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NORMS OF SOME SINGULAR INTEGRAL OPERATORS
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ABSTRACT. Let a and 3 be measurable functions on the unit circle 7', and let
W be a positive function on T such that the Riesz projection Py is bounded
on the weighted space L2 (W) on T. The singular integral operator Sa,g is
defined by Sasf = aPyf + BP_f, f € L*(W), where P = I — P;. Let h
be an outer function such that W = |h|?, and let ¢ be a unimodular function
such that ¢ = h/h. In this paper, the norm of S, on L*(W) is calculated
in general, using «, 8 and ¢. Moreover, if a and 3 are constant functions,
then we give another proof of the Feldman-Krupnik-Markus theorem. If af
belongs to the Hardy space H*°, we give the theorem which is similar to the
Feldman-Krupnik-Markus theorem.
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1. INTRODUCTION

Let m denote the normalized Lebesgue measure on the unit circle T = {¢ : [¢| = 1}.
That is, dm(¢) = df/2x for ¢ = e'?. For functions f and g satisfying fg € L', we
define the quantity (f, g) according to

(f.9) = / F(OF0) dm(©).

If f,g € L2, then this becomes the inner product. Let H? (respectively H*) be
the Hardy space of functions f € L? (respectively f € L>°) whose negative Fourier
coefficients are zero. Let S be the singular integral operator defined by

50 =% [ 1 ay ae.cer.
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where the integral is understood in the sense of Cauchy’s principal value (cf. [6],
p. 11]). If f is in L', then Sf(¢) exists for almost everywhere ¢ on T, and Sf
becomes a measurable function on T. For a positive function W € L!, the norm
in L2(W) is defined by the formula

1/2
1l = (WF )Y = ( [irorwo dm<<>) |

Let A (respectively Ag) be the subspace of continuous functions f on T whose
negative (respectively positive) Fourier coefficients are zero. Let A+Ag = {f1+f2 :
fi €A, fo € Ag}. Then A+ Ay is dense in L?(W) in norm. Two projections Py
and P_ are defined by

P .=(I+S5)/2 and P_=(I-15)/2,

where I denotes the identity operator. P, is the Riesz projection. For «, 8 € L™,
let S, 5 be the singular integral operator on L?(W) defined by

Sapf =aPyf+pBP_f, feL*(W).
Then, S11 =1, 51,1 =25, S1,0 = P} and Sp,1 = P_. Let ||Sa
operator norm of S, g on L*(W). That is,

19,8/l 2wy = sup{||Sa,afll 2wy : f € L*(W), || fll 2wy = 1}

Let W be a positive function in L' on T such that S becomes a bounded operator
on L?(W). The relation between the norms of the operators S, P,, P_ on the
space L2(W),

|L2(wy denote the

1SN 22wy + 151 22y
2

was remarked by Spitkovskii ([16]). Let h be an outer function such that W = |h|?,
and let ¢ be an unimodular function such that ¢ = h/h. Let

1Pll2owy = 1Pl 2wy =

= inf gkl
c= inf fo—kl

Then

1+ec¢ 1
ISzzwy = 1S1-1llzzovy = /7= I1P+llzzv) = [1S10ll2om) = i

(cf. [4]). For (o € T, and —1 < & < 1, let W(¢) = |¢ — (o|°. Then the equality
1Sl 2wy = cot @ was obtained by Krupnik and Verbitskii ([12]). Hence
| Prll2owy = m. For continuous functions a and [, the essential norm

of Sa5 on L*(W) was calculated by Krupnik and Avendanio (cf. [10], p. 57,
Corollary 6.1, and [1]). For constant functions «, 8 and a positive function W € L*
such that || Py || 2wy < 0o, the equality

Smalizon =+ (LY [y (RIZTPLYE
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v=[37 (55)

was obtained by Feldman, Krupnik and Markus (cf. [3], [11], [6], Section 13.5, [5],
[18]). In this paper, for functions a,3 € L*, and a positive function W € L!
on the unit circle 7', we will give three formulae of the norm ||Sa gl r2w). It
follows from the Koosis theorem ([9]) that there exist different functions « and (3
such that ||Sa l|z2(w) < oo if and only if W=! € L' (cf. [13]). If logW & L',
then W' ¢ L'. In this case ||Sagllr2w) < oo implies that a = 3. Hence,
[Sa.sll2ewy = llalllL2wy = |lellsc. Therefore we assume that logW € L'. In
Section 2, for functions o, 3 € L™, and a positive function W € L! on the unit
circle T', we will give the first formula (Theorem 2.8) of the norm ||Sy gllz2(w)
using «, 8 and ¢. We will also give the another proof of the Feldman-Krupnik-
Markus theorem in Corollary 2.12. In Section 3, we will give the second formula
(Theorem 3.1) of the norm [|Sq gl 12w If af belongs to the Hardy space H®,
we give the theorem which is similar to the Feldman-Krupnik-Markus theorem. In
Section 4, we will give the third formula (Theorem 4.2) of the norm |[|Sa s 12 (w)-

where

\P+H%2(W)

2. THE FIRST FORMULA OF NORM OF S, g ON L2(W)

The following Theorem 2.8 is the first formula of ||Sy gl z2(w). We will use The-
orem 2.8 to prove Theorems 3.1 and 4.2 in the following sections. We give some
lemmas to prove Theorem 2.8.

