C, and for a ∈ X and r > 0,
B(a, r) will denote the open ball at a with radius r.

2. TWO EXAMPLES OF WHAT CAN GO WRONG

If C is any subset of X then the orbit of C under T is
⋃
{Tn(C) : n > 0}, and

shall be denoted by Orb(T,C). Notice that Orb(T,C) =
⋃

x∈C

Orb(T, x).

The following two examples give different situations where an operator has
a countable set with dense orbit. Notice that in both examples one may choose
T to be a multiple of the identity operator! These examples suggest that a suit-
able definition of countable hypercyclicity should require the countable set to be
bounded, bounded away from zero, and have no cluster points.

Example 2.1. If T ∈ B(X) and σ(T ) ⊆ (C \ D), then there is a sequence

(xn)∞n=1 ⊆ X such that ‖xn‖ → 0 and
∞⋃

n=1
Orb(T, xn) is dense in X.

Proof. Suppose that (yn)∞n=1 is a countable dense set in B(0, 1) = {x ∈ X :
‖x‖ < 1}. Let xn = T−nyn, since σ(T−1) ⊆ D, it follows from the spectral radius
formula that ‖T−n‖ → 0, thus ‖xn‖ → 0. If C = (xn)∞n=1, then one easily checks
that yn ∈ Orb(T,C), thus B(0, 1) ⊂ clOrb(T,C). Now if x ∈ X, then T−nx → 0,
so for all large n, T−nx ∈ B(0, 1) ⊆ clOrb(T,C). But since clOrb(T,C) is invariant
under T it follows easily that x ∈ clOrb(T,C). Thus clOrb(T,C) = X.
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Example 2.2. If T ∈ B(X) is invertible and ‖T‖ < 1, then there is a

sequence (xn)∞n=1 ⊆ X such that ‖xn‖ → ∞ and
∞⋃

n=1
Orb(T, xn) is dense in X.

Proof. Let (yn)∞n=1 be a countable dense set in V = {x ∈ X : ‖x‖ > 1}.
Now let xn = T−nyn. Then ‖xn‖ > 1

‖T‖n → ∞. If C = (xn)∞n=1, then one
easily checks that yn ∈ Orb(T,C), thus V ⊂ clOrb(T,C). Now if x ∈ X and
x 6= 0, then ‖T−nx‖ → ∞, so for all large n, T−nx ∈ V ⊆ clOrb(T,C). But
since clOrb(T,C) is invariant under T it follows easily that x ∈ clOrb(T,C). Thus
clOrb(T,C) = X.

3. THE COUNTABLY HYPERCYCLIC CRITERION

In this section we present a criterion for an operator to be countably hypercyclic.
Our criterion is surprisingly close to the well known Hypercyclicity Criterion, it
requires only a slight weakening of the hypothesis of the Hypercyclicity Criterion.

For comparison purposes we include the Hypercyclicity Criterion that is due
independently to C. Kitai ([13]) and Gethner and Shapiro ([10]). The Criterion
has been used to show that a wide variety of linear operators are hypercyclic, and
it has been asked whether or not a slight generalization of it is both necessary and
sufficient for an operator to be hypercyclic, see [1].

Theorem 3.1. (The Hypercyclicity Criterion) Suppose that T ∈ B(X). If
there exists two dense subspaces Y and Z in X such that:

(i) Tnx → 0 for every x ∈ Y , and
(ii) there exists functions Bn : Z → X such that TnBn = I|Z and Bnx → 0

for every x ∈ Z,
then T is hypercyclic.

The Hypercyclicity Criterion often only requires Y and Z to be dense subsets,
however by taking their linear spans, there is no loss of generality in assuming that
they are subspaces (and Bn is linear, but not necessarily continuous). What the
Hypercyclicity Criterion says is that if T has a dense set of vectors whose orbits
go to zero and a dense set of vectors which have backward orbits that go to zero,
then T is hypercyclic.

