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1. INTRODUCTION

Ian Putnam and David Ruelle have developed a theory of C∗-algebras for certain
hyperbolic dynamical systems ([10], [11], [12], and [15]). These systems include
Anosov diffeomorphisms, topological Markov chains and some examples of sub-
stitution tiling systems. The corresponding C∗-algebras are modelled as reduced
groupoid C∗-algebras for various equivalence relations.

This paper is concerned with C∗-algebras of an orientable one-dimensional
generalized solenoid (X, f). Näıvely speaking, orientable generalized solenoids are
higher dimensional analogues of topological Markov chains ([17]). We consider
the principal groupoids of stable and unstable equivalence on (X, f), denoted
Gs(X, f) and Gu(X, f), respectively, with topologies and Haar systems as in [10]
and [11]. Then we build their reduced groupoid C∗-algebras S(X, f) and U(X, f),
respectively, as in [13]. The homeomorphism f : X → X induces automorphisms
of Gs(X, f) and Gu(X, f), and we form semi-direct products GsoZ and GuoZ.
Their groupoid C∗-algebras are denoted Rs(X, f) and Ru(X, f), respectively, and
are called the Ruelle algebras ([11], [12]). In the case of topological Markov chains,
the Ruelle algebras are the Cuntz-Krieger algebras, and the stable and unstable
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equivalence algebras are the corresponding AF -subalgebras of the Cuntz-Krieger
algebras.

In this paper, we compute the K-groups of the unstable equivalence algebras
and the Ruelle algebras of 1-solenoids to answer the questions posed in Section 4
of [11]. We show that the unstable equivalence algebra of a 1-solenoid (X, f) with
an adjacency matrix M is strongly Morita equivalent to the crossed product of a
natural Cantor system of (X, f) by Z so that its K0-group is order isomorphic to
the dimension group ofM and its K1-group is Z. Then we show that the K0-groups
of Ruelle algebras are isomorphic to Z⊕{∆M/Im(Id−δM )} and the K1-groups are
Z ⊕ Ker(Id − δM ). Thus C∗-algebras from one-dimensional generalized solenoids
are one-dimensional analogues of the Cuntz-Krieger algebras.

The outline of the paper is as follow: In Section 2, we recall the axioms
of one-dimensional generalized solenoids and their ordered group invariants. In
Section 3, we review the definitions of Smale spaces, and show that orientable
one-dimensional solenoids are Smale spaces. Then we observe that the K-theory
of the unstable equivalence algebras are determined by the adjacency matrices
of one-dimensional generalized solenoids. In Section 4, we compute K-groups of
unstable and stable Ruelle algebras, and show that they are ∗-isomorphic to each
other by the classification theorem of Kirchberg-Phillips.

2. ONE-DIMENSIONAL SOLENOIDS

We review the properties of one-dimensional generalized solenoids of Williams
which will be used in later sections. As general references for the notions of one-
dimensional generalized solenoids and their ordered group invariants we refer to
[17], [18], and [19].

One-dimensional generalized solenoids. Let X be a finite directed graph
with vertex set V and edge set E , and f : X → X a continuous map. We define
some axioms which might be satisfied by (X, f) ([18]).

Axiom 0. (Indecomposability) (X, f) is indecomposable.

Axiom 1. (Nonwandering) All points of X are nonwandering under f .

Axiom 2. (Flattening) There is k > 1 such that for all x ∈ X there is an
open neighborhood U of x such that fk(U) is homeomorphic to (−ε, ε).

Axiom 3. (Expansion) There are a metric d compatible with the topology
and positive constants C and λ with λ > 1 such that for all n > 0 and all points
x, y on a common edge of X, if fn maps the interval [x, y] into an edge, then
d(fnx, fny) > Cλnd(x, y).

Axiom 4. (Nonfolding) fn|X − V is locally one-to-one for every positive
integer n.

Axiom 5. (Markov) f(V) ⊆ V.
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Let X be the inverse limit space

X = X
f← X

f← · · · =
{

(x0, x1, x2, . . .) ∈
∞∏
0

X : f(xn+1) = xn

}
,

and f : X → X the induced homeomorphism defined by

(x0, x1, x2, . . .) 7→ (f(x0), f(x1), f(x2), . . .) = (f(x0), x0, x1, . . .).