DEFINITION 2.1. Let o, € L*°. For each v € L*>, we define the function
G(v) € L™ according to

2
(0 = MOPEPQOR gy (ROP—IBORYE o

_DEFINITION 2.2. Let , 8 € L*, let h be an outer function in H?, and let
© = h/h. We define the function F' according to

Fla)= inf |G —aB— k), >0,

That is,

F(z) = keHoo

|04|2+|6|2 \/ _ o — |82
o= (PP

oo

LEMMA 2.3. For each nonnegative number x, the infimum in the definition
of F(x) is attained.

Proof. Let {k,} be a sequence in H* such that

F(z) = lim ‘G(m —af — pky,)

n—00

oo
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For any € > 0, take a positive integer ng with
|G(z — BB — Pkp)||oo < F(z) +e, n=ny.

If n > ng, then ||k, |00 < F(2)+¢+ |7 — @Bl < 00. Since the closed ball of H>
is weak-star compact over L (cf. [8], p. 197]), there exists a subsequence {k,, }
and a kg € H* such that

Jim (kn,9) = (ko 9), g € L.

Then there exists a sequence {h,} in H* such that each h,, is a finite convex
linear combination of the &, and

lim ||y, — kol|g2 = 0
n—oo

(cf. [17], p. 160, Problem 6). It follows that there exists a subsequence {h,,, } such
that

T [ko(Q) — ha, (O =0, ae. CET
(cf. [15], p. 68, Theorem 3.12). Hence there exist nonnegative numbers \;1,. ..
ey Aj,mj such that >\j,1 —+ -4 )‘j,mj = 1 and
Ry, = Njikn, + - 4 XNjm, kn,, -

™y

Since y = a? + V/t2 + b2 is a convex function of ¢, it follows that

G(z — aff — Phy,) = G(x —af-p) Aj,ikm> = G(ZAM(;U —af - <p1<;m)>
=1 =1

m;
=1
m;

i=1 1=1

There exists a g € L! such that ||g]|z: =1 and
1G(z — af = Bko)loo < [(G(z — aB —Bko), g)| +&.
By the Lebesgue theorem,
(G(z — aB —Pko), g)l = lim [(G(z — af —Phn,), )|
< li]nigf |G(z — B — Bhn,)|loe < F(x) +e.
Hence, B
1G(z — af — Pko)llc < F(x) + 2e.

Let € — 0. Then the equality holds, and hence the infimum in the definition of
F(z) is attained by k = kg. This completes the proof. 1
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LEMMA 2.4. F(z) is a convex function of x. (Hence it is continuous.)

Proof. Let A and p be nonnegative numbers such that A + u = 1. Since
y = a® + Vt2 + b2 is a nonnegative, convex, increasing function of ¢,¢ > 0, it
follows that

AFP(2) + uF(y) = A inf_[Glw — aB = k)l + 1 inf_Gly — 0B = ko) |

-f .f _ 7_7 _ 7_7
ot b [IAG(z — af —Pki) + pG(y — af — Pka)l

> . . _ 7_7 _ 7_7
> imf_ inf[GONx — aB — Bkl + ply - af - Phal)

> . . A=

WV

> . _ 777
> nf 16O +py - af —Dk)lleo

= F(\z + py).
This completes the proof. 1
LEMMA 2.5. If z > max{|a|?, |B|?} , then

G(Ve =P Ve —13E) = .
Proof. Since z > max{|a|?, |8]?} = (Jo|?® + |B]?)/2 and

(o - LY (B2 PEY — ooy - 16

it follows that

_ lal?+ 18P \/ [P — 1572
2=+ @ = laP) @ - 1812) + ()

= G(Va—laPVa—[3P).

This completes the proof. 1

LEMMA 2.6. F(x) <z if and only if x > ”Sa,BHQL?(W) .
Proof. We prove the “if” part. Suppose x > ||Sa,5||%2(w) . Then,

10,6 /1220wy <2l fllZ2wy, | € A+ Ao
Hence, -
lefi + Bfallfzwy < zllfr + follZ2wy, 1 € A, fo € Ao.

