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Abstract. Let (G, G+) be a quasi-lattice ordered group and T G+ the corre-
sponding Toeplitz algebra. First, we show that for G+ ⊆ E ⊆ G, the natural
C∗-morphism γE,G+ from T G+ to T E exists if and only if E = G+ · H−1,
where H is a hereditary and directed subset of G+. Next, if E is a semi-
group, then necessary and sufficient conditions for a representation of T E to
be faithful are obtained. By applying these results, diagonal invariant ideals
of T G+ are characterized, conditions under which T G+ contains a minimal
ideal are established, and finally, in the case when E is a semigroup and G
is amenable, it is shown that T E has the universal property for covariant
isometric representations of E.
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1. INTRODUCTION

1.1 History. In the past twenty years, Toeplitz algebras or Wiener-Hopf C∗-
algebras on various generalized Hardy spaces have been a subject of intense study.
One way to study these algebras is using the groupoid approach (see [3], [7], [13]
and [20]). When the underlying group is abelian, the theory of Fourier analysis
on abelian groups may be applied, as was shown by G. Murphy in his series of
works. For example, as an extension of the classical Toeplitz algebra associated
with the ordered group (Z,Z+), Murphy constructed a universal Toeplitz alge-
bra related to an abelian partially ordered group, and proved that this universal
Toeplitz algebra is equal to the usual Toeplitz algebra when the underlying abelian
group is totally ordered (see [8]). However, there are some abelian groups which
are not partially ordered but are instead quasi-partially ordered. One way to
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describe the associated algebras in the latter case is to consider suitable quasi-
ordered groups containing the given quasi-partial ordered groups, and to use their
associated Toeplitz algebras. This approach, successfully initiated by E. Park in
[14], has been generalized in [18] to the case of non-abelian quasi-partially ordered
groups. In the non-abelian case, one may also consider Toeplitz algebras on quasi-
lattice ordered groups. These Toeplitz algebras were first studied by A. Nica in
[12]. Later M. Laca and I. Raeburn rephrased them as crossed products of abelian
C∗-algebras by semigroups of endomorphisms (see [6]).

In conclusion, we mention two previously established facts about Toeplitz
algebras on quasi-lattice ordered groups which have bearing on our present work,
and in fact play an important role in our main results. Let (G,G+) be a quasi-
lattice ordered group and T G+ be the corresponding Toeplitz algebra (for precise
definitions, see Section 2 below). First, in [12] it is shown that T G+ contains a
dense ∗-algebra T ∞(G+), which has a universal property for the covariant isomet-
ric representations of G+, and when G is amenable, T G+ also has such a universal
property. Second, in [6] a necessary and sufficient condition for a representation
of T G+ to be faithful is given (also see Corollary 3.6 below).

1.2 Statement of results. In this paper, we study Toeplitz algebras associ-
ated with both quasi-lattice ordered and quasi-lattice quasi-ordered groups. Let
(G,G+) be a quasi-lattice ordered group. First, in Section 2 we show that for
G+ ⊆ E ⊆ G, the natural C∗-morphism γE,G+ from T G+ to T E exists if and
only if E = G+ · H−1, where H is a hereditary and directed subset of G+ (see
Theorem 2.12). The bulk of the work involved in proving this theorem lies in
establishing the reverse implication. Briefly, this is accomplished by finding some
natural covariant isometric representations of G+ which induce ∗-morphisms on
T∞(G+). Then we show that these ∗-morphisms are bounded, and so they may
be extended to C∗-morphisms on T G+ which happen to coincide with the natural
morphisms.

Next, in Section 3, we examine faithful representations of Toeplitz algebras.
In the case that (G,E) is a quasi-lattice quasi-ordered group, a necessary and
sufficient condition for a representation of the Toeplitz algebra T E to be faithful
is obtained (see Theorem 3.5). The main idea here is to combine the previously
mentioned result concerning natural morphisms with the techniques developed by
Laca and Raeburn in [6]. In fact, one of the main results of [6] (Theorem 3.7)
appears as a special case of our result.

In the remainder of the paper, we apply the results mentioned in the previous
paragraphs to certain topics. As a first application, in Section 4 we consider
diagonal invariant ideals of the Toeplitz algebra T G+ associated with a quasi-
lattice ordered group (G,G+). Formerly, diagonal invariant ideals of Toeplitz
algebras on ordered groups were studied in [17], and it was proved there that
when the underlying group is abelian, an ideal is diagonal invariant if and only if
it is invariant in the sense described in [11]. Replacing ordered groups by more
general quasi-lattice ordered groups, we characterize diagonal invariant ideals in
terms of induced ideals (Theorem 4.4), and we realize certain induced ideals as
the kernel of C∗-morphisms γE,G+ (Proposition 4.10). While we manage to clarify
diagonal invariant ideals successfully in terms of induced ideals, one big problem
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concerning induced ideals still remains to be solved in the future (see Remark 4.5
below).

In Section 5, we study minimal ideals in the Toeplitz algebra T G+ associated
with a quasi-lattice ordered group (G,G+). We prove that any minimal ideal of
T G+ can induce a minimal invariant ideal of DG+ and vice versa, where DG+

is the diagonal C∗-subalgebra of T G+ . This correspondence will be shown in
Proposition 5.2. In the particular case when (G,G+) is an ordered group, we
will show that T G+ contains a minimal ideal if and only if there exists a minimal
non-trivial quasi-ordered group containing (G,G+). Also, in light of recent work of
M. Laca, we can get another view of the minimal ideals in terms of the topological
structure of Ω (see Proposition 5.8).

Finally, in the setting of quasi-lattice quasi-ordered groups, in Section 6 we
study the universal property of the Toeplitz algebras. In particular, in the case
when E is a semigroup and G is amenable, it is shown that T E has the universal
property for covariant isometric representations of E, thus providing nontrivial
generalizations of results stated in [12], [16] and [19].

2. THE NATURAL MORPHISMS BETWEEN TOEPLITZ ALGEBRAS
ON DISCRETE GROUPS

In this section we establish necessary and sufficient conditions for the existence
of certain natural morphisms between Toeplitz algebras on discrete groups. To
begin, we list some relevant definitions regarding these Toeplitz algebras.

Let G be a discrete group and {δg : g ∈ G} be the usual orthonormal basis
for `2(G), where

δg(h) =
{ 1 if g = h,

0, otherwise;

for g, h ∈ G. For any g ∈ G, we define a unitary operator ug on `2(G) by
ug(δh) = δgh for h ∈ G. For any subset E of G, let `2(E) be the closed subspace of
`2(G) generated by {δg : g ∈ E}; the projection from `2(G) onto `2(E) is denoted
by pE .

Definition 2.1. The C∗-algebra generated by {TE
g = pEugp

E : g ∈ G} is
denoted by T E and is called the Toeplitz algebra with respect to E.

Next we recall some facts about quasi-lattice ordered groups stated in [5], [6]
and [12].

Let G be a discrete group, and G+ a semigroup of G such that G+ ∩G−1
+ =

{e}. There is a partial order on G defined by x 6 y ⇔ x−1y ∈ G+, which is left
invariant in the sense that, if x 6 y, then zx 6 zy for any x, y, z ∈ G.

Definition 2.2. (G,G+) is said to be a quasi-lattice ordered group if every
finite subset of G with an upper bound in G+ has a least upper bound in G+.

Equivalently, (G,G+) is a quasi-lattice ordered group if and only if every
element of G having an upper bound in G+ has a least such, and every two
elements in G+ having a common upper bound have a least common upper bound
([12], Section 2.1).
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Definition 2.3. Let (G,G+) be a quasi-lattice ordered group and H ⊆ G+.
H is said to be hereditary if for any x, y ∈ G+, x 6 y ∈ H implies that x ∈ H; and
H is said to be directed if any two elements of H have a common upper bound in
H ([12], Section 6.2).

Many examples of quasi-lattice ordered groups are given in ([12], Section 2.3).
For instance, ordered groups (see Example 4.8 below) are quasi-lattice ordered, and
so are direct products of quasi-lattice ordered groups. Further, for certain posi-
tive parts G+ and certain hereditary and directed subsets H of G+, the product
G+ ·H−1 is a semigroup of G. In this case (G,G+ ·H−1) becomes a quasi-lattice
quasi-ordered group (for a formal definition, see Definition 3.1). We present two
examples.

Example 2.4. Let (G1, G1+) be a quasi-lattice ordered group and (G2, G2+)
an ordered group. Set G = G1 × G2, G+ = G1+ × G2+ and H = {e} × G2+,
where e is the identity of G1. Then H is both hereditary and directed, and
G+ ·H−1 = G1+ ×G2 is a semigroup of G.

Example 2.5. Let (G,G+) be a quasi-lattice ordered group such that G is
abelian. For any g0 ∈ G+ \ {e}, let H = {t ∈ G+ : ∃n ∈ N such thatt 6 gn

0 }.
Then H is hereditary and directed, and since G is abelian, G+ ·H−1 is a semigroup.

Definition 2.6. Let (G, G+) be a quasi-lattice ordered group. For any
s, t ∈ G+, if they have a common upper bound in G+, let σ(s, t) denote their least
common upper bound. Let B be a unital C∗-algebra and V a map from G+ to B.
V is said to be an isometric representation of G+ if it satisfies the following three
conditions:

(i) V (e) = 1;
(ii) V (g)∗V (g) = 1 for any g ∈ G+;
(iii) V (g)V (h) = V (gh) for any g, h ∈ G+.

Moreover, V is said to be covariant if for any s, t ∈ G+,

V (s)V (s)∗ · V (t)V (t)∗ =
{

V (σ(s, t)), if s and t have a common upper bound,
0, otherwise.

Let
T ∞(G+) = span {TG+

g (TG+
h )∗ : g, h ∈ G+}.

Then T ∞(G+) is a dense unital ∗-algebra of T G+ ([12], Section 3.2). By [12] we
know that T ∞(G+) has a universal property for covariant isometric representations
of G+. More precisely, for any unital C∗-algebra B, and any covariant isometric
representation V : G+ → B, there is a ∗-representation πV from T ∞(G+) to B

such that πV (TG+
g ) = V (g) for any g ∈ G+. Generally speaking, such a map πV

may fail to be bounded. However, if πV is bounded, then the Toeplitz algebra
T G+ also has a universal property for covariant isometric representations of G+.