Remark 2.1. Williams’ construction (6.2, [17]) gives a (unique) measure µ0

for which there is a constant λ > 1 such that µ0(X) = 1 and µ0(f(I)) = λµ0(I)
for every small interval I ⊂ X. Define d0(x0, y0) to be the measure of the smallest
interval from x0 to y0 in X, and

d(x, y) =
∞∑

i=0

λ−id0(xi, yi)

for x = (x0, x1, x2, . . .) and y = (y0, y1, y2, . . .) in X. Then (X, d) is a compact
metric space.

Let Y be a topological space and g : Y → Y a homeomorphism. We call
Y a one-dimensional generalized solenoid or 1-solenoid and g a solenoid map if
there exist a directed graph X and a continuous map f : X → X such that
(X, f) satisfies all six axioms and (X, f) is topologically conjugate to (Y, g). We
call a point x ∈ X a non-branch point if x has an open neighborhood which is
homeomorphic to an open interval, and branch point otherwise. An elementary
presentation (X, f) of a 1-solenoid is such that X is a wedge of circles and f leaves
the unique branch point of X fixed.

Recall that a continuous map γ : [0, 1]→ G, a directed graph, is orientation
preserving if e−1 ◦ γ : I → [0, 1] is increasing for every interval I ⊂ [0, 1] such that
γ(I) is a subset of a directed edge e. A continuous map φ : G1 → G2 between two
directed graphs is orientation preserving if, for every orientation preserving map
p : [0, 1]→ G1, the map φ ◦ p : [0, 1]→ G2 is orientation preserving ([1]).

When we can give a direction to each edge of X so that the connection map
f : X → X is orientation preserving, we call (X, f) an orientable presentation.
For a 1-solenoid Y with a solenoid map g, if there exists an orientable presentation
(X, f) then Y is called an orientable 1-solenoid.

Proposition 2.2. ([1], [17]) Suppose that (X, f) is a presentation of a 1-
solenoid.

(i) The inverse limit spaces of (X, f) and (X, fn) are homeomorphic for
every positive integer n.

(ii) There exists an integer m such that (X, f
m

) has an elementary presen-
tation.

Thus, for the purpose of computing invariants of the space X, there is no loss
of generality in replacing (X, f) with (X, fn) where n = m · k is a positive integer
such that (X, f

m
) has an elementary presentation (Z, h) and for every z ∈ Z there

is an open set Uz such that hk(Uz) is an open interval by the Flattening Axiom.
Hence we can assume that every point x ∈ X has a neighborhood Ux such that
f(Ux) is an interval.
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Standing Assumption. In this paper, we always assume that (X, f) is an
orientable elementary presentation such that every point x ∈ X has a neighbor-
hood Ux such that f(Ux) is an interval.

Notation 2.3. Suppose that (X, f) is a presentation of a 1-solenoid, and
that E = {e1, . . . , en} is the edge set of the directed graph X. For each edge ei ∈ E ,
we can give ei the partition {Ii,j}, 1 6 j 6 l(i), such that:

(i) the initial point of Ii,1 is the initial point of ei;
(ii) the terminal point of Ii,j is the initial point of Ii,j+1 for 1 6 j < l(i);
(iii) the terminal point of Ii,l(i) is the terminal point of ei;
(iv) f |IntIi,j is injective;
(v) f(Ii,j) = e

s(i,j)
i,j where ei,j ∈ E , s(i, j) = 1 if the direction of f(Ii,j) agree

with that of ei,j , and s(i, j) = −1 if the direction of f(Ii,j) is reverse to that of ei,j .

The wrapping rule
∨
f : E → E∗ associated with f is given by

∨
f : ei 7→ e

s(i,1)
i,1 · · · es(i,l(i))

i,l(i) ,

and the adjacency matrix M of (E ,
∨
f) is given by

M(i, k) = #{Ii,j : f(Ii,j) = e±1
k }.

Remark 2.4. (6.2, [17]) The measure µ0 in Remark 2.1 is given as follows:
Suppose that λ is the Perron-Frobenius eigenvalue of the adjacency matrix M and

that v = (v1, . . . , vn) is the corresponding Perron eigenvector such that
n∑

i=1

vi = 1.