Let Wy = (z — |a|>)W, Wy = (z — |B)]2)W, W3 = (z — af)W, then for any f; € A
and fy € Ay,

(Wif1, f1) + (Wafa, f2) + 2Re(Ws f1, f2) 2 0.
By the Cotlar-Sadosky lifting theorem ([2]), W7 > 0, W2 > 0 and there exists a
g € H' such that |[W3 — g|> < W;Wa. This implies that z > max{|a|?,|3|?}, and

|(x — aB)W — g|?> < (z — |a|?)(z — | 3]*)W?2. Hence,

_ 2
z—af— LI < (z—laP)(z—|BP).
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Then,

9 _9 _h
D

W |h|2
Let k = g/h*. Then k € H®, and |z — a8 — pk|? < (z — |a)?)(z — |8]?). It follows
from Lemma 2.5 that

G(z —aff —pk) < (\/x—|a| Vi — |ﬂ|2):x

This implies that F(x) < x. We prove the “only if” part. Suppose F(z) < z. By
Lemma 2.3, the infimum in the definition of F'(x) is attained. Hence, there exists
a k € H* such that G(z — o — pk) < z. It follows from Lemma 2.5 that

Glx —aB— k) < GV —[aPVz = 13P).

Hence, |z — aff — pk| < \/x —|a[>\/z — |B[2. Since ¢ = h/h and W = |h|?, it
follows that |(z — aB)W — h?k| < /x — |a]2\/z — |B]2W. Since h?k € H*, it
follows that

|+ ol Feowy — llafi + BF2072am)
=z(W(fi+ f2), i + fo) = W(afi + Bf2), af1 + Bf2)
= (@ = [ YW 1, f1) + (& = [BIW fo. f2) + 2Re((@ = aB)W fu, )
2(Va—TaPVa = BPWIfiL,1f]) = 2((z — aB)W f1, f2)]
=2(Va—[aPVa = [BPWIALIf]) = 2(((= = aB)W = hk) i, f2)
2(Va = [aPVa = IBPWIAL1f]) = 20z = aB)W = B2K|Iful, | f2]) > 0,

— 9

g
ot

where f; € A, fo € Ag. Hence, x > ||Sa7g||2L2(W) . This completes the proof. 1
LEMMA 2.7. If z > 0, then
F() <z inf o~ Kl + 2max{o], 182}

Proof. Since v/|a|? + |02 < |a| + |b], it follows that

laf* 4 |87 \/ - laf? — B[22
0P 12 | oB g+ (122 1F)

2
— 18] ‘ H

F(x) - keH>

oo

2 2 2
‘Ial nallc] R ka‘la\

N

kEHOO‘
< f - k [ee] 27 ee}
Jf |z = Bklloo + | max{]al®, 151} + lab] |

<z inf —kloo +2 ) %
z f o= klloo + 2|l max{lal, |5}l

This completes the proof. 1
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THEOREM 2.8. Let a,3 € L>. Let ¢ and W be functions such that there
exists an outer function h € H? satisfying ¢ = h/h and W = |h|?. Then

(3) P (IS sl22 ) = 1505200

(ii) of kérllifw lo — klloo < 1 then z = ||Sa’g||%2(w) is the unique solution of

the equation F(x) = x.

Proof. We prove (i). Let s = \|Sa75||%2(w). We prove that z is the

=5
solution of the equation F(z) = z. It follows from Lemma 2.6 that s > F(s). It
follows from Lemma 2.4 that F(z) is a continuous function of z. It follows from
Lemma 2.6 that F(x) > x, © < s. Hence,

s> F(s)=lim F(z) = limOF(x) > lim xz=s.

z—s—0
Therefore, F'(s) = s. We prove (ii). Suppose there exists a ¢ such that ¢ # s and
F(t) = t. It follows from Lemma 2.6 that ¢t > s. Let 2 be any number satisfying
x > t. Since s < t < z, it follows that there exist positive numbers A, u such that
A+ p=1and t = As+ pz. It follows from Lemma 2.4 that
F(t) = F(As+ pz) < AF(s) + pF(x).
Since F'(s) = s and F(t) =t, it follows that ¢ < As+ pF'(z). Hence, pz =t — As <
wF(x). Since p > 0, this implies that © < F(z). Since x > s, it follows from
Lemma 2.6 that F(xz) < x. Therefore, F(z) = z, x > t. By Lemma 2.7, this
implies that

v<a if o=kl +2max{flalZ, 815} = >t
Hence,
inf —klloo = 1.
Ao e = klloo >
This is a contradiction. Therefore, there does not exist a ¢ such that ¢ # s and
F(t) =t. This completes the proof. &

If W is a constant function, then F(z) becomes a constant function. In this
case, the formula of ||, g||, follows easily from Theorem 2.8 (i) as Corollary 2.9.
In the preceding paper ([14]), we gave Corollary 2.9.