Now we turn to our study of natural morphisms. Throughout this portion of
the section, (G,G+) denotes a quasi-lattice ordered group. We follow the notations
as in [6] and [12]. For any x ∈ G, it is easy to show that x has a upper bound in
G+ if and only if x ∈ G+ ·G−1

+ , and when x ∈ G+ ·G−1
+ , it’s least upper bound in

G+ will be denoted by σ(x). More generally, for any subset A ⊆ G+, if A has a
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upper bound in G+, then it’s least upper bound in G+ will be denoted by σ(A).
When x ∈ G+ ·G−1

+ , x−1 also belongs to G+ ·G−1
+ , and if we let τ(x) = x−1σ(x),

then it is easy to show that σ(x) = τ(x−1), σ(x−1) = τ(x) and x = σ(x) · τ(x)−1.
To simplify the notation as in [6], for any pair x, y ∈ G+, if they have no common
upper bound in G+, then let σ(x, y) = ∞ and TE

∞ = 0 for any E ⊆ G. Thus by
([12], Section 2 and Section 3), we know that

(2.1) TG+
x =

{
T

G+

σ(x) · T
G+

τ(x)−1 , if x ∈ G+ ·G−1
+ ,

0, if x /∈ G+ ·G−1
+ ;

and if x, y ∈ G+, then

(2.2) T
G+

x−1 · TG+
x = 1 and (TG+

x · TG+

x−1) · (TG+
y · TG+

y−1) = T
G+

σ(x,y) · T
G+

σ(x,y)−1 .

Proposition 2.7. Let (G,G+) be a quasi-lattice ordered group and E a
subset of G such that G+$E. If there is a C∗-morphism γE,G+ : T G+ → T E

satisfying γE,G+(TG+
g ) = TE

g for any g ∈ G, then there exists a hereditary and
directed subset H of G+ such that E = G+ ·H−1.

Proof. Since γE,G+ is a unital C∗-morphism, by (2.1) and (2.2) we know that

(2.3) TE
x =

{
TE

σ(x) · TE
τ(x)−1 , if x ∈ G+ ·G−1

+ ,
0, if x /∈ G+ ·G−1

+ ;

and if x, y ∈ G+, then

(2.4) TE
x−1 · TE

x = 1 and (TE
x · TE

x−1) · (TE
y · TE

y−1) = TE
σ(x,y) · TE

σ(x,y)−1 .

For any x ∈ E, since TE
x δe = δx 6= 0, by (2.3) we know that x ∈ G+ · G−1

+ . It
follows that E ⊆ G+ ·G−1

+ . Let

H = {x : x ∈ G+, x−1 ∈ E}.
Observe that H 6= {e}. In fact, since G+$E, there exists x ∈ E, x = σ(x) ·τ(x)−1

such that τ(x) 6= e. By (2.3) we have TE
σ(x)T

E
τ(x)−1δe = δx 6= 0, so τ(x)−1 ∈ E.

We now prove that H is both directed and hereditary. For any x, y ∈ H,
equation (2.4) implies TE

σ(x,y)T
E
σ(x,y)−1δe = δe 6= 0, so σ(x, y) ∈ H, therefore H is

directed. Furthermore, given any x, y ∈ G+ with x 6 y ∈ H, since

T
G+

y−1 = (TG+
y )∗ = (TG+

x T
G+

x−1y)∗ = T
G+

y−1xT
G+

x−1 ,

we know TE
y−1 = TE

y−1xTE
x−1 . It follows that TE

y−1xTE
x−1δe = δy−1 6= 0, which implies

that x ∈ H, and thus H is also hereditary.
Finally we prove that E = G+ ·H−1. For any x ∈ E with x = σ(x) · τ(x)−1,

equation (2.3) implies τ(x) ∈ H, therefore E ⊆ G+ · H−1. On the other hand,
since TE

x−1TE
x = 1 for any x ∈ G+, we know that xy ∈ E for any x ∈ G+ and

y ∈ E, so G+ · E ⊆ E. In particular, G+ ·H−1 ⊆ E.

Now we work toward proving the converse of Proposition 2.7, culminating in
Proposition 2.11 and Theorem 2.12.
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Lemma 2.8. Suppose (G, G+) is a quasi-lattice ordered group. Then for any
x ∈ G+ and y ∈ G, x−1y ∈ G+ · G−1

+ if and only if x, y have a common upper
bound in G+. Furthermore, if they have a common upper bound in G+, then

σ(x−1y) = x−1σ(x, y) and τ(x−1y) = y−1σ(x, y).

Proof. If x, y have a common upper bound in G+, then x−1y = (x−1σ(x, y)) ·
(y−1σ(x, y))−1 ∈ G+ ·G−1

+ .
On the other hand, suppose that x−1y ∈ G+ · G−1

+ . If x−1y = gh−1, g, h ∈
G+, then x 6 yh. Since x ∈ G+, we know that yh = x · (x−1yh) ∈ G+. Obviously
y 6 yh, so yh is a common upper bound of x and y.

Now suppose that x and y have a common upper bound in G+. We prove
that the displayed equations in Lemma 2.8 hold. For any z ∈ G+, if z > x−1y,
then xz > y and xz > x, so xz > σ(x, y), it follows that z > x−1σ(x, y). Therefore
σ(x−1y) > x−1σ(x, y). On the other hand, it is clear that x−1σ(x, y) > σ(x−1y),
hence x−1σ(x, y) = σ(x−1y). Since x−1y = σ(x−1y) · τ(x−1y)−1, we know that
τ(x−1y) = y−1σ(x, y).

Lemma 2.9. Suppose (G, G+) is a quasi-lattice ordered group, H a hereditary
subset of G+, and E = G+ ·H−1. Then for any x ∈ G+ ·G−1

+ , x ∈ E if and only
if τ(x) ∈ H.

Proof. Suppose x ∈ E and write x = gh−1, where g ∈ G+ and h ∈ H. Since
τ(x) = x−1σ(x), we obtain τ(x)−1h = σ(x)−1g, and furthermore σ(x)−1g ∈ G+

as x 6 g. We conclude that τ(x) 6 h, and thus τ(x) ∈ H since H is hereditary.
On the other hand, if τ(x) ∈ H, then clearly x ∈ E as x = σ(x)τ(x)−1.

Lemma 2.10. Let (G,G+) be a quasi-lattice ordered group, H a directed and
hereditary subset of G+, and E = G+ · H−1. Then V : G+ → T E defined by
V (g) = TE

g for any g ∈ G+, is a covariant isometric representation of G+.

Proof. Since G+ · E ⊆ E, the first three conditions of Definition 2.6 are
trivially satisfied. It remains to prove the covariance property

TE
x TE

x−1 · TE
y TE

y−1 = TE
σ(x,y)T

E
σ(x,y)−1

for any x, y ∈ G+. It suffices to prove that for any x, y ∈ G+ and z ∈ E, if
TE

x TE
x−1 · TE

y TE
y−1δz = δz, then x, y have a common upper bound in G+ and that

TE
σ(x,y)T

E
σ(x,y)−1δz = δz.

First, suppose that x, y ∈ G+, z ∈ E such that TE
x TE

x−1 · TE
y TE

y−1δz = δz.
Then by Lemma 2.8, σ(y, z), σ(x, z) ∈ G+ with

z−1σ(y, z) ∈ H and z−1σ(x, z) ∈ H.

Since H is directed, σ(z−1σ(x, z), z−1σ(y, z)) ∈ H.
We now show that σ(x, y) ∈ G+ and that

σ(z−1σ(x, z), z−1σ(y, z)) = z−1σ(σ(x, y), z).

Let u = σ(z−1σ(x, z), z−1σ(y, z)). Then u > z−1σ(x, z), so zu > σ(x, z), hence
zu ∈ G+ and zu > x. Similarly, zu > y, so zu is a common upper bound of
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x, y and z, and therefore σ(x, y) exists in G+. Furthermore, zu > σ(σ(x, y), z), so
u > z−1σ(σ(x, y), z). On the other hand, obviously we have u 6 z−1σ(σ(x, y), z),
so u = z−1σ(σ(x, y), z).

Finally, since σ(x, y) and z have a common upper bound zu and τ(σ(x, y)−1z)
= z−1σ(σ(x, y), z) ∈ H, by Lemma 2.9 we have σ(x, y)−1z ∈ E, and thus it follows
that TE

σ(x,y)T
E
σ(x,y)−1δz = δz.

Proposition 2.11. Let (G,G+) be a quasi-lattice ordered group, H a di-
rected and hereditary subset of G+, and E = G+ ·H−1. Then γE,G+ exists as a
C∗-morphism.

Proof. By Lemma 2.10 and the universal property of T ∞(G+), we know
there is a ∗-morphism πV : T ∞(G+) → T E such that πV (TG+

g T
G+

h−1) = TE
g TE

h−1 for
any g, h ∈ G+. The proof of the proposition is accomplished in two steps: First,
we prove that πV is bounded, therefore its domain of definition can be extended
to T G+ . Then we show that the extension of πV agrees with γE,G+ .

To show that πV is bounded, we verify that for any T ∈ T ∞(G+), ‖πV (T )‖ 6
‖T‖. In fact, it is enough to show that for any n ∈ N , λi ∈ C, gi, hi ∈ G+,
i = 1, 2, . . . , n, the following inequality holds:

∥∥∥∥
n∑

i=1

λiT
E
gi

TE
h−1

i

∥∥∥∥ 6
∥∥∥∥

n∑

i=1

λiT
G+
gi

T
G+

h−1
i

∥∥∥∥.

Let T =
n∑

i=1

λiT
G+
gi T

G+

h−1
i

. For any ε > 0, there exists some ξ ∈ `2(E) with finite

support such that ‖ξ‖ = 1, and ‖πV (T )‖ 6 ‖πV (T )ξ‖+ ε. Let ξ =
m∑

p=1
µpδlp with

µp ∈ C and lp ∈ E for p = 1, 2, . . . ,m. Set

F = {lp : p = 1, . . . , m} ∪ {h−1
i lp : h−1

i lp ∈ E, i = 1, . . . , n, p = 1, . . . ,m}.
Then F is a finite subset of E, so it can be rewritten as F = {x1, x2, . . . , xk}
with τ(xj) ∈ H for any j = 1, 2, . . . , k. Since H is directed, we know g0 =
σ
(
τ(x1), τ(x2), . . . , τ(xk)

) ∈ H with the property that

(2.5) lpg0 ∈ G+ and h−1
i lpg0 ∈ G+ for any h−1

i lp ∈ F.