For edges ei, ej of X and an interval I of ei such that fn(I) = ej and fn|IntI is
injective, let

µ0(ei) = vi and µ0(I) = λ−nvj .

Then µ0 is extended to a regular Borel measure on X by the standard procedure.

examples 2.5. (i) Suppose that X is the unit circle and that f : X → X is
given by z 7→ zn. Then the adjacency matrix is (n).

(ii) Suppose that Y is a wedge of two circles a and b and that g : Y → Y is
a continuous map such that its corresponding wrapping rule

∨
g is given by

a 7→ aab and b 7→ ab.

Then (Y, g) is an elementary presentation of a solenoid, and the adjacency matrix is

M =
(

2 1
1 1

)
.
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The Perron-Frobenious eigenvalue of M is 3+
√

5
2 , and the corresponding Perron

eigenvector is

v =
(1 +

√
5

3 +
√

5
,

2
3 +
√

5

)
.

Hence the measure µ0 on Y is given by

µ0(a) =
1 +
√

5
3 +
√

5
and µ0(b) =

2
3 +
√

5
.

Notation 2.6. Given an n×n nonnegative integer matrix A we denote the
dimension group of A,

lim
−→

(Zn, A) = Zn A−→ Zn A−→ · · · ,

by
(
∆A,∆+

A

)
.

Theorem 2.7. ([6], [20]) Suppose that (X, f) is a 1-solenoid. Then there
exists a uniquely ergodic flow φ whose phase space is X.

Suppose that (X, f) is a presentation of a 1-solenoid and that µ0 is the
measure given on X as in Remark 2.4. For a measurable set I in X, we let
Un(I) = {(x0, . . . , xn, . . .) ∈ X : xn ∈ I}, and define a measure µ on X by

µ (Un(I)) = µ0(I).

Then µ is extended to a regular Borel measure on X in the standard way. It is
not difficult to verify that µ is the unique φ-invariant measure on X where φ is
the flow on X given in Theorem 2.7.

A closed subset K of a phase space Y of a flow ψ is called a cross section if
the mapping ψ : K × R → Y defined by (p, t) 7→ p · t is a local homeomorphism
onto Y . The return time map rK : K → K of a cross section K is defined by
x 7→ y = x · tx where x ∈ K and tx is the smallest positive number such that
x · tx = y ∈ K. It is a crucial fact that the return time map rK of a cross section
K is a homeomorphism, and Y is the standard suspension space of (K, rK).

Proposition 2.8. ([19], [20]) Suppose that (X, f) is a 1-solenoid with the
corresponding adjacency matrix M . Then there is a cross section with the return
time map (K, rK) of X such that:

(i) K1(C(K)×rK Z) = Z;

(ii) K0(C(K)×rK
Z) is order isomorphic to ∆M .
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3. SMALE SPACES AND C∗-ALGEBRAS FROM SOLENOIDS

Smale spaces ([10], [15]). Suppose that (Y, d) is a compact metric space and ϕ is
a homeomorphism of Y . Assume that we have constants 0 < λ0 < 1, ε0 > 0 and
a continuous map (x, y) ∈ {(x, y) ∈ Y × Y : d(x, y) 6 2ε0} 7→ [x, y] ∈ Y satisfying
the following:

[x, x] = x, [ [x, y], z] = [x, z], [x, [y, z] ] = [x, z], [ϕ(x), ϕ(y)] = ϕ([x, y])

for x, y, z ∈ Y whenever both sides of the equation are defined. For every 0 < ε 6
ε0 let

V s(x, ε) = {y ∈ Y : [x, y] = y and d(x, y) < ε},
V u(x, ε) = {y ∈ Y : [y, x] = y and d(x, y) < ε}.

We assume that
d (ϕ(y), ϕ(z)) 6 λ0d(y, z) y, z ∈ V s(x, ε),

d
(
ϕ−1(y), ϕ−1(z)

)
6 λ0d(y, z) y, z ∈ V u(x, ε).

Then (Y, d, ϕ) is called a Smale space.
Suppose that

(
X, f

)
is a 1-solenoid with the metric d given in Remark 2.1.