COROLLARY 2.9. Let a, 8 € L. Then

lof* + 18/ \/ 7 |o? = 1812 \2
e e R C

2 .
[Sa sl = inf

Hoo

oo

The infimum is attained.

Proof. In the statement of Theorem 2.8, if W = 1, then h and ¢ are con-
stants. If k € H*, then k — oz € H*. Hence,

Fl@)= inf [|G(e—aBi @kl = inf_[IG(O0—aB — 5k - 92) |
= inf G0~ B~ Bk = F(0).
Hence F(z) is a constant function of x. It follows from Theorem 2.8 that
1022 = F(1Sasl3e) = F(O) = inf_||GaB k)| .
By Lemma 2.3, the infimum is attained. This completes the proof. 1
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COROLLARY 2.10. Let o, 3 € L. Then

max{|le%, 1812} < [1Sasl72 < max{llallZ, 1815} +  inf flaB — ko

If af € H®, then the equality holds.
Proof. 1t follows from Corollary 2.9 that
[maxflal®, 187 Hloo < [Sasllze = inf _[G(aB = k)]

< inf 2 2 8- [e’e)
Jnf | max{jaf?, |8} +|aB - K|

< | max{jaf?, 18Pl + inf _[aB — k.
This completes the proof. 1

COROLLARY 2.11. Let o, 3 € L. Let ¢ and W be functions such that there
exists an outer function h € H? satisfying o = h/h and W = |h|?.
(i) If |a|, |B| are constants, then
nt [0y — 0B — Bkl = /15eslZagr) — 0P /IS5 lEa, — 1B
(ii) If |al,|8| are constants and a3 € H*, then

A (|Sasl32 ) = aB) (o =Bl = /ISas 32y~ 10l /1S sl132 or) — 18P

Proof. We prove (i). Since ||, |3] are constants, it follows from Theorem 2.8
that

||Sa,ﬁ||%2(w)
la|? + |B]2 . _ WEEEN
=/ [ 1Sasllar) — B — k[, + (#)
- G(kér}{foo H ”SaﬁHQB(W) —af — @kHOO).

Since ||Sa’g||%2(w) > max{|a|?, |3]?}, it follows from Lemma 2.5 that

15,132 0w) = G (/150,812 0r) = 1P /I5asl320r, — 1817).

Therefore,

G( It [ 1SaplZ2w) — B =Pkl

= G(\ /1532y — 1P /ISasl320r) — 1817).

This proves (i). B B
We prove (ii). Since af € H*™ and Re(HSa’ﬁH%Q(W) —aff) = 0, it follows

that ||Sa’g||%2(W) — af is an outer function or a zero function. Hence,

inf || [|1a,8lZ2w) — @B — Phllo

keH>
_ 2
— inf ||(ISasl3zqw) — aB) (v - 2l
ke Ho L2w) ( 1Sa,61% 2w 70‘6) =
= inf [|(ISasleqp) — aB)(p — k).

keH®°
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By (i), this implies (ii). This completes the proof. &

The statement (iii) in the following corollary was given by Feldman, Krupnik
and Markus (cf. [3]). By the Helson-Szeg6 theorem ([7]), || Py | z2wy < oo if and
only if inf | —klloc < 1.

cHoo

COROLLARY 2.12. Let a and 3 be complexr numbers satisfying o # 3. Let
© and W be functions such that there exists an outer function h € H? satisfying
@ = h/h and W = |h|>. Let ¢ = kiI}If lo — klloo- If ¢ < 1, then the following

cH oo

equalz'tz'es hold:
i C| [|Sa, ﬂ”L?(W) m = \/HsaﬁH%%W) - |0“2\/||Sa,ﬁ||%2(w — 181

la—B||Sa, B”L2(W)

(ii) | [|Sa,8ll72wy—B| = la=Bl Sa,sll 2w | Pe 2wy = T
2 2
(51) (1Sl 12wy = \/wr (L) + \/%L (12520, where
a—f? - B2
vi= S22 (25) = |52 L P — 1

Proof. Since ||Sq, s

that (i) holds.
We prove (ii). Since Py = S g, it follows from (i) that

\%2(W) —af3 is a constant, it follows from Corollary 2.11 (ii)

Pl Feqwy = 1Pz qwy /1P 1132 0y — 1
Hence, (1 —¢ )HP+HL2(W = 1. Tt follows from (i) that

A 1Sasll T2y — aB|” = (|Sa 22y = 1) (1Sasll72 0wy — 16%)
—12
= [ 1Sa.ll72w) — @B]” = la = BI21Sa,8l172(w)-

Hence, (1-%)| Sa.sl3s )~ aB]% = la—BP SasllZs ayy- Since (1-¢2) P4 3,
= 1, this implies (ii).

