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Abstract. Let F be a bounded analytic function on the unit disc D having
values in the space L(H) of bounded operators on a Hilbert space H. The
Operator Corona Problem is to decide whether the existence of a uniformly
bounded family of left inverses of F (z), z ∈ D, guarantees the existence of a
bounded analytic left inverse of F . WhenH is infinite dimensional, in general,
the answer is known to be negative. Some sufficient conditions (on values
and/or functional properties of F ) are given for the answer to be positive.
The technique uses the tensor product slicing method and the Grothendieck
Approximation Property.
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NOTATION

X,Y are Banach spaces. H,H1,H2, . . . are separable Hilbert spaces. L(X,Y )
denotes the Banach space of bounded linear operators from X to Y , and L(X) =
L(X,X). On L(H1,H2), we write SOT for the Strong Operator Topology, and
WOT for the Weak Operator Topology. For any H, we denote by id the identity
operator onH. D is the open unit disc of the complex plane, D = {z ∈ C : |z| < 1},
and T the unit circle, T = {z ∈ C : |z| = 1}. We denote by µ the Lebesgue measure
on T. Hol(D, X) is the space of all X-valued analytic functions on D. H∞(X) is
the Banach space of X-valued bounded analytic functions on D equipped with the
supremum norm, and H∞ = H∞(C). C(K,X) is the Banach space of X-valued
continuous functions on K, where K is a compact subset of C, equipped with the
supremum norm.
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1. INTRODUCTION

The operator corona problem is a tentative to generalize the famous Carleson
corona theorem ([6]) to operator valued functions. It was raised by Sz.-Nagy in
1978 in the following form ([25]).

Let F ∈ H∞(L(H1,H2)) satisfying ‖F (z)x‖ > δ‖x‖ for every x ∈ H1 and
every z ∈ D, where δ > 0 is a constant. Does there exist G ∈ H∞(L(H2,H1))
such that G(z)F (z) = id for every z ∈ D?

This problem is of great interest in control theory, as well as in the operator
model theory and in the study of the invariant subspace problem. It is also re-
lated to the study of submodules of H∞ and to many other subjects of analysis.
Obviously, the condition required on F , usually called the corona assumption, is
necessary. It means the existence of a uniformly bounded family of left inverses of
F (z), z ∈ D. The question is whether this condition is sufficient for the existence of
a bounded analytic left inverse of F . If it is, we say that the corona theorem is true
for F . In general, the answer to Sz.-Nagy’s question is known to be negative (see
in [27]). But in some specific cases, it is positive. In particular, Carleson’s theorem

saying that any scalar Bezout equation
n∑

i=1

gifi = 1 is solvable with {gi}n
i=1 ⊂ H∞

as soon as {fi}n
i=1 ⊂ H∞ satisfies

n∑
i=1

|fi(z)|2 > δ2 for every z ∈ D, with δ > 0,

means that the answer is positive when dimH1 = 1, dimH2 = n <∞. This the-
orem was called the corona theorem because of an equivalent formulation in the
maximal ideal theory; see Section 2. More generally, the answer to the Sz.-Nagy
question is positive as soon as dimH1 <∞ (see [26] and [22] for dimH1 = 1; see
[12] for dimH1,dimH2 <∞; see Vasyunin’s theorem in [20] for the general case).

When F ∈ H∞(L(H)) with dimH = ∞, we need to make some additional
assumptions for the corona theorem to be true for F . In this paper, some sufficient
conditions are given in terms of approximation by functions with finite dimensional
ranges. This approach is based on the Bochner-Phillips-Allan-Markus-Sementsul
theory of central projections which generalizes the maximal ideal theory (see Sec-
tion 2). We deal with the problem in the following more general form.

Let X be a unital Banach algebra with unit 1, and F ∈ H∞(X) such that
there exists a left inverse Gz of F (z) for every z ∈ D, satisfying sup

z∈D
‖Gz‖ < ∞.

Does there exist G ∈ H∞(X) such that G(z)F (z) = 1 for every z ∈ D?

We start deriving from the theory of central projections that the corona
theorem holds for functions in a subalgebra of H∞(X) defined as the following
tensor product,

H∞ ⊗X = span{f( · )x : f ∈ H∞, x ∈ X},

where span stands for the closed linear span in the uniform norm topology; see
Theorem 2.2. Next, we want to recognize functions in H∞ ⊗X. First we notice
that every F ∈ H∞ ⊗X has a relatively compact range in X. Then we focus on
the problem whether H∞ ⊗X coincides with H∞

comp(X),

H∞
comp(X) = {F ∈ H∞(X) : F (D) is a relatively compact set in X}.
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If X satisfies the Grothendieck approximation property (AP), then H∞ ⊗ X =

H∞
comp(X). More generally, if F (D) is relatively compact and satisfies (AP) in X,

then F ∈ H∞ ⊗X.

Using a scalarisation (left slicing) method we prove the two following basic

properties. First, we show that H∞ ⊗X and H∞
comp(X) are equal for every dual

Banach space X if and only if H∞ satisfies (AP). The latter property represents

a delicate question which seems to remain open. Secondly, if X = (X∗)∗ and

the scalarisation map of F , φF ∈ L(X∗,H∞), defined by (φF (u))(z) = 〈F (z), u〉,
u ∈ X∗, z ∈ D, maps the unit ball of X∗ into a relatively compact set satisfying

(AP) in H∞, then F ∈ H∞ ⊗X.

From these properties we deduce for example that the corona theorem is

true for functions having a relatively compact range and, either being ∗-weakly
(or WOT) Nevanlinna pseudocontinuable with sparsed singularities in C \ D (see

Theorem 5.14), or having the “same operator structure” for all values F (z), z ∈ D
(e.g. Toeplitz valued functions (Theorem 6.3), or functions subordinated to a fixed

structure (Theorem 6.11)).

Speaking on other possible approaches to the Operator Corona Problem, we

first mention that in the Hilbert space setting the left Bezout equation G(z)F (z) =

id, z ∈ D, is equivalent to the right one F∗(z)G∗(z) = id, where F∗(z) = F (z)∗, z ∈
D. For right Bezout equations, there is a general Arveson-Sz.-Nagy-Foias-Schubert

theorem saying that it is equivalent to the left invertibility of the corresponding
(operator valued) Toeplitz operator T(F∗)∗ on the Hardy space H2(H1), that is to
the condition

‖T(F∗)∗f‖H2(H2) = ‖P+(F∗)∗f‖H2(H2) > δ‖f‖H2(H1)

for every f ∈ H2(H1). In this language, the assumption of the corona theo-

rem, ‖F (z)x‖ > δ‖x‖, x ∈ H1, see (2.2) below, is now equivalent to say that

‖T(F∗)∗kzx‖H2(H2) > δ‖kzx‖H2(H1) for every z ∈ D and every x ∈ H1, where kz

is the reproducing kernel of the Hardy space H2, kz(ζ) = 1
1−ζz . We refer to [20],

[23], [28], [3] for further details, references and results obtained by this approach

(mostly related to estimates of the left inverses for matrix valued functions F ).

The paper is organized as follows. In Section 2, we explain that the corona

theorem is true for H∞ ⊗ X. In Section 3, we study the spaces H∞ ⊗ X and

H∞
comp(X), in particular their relations with the (AP) in X. In Section 4, we use

the scalarisation map to examine functions from H∞⊗X and H∞
comp(X) from the

point of view of their boundary behavior. Sections 5 and 6 are devoted to general

examples of functions satisfying the corona theorem.
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2. CORONA THEOREM, BEZOUT EQUATIONS AND THE TENSOR PRODUCT H∞⊗X

Let A be a unital commutative Banach algebra, and suppose that A is a function
algebra on a set M . This means that the elements f ∈ A are functions on M
and the functionals f 7→ f(m), m ∈ M , are bounded homomorphisms of A. It is
well-known that M is dense in M(A), the maximal ideal space of A, if and only if

any Bezout equation
n∑

i=1

gifi = 1 (where 1 denotes the unit of A) is solvable with

g1, g2, . . . , gn ∈ A whenever f1, f2, . . . , fn ∈ A are such that
n∑

i=1

fi(z)2 > δ2 > 0

for every z ∈ M . The latter property, when it is true, is usually called the
corona theorem for A and M . It is of interest to know whether a similar “corona
theorem” holds for matrix valued, or even operator valued functions f1, f2, . . . , fn

with matrix entries in the algebra A. This tensoring passage (from scalar functions
to matrix or operator valued functions) can often be justified by using the following
theorem (in fact, a special case of the theory referred to S. Bochner, R. Phillips,
G. Allan, A. Markus and A. Sementsul; see [2] and [19] for the history and more
details).

Let A be a unital Banach algebra with unit 1, and Z its center. Let A be a
closed subalgebra of Z, and B a closed subalgebra of A. We denote by A⊗ B the
following subalgebra of A,

A⊗ B = clos
{ n∑

k=1

fkbk : n > 1, fk ∈ A, bk ∈ B
}
.

Let ϕ ∈ M(A). Suppose that there exists a constant C such that∥∥∥ n∑
k=1

ϕ(fk)bk
∥∥∥ 6 C

∥∥∥ n∑
k=1

fkbk

∥∥∥,
for every n > 1, every f1, f2, . . . ∈ A and every b1, b2, . . . ∈ B. Then we can define a
bounded multiplicative projection Pϕ from A⊗B onto B by the following formula,

Pϕ

( n∑
k=1

fkbk

)
=

n∑
k=1

ϕ(fk)bk.

Theorem 2.1. In the above notation, suppose that M is a dense subset of
M(A) such that Pϕ is defined for every ϕ ∈M and sup

ϕ∈M
‖Pϕ‖ <∞. For F ∈ A⊗B,

the following are equivalent:
(i) F is left invertible in A⊗ B;
(ii) the family {Pϕ(F ), ϕ ∈M} is uniformly left invertible in B, that is,

∀ϕ ∈M,∃ bϕ ∈ B such that bϕPϕ(F ) = 1 and sup
ϕ∈M

‖bϕ‖ <∞.

For example, let X be a unital Banach algebra with unit 1 and let A =
CA(X) = Hol(D, X) ∩ C(D, X) be the vector valued disc algebra. Set A = CA :=
CA(C) (where f ∈ CA is identified with f( · )1 ∈ CA(X)) and B = X (constant
functions). It is well-known that M(CA) = D, and it is easy to see that CA(X) =
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CA ⊗ X (the Fejer polynomials of F tend to F in CA(X)). As a corollary to
Theorem 2.1 we get (following G. Allan) that the corona theorem is true in CA(X),
that is, F ∈ CA(X) is left invertible in CA(X) if and only if

(2.1) ∀z ∈ D, ∃Gz ∈ X such that GzF (z) = 1 and sup
z∈D

‖Gz‖ <∞.

As already mentioned in the introduction, in the case when X = L(H),
property (2.1) can be written in the following way,

(2.2) ∃ δ > 0 such that ‖F (z)x‖ > δ‖x‖, ∀z ∈ D, ∀x ∈ H.

From Carleson’s corona theorem we also know that D is dense in M(H∞).
Applying Theorem 2.1 to A = H∞(X), A = H∞ and B = X we get the following
theorem.

Theorem 2.2. Let X be a unital Banach algebra and F ∈ H∞ ⊗X. Then
F is left invertible in H∞(X) if and only if F satisfies property (2.1).

Theorem 2.2 is an improvement of Allan’s result on CA(X) mentionned above,
as H∞ ⊗X is a larger subalgebra of H∞(X) in which the corona theorem is true
(more precisely, if dimX = ∞ then CA(X) $H∞⊗X $H∞(X)). In what follows,
we study under which conditions a function F ∈ H∞(X) belongs to H∞⊗X. We
will examine two types of such conditions: properties of the values of F (see
Sections 3 and 6), and properties of its boundary behavior (see Sections 4 and 5).