Theorem 3.2. (The Countably Hypercyclic Criterion) Suppose that T ∈
B(X). If there exists two subspaces Y and Z in X, where Y is infinite dimensional
and Z is dense in X such that:

(i) Tnx → 0 for every x ∈ Y , and
(ii) there exists functions Bn : Z → X such that TnBn = I|Z and Bnx → 0

for every x ∈ Z,
then T is countably hypercyclic.

Remark 3.3. One may replace conditions (i) and (ii) in the above criterion
with the assumptions that Tnkx → 0 and TnkBnk

x → x, and Bnk
x → 0 for some

subsequence of integers nk → ∞ and obtain a somewhat more general criterion,
as was done with the Hypercyclicity Criterion in [1].

We’ll say that a sequence (xn)∞n=1 is ε-separated if ‖xn − xk‖ > ε for all
n 6= k. Then a sequence (xn)∞n=1 is separated if it is ε-separated from some ε > 0.
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Lemma 3.4. If Y is an infinite dimensional subspace (not necessarily closed)
of a Banach space X, then there exists a sequence (xn)∞n=1 ⊆ Y such that ‖xn‖ = 1
for all n > 1 and ‖xn − xk‖ > 1 for all n 6= k.

The previous lemma is an easy exercise using the Hahn-Banach Theorem (see
p. 7 in [7]). In a Hilbert space it simply reduces to a Gram-Schmidt argument,
since any orthonormal sequence (xn) satisfies ‖xn − xm‖ =

√
2 for n 6= m. It is a

deep theorem due to J. Elton and E. Odell that for a given normed linear space,
there is an ε > 0 and a sequence of unit vectors that are (1 + ε)-separated (p. 241
in [7]).

Proof of Theorem 3.2. Let (zn)∞n=1 be a countable dense subset of Z and by
Lemma 3.4, let (yn)∞n=1 be a 1-separated sequence of unit vectors in Y . Fix a 0 <
δ < 1. For each n, let kn be chosen such that ‖Bknzn‖ 6 δ

2n and ‖T knyn‖ 6 δ
2n .

Now let xn = yn + Bkn
zn. Clearly, C = (xn)∞n=1 is a bounded (1 − δ)-separated

sequence. To show that Orb(T,C) is dense in X, suppose that x ∈ X and let ε > 0.
Choose an n large enough such that 1

n < ε and such that ‖zn − x‖ < ε
2 . Then

since T knxn = T knyn + zn, it follows that ‖x−T knxn‖ 6 ‖x− zn‖+‖T knyn‖ < ε.
Thus Orb(T,C) is dense in X.

4. LOCAL SPECTRAL THEORY AND COHYPONORMAL OPERATORS

We will now give a local spectral theory condition on an operator that guarantees
it will satisfy the Countably Hypercyclic Criterion. For an introduction to local
spectral theory, see [14].

Suppose that T ∈ B(X). If K ⊆ C is a closed set, then define XT (K) = {x ∈
X : there exists an analytic function f : (C \K) → X satisfying (T − λ)f(λ) = x
for all λ ∈ (C \K)}. If U ⊆ C is an open set, then define XT (U) =

⋃
{XT (K) :

K ⊆ U is compact}. One easily checks that XT (U) contains all eigenvectors for T
whose eigenvalues belong to U and that XT (U) is a hyperinvariant subspace for
T , although it is not necessarily closed.

The following theorem appears in Feldman, Miller and Miller ([9]).

Theorem 4.1. Suppose that T ∈ B(X). If XT (D) and XT (C \ D) is dense,
then T is hypercyclic.

Proof. It is shown in [9] that if we set Y = XT (D) and Z = XT (C \D), then
the conditions of the Hypercyclicity Criterion are satisfied.

Essentially, in [9], it is shown that vectors in XT (D) have orbits that go to
zero and vectors in XT (C \ D) have backward orbits that go to zero. Next we
present the countably hypercyclic analogue of Theorem 4.1.

Theorem 4.2. Suppose that T ∈ B(X). If XT (D) is infinite dimensional
and XT (C \ D) is dense, then T is countably hypercyclic.