We prove (iii). Let s = ||Sa,sll2(w)- It follows from (i) that ¢?|s — af|* =
(s — [al?)(s — [B?). Then

(1—c*)s? = {la =B +2(1 = *)Re(af)}s + (1 = ¢*)]asf* = 0.
Since ¢ < 1, it follows that s? — {% + 2Re(af)}s + [afB|* = 0. Since s >
_|_

max{|a|?, |32} > |af|, it follows that s = t + /22 — [af]?, where t := =2
Re(af3). Hence,

S0 sllzzaw) = V5 =Vt + VE — [afP = \/t+laﬂ| \/t—|aﬂ|

la = B> | Re(af) +|af| la = B> | Re(ap) —|af|
ai—e) " 2 Vaig—ey " 2

e () e e (B
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_51%( 2
= [222] (=) Then,

1
:2 - = .
) 4(1—02)+4 N

Hence,

a— 32
=5 Py = -

This completes the proof. 1

3. THE SECOND FORMULA OF S, g ON L%(W)

The following Theorem 3.1 is the second formula of ||Sy g|/z2(w). It is the general-
ization of the Feldman-Krupnik-Markus theorem. Since the formula is symmetric
with respect to a and g, it follows that if a0 is a constant then

|Sa,8ll L2 (W)

By Theorem 3.1, if W(¢) = 1 and off € H*, then ||Sa /2 = max{||ca|so, [|Blco }-
If a(() =¢,6(¢) =1,W(¢) =1, then ||S¢ 1|2 = 1. It follows from Corollary 2.9
that

. _ 1/2 ——
ISrcllee = inf |l1+1C—#l| = w + inf [IC =kl = V2 # |Scallze-

THEOREM 3.1. Let o, 3 € L>. Let ¢ and W be functions such that there
exists an outer function h € H? satisfying ¢ = h/h and W = |h|?. If a3 belongs
keH®>

to H*® and |a — 3| > 0, then
lof + 1812 \/ o = 18132
\/7’“+< ) e (5

lo—Ek|<1

a*ﬁF( lo—k|? )
2 1-|e—k[* J*

Proof. Let s = ||Sa”3||%2(w). It is well known that max{|a|?, |8|?} < s. For
any k € H* satisfying |¢ — k| < 1, we define the quantity N}, according to

e [ Y e (Y

We prove that [|Sa 2wy = inf{Ny : k € H®, |p — k| < 1}. It follows from
Theorem 2.8 that F'(s) = s. Hence there exists a function g € H* such that
G(s—af—pg) < s. It follows from Lemma 2.5 that G(\/s — [a[?y/s — [B]?) = s.

Hence, G(s — aff — pg) < G(v/s — [a[>\/s — |B]? ). Hence,
|s — af —pg|* < (s — |al*)(s = 1B).

|Sa.sllL2wy = inf

oo

where g, 1=

o0
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Suppose g = 0. Then, |s — aB3|> < (s — |a|?)(s — |8]?). Hence |a — B|%s < 0. Since
max{|a|?,|3]*} < s and |a — B] > 0, it follows that s > 0. Hence o = 3. This
contradiction implies g # 0. Since

9l = |s — aB| < |s — aB — Byl < Vs —|al2y/s — 6] < |s — af],
it follows that

0<|g| <2[s—af

Since Re(s — af) > s — max{|a|?, |3]?} = 0, and a8 € H*, it follows that s — af3

is an outer function. We define the function k according to k = sfgaB. Since

|ao — 3] > 0, it follows that

e g PGl -8 _, la—pPs
o = Kl 7‘('0 s—ozB’ s |s — af? =1 |S—Ozﬁ|2<1.

Hence, k € H*®, |¢ — k| < 1, and |s — af3|? — %s > 0. Therefore
$2 _ ( o — B
e i

0<s<t—/t2—|aBl?, or s=t++/t2—|ab?

where t := (%m +Re(a3)). Hence,

i< tw\/t—k;am\/t—;am’
Vi t+m\/t+;aﬂ|+\/t—2|aﬁ|'

Suppose /s < \/tﬂzam — \/t_gam on some measurable subset F of T. Then

Vi< \/%+ (Ial;rlﬁl>2_\/%+ (o . \m)z

on E. Since max{|al, |B|} < v/s, it follows that

RN TV ST S Y A

< (50 < o (B R

on E. Hence |a| = || on E. Hence |a|+ /7% = /7 + |@|? on E. Hence ary, =0
on E. Hence v = 0 on E. Therefore,

Vi \/7k+(|a|;|ﬁ|)2+\/%+(|a|gﬁ')z

on T. Hence, ||Sq sl r2w) = ké%fm Ni.