3. THE SPACES H∞ ⊗X AND H∞comp(X)

We start fixing the notation and basic facts on vector valued functions.
Spaces of measurable functions. For p, 1 6 p 6 ∞, the following spaces are
defined:

Lp
U(X) = {F : T → X : F uniformly (norm) measurable and ‖F ( · )‖X ∈ Lp} ,

Lp
w(X) = {F : T → X : F weakly measurable and ‖F ( · )‖X ∈ Lp} ,

Lp
w∗(X

∗) = {F : T → X∗ : F ∗-weakly measurable and ‖F ( · )‖X ∈ Lp} ,
Lp(L(H)) = {F : T → L(H) : F WOT-measurable and ‖F ( · )‖X ∈ Lp} .

For measurability definitions, see Chapter 3 of [16]. Recall that F ∈ L1
U(X) is

always almost separably valued. Besides, it is well-known that if X is separable,
then Lp

w(X) = Lp
U(X) (the Gelfand-Pettis theorem; [16]). On the other hand

Lp(L(H)) 6= Lp
U(L(H)) as soon as H is infinite dimensional. For F ∈ Lp

U(X),

Lp
w(X), Lp

w∗(X
∗) or Lp(L(H)), the Lp-norm of F is ‖F‖p =

( ∫
T
‖F (ξ)‖p dµ(ξ)

) 1
p

if 1 6 p < ∞, and ‖F‖∞ = ess sup
T
‖F (ξ)‖ if p = ∞. All the spaces Lp

U(X),

Lp
w(X), Lp

w∗(X) and Lp(L(H)), p > 1, are Banach spaces.
P (z, ξ) will denote the Poisson kernel,

(3.1) P (z, ξ) =
1− |z|2

|1− ξz|2
, z ∈ D, ξ ∈ T.
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If F ∈ L1
U(X), L1

w(X), L1
w∗(X

∗) or L1(L(H)), the Fourier coefficients F̂ (k), k ∈ Z,
and the harmonic Poisson extension F̃ of F are given by the usual formulas. For
instance,

(3.2) F̃ (z) =
∫
T

P (z, ξ)F (ξ) dµ(ξ), z ∈ D,

where the integral is defined in the norm, weak, weak-∗ or WOT sense, depending
on the case. It is well-known that F̃ (z) tends to F (ξ) nontangentially for almost
every ξ ∈ T in the norm topology if F ∈ L1

U(X) (the converse is also true when X
is the dual of a separable Banach space); it tends to F (ξ) in the SOT if X = L(H).
On the other hand, for functions from L1

w(X), F̃ (z) may have no boundary limits
in any sense.

Some subspaces of L∞
U (X). If f ∈ L∞ and x ∈ X, then it is clear that

F = f( · )x ∈ L∞U (X). Now we consider the space generated by all such functions,

L∞ ⊗X := spanU{f( · )x : f ∈ L∞, x ∈ X,n > 1} = closU
⋃

n>1

(
L∞

⊗
n
X

)
,

where L∞
⊗
n
X :=

{ n∑
i=1

fixi : fi ∈ L∞, xi ∈ X
}
⊂ L∞U (X), and spanU and closU

stand respectively for the closed linear span and the closure in the uniform norm
topology. In particular, L∞ ⊗X ⊂ L∞U (X).

Note now that if F ∈ L∞w (X) and F (T) is almost relatively compact in X,
which means that there exists σ ⊂ T, µ(σ) = 0, such that F (T \ σ) is relatively
compact in X, then F ∈ L∞U (X). Let

L∞comp(X) := {F ∈ L∞w (X) : F (T) almost relatively compact in X}.
So, L∞comp(X) ⊂ L∞U (X). The proof of the following property is standard.

Proposition 3.1. L∞comp(X) = L∞⊗X. In particular, L∞comp(X) is a closed
subspace (subalgebra if X is a Banach algebra) of L∞U (X). Moreover, L∞comp(X) 6=
L∞U (X) if dimX = ∞.

Now, we pass to H∞(X). If X,Y are two Banach spaces in duality, the
duality product from X × Y to C will be denoted by 〈 · , · 〉X,Y .

Right slicing. The right slicing mapping comes from the tensor product theory
(see e.g. [17]). Here it is adapted and simplified for our purposes. For n > 1, let

H∞⊗
n
X =

{
F ∈ H∞(X) : F =

n∑
k=1

fkxk, (fk)n
k=1 ⊂ H∞, (xk)n

k=1 ⊂ X
}
,

and let H∞⊗
aX be the algebraic tensor product of H∞ and X, H∞⊗

aX =⋃
n>1

(
H∞⊗

n
X

)
. τ will denote the bounded pointwise convergence, that is, for

(Fn)n>1 ⊂ H∞(X),

(3.3) τ -lim
n→∞

Fn = F ⇔


lim

n→∞
‖Fn(z)− F (z)‖ = 0, ∀z ∈ D;

sup
n>1

‖Fn‖∞ <∞.



A tensor product approach to the operator corona problem 185

Clearly the τ -limit F must be in H∞(X). Furthermore, H∞⊗
aX is τ -dense in

H∞(X) because the Fejer polynomials of F ∈ H∞(X) are τ -convergent to F .
Recall also that in the scalar case, the τ -convergence coincides on H∞ with the
weak-∗ convergence induced by the duality L∞−L1. Denote by H∞

∗ = L1/H1
− the

predual of H∞ for this duality, where H1
− = zH1 = {f ∈ L1 : f̂(n) = 0, ∀n > 0}.

Functions in L1 will be identified with their class in H∞
∗ = L1/H1

−. The duality
form can be written as 〈f, g〉H∞,H∞

∗
=

∫
T
f(ξ)g(ξ) dµ(ξ) for f ∈ H∞, g ∈ H∞

∗ .

Lemma 3.2. Let ϕ ∈ H∞
∗ . The map

lϕ : H∞⊗
aX −→ X,

n∑
k=1

fkxk 7−→
n∑

k=1

〈fk, ϕ〉H∞,H∞
∗
xk

is well defined, linear and bounded from H∞⊗
aX to X. Furthermore, it is τ -

continuous and can be continuously extended up to a bounded linear map lϕ from
(H∞(X), τ) to X. For every F ∈ H∞(X) and every ϕ ∈ H∞

∗ , we have ‖lϕ(F )‖ 6
‖ϕ‖H∞

∗
‖F‖∞.

Proof. First, we can see that ‖lϕ(F )‖ 6 ‖ϕ‖H∞
∗
‖F‖∞ for every F ∈ H∞⊗

aX
and every ϕ ∈ H∞

∗ . Indeed, let (fi)n
i=1 ⊂ H∞, (xi)n

i=1 ⊂ X. Then, for every
h ∈ H1

−,

lϕ

( n∑
k=1

fkxk

)
=

n∑
k=1

〈fk, ϕ〉xk =
n∑

k=1

∫
T

fk(ξ)(ϕ+ h)(ξ)xk dµ(ξ)

=
∫
T

( n∑
k=1

fk(ξ)xk

)
(ϕ+ h)(ξ) dµ(ξ).

Therefore ‖lϕ(F )‖ 6 ‖F‖∞‖ϕ + h‖1 holds for every F ∈ H∞⊗
aX. Hence, lϕ

is well defined, linear and bounded from H∞⊗
aX to X. Now we show that lϕ

is τ -continuous. Let (Fn)n>1 ⊂ H∞⊗
aX be a sequence which τ -converges to a

function F ∈ H∞⊗
aX. For n > 1 and ϕ ∈ H∞

∗ , set Tn(ϕ) = lϕ(Fn). Then Tn

is a continuous linear map from H∞
∗ to X, and ‖Tn‖ 6 ‖Fn‖∞ 6 C. If ϕ ∈ H∞

∗ ,
then lim

n→∞
Tn(ϕ) = T (ϕ), where T (ϕ) = lϕ(F ). Indeed, this is the case for ϕ =

P (z, · ) for a fixed z ∈ D, where P (z, ξ) stands for the Poisson kernel (see formula
(3.1)), because Tn(P (z, · )) =

∫
T
Fn(ξ)P (z, ξ) dµ(ξ) = Fn(z) and T (P (z, · )) =

F (z). Moreover, by the Hahn-Banach theorem, lin{P (z, · ) : z ∈ D} is dense in
H∞
∗ . Applying the Banach-Steinhaus theorem we get lim

n→∞
Tn(ϕ) = T (ϕ) for every

ϕ ∈ H∞
∗ . The continuity of lϕ :

(
H∞⊗

aX, τ
)
→ X follows. The τ -density of

H∞⊗
aX in H∞(X) completes the proof.

For ϕ ∈ H∞
∗ , the map lϕ defined in Lemma 3.2 is called the right slicing map.

When F admits boundary values almost everywhere (e.g. when F ∈ H∞(L(H))
or F ∈ H∞

U (X), see below) then lϕ(F ) is given by the formula

(3.4) lϕ(F ) =
∫
T

F (ξ)ϕ(ξ) dµ(ξ),
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where the integral is defined in the same sense as the boundary values. The
following lemma can be proved by a standard argument. By σ(X,Y ) we denote
the weak topology induced by a set Y ⊂ X∗.

Lemma 3.3. Let F ∈ H∞(X). For every ϕ ∈ H∞
∗ and every u ∈ X∗,

〈lϕ(F ), u〉X,X∗ = 〈(〈F ( · ), u〉X,X∗), ϕ〉H∞,H∞
∗
.

Therefore, the map ϕ 7→ lϕ(F ) from (H∞
∗ , σ(H∞

∗ ,H
∞)) to (X,σ(X,X∗)) is contin-

uous. Moreover, closσ(X,X∗){lϕ(F ) : ϕ ∈ H∞
∗ , ‖ϕ‖H∞

∗
6 1} = conv{F (z) : z ∈ D},

where conv stands for the norm closed convex hull in X.

The spaces H∞
U (X), H∞ ⊗ X and H∞

comp(X). First, we make some remarks
on the subspace H∞

U (X) of H∞(X) consisting of functions having nontangential
limits almost everywhere on T for the norm topology of X. When X is an ar-
bitrary Banach space, the boundary values of F ∈ H∞(X) do not need to exist
in any sense. Nevertheless the Fatou theorem works for X = L(H) (existence of
SOT boundary values almost everywhere) or X = (X∗)∗ with X∗ separable (exis-
tence of weak-∗ boundary values almost everywhere). Moreover, when boundary
values of F ∈ H∞(X) do exist in a particular sense, then F coincides with the
harmonic Poisson extension of its boundary values defined in the same sense, see
formula (3.2). For F ∈ H∞

U (X), it is clear that the boundary values define a
function from L∞U (X), and thus we get

H∞
U (X) = H∞(X) ∩ L∞U (X).

In particular, H∞
U (X) = H∞(X) if X is a separable dual space. In a more

general situation, it may happen that H∞
U (X) 6= H∞(X). For instance, H∞

U (c0) 6=
H∞(c0), where c0 is the space of scalar sequences tending to zero, and H∞

U (L(H))
6= H∞(L(H)) if dimH = ∞ (consider F (z) = diag(1, z, z2, z3, . . .)).

Now consider the subspace H∞ ⊗X of H∞(X) generated by H∞⊗
aX,

H∞ ⊗X = closH∞(X)H
∞⊗

aX.

This space was already introduced in Section 2. We have seen that the corona
theorem is true for functions from H∞⊗X, and that makes this subspace of special
interest. The following subspace of H∞(X) also turns out to be of interest,

H∞
comp(X) = {F ∈ H∞(X) : F (D) is a relatively compact set in X}.