Proof. Simply let Y = XT (D) and Z = XT (C \ D), then one can show
that T satisfies the Countably Hypercyclic Criterion (see Feldman, Miller and
Miller, Theorem 3.2 in [9] for the computation).
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Corollary 4.3. Suppose that T ∈ B(X). If span{ker(T − λ) : |λ| < 1}
is infinite dimensional and span{ker(T − λ) : |λ| > 1} is dense in X, then T is
countably hypercyclic.

The following proposition is straightforward and similar to analogous results
for hypercyclic operators.

Proposition 4.4. (a) If T ∈ B(X) and there is a bounded set C with
Orb(T,C) dense, then

(i) sup ‖Tn‖ = ∞;
(ii) σp(T ∗) ∩ D = ∅, in particular T has dense range;
(iii) every quotient of T by an invariant subspace must have norm

greater than one;
(iv) no component of σ(T ) can be contained in the open unit disk;
(v) T ∗ cannot have a non-zero bounded orbit.

(b) If there is a set C that is bounded away from zero and Orb(T,C) is dense,
then T cannot be expansive, that is there exists an x ∈ X such that ‖Tx‖ < ‖x‖.

Proof. We shall prove (v). Suppose that y ∈ X∗ has a bounded orbit under
T ∗ and y 6= 0. Let M = sup ‖T ∗ny‖ and let N = sup{‖z‖ : z ∈ C}. Since
{Tnx : x ∈ C, n > 0} is dense in X, and since y 6= 0 it follows that {〈Tnx, y〉 :
x ∈ C, n > 0} is dense in C (where we use 〈x, y〉 to denote the value of the
linear functional y at the vector x). However notice that for x ∈ C, |〈Tnx, y〉| =
|〈x, T ∗ny〉| 6 ‖x‖ ‖T ∗ny‖ 6 NM . Thus, {〈Tnx, y〉 : x ∈ C, n > 0} is bounded, a
contradiction to the fact that it is also dense. Thus, T ∗ has no non-zero bounded
orbits.

Remarks 4.5. (i) Notice that if T is countably hypercyclic and C = (xn) is
a bounded separated sequence with dense orbit, then one may assume that xn 6= 0
for all n, thus it follows that C is both bounded and bounded away from zero.

(ii) The condition sup ‖Tn‖ = ∞ on an operator means (by the principle
of uniform boundedness) that T has a vector with an unbounded orbit, which is
easily seen to be equivalent to saying that T has sensitive dependence on initial
conditions, in the sense of Devaney ([6]).

Lemma 4.6. (i) If S is a hyponormal operator on a Hilbert space H, then
for any open set U ⊆ C, we have HS∗(U)⊥ = HS(C \ U).

(ii) If S is a pure hyponormal operator for which HS∗(D) is finite dimen-
sional, then HS∗(D) = {0}.

Proof. (i) follows from Proposition 2.5.14 of [14].
(ii) Suppose that HS∗(D) is non-zero and finite dimensional. Since HS∗(D) is

a finite dimensional invariant subspace for S∗, it follows that S∗ has eigenvectors
with eigenvalues in D. Let λ be such an eigenvalue, then since ker(S∗ − λ) ⊆
HS∗(D), it follows that ker(S∗ − λ) is finite dimensional. Thus, (S − λ) has
closed range. Thus since S is pure, (S − λ) is one-to-one with closed range,
hence λ ∈ [σ(S) \ σap(S)]. However, [σ(S) \ σap(S)] is an open set and since
λ ∈ D∩ [σ(S)\σap(S)], it follows that D∩ [σ(S)\σap(S)] is a non-empty open set.
Hence for each µ ∈ D∩ [σ(S)\σap(S)] we have ker(S∗−µ) 6= (0) and ker(S∗−µ) ⊆
HS∗(D). It follows that HS∗(D) is infinite dimensional, a contradiction.
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Theorem 4.7. Suppose that S is a pure hyponormal operator on a sepa-
rable Hilbert space H, then S∗ is countably hypercyclic if and only if for every
hyperinvariant subspace M of S, σ(S|M) ∩ (C \ D) 6= ∅ and σ(S) ∩ D 6= ∅.