+ 2Re(aﬁ))s +]ag® > 0.

Hence,

or

lo—k|<1
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Next we prove the reverse inequality. This is the easy direction of the theo-

rem. Since
Ni > \/’vk + (M)Q + \/7’“ + (M)Z

squaring both sides, it follows that
al? + 1812 al? + [B]2\ 2

Hence, N} — (4vk + |af® + |B]>)NZ + |aB|? = 0. Hence, 47, N7 < (N7 — |af?)
-(NZ —|8]?). Hence,

NEla - o (122 ) < v — o v - 1512

Since NZ|a — 8|2 = [N2 — af|? — (N2 — |a|?)(NZ — |8]?), it follows that
2
(INE — B2 — (N} — [of)(NE — |8 ))(ﬂ'kQ) < (V2 = lof?)(NE = |61,

Hence, |[N? — af?|¢ — k| < (N? — |a|?)(N? — |8)?). It follows from Lemma 2.5
that
G(NE — aBl o — k) < G(\/NZ — laf2/NZ — 182) = N

Since

[N — aBl ¢ — k| = (N} — aB)(1 = 5k)| = [N — af — p(N; — af)k|
and (N? — afB)k € H*, it follows that F(N?) < N2. It follows from Lemma 2.6
that N > [[Sa,ll72(y). This completes the proof. 1

COROLLARY 3.2. If kg}{fw le =kl =c <1, af € H*® and |a — B8] > 0,
then

. a—3|2 2
() 11Sasll 2o > inf_[|\/max{laf, 182} + Er2EEAE

(i1) [[Sasll 2wy < H\/w (L;W') + %+ (L;lﬂl) |

() max{l . 1801} < NS 5ll2v) < | maxc{lal, 181} + 2T
o8 (=) = |22 (UPs 2y — ).

Proof. We prove (1). Let v, =

where vy :=

2 2
—B lp—kl|
(XT’ (m) Then

(e (Y o o (Y
oyt IOéIQ;IﬂIQH\/w <|a|;|ﬂ)2%k+ (L ly?

lof* + 18/ I5\2’
2

> 2t w2 [P0 ol 2} + 4
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By Theorem 3.1, this implies (i).
We prove (ii). Since
= ’a—ﬂf( o — k[” ) < ’afﬂr( lle — KlI% )
1—|<P k[? 1— o —kll%

)=

aﬁ(

\ ’

(ii) follows from Theorem 3.1.
Since

s (BLEY? [ (R el el g 1ol 18)

= max{|al, 5]} + 2/,
(iii) follows from (ii). This completes the proof. 1
EXAMPLE 3.3. Let ¢ = €%, a(¢) =(+1, B(¢) = 1 and W(¢) = |C+ 1)1/2.

Then af € H007(p(ei‘9) =e 0/4 ¢ =e? —7 <0 < 7. Hence, lo — f| 7B < L.
By Theorem 3.1,
o] + 1612 ol — 151
2 <18 sllz2w) < |\ 11yva + (T) T YyvEt ( 2 ) ’
1
where ")/1/\[ (W - 1) HCHCC,

2 < |[SasllL2owy < sup
—r o<

3—2v2cos ! V2(1 4 cosf) 4+ 1\2
( ()

4 2\5008%71

)
3 — 2v/2cos %
4(2v2cos g — 1)

29 + 2v/2 1422
_ +\f+ +f<204
14 14

Since ||P+||L2(W) = m = \/i (Cf [12})7
- ‘O‘

| 52 (55
i ) i () - e

This example shows that it is not able to change the function ~; by the function
~ in Theorem 3.1, and that

2

+(\/m—1)2}

B2 1
Py = D = 5

and hence

2 < [|Sa,pllL2owy < 2.04.
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COROLLARY 3.4. If |a(¢)| > 0, then

«

\/1_|(p_k‘2 oo

P = ||aP- = inf
laPy|[z2wy = [[aP-|z2w) pall

COROLLARY 3.5. Let a € H*®. Then
(i) if W=t € L', then there exists €, € L™, e, > 0, |len]loc — 0, n — o0,
such that

|+ Een
aPyllawy = L [(lal + &) Pyllzzqwy = lim g | L=
V 1- I‘p - k|2 o)

n—oo ke H>® ’

i) if inf [l —kle <1, th take e, = L
(i) szér;[wﬂgo oo < 1, then we can take €

Proof. We prove (i). Since |a| 4 &, > 0, it follows from Corollary 3.4 that

ol +en
I(ol + )Py 2w H o

\/1_|90_k‘2 [eS)

By the Koosis theorem ([9]), if W~1 € L', then there exists U € L', U > 0 such
that

1Py fll2@wy < 1fllzowys f € L*(W).