Let λ0 = ε0 = 1
λ and define [ · , · ] : X × X → X by [x, y] 7→ z = (z0, . . . , zn, . . .)

where z0 = x0 and zn is the unique element contained in the λn+1
0 -neighborhood

of yn such that fn(zn) = x0. Then it is not difficult to show that
(
X, f, d

)
satisfies

the above conditions. Therefore we have the following:

Proposition 3.1. One-dimensional generalized solenoids are Smale spaces.

Groupoids. ([11], [13]) For a Smale space (Y, d, ϕ), define

Gs,0 = {(x, y) ∈ Y × Y : y ∈ V s(x, ε0)} Gu,0 = {(x, y) ∈ Y × Y : y ∈ V u(x, ε0)}
and let

Gs =
∞⋃

n=0

(ϕ× ϕ)−n (Gs,0) , Gu =
∞⋃

n=0

(ϕ× ϕ)n (Gu,0) .

Then Gs and Gu are equivalence relations on Y , called stable and unstable equiv-
alence. Each (ϕ× ϕ)−n (Gs,0), (ϕ× ϕ)−n (Gu,0) is given the relative topology of
Y × Y , and Gs and Gu are given the inductive limit topology. It is not difficult
to verify that Gs and Gu are locally compact Hausdorff principal groupoids. The
Haar systems {µx

s : x ∈ Y } and {µx
u : x ∈ Y } for Gs and Gu, respectively, are de-

scribed in 3.c of [11]. The groupoid C∗-algebras of Gs and Gu are denoted S(Y, ϕ)
and U(Y, ϕ), respectively.

The map ϕ× ϕ acts as an automorphism of Gs and Gu. We form the semi-
direct products

GsoZ = {(x, n, y) : n ∈ Z and (f
n
(x), y) ∈ Gs}

GuoZ = {(x, n, y) : n ∈ Z and (f
n
(x), y) ∈ Gu}

with groupoid operations

(x, n, y) · (u,m, v) = (x, n+m, v) if y = u, and (x, n, y)−1 = (y,−n, x).
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The product topology of G∗ × Z is transfered to G∗oZ by the bijective map
η : (x, y, n) 7→ (x, n, ϕ(y)). And a Haar system on G∗oZ is given by µx

∗ ◦ η−1

where µx
∗ is the Haar system on G∗. The groupoid C∗-algebras C∗(GsoZ) and

C∗(GuoZ) are denoted Rs(Y, ϕ) and Ru(Y, ϕ) and are called the Ruelle algebras.
For general properties of these C∗-algebras, we refer to [3], [10], [11], and [12].

Unstable equivalence algebras. Suppose that
(
X, f

)
is an orientable sole-

noid and that φ is the flow on X given in Theorem 2.7. Then there exists a cross
section with return time map (K, r) such that X is the suspension space of (K, r)
by Proposition 2.8.

Sublemma 3.2. ([13]) (i) (X,R, φ) and (K,Z, r) are groupoids;
(ii) the groupoid algebras of (X,R, φ) and (K,Z, r) are isomorphic to

C(X)×φ R and C(K)×r Z, respectively.

Lemma 3.3. ([2], [11]) Suppose that
(
X, f

)
is an orientable solenoid, and

that (K, r) is a cross section with the return time map of the flow φ. Then:
(i) U(X, f) ' C(X)×φ R;
(ii) C(X)×φ R is strongly Morita equivalent to C(K)×r Z.

Proof. (i) Suppose x = (x0, x1, . . .), y = (y0, y1, . . .) ∈ X and (x, y) ∈ Gu.
Then d

(
f

n
(x), f

n
(y)

)
→ 0 as n → −∞ implies d0 (xn, yn) → 0 as n → ∞ and

that there exists a t ∈ R such that y = φt(x). Let α : (X,R, φ) → Gu be given
by (x, t) 7→ (x, φt(x)). Then it is not difficult to see that α is an isomorphism.
Therefore U(X, f) is isomorphic to C(X)×φ R by Sublemma 3.2.

(ii) Since X is the suspension of (K, r), for every x ∈ X there exist unique
zx ∈ K and τx ∈ [0, 1) such that x = φτx(zx). Define

I =
{
(x, n− τx) : x ∈ X,n ∈ Z}

,

and let C(I) be the completion of Cc(I). Then, by the Theorem in Section 4 of
[11], C(I) is a C(X) ×φ R-C(K) ×r Z imprimitivity bimodule. For completeness,
we write down the module structures and the inner products.