Lemma 3.4. (i) H∞ ⊗ X and H∞
comp(X) are closed subspaces of H∞(X),

and Banach subalgebras of H∞(X) if X is a Banach algebra. Always H∞ ⊗X ⊂
H∞

comp(X).
(ii) Every F ∈ H∞

comp(X) has norm boundary values in X almost everywhere
on T; this means that H∞

comp(X) ⊂ H∞
U (X).

(iii) H∞
comp(X) = L∞comp(X) ∩H∞

U (X) = L∞comp(X) ∩H∞(X).
(iv) CA(X) ⊂ H∞ ⊗X.
(v) If dimX < ∞, then H∞

comp(X) = H∞
U (X) = H∞(X) = H∞ ⊗ X. If

dimX = ∞, then H∞
comp(X) 6= H∞

U (X).
(vi) If X = (X∗)∗ is separable then H∞

U (X) = H∞(X). On the other hand,
if H is an infinite dimensional Hilbert space then H∞

U (L(H)) 6= H∞(L(H)).
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Proof. The proof of (i) and (ii) consists in a standard use of compactness,
the separability of spanF (D), and the scalar Fatou theorem. For the nontrivial
inclusion of (iii), take F ∈ L∞comp(X) ∩H∞(X) and use the Poisson formula (3.2)
to obtain that F (D) ⊂ conv(F (T \ σ)), where σ ⊂ T is chosen in such a way that
µ(σ) = 0 and F (T \ σ) is relatively compact. This implies that F ∈ H∞

comp(X).
The less obvious statement from (v) and (vi), namely that H∞

comp(X) 6= H∞
U (X)

for dimX = ∞, can be proved using the Jones-Vinogradov interpolation operator
(see [20], Lecture 8).

The approximation property (AP). It is still unknown whether H∞
comp(X) =

H∞⊗X for every X. Below, we link this equality with the classical approximation
property for X and prove its equivalence to some other finite rank approximations.

Recall that a Banach space X has the approximation property, (AP) in short,
if every compact subset K of X satisfies the following:

(3.5) ∀ε > 0, ∃T ∈ L(X), rankT <∞, such that ‖Tx− x‖ < ε, ∀x ∈ K.

A (relatively) compact subset K of a Banach space X satisfies (AP) in X if (3.5)
holds. See [18] for basic facts and references on (AP).

Proposition 3.5. Let F ∈ H∞
comp(X). If F (D) satisfies (AP) in X, then

F ∈ H∞ ⊗X. In particular, if X satisfies (AP), then H∞
comp(X) = H∞ ⊗X.

Proof. Let ε > 0 and let T ∈ L(X) be a finite rank operator such that

‖T (F (z))− F (z)‖ < ε, ∀z ∈ D. Write T =
N∑

k=1

〈 · , x∗k〉xk, where {xk}N
k=1 ⊂ X and

{x∗k}N
k=1 ⊂ X∗. Then T (F (z)) =

N∑
k=1

〈F (z), x∗k〉xk for every z ∈ D. For 1 6 k 6 N ,

set fk = 〈F ( · ), x∗k〉. Then fk ∈ H∞. Therefore the function z 7→ T (F (z)), z ∈ D,
belongs to H∞ ⊗X and so does F .

Many Banach spaces satisfy (AP), e.g. the space C(K) of continuous func-
tions on any compact set K, the Lp(Ω, ν) spaces, 1 6 p 6 ∞, the Schatten classes
Sp(X,Y ), 1 6 p 6 ∞, where X et Y are any Banach spaces with a Schauder
basis. Nevertheless there do exist some (even separable) Banach spaces not satis-
fying (AP) ([11], [8]), and it is also known that L(H) does not satisfy (AP) when
H is infinite dimensional ([24]). The problem whether the space H∞ satisfies (AP)
seems to be open. In what follows, we exhibit some subspaces of L(H) and H∞

satisfying (AP) and relate them to the operator corona problem. Note that in the
proof of Proposition 3.5, the operator T needs not to be defined on entire X, but
only on span (F (D)). As long as T takes values in X this is still the same property
as (AP) for F (D) in X (because of the Hahn-Banach theorem). Sometimes we will
restrict ourselves to such a finite rank approximation T : span (F (D)) → X, also
calling it (AP). But first, we mention a simple metric property of a compact set K
in a Banach space X which guarantees that K satisfies (AP) in X. The following
approximate numbers ε(K,n) will be used,

ε(K,n) := inf
dim L=n

sup
x∈K

dist(x, L),
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where L denotes a finite dimensional subspace of X. Compactness of K implies
that ε(K,n) decreases to 0 as n tends to ∞. The following proposition gives a
rate of decrease of ε(F (D), n), F ∈ H∞

comp(X), which guarantees that F belongs
to H∞ ⊗X.

Proposition 3.6. Let K ⊂ X be a relatively compact set. If ε(K,n) =
o
(

1√
n

)
, n→∞, then K satisfies (AP).

Proof. The following result is due to D.R. Lewis (see [31], p. 116): for any
Banach space X and any n-dimensional subspace Y of X, there exists a projection
P ∈ L(X) such that PX = Y and ‖P‖ 6

√
n. Now, for n > 1, choose an n-

dimensional subspace Ln of X such that sup
x∈F (D)

dist(x, Ln) 6 2ε(F (D), n) and a

projection Pn from X onto Ln such that ‖Pn‖ 6
√
n. Given x ∈ K, there exists

y ∈ Ln such that ‖x− y‖ 6 3 ε(K,n), and consequently,

‖x− Pnx‖ 6 ‖x− y‖+ ‖Pnx− y‖ 6 3(1 +
√
n) ε(K,n)

as Pnx− y = Pn(x− y). Therefore, K satisfies (AP).

4. SCALARISATION

In this section the subspaces H∞
comp(X) and H∞ ⊗X are characterized by func-

tional properties in H∞ by using a scalarisation process (which corresponds to the
left slicing in the tensor product theory). In the case of operator valued functions,
the membership of F in H∞

comp(L(H)) or in H∞⊗L(H) is characterized by proper-
ties of the scalar functions 〈F ( · )x, y〉 ∈ H∞, x, y ∈ H, and in some cases even by
properties of the matrix entries 〈F ( · )ej , ei〉 of F with respect to some orthonormal
basis (ei)i>1 of H. Then the functional language is used to compare approxima-
tion properties in X and H∞. Later on, these results will be used to show that
some block diagonal functions from H∞

comp(L(H)) actually belong to H∞ ⊗ L(H)
(see Section 6), and that some pseudocontinuable functions from H∞

comp(X) also
are in H∞ ⊗X (see Section 5).

Only the case when X is a dual space, X = (X∗)∗, is treated here. Note
that the operator case fits into this setting as L(H) is the dual space of the space
of trace class operators, L(H) = (S1(H))∗, in the trace duality. In all this section
the duality product 〈· , ·〉 corresponds to the (X,X∗) duality. B∗ stands for the
closed unit ball of X∗.

Let F ∈ H∞(X). We define a scalarisation map φF ∈ L(X∗,H∞) by
φF (u) = 〈F ( · ), u〉, u ∈ X∗.

Proposition 4.1. The map Φ : F 7→ φF is an isometric linear operator
from H∞(X) onto L(X∗,H∞).

Proof. The linearity is obvious. The following equalities show that Φ is
isometric.

‖φF ‖ = sup
u∈B∗

‖φF (u)‖ = sup
u∈B∗

sup
z∈D

|〈F (z), u〉|

= sup
z∈D

sup
u∈B∗

|〈F (z), u〉| = sup
z∈D

‖F (z)‖ = ‖F‖∞.
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To see that Φ is onto, let φ ∈ L(X∗,H∞). Then, for every z ∈ D, the map
u 7→ (φ(u))(z) is a continuous linear functional on X∗ and hence there exists a
unique F (z) ∈ X = (X∗)∗ such that (φ(u))(z) = 〈F (z), u〉 for every u ∈ X∗. It
remains to show that the map z 7→ F (z) belongs to H∞(X). First we see that F
is bounded, because

‖F (z)‖ = sup
u∈B∗

|〈F (z), u〉| = sup
u∈B∗

|(φ(u))(z)| 6 sup
u∈B∗

‖φ(u)‖∞ = ‖φ‖,

for every z ∈ D. Furthermore, 〈F ( · ), u〉 = φ(u) ∈ H∞ for every u ∈ X∗. In par-
ticular, F is weak-∗ analytic, and therefore analytic. Consequently, F ∈ H∞(X),
and it is clear that φ = φF = Φ(F ).

Characterization of H∞
comp(X) and H∞ ⊗X. F(X,Y ) denotes the space of

bounded finite rank operators from X to Y , and S∞(X,Y ) denotes the space of
compact linear operators from X to Y .

Proposition 4.2. Let F ∈ H∞(X). The following are equivalent:
(i) F ∈ H∞

comp(X);
(ii) φF ∈ S∞(X∗,H∞).
Proof. We show that (i) implies (ii). The fact that (ii) implies (i) can be

proved in a similar way. Let ε > 0. Choose a finite ε-net {F (zi)}p
i=1 of F (D)

in X. For every i, 1 6 i 6 p, define hi : u 7→ 〈F (zi), u〉 = φF (u)(zi), and
h : u 7→ h(u) = (h1(u), h2(u), . . . , hp(u)), where u ∈ X∗. Then hi is a bounded
linear functional on X∗, ‖hi‖ 6 ‖F (zi)‖ 6 ‖F‖∞. Take the uniform norm on Cp,
‖λ‖∞ = sup

16i6p

|λi|, λ ∈ Cp. As h(B∗) is bounded in Cp we can take a finite ε-net

{h(uj)}q
j=1 of h(B∗) in Cp. Now we show that {φF (uj)}q

j=1 is a 3ε-net of φF (B∗)
in H∞. Let φF (u) ∈ φF (B∗) and z ∈ D. Let i, j, 1 6 i, j 6 q, be such that
‖F (z)− F (zi)‖ 6 ε and ‖h(u)− h(uj)‖∞ 6 ε. Then
|φF (u)(z)− φF (uj)(z)|

6 |φF (u)(z)− φF (u)(zi)|+ |φF (u)(zi)− φF (uj)(zi)|+ |φF (uj)(zi)− φF (uj)(z)|
= |〈F (z)− F (zi), u〉|+ |hi(u)− hi(uj)|+ |〈F (zi)− F (z), uj〉|
6 ‖F (z)− F (zi)‖+ ε+ ‖F (zi)− F (z)‖ 6 3ε.

Therefore ‖φF (u)−φF (uj)‖∞ 6 3ε and {φF (uj)}q
j=1 is a 3ε-net of φF (B∗) in H∞.

Hence, φF (B∗) is relatively compact in H∞.
Now we come to a characterization of H∞ ⊗ X. The following lemma is

obvious.
Lemma 4.3. Let F ∈ H∞(X). The following are equivalent:
(i) F ∈ H∞⊗

n
X;

(ii) φF has finite rank less or equal to n.
Furthermore, if E is a closed subspace of H∞, then F ∈ E

⊗
n
X if and only if φF

has finite rank less or equal to n and ImφF ⊂ E.
Theorem 4.4. Let F ∈ H∞(X). Then F ∈ H∞ ⊗ X if and only if φF ∈

closF(X∗,H∞), where clos stands for the norm closure in L(X∗,H∞).
Proof. It is straightforward from Proposition 4.1 and Lemma 4.3.
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If F ∈ H∞ ⊗X and the mapping φF takes values in a closed subspace E of
H∞, then the natural question arises whether F ∈ E ⊗X. The answer is yes if E
is a complemented subspace of H∞, since one can simply project approximating
functions from H∞⊗

aX onto E⊗X. Later on, we prove that the same conclusion
is true for E satisfying (AP). But for a general E ⊂ H∞, we do not know the
answer.