Let ¢, = % % Since U < W, it follows that &,, < % and

1
len Py fllLzowy < E“f”L?(W)a ferL*(w).

Hence,

. . . 1
lim ’ (e +5n)P+HL2(W) — ||aP+HL2(W)‘ < lim ||<€nP+HL2(W) < lim — =0.
n—oo n— 00 n—oo n

We prove (ii).
By the Helson-Szegd theorem ([7]), if kir}{f lo—klloo <1, then ||Py|r2wy <
CH=

0o. Hence,

i [[ e+ 24

This completes the proof. 1

EXAMPLE 3.6. Suppose W(¢) = [ + 1|12, h(¢) = (¢ + 1DV?, ¢ = €,
©(¢) =h()/h(¢) =e /% and E  T. By Corollaries 3.7 and 4.3,

. 1
~llaPullzagn| < Jim (Z1Pzan ) =0

L2 (w)

1 XE + 1
XE P+ L2(w) N A\echenbey Bl LWy neoo kb || /T = o = K|? lo
< xE + 0.1 _ xe+01
\/1 — |e—i0/4 — 2cos ¢ -3l
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1 0 2 1
Iffﬂ<9<7r,thenﬁ<cosigl. Hence,\/wjg\/ﬁcosgi < V2.

1
172
Hence, % < 0.15 on E°. If 8 = 0, then
cos §—3

1 / 2
= =1.04... < 1.05.
\/Ecosg—% 2\/5_1

Hence, for sufficiently small e > 0, E' = (—¢, €) satisfies || x g Py || L2(w) < 1.05-1.1 =
1.155. Since ||Py||r2w) = m = /2 (cf. [12]), it follows that

IxePillLzow) < IXEloc I Pl L2w)-
Hence, ||aPy||r2(wy = ||alloo|| Py || 2(wy does not hold in general.
Next, we compare ||Sq,g||L2(w) and ||S||2(w). Let o, 8 € L>. Since S, 5 =
QTWI + %S, it follows that
a+ 0

o e

@
Sa
H B 9
By Theorem 3.1, we have

COROLLARY 3.7. Ifaf € H*® and |a — 3| > 0, then

max{||alloo, 18lloc} < |1Sa8llL2(w) < max{[lalloo, | Blloc IS L2(w)-

2w < | +[| S| IS son.

Proof. Without loss of generality, we assume that max{||ca|/co, [|8]lcc} = 1
and [|S|| 2wy < co. Let ¢ = kir}l{f o — klloo- By the Helson-Szegd theorem ([7]),
e oo

c < 1. It follows from Theorem 3.1 that
ol + 2 ol — 2
\/7k+<| \2 |,6’|> +\/%+( |2|ﬂ|)

2
(’T_ﬁ’ (%). Since max{|al|,|8|} < 1, it follows that v, <

)
oo

oo

l[p—Fk|<1

1Sasll20wy = ké%f

where v, =

lo—kK|? c?

m < T_c2* Hence,

s (LY [ (P

1Sa.sllL2owy <

oo

It follows from Theorem 3.1 that
S = inf
IS0 22w (dnf_

_ k2 _ k2
lo — K| 14 |l — K|

L—[p— k|2 L —[p—k[?
lp—kl<1

Vrom iy
= 1 .
1—02+ + 1—¢2

Let z = % It is sufficient to show that

\/:c+ (|a|+/6|)2+\/x+ (L - W')Q <V 1+

2 2

o0
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2 2
Since (1—|al?)(1—|8]?) = 0, it follows that (M) < (17M) . Hence,

2 2
(M) +2(|a]? + 18]z < (1 — M) + 4z. Hence,

4(x+ (Ia\;lﬁl)2> ($+ (Ial . |ﬁ\> ) < (1_ Ial2;|ﬁl2)2+4x(w+1)

< (1—7|a|2;|m2)2+4(1—7|a|2;|ﬁ|2)\/m+4x(x+1

Hence,
2 2 2
op 4+ 102+ 18] +2\/x+(lal+|ﬂl) \/H(Ia Iﬁl)
2 2 2
<2z 414 2v/z(x+1).
Hence,

(e (P o (PTYY < (403

This completes the proof. 1

4. THE THIRD FORMULA OF S, g ON L?(W)

The following Theorem 4.2 is the third formula of [|Sa, sl[z2(w). Suppose a(¢) =

1,8(¢) = ¢. Then a3 ¢ H®. By Corollary 2.9, ||S, sl/z2 = v/2. Since ||S]||z2 = 1,
it follows that ||Sa,gllz2 > ||S||z2. Hence Corollary 3.7 does not hold in general.
Hence Theorem 3.1 does not hold in general. But the following Theorem 4.2 holds
even when a8 ¢ H*. We give Lemma 4.1 to prove Theorem 4.2.