Proof. Suppose the spectral conditions are satisfied. We want to apply The-
orem 4.2. So, suppose that HS∗(D) = (0). Since HS∗(D)⊥ = HS(C \D), it follows
that HS(C\D) = H. Thus, σ(S) = σ(S|HS(C\D)) ⊆ (C\D), a contradiction. So,
HS∗(D) 6= (0), now by Lemma 4.6, it follows that HS∗(D) is infinite dimensional.
Now, suppose that HS∗(C \ D) is not dense in H. Then, by Lemma 4.6, HS(D)
is a non-zero hyperinvariant subspace for S. Furthermore, σ(S|HS(D)) ⊆ D, con-
tradicting our assumption. Thus it follows that HS∗(C \ D) is dense. So, by
Theorem 4.2, S∗ is countably hypercyclic.

Conversely, suppose S∗ is countably hypercyclic. Let C be a bounded set,
that is bounded away from zero, with dense orbit. Let M be an invariant subspace
for S and let P be the projection onto M. Since P : H →M intertwines S∗ and
(S|M)∗, it follows that P (C) is bounded set whose orbit under (S|M)∗ is dense in
M. Thus, we must have ‖(S|M)‖ = ‖(S|M)∗‖ > 1. Since the spectral radius of
(S|M) equals its norm, it follows that σ(S|M) ∩ (C \ D) 6= ∅.

Now, if σ(S)∩D = ∅, then ‖(S∗)−1‖ = ‖S−1‖ 6 1, thus ‖S∗x‖ > ‖x‖ for all
x ∈ H, contradicting Proposition 4.4(b).

The next corollary follows immediately from the proof above. It says that if
S is a pure hyponormal operator and S∗ has a bounded set C with dense orbit and
C is also bounded away from zero, then, in fact, we can find a bounded separated
sequence with dense orbit.

Corollary 4.8. If S is a pure hyponormal operator, then S∗ is countably
hypercyclic if and only if S∗ has a bounded set, which is also bounded away from
zero, that has dense orbit.

Notice that if an operator T has a set with dense orbit, then any non-zero
multiple of that set also has dense orbit. Thus T has a bounded set with dense
orbit if and only if the unit ball has dense orbit if and only if B(0, r) has dense
orbit for any r > 0.

Corollary 4.9. If S is a hyponormal operator, then S∗ has a bounded set
with dense orbit if and only if for every hyperinvariant subspace M of S, σ(S|M)∩
(C \ D) 6= ∅.

Proof. As in the proof of Theorem 4.7, if the spectral condition is satisfied,
then HS∗(C \ D) is dense in H. It follows that if Z = HS∗(C \ D), then condition
(2) of the Countably Hypercyclic Criterion is satisfied; see Feldman, Miller and
Miller (Theorem 3.2 in [9]). However, condition (2) of the Countably Hypercyclic
Criterion easily implies that the unit ball has dense orbit. The converse is similar
to the proof of Theorem 4.7.

For comparison purposes we state the following result due to Feldman, Miller
and Miller (Theorem 4.3 in [9]).
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Theorem 4.10. Suppose that S is a hyponormal operator on a separable
Hilbert space H, then S∗ is hypercyclic if and only if for every hyperinvariant
subspace M of S, σ(S|M) ∩ (C \ D) 6= ∅ and σ(S|M) ∩ D 6= ∅.

Corollary 4.11. If S is an invertible hyponormal operator and S∗ and
(S∗)−1 are both countably hypercyclic, then S∗ is hypercyclic. In fact, if S∗ and
(S∗)−1 both have bounded sets with dense orbit, then S∗ is hypercyclic.

The above corollary follows easily from Theorem 4.7 and Theorem 4.10.