Module structures. Suppose that α ∈ Cc(I), g ∈ Cc(X,R, φ) and h ∈
Cc(K,Z, r). Then

(g · α) (x, n− τx) =
∫
g(x, t) · α(φt(x), n− τx − t) dµ[x](t)

and
(α · h) (x, n− τx) =

∑
m

α(x,m− τx) · h(rm(zx), n−m)

give that C(I) is a left C(X)×φR and right C(K)×r Z bimodule with (g̃ · α̃) · h̃ =
g̃ · (α̃ · h̃) for every α̃ ∈ C(I), g̃ ∈ C(X)×φ R and h̃ ∈ C(K)×r Z.
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Inner products. Define 〈 · , · 〉L : Cc(I) × Cc(I) → Cc(X,R, φ) and 〈 · , · 〉R :
C(I)× C(I)→ Cc(K,Z, r) by

〈α, β〉L(x, t) =
∑

α(x,m− τx) · β(x,m− τx)

and

〈α, β〉R(z, k) =
∫
α (φt(z), k − t) · β (φt(z), k − t) dµ[φt(z)](t).

Therefore we have the following proposition from Proposition 2.8 and the
above lemma.

Proposition 3.4. (i) K1

(
U(X, f)

)
= Z;

(ii) K0

(
U(X, f)

)
is order isomorphic to ∆M where M is the adjacency ma-

trix of (X, f).

Recall that the flow φ on X is uniquely ergodic without rest point (Theo-
rem 2.7). So C(X)×φR has the unique trace τµ induced by the unique φ-invariant
measure µ (3.3.10, [16]). Thus τ∗µ , the induced state on K0(C(X) ×φ R), is the
unique state.

Proposition 3.5. If (X, f) is a 1-solenoid and M is the corresponding ad-
jacency matrix with the normalized Perron eigenvector v = (v1, . . . , vn), then

τ∗µ
(
K0(U(X, f),K0(U(X, f))+

)
=

〈
(∆M ,∆+

M ),v
〉
.

Proof. Suppose that Ek = E is the edge set of the kth coordinate space of X.
Then by Proposition 2.8

(
K0(U(X, f)),K0(U(X, f))+

) ∼= (lim
→
C(Ek,Z), lim

→
C+(Ek,Z)) ∼= (∆M ,∆+

M ).

For g ∈ C(Ek,Z), x = (x0, . . . , xk, . . .) ∈ X with xk = e2πis ∈ ei ∈ Ek and
the canonical projection to the kth coordinate space πk : X → X, define gk ∈
C(Xk, S

1) and g̃ ∈ C(X,S1) by

gk : xk 7→ exp(2πig(ei)s) and g̃ : x→ gk ◦ πk(x).

Then every g̃ is a unitary element in C(X), and K0(U(X, f)) ∼= K1(C(X)) is
generated by g̃. If we denote g as (g(e1), . . . , g(en)), then by Theorem 2.2 of [8]

τ∗µ(g̃) =
1

2πi

∫

X

g̃′

g̃
dµ =

∫

Xk

g′ dµ0 =
n∑

i=1

g(ei)µ0(ei) =
n∑

i=1

g(ei)vi

= 〈(g(e1), . . . , g(en)) ,v〉 .
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4. RUELLE ALGEBRAS FOR SOLENOIDS

We compute K-groups of Ruelle algebras for 1-solenoids to show that they are
∗-isomorphic.

Unstable equivalence Ruelle algebras. Suppose that (X, f) is an oriented
1-solenoid and that Gu ' (X,R, φ) is the unstable equivalence groupoid on X.
Recall that for x, y ∈ X such that y = φt(x), t ∈ R, we have f

−1
(y) = φtλ−1 ◦

f
−1

(x).

Definition 4.1. (Section 4, [11]) Let αu be an automorphism on U(X, f)
defined by

αu(g)(x, t) = λ−1g(f
−1

(x), tλ−1) for g ∈ Cc(X,R, φ) and (x, t) ∈ (X,R).