The following corollary is a consequence of Theorem 4.4 and the Grotendieck
characterization of (AP); see [18].

Corollary 4.5. The following are equivalent:
(i) H∞ ⊗X = H∞

comp(X) for every dual Banach space X;
(ii) H∞ has (AP).

The question whether H∞ has (AP) has been studied by J. Bourgain ([4]),
J. Bourgain and O. Reinov ([5]), G. Pisier ([21]), and others. Although this ques-
tion is still open, in our setting, some conditions on F ∈ H∞

comp(X) can be given
which make the compact operator φF a limit of bounded finite rank operators.
For instance, the following proposition is an elementary consequence of the dual-
ity reasoning.

Proposition 4.6. Suppose X is a bidual, X = (X∗)∗ = (X∗∗)∗∗, and let
F ∈ H∞(X). If X∗∗ has (AP) and φF ∈ S∞(X∗,H∞) is weak-∗ continuous, then
F ∈ H∞ ⊗X.

Now we consider the scalarisation in the case of operator valued functions.
It is well-known that L(H) = S∗1 and S1 = S∗∞ with respect to the standard trace
duality,

〈A,B〉 = Tr(AB) =
∑
n>1

(ABen, en),

where (en)n>1 is any orthonormal basis ofH. Using some standard properties of S1

(see e.g. [14]), we obtain the following proposition (to compare with Theorem 4.11
below).

Proposition 4.7. Let F ∈ H∞(L(H)). The following are equivalent:
(i) F ∈ H∞

comp(L(H));
(ii) {〈F ( · )u, v〉 : u, v ∈ H, ‖u‖ = ‖v‖ = 1} is relatively compact in H∞.

Scalarisation and approximation property in H∞. In view of Proposi-
tion 4.2 and Theorem 4.4, in the case when X is a dual space we can use (AP)
in H∞ rather than in X; see Proposition 4.8. In the case of an operator valued
function F ∈ H∞(L(H)), we show that, in general, the approximation property for
the set of matrix entries MF = {〈F ( · )ej , ei〉}i,j>1 with respect to an orthonormal
basis (ei)i>1 of H does not lead to F ∈ H∞

comp(L(H)).
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Proposition 4.8. Let X be a dual Banach space, X = (X∗)∗. Let F ∈
H∞

comp(X). If φF (B∗) satisfies (AP) in H∞ then F ∈ H∞ ⊗X. If X = L(H), it
is sufficient that the set {〈F ( · )u, v〉 : u, v ∈ H, ‖u‖ = ‖v‖ = 1}, or even the family
{〈F ( · )xj , xi〉}i,j>1, satisfy (AP) in H∞, where (xk)k>1 is a dense sequence in the
unit sphere of H.

Proof. Let E be the closed linear span of φF (B∗) in H∞ (in the case when
X = L(H), E coincides with the closed linear spans of {〈F ( · )u, v〉 : u, v ∈
H, ‖u‖ = ‖v‖ = 1} or {〈F ( · )xj , xi〉}i,j>1). If φF (B∗) satisfies (AP) in H∞,
then for every ε > 0, there exists a bounded finite rank operator T : E → H∞

such that ‖TφF (u) − φF (u)‖∞ < ε for every u ∈ B∗. In particular, TφF be-
longs to F(X∗,H∞) and ‖TφF − φF ‖∞ = sup

u∈B∗

‖TφF (u)− 〈F ( · ), u〉‖ 6 ε. Thus,

φF ∈ F(X∗,H∞) and from Theorem 4.4 we get F ∈ H∞ ⊗X.

Corollary 4.9. If F ∈ H∞
comp(X) with X = (X∗)∗, and φF (B∗) ⊂ E,

where E is a closed subspace of H∞ satisfying (AP), then F ∈ E ⊗X.

Indeed, we can choose the approximation operator T taking values in E.

Remark 4.10. In Corollary 4.9 the assumption F ∈ H∞
comp(X) is essential.

Indeed, there exists F ∈ H∞(L(H)) such that φF (B∗) ⊂ CA but F 6∈ CA(L(H)) =
CA ⊗ L(H). For example, we can take F (z) = diag

(
(zn)n>1

)
∈ L(`2). Let

(en)n>1 denote the canonical basis of `2. Then, for T ∈ S1, we have φF (T ) =∑
n>0

zn(Ten, en) and
∑

n>0

|(Ten, en)| < ∞. Thus φF (T ) ∈ CA. But F 6∈ CA(L(`2)),

and even F 6∈ H∞
U (L(`2)).

So, in the case when X = (X∗)∗, we have seen that F ∈ H∞
comp(X) belongs

to H∞ ⊗ X as soon as F (D) satisfies (AP) in X or φF (B∗) satisfies (AP) in
H∞. Nevertheless, these two properties are independent of each other in the
following sense (see [30] for the proof). If X does not satisfy (AP), then there
exists F ∈ H∞

comp(X) such that F (D) does not satisfy (AP) in X but φF (B∗)
satisfies (AP) in H∞. On the other hand, if H∞ does not satisfy (AP), then there
exists F ∈ H∞⊗ `∞ (and hence, F (D) ∈ (AP)) such that φF (B∗) does not satisfy
(AP) in H∞.

Now we consider the question on how to express the membership of F in
H∞ ⊗ L(H) or in H∞

comp(L(H)) in terms of the set of its matrix entries MF =
{fij}i,j>1 with respect to an orthonormal basis e = (ei)i>1 ofH, fij = 〈F ( · )ej , ei〉.
We show that it may happen thatMF satisfies (AP) inH∞ but F 6∈ H∞

comp(L(H)).
On the other hand, if MF satisfies a stronger approximation property, called the
complete approximation property (CAP), then F ∈ H∞⊗L(H), see Theorem 4.13
below.

Theorem 4.11. Let F ∈ H∞(L(H)). In the notation above, for n > 1,
F ∈ H∞⊗

n
L(H) if and only if rank {fij : i, j > 1} := dim(lin{fij : i, j > 1}) 6 n.

On the other hand, if dimH = ∞, there exists F ∈ H∞(L(H)) such that MF is
a relatively compact set satisfying (AP) in H∞, but F 6∈ H∞

comp(L(H)).
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Proof. F ∈ H∞⊗
n
L(H) if and only if rankφF (B∗) 6 n (see Lemma 4.3).

Thus, if F ∈ H∞⊗
n
L(H) then rank {fij : i, j > 1} = rank {φF (ej ⊗ ei) : i, j >

1} 6 n, where ej ⊗ ei stands for the rank one operator (ej ⊗ ei)x = 〈x, ei〉ej ,
x ∈ H. Conversely, let Pn be the orthogonal projection onto lin{ei : 1 6 i 6 n}.
For every A ∈ S1, PnAPn tends to A in S1 and PnAPn ∈ lin{ej⊗ei : 1 6 i, j 6 n}.
Therefore, φF (PnAPn) tends to φF (A) in H∞ and φF (PnAPn) ∈ lin{φF (ej ⊗ ei) :
1 6 i, j 6 n} ⊂ lin{φF (ej⊗ei) : i, j > 1}. Thus, if rank {φF (ej⊗ei) : i, j > 1} 6 n,
then rankφF (B∗) 6 n.

Now we take e to be the canonical basis of `2, and A = (aij)i,j>1 ∈ L(`2)

the Césaro operator defined by Ax =
(

1
k

k∑
i=1

xi

)
k>1

, x = (xk)k>1 ∈ `2.

A =



1 0 · · ·
1
2

1
2 0

1
3

1
3

1
3 0

...
. . . . . .

1
n

1
n · · · · · · 1

n 0
...

. . . . . .
...

. . .


.

By the Schur test ([15]), A is a bounded operator on `2; indeed,
∀i > 1,

∑
j>1

aij
1√
j

6 M√
i
,

∀j > 1,
∑
i>1

aij
1√
i

6 M√
j
;

where M is a constant. On the other hand, A is not compact. Indeed, take
xn = 1√

n
(1, 1, . . . , 1, 0, 0, . . .), n > 1; then ‖xn‖ = 1 and (xn)n>1 tends weakly to

0 whereas ‖Axn‖ > 1. Let Pn ∈ L(`2), n > 1, be as above, and Qn = id − Pn.
Define An = Qn−1A. Then we choose a Carleson sequence (λn)n>1 ⊂ D, and
(ϕn)n>1 ⊂ H∞ a sequence of interpolating functions (ϕn(λk) = δnk, ∀n, k > 1)
such that

∑
n>1

|ϕn(z)| 6 C for every z ∈ D (see Section 5 below for definitions and

references). Set F (z) =
∑

n>1

ϕn(z)An, z ∈ D. Then F ∈ H∞(L(`2)). Consider

the family of matrix entries {fij}i,j>1 of F . We have fij(z) =
∑

n>1

ϕn(z)(An)ij for

every i, j > 1 and every z ∈ D. Let N > 1. If i+ j > 2N , then 0 6 (An)ij 6 1
N for

every n > 1 and ‖fij‖∞ 6 C
N . The set {fij : i+ j < 2N} being finite, we deduce

that {fij : i, j > 1} is a relatively compact family in H∞.
Now suppose that F (D) is relatively compact. As F (λk) = Ak, the sequence

(Ak)k>1 must have a norm convergent subsequence. But (Ak)k>1 tends SOT
to 0 because lim

n→∞
‖Qnx‖ = 0 for every x ∈ `2. Then (Ak)k>1 must be norm

convergent to 0. As ‖A − PkA‖ = ‖Ak‖, we deduce that the sequence of finite
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rank operators (PkA)k>1 is norm convergent to A, which is a contradiction to the
non-compactness of A.

Moreover, the set {fij : i, j > 1} satisfies (AP) as it is contained in T (`∞)
which satisfies (AP); here T ∈ L(`∞,H∞) is the interpolation operator associated
with (ϕk)k>1, it is an isomorphic embedding of `∞ into H∞ (see Lemma 5.7).

Now we define a stronger approximation property for the family of matrix
entries of F ∈ H∞(L(H)), which guarantees that F ∈ H∞ ⊗ L(H). Mn denotes
the space of n × n matrices with scalar entries. Mn(E) stands for the space of
n× n matrices with entries in E, where E is a closed subspace of H∞. The space
Mn(E) embeds canonically into H∞(Mn). We endow Mn(E) with the norm
‖ · ‖∞ induced by H∞(Mn).

Definition 4.12. Let K be a relatively compact subset of H∞, and E =
spanH∞K. The set K satisfies the complete approximation property (CAP) in
H∞ if for every ε > 0 and every C > 0, there exists T ∈ L(E,H∞) such that

(4.1) rankT <∞ and ‖(T ⊗ In)(ϕij)n
i,j=1 − (ϕij)n

i,j=1‖∞ 6 ε

for every matrix (ϕij)n
i,j=1 with {ϕij : 1 6 i, j 6 N} ⊂ K and ‖(ϕij)n

i,j=1‖∞ 6
C, n > 1, where the operator T ⊗ In ∈ L(Mn(E),Mn(H∞)) is defined by
(T ⊗ In)(ϕij)n

i,j=1 = (Tϕij)n
i,j=1.

Theorem 4.13. Let F ∈ H∞(L(H)) and MF = (fij)i,j>1 its matrix in an
orthonormal basis e = (en)n>1. If {fij : i, j > 1} is a relatively compact family
satisfying (CAP) in H∞, then F ∈ H∞ ⊗ L(H).