Therefore, we know that for any pair (i, p),

(2.6) h−1
i lp ∈ E if and only if h−1

i lp g0 ∈ G+.

In fact, if h−1
i lp ∈ E, then h−1

i lp ∈ F , so by (2.5) we have h−1
i lp g0 ∈ G+. On the

other hand, if h−1
i lp g0 ∈ G+, then h−1

i lp ∈ G+ · g−1
0 ⊆ G+ ·H−1 = E.

Now let η =
m∑

p=1
µpδlpg0 . Then η ∈ `2(G+), ‖η‖ = ‖ξ‖ = 1, and by (2.6) we

obtain

‖πV (T )ξ‖ =
∥∥∥∥
( n∑

i=1

λiT
E
gi

TE
h−1

i

)
ξ

∥∥∥∥ =
∥∥∥∥
( n∑

i=1

λiT
G+
gi

T
G+

h−1
i

)
η

∥∥∥∥ = ‖Tη‖.
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Therefore

‖πV (T )‖ 6 ‖πV (T )ξ‖+ ε = ‖T η‖+ ε 6 ‖T‖+ ε.

Since ε is arbitrary, ‖πV (T )‖ 6 ‖T‖, and hence πV is bounded.
Next, we prove that the extended C∗-morphism πV : T G+ → T E satisfies

πV (TG+
x ) = TE

x for any x ∈ G, therefore γE,G+ = πV .
First we note that for any x, y ∈ H,

x−1y = (x−1σ(x, y)) · (y−1σ(x, y))−1 ∈ G+ ·G−1
+ .

It follows that E · E−1 = G+ ·G−1
+ , so if x /∈ G+ ·G−1

+ , then TE
x = 0 = T

G+
x .

On the other hand, if x ∈ G+ ·G−1
+ , we prove that (2.3) holds, therefore

TE
x = TE

σ(x)T
E
τ(x)−1 = πV (TG+

σ(x)T
G+

τ(x)−1) = πV (TG+
x ).

Clearly, (2.3) holds if and only if the following property holds:

For any x ∈ G+ ·G−1
+ and y ∈ E, xy ∈ E implies that τ(x)−1y ∈ E.

So it remains to prove that the above property holds. In fact, if x ∈ G+ ·G−1
+ and

y ∈ E such that xy ∈ E, then τ(y) ∈ H and τ(xy) ∈ H. Let g0 = σ(τ(y), τ(xy)).
Then

(2.7) g0 ∈ H and yg0 ∈ G+, xyg0 ∈ G+.

By (2.7) we know that x−1 6 yg0 ∈ G+, so τ(x) = σ(x−1) 6 yg0, it follows that
τ(x)−1y ∈ G+ · g−1

0 ⊆ G+ ·H−1 = E.

We may combine Propositions 2.7 and 2.11 to obtain the following theorem.

Theorem 2.12. Let (G,G+) be a quasi-lattice ordered group, and suppose
E is a subset of G such that G+ ⊆ E. Then γE,G+ : T G+ → T E exists as a
C∗-morphism if and only if there is a directed and hereditary subset H of G+ such
that E = G+ ·H−1.

3. THE FAITHFUL REPRESENTATIONS OF TOEPLITZ ALGEBRAS
ON QUASI-LATTICE QUASI-ORDERED GROUPS

The faithful representations of Toeplitz algebras on quasi-lattice ordered groups
and on quasi-ordered groups are studied in [6] and [16], respectively. The purpose
of this section is to extend certain results stated in [6] and [16] to the setting of
quasi-lattice quasi-ordered groups, with the purpose of using these new results in
the sequel. The key point here is to replace the trivial subgroup {e} ⊆ G+ (as in
[6]) by some semigroup H contained in G+.
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Definition 3.1. Let (G,G+) be a quasi-lattice ordered group, H a hered-
itary and directed subset of G+, and E = G+ · H−1. If E is a semigroup of G,
then (G,E) is referred to as a quasi-lattice quasi-ordered group.

Before proceeding with the results of this section, several preliminary remarks
are in order.

First, examples of quasi-lattice quasi-ordered groups are given in Exam-
ples 2.4 and 2.5.

Second, when (G, E) is a quasi-lattice quasi-ordered group with E = G+ ·
H−1, E is also denoted by GH , and we put G0

H := GH ∩ G−1
H . Observe that

(G\GH) ·G0
H ⊆ G\GH . Also, using Lemma 2.9 and the fact that H is hereditary,

it follows that G0
H = H ·H−1, GH ∩G−1

+ = H−1, and that H is a semigroup.
Third, Theorem 2.12 guarantees that the surjective C∗-morphism γGH ,G+

exists, so if we let

T ∞(GH) = span {TGH
g TGH

h−1 : g, h ∈ G+} = γGH ,G+(T ∞(G+)),

then T ∞(GH) is a dense ∗-subalgebra of T GH .
Finally, let M = G+ or GH , and

DM = span{TM
g TM

g−1 : g ∈ G+}‖·‖.
Note that DM is a unital commutative C∗-subalgebra of T M . Denote by DG

the C∗-subalgebra of B(`2(G)) consisting of all the operators having diagonal
matrix relatively to the canonical basis. It is well-known that there exists a linear
and contractive map θG : B(`2(G)) → DG determined by the following rule:
The idealized matrix of θG(T ) (relative to the canonical basis) is obtained from
the one for T by replacing with zero all the entries which are not situated on
the principal diagonal. By Sections 3.3 and 3.6 of [12] we know that DM =
{T ∈ T M : T has diagonal matrix} (relative to the canonical basis for `2(G)), and
θM = θG|T M is a faithful bounded linear map from T M onto DM satisfying

θM (TM
g TM

h−1) =
{

TM
g TM

h−1 , if g = h,
0, if g 6= h,

for any g, h in G+.

Lemma 3.2. (cf. Lemma 3.9, [12]) Let (G,G+) be a quasi-lattice ordered
group. Let {L(t) : t ∈ G+} be a family of projections of a unital C∗-algebra B
satisfying L(e) = 1 and

L(s)L(t) =
{

L(σ(s, t)), if s and t have a common upper bound,
0, otherwise.

Then for any finite subset F = {t1, t2, . . . , tn} of G+, any λ1, λ2, . . . , λn ∈ C, we
have∥∥∥∥

n∑

j=1

λjL(tj)
∥∥∥∥

= max
{∣∣∣∣

∑

j∈A

λj

∣∣∣∣ : ∅ 6= A ⊆ {1, 2, . . . , n},
∏

j∈A

L(tj) ·
∏

k/∈A

(1− L(tk)) 6= 0
}

.
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(Note if A = F , then the product
∏

j∈A

L(tj) ·
∏

k/∈A

(1 − L(tk)) should be un-

derstood as
∏

j∈F

L(tj), and if for every ∅ 6= A ⊆ {1, 2, . . . , n}, ∏
j∈A

L(tj) ·
∏

k/∈A

(1 −

L(tk)) = 0, then
n∑

j=1

λjL(tj) = 0.)

Lemma 3.3. Let (G, GH) be a quasi-lattice quasi-ordered group such that
H 6= G+. Suppose that B is a unital C∗-algebra and π is a unital C∗-morphism
from DGH → B. Let L(t) = π(TGH

t TGH

t−1 ) for any t ∈ G+. Then π is faithful if
and only if

n∏

i=1

(
L(a)− L(ti)

) 6= 0 whenever a ∈ G+ and a−1ti ∈ G+ \H.

Proof. First, assume that π is faithful. For any a ∈ G+ and any t1, t2, . . . , tn
∈ G+ satisfying a−1ti ∈ G+ \H, note that t−1

i a /∈ GH and so TGH

t−1
i

δa = 0. Thus
it follows that ( n∏

i=1

(TGH
a TGH

a−1 − TGH
ti

TGH

t−1
i

)
)

δa = δa 6= 0,

and then the faithfulness of π leads to the desired conclusion.
Now we turn to the reverse implication. To show that π is faithful, it is

sufficient to prove that π is isometric, or equivalently, to prove that ‖π(x)‖ >
‖x‖ for any x ∈ DGH (because π is a C∗-morphism, it is contractive). Since
span{TGH

g TGH

g−1 : g ∈ G+} is dense in DGH , it reduces to prove that, for any finite
subset F = {t1, t2, . . . , tn} of G+ and λ1, λ2, . . . , λn ∈ C, the following inequality
holds:

∥∥∥∥
n∑

j=1

λjT
GH
tj

TGH

t−1
j

∥∥∥∥ 6
∥∥∥∥

n∑

j=1

λjL(tj)
∥∥∥∥.

By Lemma 3.2, it suffices to prove that for any non-empty subset A of F ,
∏

j∈A

L(tj) ·
∏

k/∈A

(1− L(tk)) 6= 0 whenever
∏

j∈A

TGH
tj

TGH

t−1
j

·
∏

k/∈A

(1− TGH
tk

TGH

t−1
k

) 6= 0.

The argument is now broken into two cases. In the first case, suppose A = F .
If

∏
j∈F

TGH
tj

TGH

t−1
j

6= 0, then F has a upper bound in G+ and
∏

j∈F

TGH
tj

TGH

t−1
j

=

TGH

σ(F )T
GH

σ(F )−1 . Choose any x ∈ G+ \H. By hypothesis L(σ(F )) − L(σ(F )x) 6= 0,
so L(σ(F )) 6= 0.

In the second case, suppose A 6= F . Suppose that

T =
∏

j∈A

TGH
tj

TGH

t−1
j

·
∏

k/∈A

(1− TGH
tk

TGH

t−1
k

) 6= 0.

Then A has a upper bound in G+ and TGH

σ(A)T
GH

σ(A)−1 ·
∏

k/∈A

(1− TGH
tk

TGH

t−1
k

) 6= 0.
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For any t ∈ F \A, if A and t have no common upper bound in G+, then

TGH

σ(A)T
GH

σ(A)−1 · (1− TGH
t TGH

t−1 ) = TGH

σ(A)T
GH

σ(A)−1 ;

otherwise,

TGH

σ(A)T
GH

σ(A)−1 · (1− TGH
t TGH

t−1 ) = TGH

σ(A)T
GH

σ(A)−1 − TGH

σ(A,t)T
GH

σ(A,t)−1

= TGH

σ(A) ·
(
1− TGH

σ(A)−1σ(A,t)T
GH

(σ(A)−1σ(A,t))−1

) · TGH

σ(A)−1 .