The unstable equivalence Ruelle algebra Ru(X, f) is the crossed product

Ru(X, f) = U(X, f)×αu Z =
(
C(X)×φ R

)×αu Z.

Remarks 4.2. (i) Let A be an n× n integer matrix and ∆A the dimension
group of A. The dimension group automorphism δA of A is the restriction of A
to ∆A so that δA(v) = Av (7.5.1, [5]). Then ∆A/Im(Id − δA) is isomorphic to
Zn/(Id−A)Zn.

(ii) For g ∈ C(Ek,Z), let gk ∈ C(Xk, S
1) be as in the proof of Proposition 3.5.

The wrapping rule
∨
f : Ek+1 → Ek induces a map f∗ : C(Ek,Z) → C(Ek+1,Z) by

g 7→ g ◦
∨
f where (g ◦

∨
f)(e) =

j∑
i=1

g(ei) such that
∨
f(e) = e1 · · · ej . Then gk ◦ f ◦ πk

is homotopic to (g ◦ f∗)k+1 ◦ πk+1 (3.6, [19]).

Proposition 4.3. Suppose that (X, f) is a 1-solenoid with the adjacency
matrix M and corresponding dimension group automorphism δM . Then

K0(Ru(X, f)) ∼= Z⊕{∆M/Im(Id−δM )} and K1(Ru(X, f)) ∼= Z⊕Ker(Id−δM ).

Proof. We have the following Pimsner-Voiculescu exact sequence:

��� � ��� ��� 	�
 

� ��� � �� ����� � ��� � ��� ��� 	�
 
�� �� ����� � ��� � ����� ��� 	�
 

� ��

��
�

� � � ����� ��� 	�
 
 � ����� �� �
� � � ��� ��� 	�
 
!� ����� �� �"� � �

� � � ��� ��� 	�
 


We consider αu∗ : K0(U(X, f)) = K0

(
C(X)×φ R

) → K0

(
C(X)×φ R

)
as the

automorphism α̂u∗ : K1(C(X)) → K1(C(X)) given by the Thom isomorphism of
Connes. Define β : C(X) → C(X) by h 7→ h ◦ f−1

for h ∈ C(X). Then the
induced automorphism β∗ : K1(C(X))→ K1(C(X)) is the required isomorphism.

For g ∈ C(Ek,Z), let g̃ ∈ C(X,S1) be the induced unitary element as in the
proof of Proposition 3.5. Then β−1(g̃) = g̃◦f = gk◦πk◦f = gk◦f ◦πk is homotopic
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to (g ◦ f∗)k+1 ◦ πk+1. Hence if we denote g as (g(e1), . . . , g(en)) ∈ Zn, then g ◦ f∗
is given by Mg and the induced automorphism β−1

∗ : K1(C(X)) → K1(C(X)) is
the dimension group automorphism δM of the adjacency matrix M . Therefore β∗
is the inverse of δM , and 1 − αu∗ : K0(U(X, f)) → K0(U(X, f)) is the same as
Id− δ−1

M : ∆M → ∆M .
Since K1(U(X, f)) is isomorphic to Z, αu∗ : Z → Z is trivially the identity

map. Thus the six-term exact sequence is divided into the following two short
exact sequences:

0→ ∆M/Im(Id− δ−1
M )→ K0(Ru(X, f))→ Z→ 0,

0→ Z→ K1(Ru(X, f))→ Ker(Id− δ−1
M )→ 0.

Because Z and Ker(Id− δ−1
M ) are free groups, these sequences split. Therefore we

conclude that

K0(Ru(X, f)) ∼= Z⊕ {∆M/Im(Id− δ−1
M )} ∼= Z⊕ {∆M/Im(Id− δM )}

and
K1(Ru(X, f)) ∼= Z⊕Ker(Id− δ−1

M ) ∼= Z⊕Ker(Id− δM ).

Remark 4.4. Although the above short exact sequences are natural, they
split unnaturally. Hence the isomorphisms of Proposition 4.3 are unnatural.

Stable equivalence Ruelle algebras. We use K-theoretic duality of the
Ruelle algebras and the Universal Coefficient Theorem to compute K-groups of
Rs(X, f).