Example 4.12. Let Sn = Mz on the Bergman space, L2
a(∆n), where {∆n :

1 6 n < ∞} is a bounded collection of open disks. Let S =
∞⊕

n=1
Sn. Then:

(i) S∗ has a bounded set with dense orbit if and only if every disk ∆n

intersects {z : |z| > 1}.
(ii) S∗ is countably hypercyclic if and only if every disk ∆n intersects {z :

|z| > 1} and at least one disk intersects {z : |z| < 1}.
(iii) S∗ is hypercyclic if and only if every disk ∆n intersects both {z : |z| < 1}

and {z : |z| > 1}.

Proof. Clearly, S is a pure subnormal operator. Simply observe that any
hyperinvariant subspace M of S must have the form M =

⊕
n
Mn where each Mn

is a hyperinvariant subspace of Sn. Now, if M 6= (0), then Mn 6= (0) for some
n. However one easily sees that σ(Sn|Mn) = cl∆n. Thus, cl∆n ⊆ σ(Sn|Mn) ⊆
σ(S|M).

Also, for a given integer k, if M =
⊕
n
Mn where Mk = L2

a(∆k) and Mn =

(0) for n 6= k, then σ(S|M) = cl∆k.
With these observations, one may apply the above theorems to obtain the

result.

5. BOUNDED SETS WITH DENSE ORBIT

Here we consider the weaker condition of having a bounded set with dense orbit,
or having a bounded set that is bounded away from zero with dense orbit. We
will show that hyponormal operators cannot have the latter property and that a
backward weighted shift with the former property is actually hypercyclic. We also
characterize the subnormal operators that have bounded sets with dense orbit as
those whose spectral measures are carried on {z ∈ C : |z| > 1}.

Observe that an operator T will have a bounded set with dense orbit exactly
when the unit ball has dense orbit. Furthermore, the following proposition shows
that roughly speaking the unit ball has dense orbit under T exactly when T has a
dense set of vectors with backward orbits that cluster at zero. We’ll state this for
invertible operators since a sharper, cleaner result can then be obtained.
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Proposition 5.1. If T : X → X is invertible, then the open unit ball has
dense orbit if and only if there is a dense Gδ set Y ⊆ X such that for every y ∈ Y ,
lim inf

n
‖T−ny‖ = 0.

Proof. Suppose that the unit ball has a dense orbit under T . Since any non-
zero multiple of a set with dense orbit also has dense orbit, it follows that B(0, r)
has dense orbit for every r > 0. So for each n ∈ N, Orb(T,B(0, 1/n)) is a dense
open set. Thus Y =

⋂
n∈N

Orb(T,B(0, 1/n)) is a dense Gδ set with the required

property.

The next proposition tells exactly when a subnormal operator has a bounded
set with dense orbit, it should be contrasted with Corollary 4.9 that describes
when a cohyponormal operator has a bounded set with dense orbit. Also see
Example 4.12 for an example with Bergman operators.

Proposition 5.2. (i) If T ∈ B(X) and σ(T ) ⊆ {z : |z| > 1}, then
Orb(T,B(0, 1)) is dense in X.

(ii) If S is a subnormal operator on a Hilbert space, then Orb(S, B(0, 1)) is
dense if and only if the spectral measure for S is carried by {z : |z| > 1}.

Proof. (i) If σ(T ) ⊆ {z : |z| > 1}, then T is invertible and ‖T−nx‖ → 0 for
every x, thus T for all large n, x ∈ Tn(B(0, 1)). So, B(0, 1) has dense orbit.

(ii) If S is subnormal and its spectral measure is carried by {z : |z| > 1},
then for every x we have that ‖S−nx‖ → 0, thus the unit ball has dense orbit.
Conversely, suppose that the unit ball has dense orbit. Then by Proposition 4.4,
S∗ cannot have a bounded orbit. However if the spectral measure places positive
mass on {z : |z| 6 1}, then one can easily show that S∗ does have a bounded
orbit.