So T = TGH

σ(A)T
GH

σ(A)−1 in the case when σ(A, t) = ∞ for any t ∈ F \A, or

T =
m∏

i=1

(
TGH

σ(A)T
GH

σ(A)−1 − TGH

σ(A,tki
)T

GH

σ(A,tki
)−1

)

= TGH

σ(A) ·
m∏

i=1

(1− TGH

σ(A)−1σ(A,tki
)T

GH

(σ(A)−1σ(A,tki
))−1) · TGH

σ(A)−1 .

Since TGH

σ(A)−1T
GH

σ(A) = 1, in the latter case T 6= 0 if and only if
m∏

i=1

(1− TGH

σ(A)−1σ(A,tki
)T

GH

(σ(A)−1σ(A,tki
))−1) 6= 0,

which in turn happens if and only if
σ(A)−1σ(A, tki) ∈ G+ \H for any i = 1, 2, . . . ,m.

But then by hypothesis we know that
∏

j∈A

L(tj) ·
∏

k/∈A

(1− L(tk)) =
m∏

i=1

(
L(σ(A))− L(σ(A, tki))

) 6= 0.

Corollary 3.4. Let (G,GH) be a quasi-lattice quasi-ordered group such
that H 6= G+. Suppose that B is a unital C∗-algebra and π is a unital C∗-
morphism from T GH → B. Let V (t) = π(TGH

t ) and L(t) = π(TGH
t TGH

t−1 ) for any
t ∈ G+. Then π|DGH : DGH → B is faithful if and only if

n∏

i=1

(1− L(ti)) 6= 0 whenever t1, t2, . . . , tn ∈ G+ \H.

We now state the main result of this section. The proof follows the same lines
as Lemma 3.3 in [6] or Theorem 2.4 in [16], and an application of this theorem
will be given in the proof of Proposition 6.7.

Theorem 3.5. Let (G,GH), B, π, V (t) and L(t) be as in Corollary 3.4. Then
π : T GH → B is faithful if and only if, for any finite collection g11 , g12 , . . . , g1m

∈ G+ \ H, g01 , g02 , . . . , g0n ∈ G0
H \ {e}, and λ0, λ1, . . . , λn ∈ C, the following

inequality holds:
∣∣λ0

∣∣ 6
∥∥∥∥

m∏

j=1

(
1− L(g1j)

)(
λ0 +

n∑

i=1

λiV (g0i)
) m∏

j=1

(
1− L(g1j)

)∥∥∥∥.

Note when H reduces to {e}, the preceding theorem simplifies to the main
result of Section 3 of [6].
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Corollary 3.6. (cf. Theorem 3.7, [6]) Let (G,G+) be a quasi-lattice ordered
group, B a unital C∗-algebra and π a unital C∗-morphism from T G+ → B. Denote
by V (t) = π(TGH

t ) and L(t) = π(TGH
t TGH

t−1 ) for any t ∈ G+. Then π is faithful if
and only if for any finite collection g1, g2, . . . , gn ∈ G+ \ {e},

n∏

j=1

(
1− L(gj)) 6= 0.

4. DIAGONAL INVARIANT IDEALS OF TOEPLITZ ALGEBRAS
ON QUASI-LATTICE ORDERED GROUPS

In this section we study diagonal invariant ideals of Toeplitz algebras. Specifi-
cally, we characterize diagonal invariant ideals in terms of induced ideals (The-
orem 4.4), and we realize certain induced ideals as kernels of the C∗-morphisms
γE,G+ (Proposition 4.10).

Throughout this section, (G, G+) denotes a quasi-lattice ordered group. By
an ideal of T G+ we mean that it is non-trivial, proper, closed, and two-sided.

Let I be an ideal of T G+ . Since the quotient morphism π : T G+ → T G+
/
I

is not faithful, by Corollary 3.6 there exist g1, g2, . . . , gn ∈ G+ \ {e} satisfying
n∏

i=1

(
1−π(TG+

gi T
G+

g−1
i

)
)

= 0, or equivalently
n∏

i=1

(1−T
G+
gi T

G+

g−1
i

) ∈ I. Thus every ideal

I meets DG+ nontrivially. Let K(I) be the ideal of T G+ generated by
{ n∏

i=1

(1− TG+
gi

T
G+

g−1
i

) : gi ∈ G+ \ {e},
n∏

i=1

(1− TG+
gi

T
G+

g−1
i

) ∈ I

}
.

Then for any g1, g2, . . . , gn ∈ G+,

(4.1)
n∏

i=1

(1− TG+
gi

T
G+

g−1
i

) ∈ K(I) ⇔
n∏

i=1

(1− TG+
gi

T
G+

g−1
i

) ∈ I.

Since K(I) ⊆ I, the forward part of (4.1) holds. The other direction follows from
the definition of K(I).

Lemma 4.1. Let (G,G+) be a quasi-lattice ordered group and I an ideal of
T G+ . Then

I ∩DG+ = I ∩ T ∞(G+) ∩DG+ ‖·‖ = K(I) ∩DG+ .

Proof. First we note that since T ∞(G+) · T ∞(G+) = T ∞(G+) and since
DG+ ∩ T ∞(G+) is dense in DG+ , I ∩ T ∞(G+) ∩DG+ ‖·‖ is also an ideal of DG+ .
Let

J1 = I ∩DG+ , J2 = I ∩ T ∞(G+) ∩DG+‖·‖, and J3 = K(I) ∩DG+ .

Obviously J2, J3 ⊆ J1, and by (4.1) we know that for any s1, s2, . . . , sn ∈ G+,

(4.2)
n∏

i=1

(1−TG+
si

T
G+

s−1
i

) ∈ J1 ⇔
n∏

i=1

(1−TG+
si

T
G+

s−1
i

) ∈ J2 ⇔
n∏

i=1

(1−TG+
si

T
G+

s−1
i

) ∈ J3.
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Let π1 : T G+ → T G+
/
I be the quotient morphism, and π1

∣∣DG+ : DG+ →
DG+

/
J1 the restriction of π1. Similarly define π2, π3 and π2

∣∣DG+ , π3

∣∣DG+ .
For any t ∈ G+, let Li(t) = πi(T

G+
t T

G+

t−1 ). Since J2, J3 ⊆ J1, there are two
C∗-morphisms Λ21 : DG+

/
J2 → DG+

/
J1 and Λ31 : DG+

/
J3 → DG+

/
J1 such that

Λi1 · πi

∣∣DG+ = π1

∣∣DG+ for i = 2, 3. Observe that for g ∈ G+, Λi1Li(g) = L1(g).
We achieve the desired result showing that the mappings Λi1 are injective.

Specifically, given g1, . . . , gn ∈ G+ and λ1, . . . , λn, it suffices to show that

(4.3)
∥∥∥∥

n∑

k=1

λkL1(gk)
∥∥∥∥ =

∥∥∥∥
n∑

k=1

λkL2(gk)
∥∥∥∥ =

∥∥∥∥
n∑

k=1

λkL3(gk)
∥∥∥∥.

We proceed to use Lemma 3.2 to verify (4.3). For any g ∈ G+, t1, t2, . . . , tn ∈ G+,
and i ∈ {1, 2, 3}, let

Ti = Li(g) ·
n∏

k=1

(1− Li(tk)).

Then

T1 = π1(TG+
g ) ·

n∏

k=1

(
1− L1

(
g−1σ(g, tk)

)) · π1(T
G+

g−1).

Since T
G+

g−1T
G+
g = 1, we know that

T1 6= 0 ⇔
n∏

k=1

(
1− L1(g−1σ(g, tk))

) 6= 0

⇔
n∏

k=1

(
1− T

G+

g−1σ(g,tk)T
G+

(g−1σ(g,tk))−1

)
/∈ J1.

Now, by (4.2) we know that T1 6= 0 if and only if Ti 6= 0 for i = 2 or 3, and thus
(4.3) holds by Lemma 3.2. Therefore, both Λ21 and Λ31 are injective.

Definition 4.2. Let (G,G+) be a quasi-lattice ordered group.
(i) An ideal I of T G+ is said to be diagonal invariant if θG+(I) ⊆ I.
(ii) For any s, t ∈ G+, define αs,t : DG+ → DG+ by

αs,t(x) = (TG+
s T

G+

t−1 ) · x · (TG+
s T

G+

t−1 )∗

for any x ∈ DG+ .
(iii) For any ideal J of DG+ , put

IndJ =
{
T ∈ T G+ : αs,t

(
θG+(T ∗T )

) ∈ J, ∀ s, t ∈ G+

}
.

Ind J is called the induced ideal associated to J .

We make several observations concerning this definition. First, since span(I+)
= I, I is diagonal invariant if and only if θG+(I+) ⊆ I, where I+ is the positive
part of I. Second, Ind J is indeed an ideal of T G+ , and in fact the induced ideals
are diagonal invariant ([12], Section 6). Furthermore, if J = I ∩DG+ , where I is
an ideal of T G+ , then Ind J can be simplified as

(4.4) Ind J =
{
T ∈ T G+ : θG+(T ∗T ) ∈ J

}
.

Finally, observe that if I is diagonal invariant, then I ⊆ Ind(I ∩DG+).
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Lemma 4.3. Let I be an ideal of T G+ . Then

K(I) = Ind (I ∩DG+) ∩ T ∞(G+) ‖·‖ ⊆ I.

Proof. First we prove that Ind (I ∩DG+) ∩ T ∞(G+)‖·‖ ⊆ I. Since I is
closed, it is sufficient to prove that Ind (I ∩ DG+) ∩ T ∞(G+) ⊆ I. Let S ∈
T ∞(G+), S =

n∑
i=1

Sxi
with xi 6= xj when i 6= j and

Sxi ∈ span{TG+
g T

G+

h−1 : g, h ∈ G+ , gh−1 = xi} for i = 1, 2, . . . , n.

Now, since

(Sxi
+ Sxj

)∗(Sxi
+ Sxj

) + (Sxi
− Sxj

)∗(Sxi
− Sxj

) = 2(S∗xi
Sxi

+ S∗xj
Sxj

),

it follows that (Sxi + Sxj )
∗(Sxi + Sxj ) 6 2(S∗xi

Sxi + S∗xj
Sxj ), and thus

(4.5) S∗S 6 2n−1

( n∑

i=1

S∗xi
Sxi

)
= 2n−1θG+(S∗S).