Proof. Set E = spanH∞{fij : i, j > 1} and C = ‖F‖∞. Then ‖(fij)n
i,j=1‖∞

6 C for every n > 1. Let ε > 0 and T ∈ L(E,H∞) satisfying (4.1). Let x, y ∈ H,

x =
n∑

j=1

xjej , y =
n∑

i=1

yiei. Then 〈F ( · )x, y〉 =
n∑

i,j=1

xjyifij belongs to E. Moreover,

T (〈F ( · )x, y〉)− 〈F ( · )x, y〉 =
n∑

i,j=1

xjyi(Tfij − fij) and

∥∥∥ n∑
i,j=1

xjyi(Tfij − fij)
∥∥∥
∞

=‖〈[(T ⊗ In)(fij)n
i,j=1−(fij)n

i,j=1](xj)n
j=1, (yi)n

i=1〉‖∞

6‖(T ⊗ In)(fij)n
i,j=1−(fij)n

i,j=1‖∞‖x‖ ‖y‖6ε‖x‖ ‖y‖.

Then ‖T (〈F ( · )x, y〉)− 〈F ( · )x, y〉‖∞ 6 ε‖x‖ ‖y‖ for every x, y ∈ H. Therefore
the set {〈F ( · )x, y〉 : x, y ∈ H, ‖x‖ = ‖y‖ = 1} = φF (S1,∗) satisfies (AP) in H∞,
and from Proposition 4.8 we deduce that F ∈ H∞ ⊗ L(H).

Remark 4.14. The (CAP) is a restricted version of the operator approx-
imation property (OAP) which was introduced by Effros and Ruan ([10]). The
(OAP) is formulated in terms of tensor products L(H1) ⊗ L(H2). As H∞ em-
beds isometrically in the space L(H2) of bounded operators on the Hardy space
H2, the (CAP) coincides with the restriction to H∞ ⊗ L(`2) of the (OAP) for
L(H2)⊗ L(`2).
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5. THE CORONA THEOREM FOR WEAKLY PSEUDOCONTINUABLE FUNCTIONS

In this section, we use the scalarisation results of Section 4 to obtain some explicit
sufficient conditions for the left invertibility of a function F ∈ H∞(L(H)). To this
end, we exhibit some subspaces of H∞ satisfying (AP) and defined in terms of
pseudocontinuable functions appearing in the theory of Hardy spaces Hp, 1 6 p 6
∞ (see [20], Lecture 2). The proofs are based on the free interpolation techniques
(see [13], [20]). We first give some general information.

Subspaces of H∞(X) defined by minimal sequences. For (fk)k>1 ⊂ H∞,
we define the following property (P) and write (fk)k>1 ∈ (P) if

(P) (fk)k>1 is a uniformly ∗-minimal sequence, and sup
z∈D

∑
k>1

|fk(z)| <∞.

Recall that a sequence (fk)k>1 ⊂ H∞ is uniformly ∗-minimal if there exists a
bounded sequence (ϕk)k>1 ⊂ L1 such that 〈fi, ϕj〉H∞,H∞

∗
= δij for every i, j > 1.

We refer to Section 3 for definitions of duality, τ -topology (see formula (3.3)) and
∗-convergence in H∞.

For (fk)k>1 ∈ (P), we define

L((fk)k>1, X) =
{ ∑

k>1

fkxk : (xk)k>1 ⊂ X, sup
k>1

‖xk‖ <∞
}

and L(X) =
⋃
{L((fk)k>1, X) : (fk)k>1 ∈ (P)}.

Lemma 5.1. Let (fk)k>1 ∈ (P). Then L((fk)k>1, X) is a τ -closed subspace
of H∞(X).

Proof. Let F =
∑
k>1

fkxk ∈ L((fk)k>1, X). As sup
z∈D

∑
k>1

|fk(z)| ‖xk‖ < ∞,

the series defining F is τ -convergent. Therefore, L((fk)k>1, X) ⊂ H∞(X). To
see that L((fk)k>1, X) is τ -closed, we take a sequence (Fn)n>1 ⊂ L((fk)k>1, X),
τ -convergent to some F ∈ H∞(X). Let (ϕk)k>1 ⊂ L1, sup

k>1

‖ϕk‖1 <∞, such that

〈fi, ϕj〉H∞,H∞
∗

= δij for every i, j > 1.
From Lemma 3.2, if G =

∑
k>1

fkyk, sup
k>1

‖yk‖ < ∞, we have lϕk
(G) =∑

j>1

〈fj(z), ϕk〉yj = yk for every k > 1. On the other hand, we know that for

fixed k, (lϕk
(Fn))n>1 converges in X due to the continuity of lϕk

. Set xk =
lim

n→∞
lϕk

(Fn). Using Lemma 3.2 again, we obtain ‖xk‖ 6 ‖ϕk‖H∞
∗

sup
n>1

‖Fn‖, and

therefore sup
k>1

‖xk‖ < ∞. Thus, G =
∑
k>1

fkxk belongs to L((fk)k>1, X) and it is

clear that (Fn)n>1 is τ -convergent to G. Therefore, F = G ∈ L((fk)k>1, X) and
L((fk)k>1, X) is τ -closed.

Example 5.2. For every Carleson sequence (λk)k>1 ⊂ D (see below for
the definition), there exist interpolating functions (fk)k>1 ⊂ H∞, fk(λj) = δkj ,
∀ j, k > 1, such that sup

z∈D

∑
k>1

|fk(z)| <∞ (see [13]). In particular, (fk)k>1 ∈ (P).
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For (fk)k>1 ∈ (P), we denote by Lcomp((fk)k>1, X) the following subspace
of L((fk)k>1, X),

Lcomp((fk)k>1, X)

=
{ ∑

k>1

fkxk : (xk)k>1 ⊂ X is a relatively compact sequence in X
}
,

and further we set Lcomp(X) =
⋃
{Lcomp((fk)k>1, X) : (fk)k>1 ∈ (P)}.

Lemma 5.3. Lcomp(X) ⊂ H∞ ⊗X.

Proof. Let F =
∑
k>1

fkxk ∈ Lcomp((fk)k>1, X). Let ε > 0 and let u be a map

in N∗ with a finite set of values, say k1, k2, . . . , kp, and such that ‖xk − xu(k)‖ 6 ε
for every k > 1. We set

G =
∑
k>1

fkxu(k) =
p∑

j=1

( ∑
k:u(k)=kj

fk

)
xuj

.

According to property (P),
( ∑

k:u(k)=kj

fk

)
∈ H∞ for every j, 1 6 j 6 p. Thus,

G ∈ H∞⊗
p
X. On the other hand, ‖F −G‖∞ 6 sup

z∈D

∑
k>1

|fk(z)| ‖xk−xu(k)‖ 6 Cε,

where C = sup
z∈D

∑
k>1

|fk(z)|. Therefore, F ∈ H∞ ⊗X.

In fact, Lcomp(X) is a dense subset of H∞⊗X because finite sums
n∑

k=1

fkxk

with {fk}n
k=1 ⊂ H∞ and {xk}n

k=1 ⊂ X, n > 1, belong to Lcomp(X) and are dense
in H∞ ⊗X.

Proposition 5.4. Let F ∈ L(X). The following are equivalent:
(i) F ∈ H∞ ⊗X;
(ii) F ∈ H∞

comp(X);
(iii) F ∈ Lcomp(X).

Proof. Clearly, (i) implies (ii). Lemma 5.3 means that (iii) implies (i).
It remains to prove that (ii) implies (iii). Since F ∈ L(X), there exists a se-
quence (fk)k>1 satisfying (P) such that F ∈ L((fk)k>1, X). Let (ϕk)k>1 ⊂ L1,
sup
k>1

‖ϕk‖1 <∞, satisfying 〈fi, ϕj〉H∞,H∞
∗

= δij for every i, j > 1. As in the proof

of Lemma 5.1 we have lϕk
(F ) = xk for every k > 1. According to Lemma 3.3,

xk ∈ C conv{F (z) : z ∈ D}, where C = sup{‖ϕk‖H∞
∗

: k > 1}. Since conv{F (z) :
z ∈ D} is compact, we get F ∈ Lcomp((fk)k>1, X).

Pseudocontinuable functions. Recall that a function f ∈ Hp, 1 6 p 6 ∞,
is Nevanlinna pseudocontinuable (p.c. in short) if there exists a function f∗ ∈
Nev(Ĉ\D) = {g/h : g, h ∈ H∞(Ĉ\D)} such that f(ξ) = f∗(ξ) for almost all ξ ∈ T
(nontangential limits). Here, H∞(Ĉ \ D) denotes the space of bounded analytic
functions in Ĉ\D. We refer to [20], Lecture 2, for the theory of pseudocontinuable
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functions. If a pseudocontinuation exists, then it is unique, and we can classify
p.c. functions in terms of their pseudocontinuation. Indeed, every inner function
θ ∈ H∞ is p.c., and has a pseudocontinuation θ∗ given by the Schwarz reflection,
θ∗(z) = 1

θ( 1
z

)
, z ∈ C \ D. In particular, (θ∗)−1 ∈ H∞(Ĉ \ D). Let f be p.c.,

and f∗ = g
h its pseudocontinuation, g, h ∈ H∞(Ĉ \ D). We can suppose that

lim
|z|→∞

g(z) = 0. Let h = θ1h1 be the inner-outer factorization of h, and set

θ(z) = θ1( 1
z ), z ∈ D. Then θ ∈ H∞ is inner and θ∗ = 1

θ1
. Thus f∗ = g

h1
θ∗, where

g, h1 ∈ H∞(Ĉ \D), h1 outer. In this case, we say that f has a pseudocontinuation
with singularities subordinated to θ. If moreover f ∈ H∞, then f∗ = g1θ∗, where
g1 ∈ H∞(Ĉ \ D), lim

|z|→∞
g1(z) = 0. We say that f has a purely meromorphic

pseudocontinuation if θ = B is a Blaschke product.
For every inner function θ ∈ H∞, we denote by PC(θ) the vector space of

p.c. H∞ functions with singularities subordinated to θ,

PC(θ) :=
{
f ∈ H∞ : f∗ = gθ∗, g ∈ H∞(Ĉ \ D), lim

|z|→∞
g(z) = 0

}
.

Note that the meromorphic pseudocontinuation of f ∈ PC(B) can have poles only
at points 1

λ
, where λ is a zero of B, with at most the same order of multiplicity.

For an inner function θ ∈ H∞, we set

K∞
θ := H∞ ∩ θH∞

− = H∞ ∩Kθ,

where H∞
− = zH∞ and Kθ = H2	 θH2 = H2 ∩ θH2

− is a coinvariant subspace for
the shift operator on H2.

Lemma 5.5. Let θ ∈ H∞ be an inner function. Then:
(i) PC(θ) = K∞

θ ;
(ii) K∞

θ is a ∗-closed subspace of H∞;
(iii) if B is a Blaschke product, B =

∏
n>1

b
k(λn)
λn

,
∑

n>1

k(λn)(1 − |λn|) < ∞,

where bλ(z) = |λ|
λ (λ− z)(1− λz)−1, then

K∞
B = span∗

{
1(

z − 1

λn

)k
: n > 1, 1 6 k 6 k(λn)

}
,

where span∗ stands for the ∗-closed linear span in H∞.