Proposition 5.3. If T is a backward unilateral weighted shift (with positive
weights), then T is countably hypercyclic if and only if T is hypercyclic. In fact,
if T has a bounded set with dense orbit, then T is hypercyclic.

Proof. Suppose that Tej = wj−1ej−1 where wj are the positive weights for
T and (ej)∞j=0 is the canonical basis for `2(N). It was proven by Salas ([17]) that

T is hypercyclic if and only if sup
n

n∏
i=0

wi = ∞. We shall verify this condition.

Suppose that C is a bounded set with dense orbit. Then by Proposition 4.4, T ∗

cannot have a bounded orbit. So, consider orbit of e0 under T ∗. Since T ∗ is a

forward unilateral weighted shift, it follows that T ∗ne0 =
( n−1∏

i=0

wi

)
en. Since this

orbit cannot be bounded, it follows that Salas’ condition is satisfied. Thus T is
hypercyclic.

In [17], H. Salas characterized the bilateral weighted shifts that are hyper-
cyclic. In [8] Feldman gives a simplier criterion for invertible weighted shifts, that
is still necessary and sufficient for hypercyclitiy (and supercyclicity).
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Theorem 5.4. If T : `2(Z) → `2(Z) is an invertible bilateral weighted shift
with weight sequence (wn)∞n=−∞, then T is hypercyclic if and only if there exists a
sequence of integers nk →∞ such that

lim
k→∞

nk∏
j=1

wj = 0 and lim
k→∞

nk∏
j=1

1
w−j

= 0.

Proof. See Feldman ([8]).

To illustrate the difference between unilateral and bilateral shifts we give the
following example that should be contrasted with Proposition 5.3.

Example 5.5. There exists an invertible bilateral weighted shift such that
both T and T−1 have bounded sets with dense orbit, but T is not hypercyclic.

Proof. Suppose the weight sequence {wn : n ∈ Z} is given as follows, for
n > 0 the weights are

{
1, 1, 1

2 , 2, 1, 1, 1
2 , 1

2 , 2, 2, 1, 1, 1, 1, 1
2 , 1

2 , 1
2 , 2, 2, 2, . . .

}
and for

n < 0 they are
{

1, 1, 1, 2, 1
2 , 1, 1, 1, 1, 2, 2, 1

2 , 1
2 , 1, 1, 1, 1, 1, 1, 2, 2, 2, 1

2 , 1
2 , 1

2 , . . .
}

. So,

for each n, wn ∈
{

1, 2, 1
2

}
. For n > 0, the weights consist of a string of one’s, then

a string of 1
2 ’s, then a string of two’s, then starting over with a string of one’s. For

n < 0, they are one’s, then two’s, then 1
2 ’s.

The idea is to choose them such that if pn =
n∏

j=1

wj and qn =
n∏

j=1

1
w−j

, then

we want that 0 < pn 6 1 and 0 < qn 6 1 for all n and pn < 1 if and only if
qn = 1. Given this, the condition in Theorem 5.4 will never be satisfied, hence
T will not be hypercyclic. Also, however, we want a sequence nk →∞ such that
pnk

→ 0 and a (necessarily different) sequence mk →∞ such that qmk
→ 0. This

will mean that for every vector x with finite support Tnkx → 0 and T−mkx → 0.
Thus it follows easily that the unit ball will have dense orbit under both T and
T−1.

Question 5.6. If T is a bilateral weighted shift and T is countably hyper-
cyclic, then must T be hypercyclic?

Notice that if a bilateral weighted shift satisfies the Countably Hypercyclic
Criterion, it must be hypercyclic. This is true because if T is a bilateral weighted
shift and Tnkx → 0 for some non-zero x, then in fact Tnky → 0 for all vectors y
with finite support. Hence T would satisfy the hypercyclicity criterion.

Proposition 5.7. Suppose that T1 and T2 are bounded linear operators.
(i) If T1 and T2 satisfy the Countably Hypercyclic Criterion, then T1 ⊕ T2

also satisfies the Countably Hypercyclic Criterion.
(ii) If T1 satisfies the Countably Hypercyclic Criterion and the spectrum of T2

is contained in (C\D), then T1⊕T2 satisfies the Countably Hypercyclic Criterion.