Furthermore, if S ∈ Ind (I ∩ DG+), then θG+(S∗S) ∈ I, and hence by (4.5) we
know that S ∈ I.

Next we show that K(I) = Ind (I ∩DG+) ∩ T ∞(G+)‖·‖. By the definiton
of K(I), one readily concludes that K(I) ⊆ Ind (I ∩DG+) ∩ T ∞(G+)‖·‖. On the
other hand, by Lemma 4.1 and the first part above (replace I by K(I)), we have

Ind (I ∩DG+) ∩ T ∞(G+) ‖·‖ = Ind (K(I) ∩DG+) ∩ T ∞(G+)‖·‖ ⊆ K(I).

Therefore, K(I) = Ind (I ∩DG+) ∩ T ∞(G+)‖·‖.

Theorem 4.4. Let I be an ideal of T G+ . Then I is diagonal invariant if
and only if there exists some ideal R of T G+ such that

(4.6) Ind (R ∩DG+) ∩ T ∞(G+)‖·‖ ⊆ I ⊆ Ind (R ∩DG+).

Proof. Suppose that I is a diagonal invariant ideal of T G+ . Then, we obtain
by Lemma 4.3 and the observation immediately preceding it

Ind (I ∩DG+) ∩ T ∞(G+)‖·‖ ⊆ I ⊆ Ind (I ∩DG+).

Suppose there exists some ideal R of T G+ such that (4.6) holds. Then by
Lemma 4.1 we know that for any x ∈ I,

θG+(x∗x) ∈ R ∩DG+ = R ∩ T ∞(G+) ∩DG+ ‖·‖

⊆ Ind (R ∩DG+) ∩ T ∞(G+)‖·‖ ⊆ I.

So I is diagonal invariant.
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Remark 4.5. (i) One may wonder whether Ind (I ∩DG+) ∩ T ∞(G+)‖·‖ =
Ind (I ∩ DG+) for every ideal I of T G+ . If equality always holds, then by Theo-
rem 4.4 I is diagonal invariant if and only if I = Ind(I ∩DG+). In other words,
the induced ideals are in fact the totality of all diagonal invariant ideals of T G+ .

Note that equality does hold in the special case when G is amenable. For, if G
is amenable, then by Proposition 6.1, [12], we know that Ind(I ∩DG+) is the ideal
of T G+ generated by I ∩DG+ . Then Lemma 4.1 implies Ind(I ∩DG+) ⊆ K(I) =
Ind (I ∩DG+) ∩ T ∞(G+)‖·‖, so Ind(I ∩DG+) = Ind (I ∩DG+) ∩ T ∞(G+)‖·‖.

(ii) The maximal induced ideals were recently studied by M. Laca, see Propo-
sition 4.3, [5].

We now turn to study reduced ideals of T G+ . First we give the definition.

Definition 4.6. An ideal I of T G+ is said to be reduced, if
n∏

i=1

(1−T
G+
gi T

G+

g−1
i

)

∈ I for any g1, g2, . . . , gn ∈ G+ implies there exists gi0 such that 1−T
G+
gi0

T
G+

g−1
i0

∈ I.

Example 4.7. Let (G,G+) be a quasi-lattice ordered group and (G,E)
a quasi-lattice quasi-ordered group such that G+$E = G+ · H−1. Let I =
Ker γE,G+ , where the existence of γE,G+ is guaranteed by Theorem 2.12. Then I
is a reduced diagonal invariant ideal of T G+ . In fact, for any g1, g2, . . . , gn ∈ G+,

if
( n∏

i=1

(1− TE
gi

TE
g−1

i

)
)
δe = 0, then there exists gi0 such that gi0 ∈ H. Since E is a

semigroup, we know that 1− TE
gi0

TE
g−1

i0

= 0, so I is reduced. Moreover, since

(4.7) γE,G+
(
θG+(x∗x)

)
= θE

(
γE,G+(x∗x)

)
for any x ∈ T G+ ,

it follows that I is diagonal invariant.

Example 4.8. Recall a pair (G,G+) is called an ordered group, if G is
a discrete group and G+ a semigroup of G, such that G+ ∩ G−1

+ = {e} and
G = G+ ∪G−1

+ . Since G is totally ordered, any ideal of T G+ is reduced.

Lemma 4.9. Let (G,G+) be a quasi-lattice ordered group and I a reduced
ideal of T G+ . Let

E = {g : g ∈ G, such that 1− T
G+

g−1T
G+
g ∈ I}.

Then (G,E) is a quasi-lattice quasi-ordered group.

Proof. Let H = G+ ∩ E−1, or equivalently,

H = {g : g ∈ G+, such that 1− TG+
g T

G+

g−1 ∈ I}.
First we show that H is directed and hereditary. Corollary 3.6 and the fact that I
is reduced imply H 6= {e}. Let π be the quotient morphism from T G+ → T G+

/
I.

Then for any g ∈ G+, g ∈ H if and only if π(TG+
g )π(TG+

g−1) = 1. Let g1, g2 ∈ H.
The fact that π is multiplicative together with (2.2) gives

1 = π(TG+
g1

T
G+

g−1
1

TG+
g2

T
G+

g−1
2

) = π(TG+

σ(g1,g2)
T

G+

σ(g1,g2)−1),
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which implies σ(g1, g2) ∈ H, and so H is directed. Now if x, y ∈ G+ such that
x 6 y ∈ H, then

(4.8) π(TG+
x )π(TG+

x−1y)π(TG+

x−1y)∗ π(TG+
x )∗ = π(TG+

y ) π(TG+

y−1) = 1.

Multiplying by π(TG+

x−1) on the left and by π(TG+
x ) on the right gives

(4.9) π(TG+

x−1y) · π(TG+

x−1y)∗ = 1.

By (4.8) and (4.9) we know that π(TG+
x ) · π(TG+

x−1) = 1, and so x ∈ H. Therefore
H is hereditary.

Next we show that E = G+ · H−1. For any g ∈ G+ and h ∈ H, using the
facts that T

G+

gh−1T
G+
h = T

G+
g and T

G+

g−1T
G+
g = 1, we obtain

π(TG+

h−1) π(TG+

hg−1) π(TG+

gh−1) π(TG+
h ) = 1.

Since π(TG+
h )π(TG+

h−1) = 1, we know that π(TG+

hg−1) π(TG+

gh−1) = 1, i.e., gh−1 ∈ E, so

G+ ·H−1 ⊆ E. Also, for any x ∈ E, x must be in G+ ·G−1
+ , otherwise T

G+
x = 0,

which implies that 1 ∈ I, which is a contradiction. Then by (2.1) we know that

π
(
T

G+

τ(x) T
G+

σ(x)−1

) · π(
T

G+

σ(x) T
G+

τ(x)−1

)
= 1,

or equivalently,
π
(
T

G+

τ(x)

) · π(
T

G+

τ(x)−1

)
= 1.

Therefore, τ(x) ∈ H, so x = σ(x)τ(x)−1 ∈ G+ ·H−1.
Finally we show that H−1 ·E ⊆ E, which implies E is a semigroup of G. For

any h ∈ H ⊆ G+ and g ∈ E,

π(TG+

g−1h) · π(TG+

h−1g) = π(TG+

g−1) · π(TG+
h ) · π(TG+

h−1) · π(TG+
g )π(TG+

g−1) · π(TG+
g ) = 1.

Therefore h−1g ∈ E, so H−1 · E ⊆ E.

Proposition 4.10. Let (G,G+) be a quasi-lattice ordered group, I a reduced
ideal of T G+ , and E = G+ · H−1 as in Lemma 4.9. Then Ind(I ∩ DG+) =
Ker γE,G+ .

Proof. First we prove that K(I) = K
(
Ker γE,G+

)
. In fact, since I is reduced,

K(I) is generated by {1−T
G+
g T

G+

g−1 : g ∈ H}. Similarly, since Ker γE,G+ is reduced

and E ∩G−1
+ = H−1, K

(
Ker γE,G+

)
is also generated by {1− T

G+
g T

G+

g−1 : g ∈ H}.
Therefore K(I) = K

(
Ker γE,G+

)
.

Next since θE is faithful, by (4.7) we know for any x ∈ T G+ ,

(4.10) x∗x ∈ Ker γE,G+ ⇔ θG+(x∗x) ∈ Ker γE,G+ .

By Lemma 4.1 and (4.10), we know that for any x ∈ T G+ ,

x ∈ Ind(I ∩DG+) ⇔ θG+(x∗x) ∈ I ∩DG+ ⇔ θG+(x∗x) ∈ K(I) ∩DG+

⇔ θG+(x∗x) ∈ K
(
Ker γE,G+

) ∩DG+ ⇔ θG+(x∗x) ∈ Ker γE,G+ ∩DG+

⇔ θG+(x∗x) ∈ Ker γE,G+ ⇔ x∗x ∈ Ker γE,G+ ⇔ x ∈ Ker γE,G+ .

Therefore, Ind (I ∩DG+) = Ker γE,G+ .
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Remark 4.11. Let (G,E) be a quasi-lattice quasi-ordered group and I an
ideal of T G+ such that Ker γE,G+ ∩ T ∞(G+)‖·‖ ⊆ I ⊆ Ker γE,G+ . Then by (4.10)
we have Ind (Ker γE,G+ ∩ DG+) = Ker γE,G+ , thus I is diagonal invariant by
Theorem 4.4. Moreover, for any g1, g2, . . . , gn ∈ G+,

n∏

i=1

(
1− TG+

gi
T

G+

g−1
i

) ∈ I ⇔
n∏

i=1

(
1− TG+

gi
T

G+

g−1
i

) ∈ Ker γE,G+ .

It follows that I is also reduced. Applying Theorem 4.4 and Proposition 4.10, we
obtain the following corollary:

Corollary 4.12. Let (G, G+) be a quasi-lattice ordered group, I an ideal
of T G+ . Then I is reduced and diagonal invariant if and only if there exists some
quasi-lattice quasi-ordered group (G,E), such that Ker γE,G+ ∩ T ∞(G+)‖·‖ ⊆ I ⊆
Ker γE,G+ .