Lemma 4.5. ([11], [14]) Suppose that (X, f) is a 1-solenoid. Then:
(i) K∗(Rs(X, f)) is isomorphic to K∗+1(Ru(X, f));
(ii) there are short exact sequences

0→ Ext1Z(K0(Ru(X, f)),Z)→ K1(Ru(X, f))→ Hom(K1(Ru(X, f)),Z)→ 0,

0→ Ext1Z(K1(Ru(X, f)),Z)→ K0(Ru(X, f))→ Hom(K0(Ru(X, f)),Z)→ 0.

Therefore K-groups of the stable equivalence Ruelle algebra are determined
by Ext- and Hom-groups of K∗(Ru(X, f)).

Proposition 4.6. Suppose that (X, f) is a 1-solenoid. Then

K0(Rs(X, f)) ∼= Z⊕{∆M/Im(Id−δM )} and K1(Rs(X, f)) ∼= Z⊕Ker(Id−δM ).

Proof. Transform Id−M to the Smith form



d1

d2

. . .
dn



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where di > 0 and di divides di+1 (Section 7.4, [5]). Then ∆M/Im(Id − δM )

is isomorphic to
n⊕

i=1

Z/diZ, and the dimension of Ker(Id − δM ) is equal to the

number of zeros in the diagonal of the Smith form. Suppose d1 = · · · = dm = 0
and dm+1 6= 0. Then we have

Ext1Z(K0(Ru(X, f)),Z) = Ext1Z (Z/dm+1Z⊕ · · · ⊕ Z/dnZ,Z)
= Z/dm+1Z⊕ · · · ⊕ Z/dnZ

and
Hom(K1(Ru(X, f)),Z) = Zm+1.

Hence we have

K1(Ru(X, f)) ∼= Hom(K1(Ru(X, f)),Z)⊕ Ext1Z(K0(Ru(X, f)),Z)

= Z⊕ Zm ⊕ Z/dm+1Z⊕ · · · ⊕ Z/dnZ
∼= Z⊕ {∆M/Im(Id− δM )}.

Recall that Ker(Id− δM ) is isomorphic to Zm so that

K1(Ru(X, f)) ∼= Z⊕Ker(Id− δM ) ∼= Zm+1.

Thus we have Ext1Z(K1(Ru(X, f)),Z) = 0 and

K0(Ru(X, f)) ∼= Hom(K0(Ru(X, f)),Z).

Then K0(Ru(X, f)) ∼= Z
n⊕

i=1

Z/diZ implies

Hom(K0(Ru(X, f)),Z) ∼= Hom
(
Z

n⊕
i=1

Z/diZ,Z
) ∼= Z

m⊕
i=1

Z

∼= Z⊕Ker(Id− δM ).

Remark 4.7. The isomorphisms in Proposition 4.6 are unnatural as the
short exact sequences in the Universal Coefficient Theorem split unnaturally.

Recall that the unstable and stable equivalence Ruelle algebras of a 1-solenoid
are nuclear, purely infinite, separable, simple and stable C∗-algebras ([3]). Then
the classification theorem of Kirchberg-Phillips ([4], [9]) implies the following
proposition.

Proposition 4.8. Ru(X, f) is ∗-isomorphic to Rs(X, f).

Examples 4.9. (i) Suppose that X is the unit circle and that f : X → X is
given by z 7→ zn, n > 2. Then the adjacency matrix is (n), K0(U(X, f)) = Z[ 1

n ]
and K1(U(X, f)) = Z. Since δ−1

(n) is multiplication by 1
n , we have

K0(Ru(X, f)) = K0(Rs(X, f)) = Z⊕ {Z/(n− 1)Z}
and

K1(Ru(X, f)) = K1(Rs(X, f)) = Z.
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(ii) Suppose that Y is a wedge of two circles a and b and that g : Y → Y is

given by a 7→ aab and b 7→ ab. Then the adjacency matrix is M =
(

2 1
1 1

)
. Since

M is an invertible matrix, we have K0(U(Y , g)) = Z ⊕ Z, K1(U(Y , g)) = Z and
that 1− αu∗ : Z⊕ Z→ Z⊕ Z is an isomorphism. Hence we obtain

K0(Ru(Y , g)) = K1(Ru(Y , g)) = K0(Rs(Y , g)) = K1(Rs(Y , g)) = Z.
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