Proof. (i) is clear because a function g ∈ H∞(Ĉ \D) satisfies lim
|z|→∞

g(z) = 0

if and only if g ∈ H∞
− . Property (ii) comes from the formula K∞

B =
⋂

n>0

Kerϕn,

where ϕn(f) =
∫
T
f(ξ)B(ξ)ξn dµ(ξ), f ∈ H∞, n > 0. For the proof of (iii) see [20],

Lecture 2.
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Remark 5.6. If f ∈ K∞
θ has a pseudocontinuation f∗, then f and f∗ not

only have the same nontangential limits on T, but also they extend to an analytic
function on C \

{
1

λ
: λ ∈ σ(θ)

}
, where σ(θ) denotes the spectrum of θ (see [20]).

In particular, if θ = B is a Blaschke product, then f ∈ K∞
B can be extended to an

analytic function on C \ clos
{

1

λ
: B(λ) = 0

}
.

Linear free interpolation. Our main source of subspaces of H∞ satisfying
(AP) is provided by linear free interpolation operators in H∞. The following
lemma recalls a well-known result on this subject (see [13], Chapter VIII, Sec-
tion 2). Recall that a sequence Λ = (λn)n>1 of distinct points in D is a Carleson
(interpolating) sequence (Λ ∈ (C)) if

(C) inf{|Bλn
(λn)| : n > 1} = δ > 0,

where Bλn
= B

bλn
and B =

∏
n>1

bλn
is the Blaschke product associated with Λ.

Lemma 5.7. Let Λ = (λn)n>1 ⊂ D. Suppose that there exists a bounded
linear operator T : `∞(Λ) → H∞ realizing interpolation on Λ, that is (Ta)|Λ = a
for every a ∈ `∞(Λ). Then Λ ∈ (C) and the range T (`∞(Λ)) of T is a closed
subspace of H∞ isomorphic to `∞(Λ), thus satisfying (AP) in H∞.

Corollary 5.8. Let X = (X∗)∗ be a dual Banach space, and F ∈ H∞(X)
such that φF (B∗) ⊂ T (`∞(Λ)), where Λ ⊂ D, Λ ∈ (C), and T is an interpolation
operator for Λ. Then F ∈ H∞ ⊗X if and only if F ∈ H∞

comp(X).

Indeed, this is a direct consequence of Lemma 5.7 and Proposition 4.8.

It is not easy to distinguish subspaces of the form T (`∞(Λ)) with some
T and some Λ ∈ (C) among all subspaces of H∞. Several constructions exist
for interpolation operators; see [13], [20], [29]. But only one of these operators
fulfills the properties we need. The following lemma is inspired by a result of
G.M. Airapetyan ([1]).

Lemma 5.9. Let Λ = (λn)n>1 ⊂ D. The following are equivalent:
(i) there exists T ∈ L(`∞(Λ),H∞) such that (Ta)|Λ = a for every a ∈

`∞(Λ), and T (`∞(Λ)) = K∞
B , where B =

∏
n>1

bλn
is the Blaschke product with the

zero set Λ;
(ii) Λ ∈ (C) and (F), where (F) stands for the uniform Frostman condition,

(F) sup
ξ∈T

∑
n>1

1− |λn|2

|ξ − λn|
<∞.

Remark 5.10. It is clear that the uniform Frostman condition (F) is stable
with respect to finite union. Notice also that a sequence Λ ∈ (F) is always “tangent
to T”, more precisely there is at most a finite number of points of Λ in every Stolz
angle. It is also known that a Frostman sequence is a finite union of Carleson
sequences. On the other hand, if (θn)n>1 is a sequence of distinct real numbers
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tending to 0, then there exists a sequence Λ = (λn)n>1 ⊂ D, with λn = rneiθn ,
such that Λ ∈ (C) and (F) (where (rn)n>1 tends to 1 fast enough).

Proof of Lemma 5.9. First we show that (i) implies (ii). We know that
H∞|Λ = `∞(Λ) implies Λ ∈ (C). Notice that the interpolation operator taking
values in K∞

B is necessarily unique, because if f1, f2 ∈ K∞
B , and f1|Λ = f2|Λ,

then (f1 − f2) ∈ BH∞ ∩ K∞
B = {0}, thus f1 = f2. Moreover, for every finitely

supported sequence a = (a(λn))n>1 ∈ `∞(Λ) we have

Ta(z) =
∑
n>1

a(λn)
1− |λn|2

1− λnz

Bλn
(z)

Bλn(λn)
, z ∈ D,

where Bλn = B
bλn

. Indeed, Bλn

1−λnz
= λn

|λn|
B

z−λn
∈ K∞

B because 1
z−λn

∈ H∞
− , thus

Ta ∈ K∞
B . Now, as T is bounded, we have

sup{|Ta(z)| : ‖a‖∞ 6 1} =
∑
n>1

1− |λn|2

|1− λnz|
|Bλn

(z)|
|Bλn

(λn)|
6 C,

for some constant C > 0. It is known (see [20]) that for Λ ∈ (C), there exists
δ1 > 0 such that

|B(z)| > δ1 inf{|bλn(z)| : n > 1},
for every z ∈ D (generalized Carleson condition). Let 0 < ε < 1. We set

Ωε := D \
( ⋃

n>1

{z ∈ D : |bλn
(z)| < ε}

)
.

Choosing ε small enough, we can suppose that the hyperbolic discs {z ∈ D :
|bλn

(z)| < ε}, n > 1, are mutually disjoint. Then |Bλn
(z)| > |B(z)| > δ1ε for

every z ∈ Ωε and every n > 1. Therefore,∑
n>1

1− |λn|2

|1− λnz|
|Bλn

(z)|
|Bλn

(λn)|
> δ1ε

∑
n>1

1− |λn|2

|1− λnz|

for every z ∈ Ωε, and we have∑
n>1

1− |λn|2

|1− λnz|
6

C

δ1ε
, ∀z ∈ Ωε.

For every finitely supported unimodular sequence (εn)n>1 ⊂ C (|εn| = 1 for a
finite set of n, and εn = 0 elsewhere), we have

(5.1)
∣∣∣ ∑

n>1

εn
1− |λn|2

1− λnz

∣∣∣ 6
C

δ1ε
,

for every z ∈ Ωε. It is clear that, by continuity, (5.1) holds for every z ∈ T. Taking
the supremum over (εn)n>1, we get that sup

z∈T

∑
n>1

1−|λn|2
|z−λn| 6 C

δ1ε for every z ∈ T.

Now we show that (ii) implies (i). We check that the series∑
n>1

a(λn)
1− |λn|2

1− λnz

Bλn
(z)

Bλn
(λn)
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is ∗-convergent in H∞ for every a ∈ `∞(Λ). Indeed, taking z ∈ D and a finitely
supported sequence b = (bn)n>1 and applying the maximum principle, we obtain∣∣∣ ∑

n>1

bn
1− |λn|2

1− λnz

Bλn
(z)

Bλn(λn)

∣∣∣ 6
(

sup
n>1

1
|Bλn(λn)|

)(
sup
|ζ|=1

∑
n>1

1− |λn|2

|1− λnζ|

)
‖b‖∞.

Taking the supremum over such b, ‖b‖∞ 6 1, we get the absolute convergence of
the series and a uniform upper bound for the partial sums, and hence the weak-∗
convergence in H∞. Set

Ta(z) =
∑
n>1

a(λn)
1− |λn|2

1− λnz

Bλn
(z)

Bλn
(λn)

, a ∈ `∞(Λ).

Then T is an interpolation operator acting from `∞(Λ) to K∞
B (see Lemma 5.5).

Moreover, T is bounded according to the previous uniform bound. Finally, if
f ∈ K∞

B , then T ((f(λn)n>1) ∈ K∞
B and T ((f(λn)n>1) coincides with f on Λ.

From the uniqueness mentioned above, we get that f = T ((f(λn)n>1). Thus
T (`∞(Λ)) = K∞

B .

Corollary 5.11. Let Λ = (λn)n>1 ⊂ D be such that Λ ∈ (C) and Λ ∈ (F).
Then the map PB defined on H∞ by

PBf =
∑
n>1

f(λn)
1− |λn|2

1− λnz

Bλn

Bλn(λn)
, f ∈ H∞

is a bounded linear operator. Moreover, PB coincides with the “Riesz projection”
onto K∞

B , that is PBf = f for every f ∈ K∞
B and PBf = 0 for every f ∈ BH∞

(equivalently, PB = BP−B where P− : L2 → H2
− is the orthogonal projection).

Consequently, H∞ = K∞
B

.
+ BH∞ (topological direct sum).

Corollary 5.12. Let B = B1B̃, where B,B1, B̃ are Blaschke products with
B1 = BΛ, Λ ∈ (C) and Λ ∈ (F). Then K∞

B = K∞
B1

.
+ B1K

∞
B̃

.

Indeed, let f ∈ K∞
B . According to Corollary 5.11, we can write f = f1 + f2,

where f1 = PB1f ∈ K∞
B1

and, since K∞
B1

⊂ K∞
B , f2 ∈ B1H

∞ ∩ (H∞ ∩ BH∞
− ) =

B1K
∞
B̃

. Moreover such a decomposition is unique.

We say that the divisor d(λ), λ ∈ D, of a Blaschke product B =
∏

λ∈D
b
d(λ)
λ

is a Frostman divisor if sup
λ∈D

d(λ) < ∞ and the support of d satisfies the uniform

Frostman condition (F).

Corollary 5.13. Let B =
∏

λ∈D
b
d(λ)
λ be a Blaschke product having a Frost-

man divisor d. Then B =
N∏

k=1

Bk, where Bk = Bσk
, σk ∈ (C) and (F), and

(5.2) K∞
B = K∞

B1

.
+ B1K

∞
B2

.
+ · · ·

.
+ B1B2 · · ·BN−1K

∞
BN
.

Hence K∞
B satisfies (AP).
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Indeed, according to Vinogradov-Goluzina lemma (see [20]) the support of d
is a finite union of sets, say Λ1,Λ2, . . . ,Λn ⊂ D such that Λk ∈ (C) and (F). Let

M = sup
λ∈D

d(λ). Then there exists (dk)N
k=1 such that d =

N∑
k=1

dk, where N 6 nM

and dk is the indicator function of a sequence σk ⊂ D satisfying σk ∈ (C) and (F).
Setting Bk = Bσk

, we prove the first assertion. Now we show (5.2) by induction
on N . Set B̃ = B2 · · ·BN and let f ∈ K∞

B . According to Corollary 5.12 we have
K∞

B = K∞
B1

+̇B1K
∞
B̃

. We get the result by applying (5.2) to B̃.

Theorem 5.14. Let B =
∏

λ∈D
b
d(λ)
λ be a Blaschke product having a Frostman

divisor d. Assume that one of the following two conditions is satisfied:
(i) F ∈ H∞(X), with X = (X∗)∗ a dual Banach space, and φF (B∗) ⊂ K∞

B ,
where φF stands for the scalarisation map of F (see Section 4).

(ii) F ∈ H∞(L(H)) and MF ⊂ K∞
B , where MF = {〈F ( · )ej , ei〉 : i, j > 1}

is the family of matrix entries of F with respect to an orthonormal basis (ei)i>1

of H.
Then F ∈ H∞

comp(X) if and only if F ∈ H∞ ⊗X.

Proof. Under condition (i), the result follows from Corollary 5.13 and Propo-
sition 4.8. Condition (ii) implies condition (i). Indeed, we know that K∞

B is ∗-
closed, see Lemma 5.5. It remains to prove that φF (A) ∈ span∗{〈F ( · )ej , ei〉 :
i, j > 1} for every A ∈ S1. Let x ∈ H, and let Pn be the orthogonal projection
onto lin{ei : 1 6 i 6 n}. The sequence (hj,n)n>1 defined by hj,n = 〈F ( · )Pnx, ej〉
tends to 〈F ( · )x, ej〉 ∗-weakly for every j > 1. Thus 〈F ( · )x, ej〉 ∈ K∞

B . Applying
the same process to y, we obtain that 〈F ( · )x, y〉 ∈ K∞

B . If A =
∑
k>1

〈 · , xk〉yk,∑
k>1

‖xk‖ · ‖yk‖ <∞, then the series φF (A) =
∑
k>1

〈F ( · )xk, yk〉 is norm convergent,

and hence φF (A) ∈ K∞
B .