5. THE MINIMAL IDEALS OF TOEPLITZ ALGEBRAS
ON QUASI-LATTICE ORDERED GROUPS

In this section we study minimal ideals of Toeplitz algebras. Specifically, in the
case that (G,G+) is an ordered group, we characterize the existence of a minimal
ideal in T G+ in terms of the existence of a minimal quasi-ordered group containing
(G,G+). Further, we show that these minimal ideals are “almost” kernels of some
natural morphisms between Toeplitz algebras. This extends the results of [8] and
[19] to the non-abelian setting. Finally, we discuss the situation when (G,G+) is
a quasi-lattice ordered group, studying minimal ideals in terms of the topological
space Ω consisting of all directed and hereditary subsets of G+.

As in Section 4, throughout this section all ideals are intended to be non-
trivial, proper, closed, and two-sided.

Definition 5.1. ([12], Section 6]) Let (G,G+) be a quasi-lattice ordered
group. An ideal J of DG+ is said to be invariant if αs,t(J) ⊆ J for any s, t ∈ G+,
where αs,t : DG+ → DG+ is defined by αs,t(x) = (TG+

s T
G+

t−1 ) · x · (TG+
s T

G+

t−1 )∗ for
any x ∈ DG+ .

As stated in Section 4, any invariant ideal J of DG+ induces an ideal Ind J
of T G+ , where Ind J =

{
T ∈ T G+ : θG+(T ∗T ) ∈ J

}
.

Proposition 5.2. Let (G,G+) be a quasi-lattice ordered group. Then T G+

contains a minimal ideal if and only if DG+ contains a minimal invariant ideal.
Furthermore there is a correspondence between these two minimal ideals, which
can be stated as follows:

(i) If I is the minimal ideal of T G+ , then I ∩DG+ is the minimal invariant
ideal of DG+ .

(ii) If J is the minimal invariant of DG+ , then IndJ ∩ T ∞(G+)‖·‖ is the
minimal ideal of T G+ .
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Proof. Let I be the minimal ideal of T G+ . Corollary 3.6 implies that I∩DG+

is not trivial, therefore it is an invariant ideal of DG+ . Since I is minimal, we
know I ⊆ IndJ for any invariant ideal J of DG+ . So for any x ∈ I ∩ DG+ ,
x∗x = θG+(x∗x) ∈ J , therefore x ∈ J . It follows that I ∩ DG+ is the minimal
invariant ideal of DG+ .

On the other hand, let J be the minimal invariant ideal of DG+ . Then for
any ideal I of T G+ , J ⊆ I ∩DG+ , so

Ind J ∩ T∞(G+)‖·‖ ⊆ Ind (I ∩DG+) ∩ T∞(G+)‖·‖ ⊆ I.

Therefore, IndJ ∩ T ∞(G+)‖·‖ is the minimal ideal of T G+ .

Definition 5.3. ([18], Section 1) Let G be a discrete group, E a semigroup
of G such that e ∈ E. If G = E∪E−1, then (G,E) is called a quasi-ordered group.
Further, (G,E) is said to be non-trivial if E ∩ E−1 6= {e}.

Remark 5.4. (i) When E∩E−1 = {e}, then the quasi-ordered group (G,E)
is an ordered group. On the other hand, if (G,G+) is an ordered group and E is
a semigroup of G such that G+ ⊆ E, then (G,E) is a quasi-ordered group.

(ii) For any two quasi-ordered groups (G,E1) and (G,E2) with E1 ⊆ E2, by
Proposition 1.4 of [18] we know that the natural morphism γE2,E1 exists.

(iii) Let (G,G+) be an ordered group. For any g ∈ G+ \ {e}, let

GF =
⋂

g∈G+\{e}
Gg,

where Gg is the semigroup of G generated by G+ and g−1. If GF 6= G+, then
(G,GF ) will be the minimal non-trivial quasi-ordered group containing (G, G+).

Proposition 5.5. Let (G,G+) be an ordered group, and GF as in part (iii)
of Remark 5.4. The following are equivalent:

(i) T G+ has a minimal ideal;
(ii) There is a minimal non-trivial quasi-ordered group containing (G,G+);
(iii) GF 6= G+.

Proof. Assume that T G+ has minimal ideal I. Observe that I must also be
reduced. Thus, by Lemma 4.3 and Proposition 4.10, we know that

I = Ind (I ∩DG+) ∩ T ∞(G+)‖·‖ = Ker γE,G+ ∩ T ∞(G+)‖·‖

for some non-trivial quasi-ordered group (G,E).
Let (G,M) be any non-trivial quasi-ordered group such that G+ ⊂ M . For

any x ∈ E,

1− T
G+

x−1T
G+
x ∈ Ker γE,G+ ∩ T ∞(G+) ⊆ I ⊆ Ker γM,G+

since I is minimal. So 1− TM
x−1TM

x = 0, that is, x ∈ M and therefore E ⊆ M . So
(G,E) is the minimal non-trivial quasi-ordered group, and hence (i) implies (ii),
which in turn implies (iii) by part (iii) of Remark 5.4.

Now, for (iii) implies (i), suppose that GF 6= G+. For any ideal I of T G+ ,
there exists a non-trivial quasi-ordered group (G,E) such that

Ker γE,G+ ∩ T ∞(G+)‖·‖ = Ind (I ∩DG+) ∩ T ∞(G+)‖·‖ ⊆ I.

Since γE,GF ◦ γGF ,G+ = γE,G+ , we know that Ker γGF ,G+ ⊆ Ker γE,G+ , and thus
Ker γGF ,G+ ∩ T ∞(G+)‖·‖ is the minimal ideal of T G+ .
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Throughout the rest of this section, (G,G+) is a quasi-lattice ordered group.
We now clarify minimal ideals in terms of invariant subsets of Ω, where

Ω = {A : A is a hereditary and directed subset of G+}.
When endowed with the topology inherited from {0, 1}G+ by identifying subsets
of G+ with their characteristic functions, Ω becomes a compact Hausdorff space,
and a net {Aλ} converges to A if and only if χAλ

(t) converges to χA(t) for any
t ∈ G+ ([12], Section 6).

Let D̂G+ be the maximal ideal space of DG+ . For any γ ∈ D̂G+ , let

Aγ = {t : t ∈ G+, such that γ(TG+
t T

G+

t−1 ) = 1}.
Then Aγ ∈ Ω, and by Proposition 6.2 of [12] we know that ∆ : D̂G+ → Ω, ∆(γ) =
Aγ is a homeomorphism. Moreover for any t ∈ G+, ∆(〈 · δt, δt〉) = [e, t] = {s ∈
G+ : s 6 t}, and the subset {[e, t] : t ∈ G+} is dense in Ω.

Since D̂G+ ∼= Ω, naturally we can identify DG+ and C(Ω) in the sense that
for any x ∈ DG+ and A ∈ Ω, x(A) =

(
∆−1(A)

)
(x). In particular, (TG+

t T
G+

t−1 )(A) =
χA(t) for any t ∈ G+ and A ∈ Ω.

Now because DG+ ∼= C(Ω), every ideal of DG+ corresponds with a closed
subset of Ω, and when the ideal is invariant, the closed subset should also be
“invariant”, which can be defined as follows:

Definition 5.6. (Section 6 in [12] or Sections 2 and 3 of [1]) For any t ∈ G+

and A ∈ Ω, let

θt(A) = [e, tA]
4
= {y ∈ G+ : ∃ a ∈ A, such that y 6 ta}.

A subset K of Ω is said to be invariant if θt(K) ⊆ K and θt(Ω \K) ⊆ Ω \K for
any t ∈ G+.

Remark 5.7. (i) It is easy to check that θt(A) ∈ Ω for any t ∈ G+ and
A ∈ Ω. For any t ∈ G+, let Ωt = {B ∈ Ω : t ∈ B}. Then Ωt is a closed and
open subset of Ω, and if Ωt is endowed with the induced topology, then θt is a
homeomorphism from Ω onto Ωt with inverse given by θ−1

t (B) = {t−1σ(t, b) : b ∈
B} ([5], Proposition 2.2).

(ii) The proof of Theorem 3.7 from [5] implies that if K is an invariant subset
of Ω, then its closure K will also be an invariant subset of Ω.

(iii) By Proposition 3.2 of [5] we know that a closed subset K of Ω is invariant
if and only if the associated ideal IK = {x ∈ DG+ : x(A) = 0, ∀A ∈ K} is
invariant. So DG+ contains a minimal invariant ideal if and only if Ω contains a
maximal closed invariant proper subset.

For any A ∈ Ω, let

S(A) = {θ−1
sn
◦ θtn ◦ · · · ◦ θ−1

s1
◦ θt1(A) : whenever θ−1

si
is meaningful}.

Note when sn or tn equals to e, θ−1
sn

or θtn will be the identity morphism. S(A) is
the smallest invariant subset of Ω containing A.
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Proposition 5.8. Let (G,G+) be a quasi-lattice ordered group. Denote by
M(Ω) = {A : S(A) 6= Ω}. Then Ω contains a maximal closed invariant proper
subset if and only if ∅ 6= M(Ω) ⊆ M(Ω) 6= Ω.

Proof. Suppose Γ is maximal closed invariant proper subset of Ω. For any
A ∈ Γ, we have S(A) ⊆ Γ = Γ 6= Ω, and so M(Ω) 6= ∅.

Next, for any A ∈ M(Ω), S(A) is a closed invariant proper subset of Ω, so
A ∈ S(A) ⊆ S(A) ⊆ Γ, therefore M(Ω) ⊆ Γ 6= Ω.

Now suppose that ∅ 6= M(Ω) ⊆ M(Ω) 6= Ω. For any A ∈ Ω, t ∈ G+ and
s ∈ A, we know that S(θt(A)) = S(A) = S(θ−1

s (A)). It follows that M(Ω) is an
invariant subset of Ω, which implies that M(Ω) is a closed invariant proper subset
of Ω.

Now let K be any closed invariant proper subset of Ω. For any B ∈ Ω, if
B /∈ M(Ω), i.e., S(B) = Ω, then B /∈ K. Therefore K ⊆ M(Ω), so in this case
M(Ω) = M(Ω) is in fact the maximal closed invariant proper subset of Ω.

Remark 5.9. (i) For any s, t ∈ G+, θs([e, t]) = [e, st], so S([e, e]) = {[e, t] :
t ∈ G+}. Since S([e, e]) is dense in Ω, [e, t] /∈ M(Ω) for any t ∈ G+.