Proof. (ii) Let Ti act on the space Xi. Since T1 satisfies the Countably Hy-
percyclic Criterion, there are subspaces Y1 and Z1 where Y1 is infinite dimensional
and Z1 is dense in X1 and for every n there exists a right inverse B̂n for Tn|Z1.
Now simply let Y = Y1 ⊕ (0) and Z = Z1 ⊕X2 and Bn = B̂n ⊕ T−n

2 . Then one
easily checks that the required properties hold. The proof of (i) is similar.
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Example 5.8. Suppose that B is the backward unilateral shift on `2(N) and
T1 = 2B. If T2 is any bounded linear operator on a separable Banach space such
that σ(T2) ⊆ (C \ D), then T1 ⊕ T2 is countably hypercyclic.

It follows from the previous example that countably hypercyclic operators
need not be cyclic or even multi-cyclic, furthermore every component of their spec-
trum need not intersect the unit circle. However by Proposition 4.4 no component
of the spectrum may lie entirely inside the open unit disk. Also the previous ex-
ample shows that a direct sum of operators can be countably hypercyclic without
each summand being countably hypercyclic.

The following proposition appears in Bourdon (Proposition 2.6 of [2]).

Proposition 5.9. If T is a hyponormal operator on a Hilbert space H and
h ∈ H is such that ‖Th‖ > ‖h‖, then (‖Tnh‖)∞n=1 is an increasing sequence.

It follows that orbits of a hyponormal operator can only do one of three
things; either strictly decrease in norm, increase in norm, or strictly decreases in
norm up to a point and increases in norm thereafter.

Theorem 5.10. A hyponormal operator on a Hilbert space cannot be count-
ably hypercyclic. In fact, there is no bounded set, that is also bounded away from
zero with dense orbit.

Proof. Suppose that T is a hyponormal operator on a Hilbert space H and
C is a bounded set, that is bounded away from zero, and has dense orbit. We will
show that, since C is bounded and has dense orbit it follows that for every x ∈ H,
‖Tx‖ > ‖x‖. However, then T is expansive and since C is bounded away from
zero, the orbit of C could not be dense.

So suppose x ∈ H and ‖Tx‖ < ‖x‖. By multiplying x by a scalar we may
suppose that ‖x‖ > M := sup{‖z‖ : z ∈ C}. Since C has dense orbit, there exists
a sequence yn ∈ Orb(T,C) such that yn → x. We may assume that ‖yn‖ > M
for all n. However, then by Proposition 5.9 it follows that ‖Tyn‖ > ‖yn‖ for each
n. Hence, upon taking limits, we see that ‖Tx‖ = lim

n
‖Tyn‖ > lim

n
‖yn‖ = ‖x‖,

contradicting our assumption.

Remark 5.11. The author would like to thank Paul Bourdon for the above
proof that is simplier than the authors original one. Notice that the proof of The-
orem 5.10 applies to any operator that satisfies the conclusion of Proposition 5.9
and there are non-hyponormal operators with this property.

Question 5.12. If T ∈ B(X) has a bounded set, that is also bounded away
from zero, with dense orbit, then must T be countably hypercyclic?

As noted in Corollary 4.8, this is true for cohyponormal operators.

Question 5.13. If T and T−1 are both countably hypercyclic, then must T
be hypercyclic?

Corollary 4.11 says that the previous question is true when T is a cohy-
ponormal operator. Also, notice that if T and T−1 both satisfy the Countably
Hypercyclic Criterion, then T satisfies the Hypercyclic Criterion. Thus the ques-
tion has an affirmative answer in that case also.
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Remark 5.14. Recently, Alfredo Peris has shown (private communication)
that the operator T in Example 5.5 has the property that T and T−1 are both
countably hypercyclic. This answers Questions 5.6 and 5.13 negatively.
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