Corollary 5.15. Let F ∈ H∞
comp(L(H)) satisfying condition (ii) of Theo-

rem 5.14. Then there exists G ∈ H∞(L(H)) such that GF = id if and only if
‖F (z)x‖ > δ‖x‖ for every x ∈ H and every z ∈ D, where δ > 0 is a constant.

6. FUNCTIONS SUBORDINATED TO A FIXED STRUCTURE

In this section, we are mainly concerned with the case X = L(H), dimH = ∞.
The case when dimH < ∞ is clear; see Lemma 3.4. On the contrary, if dimH =
∞, L(H) does not satisfy (AP) and we do not know whether H∞ ⊗ L(H) and
H∞

comp(L(H)) coincide. Nevertheless, some subspaces of L(H) do satisfy (AP),
and we obtain that the corona theorem is true for functions in H∞

comp(L(H)) with
values in some special subspaces E of L(H). Note that even if E is a subalgebra,
the left inverse will not necessarily take values in E . However, this is the case if
E is a unital C∗-algebra (A ∈ E ⇒ A∗ ∈ E). Indeed, under assumption (2.2) we
get that G(z) = (F (z)∗F (z))−1F (z)∗ is a bounded (nonanalytic) left inverse of
F (z), and if E is a C∗-algebra, then G(z) ∈ E . Consequently, if E is a C∗-algebra
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satisfying (AP), every F ∈ H∞
comp(E) = H∞ ⊗ E satisfying condition (2.2) has a

left inverse in H∞ ⊗ E .

Compact valued functions. Recall that S∞ = S∞(H1,H2), the space of
compact operators from H1 into H2, satisfies (AP). In particular, H∞

comp(S∞) =
H∞ ⊗ S∞.

From this equality we deduce the following two results. The first one refers to
the setting of Fuhrmann-Vasyunin’s theorem (see [20], Appendix 3, and references
mentionned therein).

Proposition 6.1. Let H1 and H2 be two Hilbert spaces with dimH1 <∞.
Then every F ∈ H∞

comp(L(H1,H2)) satisfying condition (2.2) has a left inverse in
H∞ ⊗ L(H2,H1). In particular, if dimH2 <∞, then every F ∈ H∞(L(H1,H2))
satisfying (2.2) has a left inverse in H∞(L(H2,H1)).

Proof. The second assertion is an obvious consequence of the first one, be-
cause then F (D) is a bounded set in a finite dimensional space. When dimH2 = ∞
we can reduce the problem to the case where F ∈ H∞(L(H)). If dimH1 = dimH2,
we can identify H1 and H2. In the general case, let F ∈ H∞(L(H1,H2)) satisfy-
ing (2.2). Condition (2.2) implies that dimH1 6 dimH2, and we can assume that
H1 ⊂ H2. We denote by H⊥

1 the orthogonal complement of H1 in H2. Let H3 be
another infinite dimensional Hilbert space. We set H = H2⊕H3 (hilbertian sum)
and we define F0 on D by

F0(z)|H1 = F (z), F0(z)|H⊥
1 ⊕H3 = U

for every z ∈ D, where U is a constant unitary operator from H⊥
1 ⊕H3 onto H3.

Then F0 ∈ H∞(L(H)) and

‖F0(z)(u⊕ v ⊕ w)‖2 = ‖F (z)u+ U(v + w)‖2 = ‖F (z)u‖2 + ‖U(v + w)‖2

> δ2(‖u‖2 + ‖v ⊕ w‖2) = δ2‖u⊕ v ⊕ w‖2

for every u ∈ H1, v ∈ H⊥
1 , w ∈ H3 (we assume that δ 6 1).

First we show that F0 is left invertible if and only if F is left invertible.
Suppose that F0 has a left inverse G0 ∈ H∞(L(H)). Then G0(z)F0(z)(x ⊕ 0) =
x⊕0 for every z ∈ D and every x ∈ H1, thus G(z) = PH1G0(z)|H2 is a left inverse
of F (z) for every z ∈ D, and G ∈ H∞(L(H2,H1)). For the converse, assume that
F has a left inverse G ∈ H∞(L(H2,H1)). We define G0 on D by

G0(z)|H2 = G(z), G0(z)|H3 = U−1,

for every z ∈ D. Then G0 is a left inverse of F0 in H∞(L(H)).
Further, if F ∈ H∞

comp(L(H1,H2)) and dimH1 < ∞, then F has compact
values, that is F ∈ H∞

comp(S∞) = H∞⊗S∞. Consequently, F0 ∈ H∞⊗L(H), and
we deduce from Theorem 2.2 that F0 has a left inverse G0 ∈ H∞ ⊗ L(H). Then
G = PH1G0|H2 is a left inverse of F , and G ∈ H∞ ⊗ L(H2,H1).
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Proposition 6.2. Let E be a subspace of L(H) generated by the identity
operator and the space S∞ of compact operators. If F ∈ H∞

comp(L(H)) and if F
takes values in E, then F ∈ H∞⊗E. If moreover, F satisfies condition (2.2) then
F is left invertible in H∞ ⊗ E.

Proof. This is an immediate consequence of the (AP) for S∞ and the fact
that E is a C∗-algebra.

It would be interesting to generalize the above result to those functions in
H∞(L(H)) with any Fredholm values (necessarily of constant negative index in
view of (2.2)).

Toeplitz valued functions. For general facts about Toeplitz operators, we
refer to [20], Appendix 4. We denote by P+ the Riesz (orthogonal) projection
from L2 = L2(T) onto the Hardy space H2,

P+

( ∑
k∈Z

f̂(k)zk
)

=
∑
k>0

f̂(k)zk.

For ϕ ∈ L∞ = L∞(T), the Toeplitz operator Tϕ with symbol ϕ is the bounded
linear operator defined onH2 by Tϕu = P+(ϕu), u ∈ H2. We will use the following
well-known properties of Toeplitz operators:

(a) ‖Tϕ‖ = ‖ϕ‖∞ for every ϕ ∈ L∞.

(b)
∥∥∥∑

i

∏
j

ϕij

∥∥∥
∞

6
∥∥∥K +

∑
i

∏
j

Tϕij

∥∥∥ for every finite family {ϕij} ⊂ L∞ and

every compact operator K. In particular, Tϕ ∈ S∞ if and only if ϕ ≡ 0.

We denote by TL∞ the closed subspace of L(H2) consisting of all Toeplitz
operators.

Theorem 6.3. Let F ∈ H∞
comp(L(H2)) be such that F (z) ∈ TL∞ + S∞ for

every z ∈ D. Then F ∈ H∞ ⊗ L(H2). In particular, if F satisfies condition (2.2)
(with H = H2), then F is left invertible in H∞ ⊗ L(H2).

Proof. The map ϕ 7→ Tϕ is an isometric isomorphism from L∞ onto TL∞ . In
particular, TL∞ satisfies (AP) because L∞ does. From the properties of Toeplitz
operators mentionned above, we deduce that TL∞ ∩ S∞ = {0} and that the map
Tϕ +K 7→ Tϕ is a norm 1 projection from TL∞ +S∞ onto TL∞ . As both TL∞ and
S∞ satisfy (AP), the same holds for TL∞ + S∞. Therefore,

H∞
comp(TL∞ + S∞) = H∞ ⊗ (TL∞ + S∞) ⊂ H∞ ⊗ L(H2),

and we can apply Theorem 2.2 to F .

Remark 6.4. If A ∈ TL∞ + S∞ satisfies ‖Af‖ > δ‖f‖ for every f ∈ H2,
δ > 0, A is not necessarily a Fredholm operator with index 0, even if A is Fredholm.
Moreover, TL∞ + S∞ is not an algebra. In particular, if a left inverse of F exists,
it does not necessarily take values in TL∞ + S∞.

Using a theorem by L. Coburn ([7]) it is easy to deduce the following corollary.



A tensor product approach to the operator corona problem 203

Corollary 6.5. Let F ∈ H∞
comp(L(H2)) be such that, for every z ∈ D,

F (z) ∈ Alg TC(T), the norm closed algebra generated by TC(T) (Toeplitz operators
with continuous symbols). Then F ∈ H∞ ⊗Alg TC(T). In particular, if F satisfies
condition (2.2), then F has a left inverse in H∞ ⊗Alg TC(T).

The above results can be generalized to Toeplitz operators with matrix sym-
bols; see [9] for the generalization of the required properties. It is also worth
mentioning that a function F ∈ H∞(TH∞) has a left inverse in H∞(TL∞), but
not necessarily in H∞(TH∞), as soon as it has one in H∞(L(H2)). This follows
from the easy to check fact that the standard averaging projection P from L(H2)
onto TL∞ is semi-multiplicative in the sense that P (ATϕ) = P (A)Tϕ for every
A ∈ L(H2) and every ϕ ∈ H∞; see for example [20]. However, the above property
is no longer true for F ∈ H∞(TL∞).

Functions subordinated to a fixed matrix structure. Here we are inter-
ested in functions in H∞(L(H)) having a matrix block decomposition associated
to a fixed map in the following sense. Let H =

⊕
n>1

Hn be a hilbertian decomposi-

tion of H, and A ∈ L(`2) with the matrix A = (aij)i,j>1. Then F ∈ H∞(L(H)) is
subordinated to A if F has the following block structure, F = (aijFij)i,j>1, that is

F (z)x =
⊕
n>1

∑
k>1

ankFnk(z)xk for every x =
( ⊕

n>1

xn

)
∈ H and every z ∈ D, where

Fij ∈ H∞(L(Hj ,Hi)) for every i, j > 1, and sup
i,j>1

‖Fij‖∞ < ∞. Note that the

condition sup
i,j>1

‖Fij‖∞ <∞ does not guarantee that F ∈ H∞(`2) if no assumption

is made on A; see Lemma 6.10 for a sufficient condition.
First, we treat the case of block diagonal functions ((aij)i,j>1 = (δij)i,j>1 =

id), then we analyze a more general case. The following technical lemma is easy
to prove.

Lemma 6.6. Assume that H =
⊕
n>1

Hn, and let F ∈ H∞(L(H)) be a block

diagonal function, F = diag(F1, F2, . . .), where Fn ∈ H∞(L(Hn)) for every n >
1. Then the scalarisation map φF ∈ L(S1,H

∞) can be identified with φ̃F ∈
L(`1((S1(Hn))n>1),H∞) defined by φ̃F ((An)n>1) =

∑
n>1

φFn
(An) for every se-

quence (An)n>1 ∈ `1(S1(Hn)n>1), that is, such that An ∈ S1(Hn) for every n > 1,
and

∑
n>1

‖A‖1 <∞.

Proposition 6.7. Let Xn, n > 1, and Y be Banach spaces, and let φ ∈
L(`1((Xn)n>1), Y ) be defined by φ((An)n>1) =

∑
n>1

φn(An), where An ∈ L(Xn, Y )

for every n > 1. Then:
(i) φ is a compact operator if and only if the operators φn, n > 1, are

simultaneously compact, that is, if
⋃

n>1

φn(B∗) is relatively compact in Y , where

B∗ stands for the closed unit ball of Xn for adequate n.
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(ii) φ is in the closure of finite rank operators if and only if the operators
φn, n > 1, are uniformly norm approximable by simultaneously compact operators
with uniformly finite rank, that is, if for every ε > 0 there exists N ∈ N such that
for every n > 1, there exists ψn ∈ L(Xn, Y ) satisfying

rankψn 6 N,

‖φn − ψn‖ 6 ε,⋃
n>1

ψn(B∗) is relatively compact in Y.