(ii) If [e, e] is open, equivalently, [e, t] is open for any t ∈ G+ (since θt is a
homeomorphism), then {[e, t] : t ∈ G+} =

⋃
t∈G+

{[e, t]} is open, so Ω \ {[e, t] : t ∈
G+} is the maximal closed invariant proper subset of Ω. By Proposition 6.3 from
[12] we know that in this case the minimal ideal of T G+ equals to the ideal of
compact operators on `2(G+).

6. THE UNIVERSAL PROPERTY OF TOEPLITZ ALGEBRAS
ON QUASI-LATTICE QUASI-ORDERED GROUPS

In this section, we study the universal property of Toeplitz algebras. Previous
work on this topic may be found in [8], [12] and [19] in cases when the underlying
groups are abelian ordered groups, quasi-lattice ordered groups and quasi-ordered
groups, respectively.

Throughout this section, (G,G+) is a quasi-lattice ordered group, H is a
hereditary and directed subset of G+, and E = G+ · H−1 such that (G, E) is a
quasi-lattice quasi-ordered group. We also assume that {e}$H $G+. Since the
natural morphism γE,G+ is a surjective C∗-morphism, T ∞(E) = span {TE

g TE
h−1 :

g, h ∈ G+} is a dense ∗-algebra of T E . In this section, we will prove that T ∞(E)
has a universal property for the covariant isometric representations of E. In the
particular case when G is amenable, we prove that T E also has such a universal
property, and we clarify a particular covariant isometric representation of E, see
Proposition 6.7.
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Proposition 6.1 (cf. Proposition 3.2, [12]) The operators {TE
s TE

t−1 : s, t ∈
G+} are linear independent in the sense that, if∑

j

λjT
E
sj

TE
t−1
j

= 0 with TE
sj1

TE
t−1
j1

6= TE
sj2

TE
t−1
j2

whenever j1 6= j2,

then λj = 0 for all j.

Proof. Let E0 = E ∩ E−1 = H ·H−1. For any s1, s2, t1, t2 ∈ G+, it is easy
to show that TE

s1
TE

t−1
1

= TE
s2

TE
t−1
2

if and only if t−1
1 t2 ∈ E0 and s1t

−1
1 = s2t

−1
2 .

Now suppose there exist λ1, λ2, . . . , λn ∈ C \ {0} such that
∑
j

λjT
E
sj

TE
t−1
j

= 0

with the property that TE
sj1

TE
t−1
j1

6= TE
sj2

TE
t−1
j2

whenever j1 6= j2. Since F = {j :

j = 1, 2, . . . , n} is finite, there exists j0, such that t−1
j tj0 ∈ E implies t−1

j tj0 ∈ E0

for all j = 1, 2, . . . , n. Since
( ∑

j

λjT
E
sj

TE
t−1
j

)
δtj0

= 0 and λtj0
6= 0, we know that

there must be some k, such that t−1
k tj0 ∈ E and skt−1

k = sj0t
−1
j0

. Therefore,
TE

sk
TE

t−1
k

= TE
sj0

TE
t−1
j0

, which is a contradiction.

Definition 6.2. Let B be a unital C∗-algebra and V : G+ → B a covariant
isometric representation of G+. If V (g)V (g)∗ = 1 for any g ∈ H, then V is said
to be a covariant isometric representation of E.

Proposition 6.3. Let V : G+ → B be a covariant isometric representa-
tion of E. Then there is a natural ∗-morphism πV from T ∞(E) to B such that
πV (TE

s TE
t−1) = V (s)V (t)∗ for any s, t ∈ G+.

Proof. First we prove that πV is well-defined. More precisely, for any s1, s2,
t1, t2 ∈ G+ such that t−1

1 t2 ∈ E0 and s1t
−1
1 = s2t

−1
2 , we prove that V (s1)V (t1)∗ =

V (s2)V (t2)∗. Put x = s1t
−1
t = s2t

−1
2 . Since x = s1t

−1
1 6 s1, it follows that

s1 = σ(x) a and t1 = τ(x) a for some a ∈ G+. Similarly, there exists some b ∈ G+

such that s2 = σ(x) b and t2 = τ(x) b. Let t−1
1 t2 = h1h

−1
2 for some h1, h2 ∈ H.

Then t1h1 = t2h2, so
V (a)V (a)∗ = V (τ(x))∗

[
V (τ(x))V (a)V (a)∗V (τ(x))∗

]
V (τ(x))

= V (τ(x))∗
[
V (t1)V (t1)∗

]
V (τ(x))

= V (τ(x))∗
[
V (t1)V (h1)V (h1)∗V (t1)∗

]
V (τ(x))

= V (τ(x))∗
[
V (t1h1)V (t1h1)∗

]
V (τ(x))

= V (τ(x))∗
[
V (t2h2)V (t2h2)∗

]
V (τ(x))

= V (τ(x))∗
(
V (t2)V (t2)∗

)
V (τ(x))

= V (τ(x))∗
[
V (τ(x))V (b)V (b)∗V (τ(x))∗

]
V (τ(x))

= V (b)V (b)∗.
Therefore,

V (s1)V (t1)∗ = V (σ(x))V (a)V (a)∗V (τ(x))∗

= V (σ(x))V (b)V (b)∗V (τ(x))∗

= V (s2)V (t2)∗.
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By Proposition 6.1 we know there is a linear operator πV from T ∞(E) to B, such
that

πV

( ∑

j

λjT
E
sj

TE
t−1
j

)
=

∑

j

λjV (sj)V (tj)∗

for any λj ∈ C and sj , tj ∈ G+. Obviously, πV preserves the ∗-operation, and
the proof will be finished if we show that πV

(
TE

s1
TE

t−1
1
· TE

s2
TE

t−1
2

)
= πV

(
TE

s1
TE

t−1
1

) ·
πV

(
TE

s2
TE

t−1
2

)
for any si, ti ∈ G+, i = 1, 2. Suppose a = s1t

−1
1 σ(t1, s2), b =

t2s
−1
2 σ(t1, s2) ∈ G+ ∪ {∞}. By Section 3.2 from [12] we know that

TE
s1

TE
t−1
1
· TE

s2
TE

t−1
2

= TE
a TE

b−1 ,

so it is sufficient to show that

V (s1)V (t1)∗ · V (s2)V (t2)∗ = V (a)V (b)∗.

Suppose first that t1 and s2 have a common upper bound in G+, then by (2.4),

V (s1)V (t1)∗V (s2)V (t2)∗

= V (s1)V (t1)∗
(
V (t1)V (t1)∗V (s2)V (s2)∗

)
V (s2)V (t2)∗

= V (s1)V (t1)∗V (σ(t1, s2))V (σ(t1, s2))∗V (s2)V (t2)∗

= V (s1)V (t1)∗V (t1)V (t−1
1 σ(t1, s2))V (s−1

2 σ(t1, s2))∗V (s2)∗V (s2)V (t2)∗

= V (s1)V (t−1
1 σ(t1, s2))V (s−1

2 σ(t1, s2))∗V (t2)∗

= V (a)V (b)∗.

On the other hand, if t1 and s2 have no common upper bound in G+, then
again by (2.4), V (t1)∗V (s2) = V (t1)∗

(
V (t1)V (t1)∗V (s2)V (s2)∗

)
V (s2) = 0.

Note that by Proposition 6.3 we can define, as in Section 4, [12], a universal
C∗-algebra C∗(G,E) for such a pair (G,E). Also, the morphism πV discussed
above may not be bounded. However, the following theorem indicates that if G is
amenable, then πV may be extended as a C∗-morphism from T E to B.

Theorem 6.4. Suppose that G is amenable. Then for any covariant iso-
metric representation V : G+ → B of E, there is a C∗-morphism πV from T E to
B such that πV (TE

s TE
t−1) = V (s)V (t)∗ for any s, t ∈ G+.

Proof. Since G is amenable and (V, B) is also a covariant isometric represen-
tation of G+, by Section 4 from [12] we know there is a C∗-morphism θV : T G+ →
B such that θV (TG+

s T
G+

t−1 ) = V (s)V (t)∗ for any s, t ∈ G+. Since Ker γE,G+ is re-
duced, by Proposition 4.10, Remark 4.5 and Lemma 4.3, we know that Ker γE,G+

is generated by {1 − T
G+
g T

G+

g−1 : g ∈ H}. By assumption V (g)V (g)∗ = 1 for any

g ∈ H, so Ker γE,G+ ⊆ Ker θV . Therefore, πV : T E −→ T G+
/
Ker γE,G+

θV−→B is
bounded.
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We now construct a particular covariant isometric representation of E. Let
E0 = E∩E−1 = H ·H−1 and G1 = (E\E0)∪{e}. Then since E ·(E\E0) ⊆ E\E0

and (E \ E0) · E ⊆ E \ E0, we know that G1 is a semigroup. Let K (`2(G1)) be
the ideal of compact operators on `2(G1).

First we show that K (`2(G1)) ⊆ T G1 . Let T ∈ B(`2(G1)) such that TS =
ST for any S ∈ T G1 , we prove that T = λ for some λ ∈ C, therefore T G1 is
irreducible. In fact, for any t ∈ G1 \ {e}, TG1

t−1Tδe = TTG1
t−1δe = 0, so Tδe = λ δe

for some λ ∈ C. It follows that Tδg = TTG1
g δe = TG1

g Tδe = λ δg for any g ∈ G1,
so T = λ. Choose any x ∈ H \ {e}, then obviously 1− TG1

x TG1
x−1 is a projection of

rank one. Since T G1 is irreducible, we know that K(`2(G1)) ⊆ T G1 .
Next define V : G+ → T G1

/
K (`2(G1)) by V (g) =

[
TG1

g

]
for any g ∈ G+.

Note G+ · (G1 \ {e}) ⊆ E · (E \ E0) ⊆ G1, V is an isometric representation of
G+. Obviously, V (h)V (h)∗ = 1 for any h ∈ H, so V will be a covariant isometric
representation of E if for any g, h ∈ G+,

(6.1) (TG1
g TG1

g−1) · (TG1
h TG1

h−1)− TG1
σ(g,h)T

G1
σ(g,h)−1 ∈ K (`2(G1)).

Lemma 6.5. Suppose that H is infinite. Then equation (6.1) holds if and
only if for any x, y ∈ G+ with x−1y ∈ G+ ·G−1

+ , either τ(x−1y) ∈ H or σ(x−1y) ∈
H.

Proof. First, we note that (E \E0) ·E ⊆ E \E0, and E · (E \E0) ⊆ E \E0.
This will be used frequently in the proof.

Let us suppose equation (6.1) holds. Then for any x, y ∈ G+ with x−1y ∈
G+ ·G−1

+ , we show either τ(x−1y) ∈ H or σ(x−1y) ∈ H. In fact, if it is not true,
then by Lemma 2.8 we know that x−1σ(x, y) ∈ G+ \H and y−1σ(x, y) ∈ G+ \H.
So σ(x, y) = x·(x−1σ(x, y)) ⊆ E ·(E\E0) ⊆ E\E0. Choose {h1, h2, . . .} ⊆ H \{e}
and let zn = σ(x, y) · h−1

n for n ∈ N . Then zn ∈ (E \ E0) ·H−1 ⊆ E \ E0 ⊆ G1.
Let

(6.2) T = (TG1
x TG1

x−1) · (TG1
y TG1

y−1)− TG1
σ(x,y)T

G1
σ(x,y)−1 .

Then T δzn = δzn for any n ∈ N , so T /∈ K(`2(G1)), which is a contradiction.
We now prove the sufficient part. For any x, y ∈ G+, let T be as (6.2).

We prove T ∈ K(`2(G1)). Note if x, y have no common upper bound in G+,
then for any z ∈ G1 ⊆ E, (TG1

x TG1
x−1) · (TG1

y TG1
y−1) δz = 0, otherwise, (TE

x TE
x−1) ·

(TE
y TE

y−1) δz = δz, which by Lemma 2.10 implies that x, y should have a common
upper bound in G+. So in this case T = 0.

Now suppose that x, y ∈ G+ have a common upper bound in G+. By as-
sumption, either τ(x−1y) ∈ H or σ(x−1y) ∈ H. Since

TG1
x TG1

x−1T
G1
y TG1

y−1 = TG1
y TG1

y−1T
G1
x TG1

x−1

and σ(x, y) = σ(y, x), without loss of generality we may assume that τ(x−1y) ∈ H.
We prove that T is contained in K(`2(G1)) by showing that Tδq = 0 for all but
finitely many q ∈ G1.

First, we observe from Lemma 2.8 that

(6.3) T = TG1
x TG1

x−1T
G1
y TG1

y−1 − TG1
xσ(x−1y)T

G1
τ(x−1y)−1y−1 .



244 John Lorch and Qingxiang Xu

Also, given q ∈ E \ E0, the facts that E · (E \ E0) ⊆ (E \ E0) and σ(x−1y) ·
τ(x−1y)−1 = x−1y imply

(6.4) τ(x−1y)−1y−1q ∈ E \ E0 ⇔ y−1q ∈ E \ E0 and x−1q ∈ E \ E0.

From (6.3), (6.4), and the fact that G1 = {e} ∪ (E \ E0), we see that if Tδq 6= 0,
then q ∈ {yτ(x−1y), y, x}. Therefore T is compact.

Lemma 6.6. For any finite subset F of G+ \H, there exists some element
x ∈ F , such that for any g ∈ F and h ∈ H \ {e}, g−1xh−1 /∈ E \ E0.

Proof. We prove this property by induction. If F just contains one point,
then since (H \ {e})−1 ∩ G1 = ∅, we know in this case, the conclusion holds.
Suppose this property holds for any subset of G+ \H with n−1 elements (n > 2).
Let F = {g1, g2, . . . , gn} be any subset of G+ \H with n elements. First we note
that if there exist two elements x, y in F such that x−1y ∈ E0, then by induction
we know there exists z ∈ F \ {x}, such that g−1zh−1 /∈ E \E0 for any g ∈ F \ {x}
and h ∈ H\{e}. In particular, y−1zh−1 /∈ E\E0, so x−1zh−1 = (x−1y)·y−1zh−1 /∈
E \ E0. For, if y−1zh−1 /∈ E, then x−1zh−1 ∈ E0 · (G \ E) ⊆ G \ E; otherwise,
y−1zh−1 ∈ E0, so x−1zh−1 ∈ E0 · E0 = E0. Therefore, we may assume that
x−1y /∈ E0 for any x, y ∈ F .

Case 1 (n− 1 : 0). g−1
2 g1 /∈ E, g−1

3 g1 /∈ E, . . . , g−1
n g1 /∈ E. In this case, if we

choose x = g1, then since (G \ E) · E0 ⊆ G \ E, the conclusion holds.
Case 2 (n − 2 : 1). g−1

2 g1 /∈ E, g−1
3 g1 /∈ E, . . . , g−1

n−1g1 /∈ E, g−1
n g1 ∈ E.

By assumption g−1
1 gn /∈ E (otherwise, g−1

1 gn ∈ E0), and moreover since E is a
semigroup, g−1

2 gn /∈ E ( otherwise, g−1
2 g1 = (g−1

2 gn)(g−1
n g1) ∈ E, a contradiction).

Similarly, g−1
3 gn /∈ E, . . . , g−1

n−1gn /∈ E. By Case 1, the conclusion holds.
Case 3 (n − 3 : 2). g−1

2 g1 /∈ E, g−1
3 g1 /∈ E, . . . , g−1

n−2g1 /∈ E, g−1
n−1g1 ∈

E, g−1
n g1 ∈ E. In this case, g−1

1 gn−1 /∈ E, g−1
2 gn−1 /∈ E, . . . , g−1

n−2gn−1 /∈ E.
If g−1

n gn−1 /∈ E, then reduces to Case 1; otherwise reduces to Case 2, so the
conclusion holds.

...
Case n− 1 (1 : n− 2). g−1

2 g1 /∈ E, g−1
3 g1 ∈ E, . . . , g−1

n g1 ∈ E. By the former
process, it can eventually reduce to Case 1, so the conclusion holds.

Proposition 6.7. Suppose that G is amenable, H is infinite, and condition
(6.1) is satisfied. Then the induced C∗-morphism πV : T E → T G1

/
K (`2(G1)) is

injective.

Proof. By Theorem 6.4, there is a C∗-morphism πV : T E → T G1
/
K(`2(G1)),

such that πV (TE
s TE

t−1) = [TG1
s TG1

t−1 ] for any s, t ∈ G+. Let us first show that
πV (TE

x ) = [TG1
x ] for any x ∈ E. In fact, since E · (E \E0) ⊆ E \E0, we know that

for any x ∈ E, TG1
x − TG1

σ(x)T
G1
τ(x)−1 ∈ K(`2(G1)). By Proposition 2.11, we know

that TE
x = TE

σ(x)T
E
τ(x)−1 , so πV (TE

x ) = [TG1
σ(x)T

G1
τ(x)−1 ] = [TG1

x ].
Next in order to show that πV is injective, by Theorem 3.5, we need to verify

that for any finite collection g11 , g12 , . . . , g1m ∈ G+ \H, g01 , g02 , . . . , g0n ∈ E0 \{e},
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and λ0, λ1, . . . , λn ∈ C, the following inequality holds:

∣∣λ0

∣∣ 6
∥∥∥∥

m∏

j=1

(
1− L(g1j)

)(
λ0 +

n∑

i=1

λiV (g0i
)
) m∏

j=1

(
1− L(g1j)

)∥∥∥∥.

It is equivalent to show that

|λ0| 6 inf
k∈K(`2(G1))

‖T + k‖,

where

T =
m∏

j=1

(
1− TG1

g1j
TG1

g−1
1j

)(
λ0 +

n∑

i=1

λiT
G1
g0i

) m∏

j=1

(
1− TG1

g1j
TG1

g−1
1j

)
.

Let F = {g11 , g12 , . . . , g1m} ⊆ G+ \H. By Lemma 6.6 we know there exists x ∈ F ,
such that g−1xh−1 /∈ E \E0 for any g ∈ F and h ∈ H \ {e}. Since F is finite, but
H \{e} is infinite, we can choose a countable infinite subset {hp : p ∈ N} ⊆ H \{e}
such that for any g ∈ F , g−1xh−1

p /∈ G1. Let xp = xh−1
p for p ∈ N . Then

‖T δxp‖ =
∥∥∥∥λ0δxp +

m∏

j=1

(
1− TG1

g1j
TG1

g−1
1j

)( n∑

i=1

λiδg0ixp

)∥∥∥∥

=
∥∥∥∥λ0δxp +

n∑

i=1

λi

[ m∏

j=1

(
1− TG1

g1j
TG1

g−1
1j

)]
δg0ixp

∥∥∥∥

=
∥∥∥∥λ0δxp +

∑

i′
λi′δg0i′xp

∥∥∥∥ > |λ0|,

where i′ ∈ {1, 2, . . . , n} such that g−1
1j g0i′xp /∈ G1 for all j = 1, 2, . . . ,m. So for

any k ∈ K(`2(G1)),

‖(T + k)(δxp)‖ > ‖T (δxp)‖ − ‖k(δxp)‖ > |λ0| − ‖k(δxp)‖.
Since δxp → 0 weakly in `2(G1), by the compactness of k we know that ‖k(δxp)‖ →
0. It follows that for all k ∈ K (`2(G1))

‖T + k‖ > sup {‖(T + k)(δxp)‖ : p ∈ N} > |λ0|,
so |λ0| 6 inf

k∈K(`2(G1))
‖T + k‖.

Remark 6.8. A special case of the preceding proposition was obtained in
Theorem 3.2, [16], which can be understood as follows:

Suppose that G is abelian, then by Lemma 6.5 we know that (6.1) holds if
and only if, for any x ∈ G+ · G−1

+ , either τ(x) ∈ H or σ(x) ∈ H, if and only
if G+ · G−1

+ = E ∪ E−1. Moreover if (6.1) holds, then for any x ∈ G+ · G−1
+ ,

T ∈ K(`2(G1)), where T = TG1
x − TG1

σ(x)T
G1
τ(x)−1 . For, if τ(x) ∈ H, then for any

z ∈ G1 \ {e}, τ(x)−1z ∈ G1, so Tδz = 0, therefore T ∈ K(`2(G1)). If, however,
σ(x) ∈ H, then T ∗ ∈ K(`2(G1)), so T ∈ K(`2(G+)). So in this case, if the induced
C∗-morphism πV exists, then it is surjective. Therefore, by Proposition 6.7, we
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know if G is abelian, H is infinite, and (G+ · G−1
+ , E) is a quasi-ordered group,

then the induced C∗-morphism πV : T E → T G1
/
K, `2(G1), is an isomorphism.
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