Proof. The proof of the first part is standard. Let us focus on the second
one. We denote by F := F(`1((Xn)n>1), Y ) the space of bounded finite rank
operators from `1((Xn)n>1) into Y . Let φ ∈ F and ε > 0. Let ψ ∈ F be such
that ‖φ − ψ‖ 6 ε. We set ψn = ψ|Xn for every n > 1. Then ‖φn − ψn‖ 6 ε and
rankψn 6 rankψ < ∞ for every n > 1. Clearly, we have

⋃
n>1

ψn(B∗) ⊂ ψ(B∗)

which is relatively compact because ψ ∈ F .
For the converse, fix ε > 0. Let N ∈ N and ψn ∈ L(Xn, Y ), n > 1, satisfy

the three conditions mentioned in part (ii). Every ψn can be written in the form

ψn =
N∑

k=1

〈 · , B′n,k〉y′n,k,

where {y′n,k}N
k=1 ⊂ Y , {B′n,k}N

k=1 ⊂ X∗
n and 〈 · , · 〉 = 〈 · , · 〉X,X∗ . As E :=

Lin{B′n,k : 1 6 k 6 N} is a finite dimensional subspace of (Xn)∗, we have E =
(E∗)∗, where E∗ can be identified with Xn/E⊥, with E⊥ = {A ∈ Xn : 〈A,B〉 = 0,
∀B ∈ E}. According to Auerbach’s lemma (see [31]), we can choose a normalized
basis of E whose biorthogonal family is a normalized basis of E∗. Thus, up to
replace N by dimE, we can suppose that ‖B′n,k‖ = 1 for every k ∈ {1, . . . , N}, and
that there exists {A′n,k}N

k=1 ⊂ E∗ satisfying ‖A′n,k‖E∗ = 1 and 〈A′n,j , B
′
n,k〉 = δjk

for every j, k ∈ {1, . . . , N}. E∗ is finite dimensional, and therefore reflexive. In par-
ticular, E∗ can be identified with E∗, and ‖A′n,k‖E∗ = inf{‖A′n,k +A‖1 : A ∈ E⊥}
for every k ∈ {1, . . . , N}. Consequently, there exists {A′′n,k : 1 6 k 6 N} ⊂ Xn

such that ‖A′′n,k‖1 6 2 and 〈A′′n,j , B
′
n,k〉 = δjk for every j, k ∈ {1, . . . , N}. Set

Bn,k = ‖A′′n,k‖1B′n,k, An,k =
A′′

n,k

‖A′′
n,k

‖1 , and yn,k =
y′n,k

‖A′′
n,k

‖1 . Then

ψn =
N∑

k=1

〈 · , Bn,k〉yn,k.

For every n > 1, {yn,k : 1 6 k 6 N} ⊂ ψn(B∗). Indeed, An,k ∈ B∗ and ψn(An,k) =
〈An,k, Bn,k〉yn,k = yn,k for every k ∈ {1, . . . , N}. As

⋃
n>1

ψn(B∗) is relatively

compact in Y , we can take in {yn,k : n > 1, 1 6 k 6 N} a finite ε
N -net {ỹj}p

j=1. For
n, k > 1, we denote by j(n, k) ∈ {1, . . . , p} an integer such that ‖yn,k− ỹj(n,k)‖∞ 6
ε
N . We set

ψ̃n =
N∑

k=1

〈 · , Bn,k〉ỹj(n,k) =
p∑

j=1

〈
· ,

( ∑
k:j(n,k)=j

Bn,k

)〉
ỹj .



A tensor product approach to the operator corona problem 205

Clearly, ψ̃n ∈ L(Xn, Y ) for every n > 1. Moreover, ‖ψn − ψ̃n‖ 6 ε, thus ‖φn −
ψ̃n‖ 6 2ε. Let ψ̃ ∈ L(`1((Xn)n>1), Y ) be defined by ψ̃((An)n>1) =

∑
n>1

ψ̃n(An),

(An)n>1 ∈ `1((Xn)n>1). Then ‖φ− ψ̃‖ 6 2ε and it remains to show that ψ̃ ∈ F .
But ψ̃n(Xn) ⊂ Lin{ỹj : 1 6 j 6 p} for every n > 1, thus ψ̃(`1((Xn)n>1)) ⊂
Lin{ỹj : 1 6 j 6 p} and ψ̃ is of finite rank. Thus φ ∈ F .

Theorem 6.8. Let H =
⊕
n>1

Hn, and let F ∈ H∞(L(H)) be a block diagonal

function, F = diag(F1, F2, . . .), where Fn ∈ H∞(L(Hn)) for every n > 1.
(1) The following are equivalent:

(i) F ∈ H∞
comp(L(H));

(ii)
⋃

n>1

{〈Fn( · )u, v〉 : u, v ∈ Hn, ‖u‖ = ‖v‖ = 1} is relatively compact

in H∞;
(iii)

⋃
n>1

φFn(B∗) is relatively compact in H∞.

(2) The following are equivalent:
(i) F ∈ H∞ ⊗ L(H);
(ii) inf

dim M<∞
sup
n>1

dist(Fn,M⊗L(Hn)) = 0, where M denotes any finite

dimensional subspace of H∞;
(iii) for every ε > 0 and every n > 1 there exists ψn ∈ L(S1(Hn),H∞)

satisfying 
sup
n>1

rankψn <∞,

‖φFn
− ψn‖ 6 ε,⋃

n>1

ψn(B∗) is relatively compact in H∞.

Proof. The first assertion follows from Lemma 6.6, Proposition 6.7 and Propo-
sition 4.7. For the second one, the fact that (i) and (iii) are equivalent comes from
Lemma 6.6 and Proposition 6.7. The proof of the equivalence (i) ⇔ (ii) is similar
to that of Proposition 6.7.

Corollary 6.9. Let F ∈ H∞(L(H)) be a block diagonal function, F =
diag(f1A1, f2A2, . . .), for some Hilbertian decomposition of H, H =

⊕
n>1

Hn, with

(fn)n>1 ⊂ H∞, sup
n>1

‖fn‖∞ < ∞, and An ∈ L(Hn), ‖An‖ = 1, ∀n > 1. The

following are equivalent:
(i) F ∈ H∞ ⊗ L(H);
(ii) F ∈ H∞

comp(L(H));
(iii) (fn)n>1 is relatively compact in H∞.

Indeed, we apply Theorem 6.8 with Fn = fnAn. If F ∈ H∞
comp(L(H)) then⋃

n>1

{〈Fn( · )u, v〉 : ‖u‖ = ‖v‖ = 1} =
⋃

n>1

{fn〈Anu, v〉 : ‖u‖ = ‖v‖ = 1}
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is relatively compact in H∞. Therefore (fn)n>1 is relatively compact in H∞ and

ε((fn)n>1, N) = inf
dim M=N

sup
n>1

dist(fn,M) → 0

as N → ∞ (where M is a subspace of H∞). We have inf
dim M<∞

sup
n>1

dist(Fn,M ⊗

L(Hn)) = 0 and F ∈ H∞ ⊗ L(H).

It is worth mentioning that for the block diagonal functions of Corollary 6.9
the corona theorem is always true, that is, condition (2.2) implies the existence of
a bounded analytic left inverse, even for functions not in H∞ ⊗ L(H).

Now we are interested in a more general case, namely functions subordinated
to a bounded matrix with positive entries. We start with a lemma justifying such
a definition. Then we treat the case of scalar (i.e. one dimensional) blocks. In the
case of the operator blocks, a similar generalization as for block diagonal matrices
can be given.

Lemma 6.10. Let H =
⊕
n>1

Hn and Fij ∈ H∞(L(Hj ,Hi)), i, j > 1,

sup
i,j>1

‖Fij‖∞ = C < ∞. If A = (aij)i,j>1 ∈ L(`2) satisfies aij > 0 for every

i, j > 1, then the function F subordinated to A, F = (aijFij)i,j>1, belongs to
H∞(L(H)).

Proof. Let x =
( ⊕

n>1

xn

)
∈ H and z ∈ D. Then F (z)x =

⊕
i>1

∑
j>1

aijFij(z)xj ,

thus

‖F (z)x‖2 =
∑
i>1

∥∥∥∑
j>1

aijFij(z)xj

∥∥∥2

6 C2
∑
i>1

( ∑
j>1

aij‖xj‖
)2

= C2‖A(‖xj‖)j>1‖2

6 C2‖A‖2
∑
j>1

‖xj‖2 = C2‖A‖2‖x‖2,

and therefore, F ∈ H∞(`2).

Theorem 6.11. Let A = (aij)i,j>1 ∈ L(`2) satisfying aij > 0 for every
i, j > 1, and let (fij)i,j>1 ⊂ H∞ be a relatively compact family. Then the function
F subordinated to A, F = (aijfij)i,j>1, belongs to H∞ ⊗ L(`2). In particular, if
such a function F satisfies condition (2.2), then F is left invertible in H∞(L(`2)).

Proof. Let ε > 0, and let (ϕk)N
k=1 be a finite ε-net for (fij)i,j>1 in H∞. We

define u to be a map from {i > 1} × {j > 1} to {1, . . . , N} such that ‖fij −
ϕu(i,j)‖∞ < ε for every i, j > 1. Then |aijfij(z) − aijϕu(i,j)(z)| < εaij for every
i, j > 1 and every z ∈ D. Now we define G by the following matrix representation,

G = (aijϕu(i,j))i,j>1, then G ∈ H∞(L(`2)), ‖F −G‖∞ < ε‖A‖ and G =
N∑

k=1

ϕkAk,

where Ak has the matrix representation Ak = (a(k)
ij )i,j>1 with a(k)

ij = aij if k(i, j) =

k and a
(k)
ij = 0 otherwise. In particular, we have 0 6 a

(k)
ij 6 aij for every i, j > 1

and every k ∈ {1, . . . , N}, thus Ak ∈ L(`2), G ∈ H∞⊗
n
L(`2) and therefore

F ∈ H∞ ⊗ L(`2).
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Examples 6.12. (i) Every F ∈ H∞(L(`2)), F (z) = (fij(z))i,j>1, having a
finite number of nonzero diagonals and satisfying condition (2.2) is left invertible
in H∞(L(`2)). Indeed, this case corresponds to A = (aij)i,j>1 with aij = 1 if
|i− j| 6 N and aij = 0 otherwise.

(ii) More generally, Theorem 6.11 applies to matrices A = (aij)i,j>1 with
positive entries such that

∑
j>1

aij 6 C1 for every i > 1 and
∑
i>1

aij 6 C2 for every

j > 1.

In the setting of Example 6.12 (i), the corona theorem is always true for diag-
onal functions, even for F not inH∞⊗L(`2). But for F having at least two nonzero
diagonals, we do not know a better result than that of Theorem 6.11. On the other
hand, this example can be considered as a particular case of functions subordi-

nated to a fixed Toeplitz operator with a polynomial symbol ϕ =
N∑

k=−N

akξ
k, with

ak 6= 0 for every k, −N 6 k 6 N . A slightly more general example occurs when
we consider a general Toeplitz matrix A = Tϕ = (ai−j)i,j>0 with non-negative
entries (Tϕ is bounded if and only if

∑
k∈Z

ak < ∞). It would be interesting to

know whether the result is still true for functions “subordinated”, in a sense, to
an arbitrary Toeplitz operator.
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