LEMMA 4.1. If |g| < 1, then

+182—2R. F_=12 3.2
(i) lo|? Iﬁll = e(@By) _ = |a)? + Ifi‘«)ﬂ =82 + \?7@72\ ;

(ii) max{|a|?,|8/*} < \a|2+\ﬂ\iT2lRe(aﬁg).

i) UaL=1)* o max(F-Fgl’Ja—Bg®)  Jal*+I3] 2Re(@Bg)  (lal+]o)®
(i) “Fp= < T3] = S SToE

Proof. Since

laf? +|8* — 2Re(@Pg) — |o*(1 — |gI*) = |8 — agl?
and
|af? + 18] = 2Re(@Bg) — [B*(1 ~ |g|?) = |a - Bgl*,
we have (i).
(i) implies (ii).
We prove (iii). Since |g| < 1, it follows that |a|? + |3|*> — 2Re(afg) <
(Ja| + |8])?. Then we have

18 —agl* > (16] — |ag|)?
o = Bg[* > (la| = |Bg])?
This completes the proof. &

(181 = lal)?,  for |o
(lal = 181)?,  for |a

VoWV
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THEOREM 4.2. Let o, 3 € L>. Let ¢ and W be functions such that there
exists an outer function h € H? satisfying ¢ = h/h and W = |h|?.
(i) If [laf = |B]| > 0, then

op |[el” +18* — 2Re(@B(1 — Pk)) H

kCH™> 1—1]p—k|?
R ¢ — k|

10672

= inf_ |l + 'ﬂ H
keH> \gp k|2

lo—k|<1
AL
wif 181+ \go k|2
lo—k|<1

The infimum is attained.
(i) If m{¢ € T : |a(¢)| = |B(Q)|} > 0 and WL € L1, then there exists
€n € L, g, >0, |len|loc — 0, n — 00, such that | |aw| —|6]| > 0 and

||Sa,ﬁ||L2(W):71LiL% kél}ifw 1 Sa,8llL2(w),

lo—k|<1
where
oy = o+ (axE, + XE)En,
Ey:={CeT:a(f)=p(¢) =0},
Ey:={CeT:|a(Q)] = 8()] > 0}.
Proof. We prove (i). Let s = |Sasll72yy. It is well known that

max{|a|?, |3*} < s. Since ||a| — |B|] > 0, it follows that s > 0. For any k € H>
satisfying | — k| < 1, we define the quantity M}, according to

_ H la|? + |82 — 2Re(@B(1 — pk)) H
- L= o — kP
We prove that s > inf{M, : k € H>®,|¢ — k| < 1}. It follows from Theorem 2.8

that F(s) = s. Hence there exists a function k € H> such that G(s—aB—pk) < s
It follows from Lemma 2.5 that G (/s — |a[?y/s — [8]2) = s. Since

My,

B~ o(1 =P8 = Is — B - PP < (s~ al?) (5 — 81,

it follows that there exists a ko € H° such that |af — s(1 — @ko)|? < (s —

|a?)(s — |B]%). Hence, |a|? + |B8]* — 2Re(a@B(1 — Pko)) < s(1 — |¢ — ko|?). Since

slp — ko| < /s —|a]2y\/s — B2 + |aB| < s, it follows that ¢ — ko| < 1. Since

||| — |B]] > 0, it follows that |¢ — ko| < 1. Hence, kérfl[fw My, < My, <s. We
lp—k|<1

prove that s < inf{M}, : k € H®, |p — k| < 1}. This is the easy direction of the

theorem.
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Since |a|? + |B]? — 2Re(@B(1 — pk)) < My(1 — |¢ — k|?), it follows that
| My — aff — pMyk|* = My (1 - pk) — af|®
= [Mi(1 = Bk)* — 2MiRe(@B(1 — 7)) + |aff?
< M = (laf* + [B) My + |af|?
= (Mi — |af*) (M, — |6%).
It follows from Lemma 4.1 that max{|a|?, |3]?} < M. It follows from Lemma 2.5

that G(\/My, — |a]>\/My —[B]?) = M. Hence, G(M), — a8 — §Myk) < M.
Hence F(My) < My. Tt follows from Lemma 2.6 that s < Mj. Therefore,
inf Mk < Mko < S < inf Mk

keH> keH™>
lo—k|<1 lo—Ek|<1

Hence the equalities hold, and the infimum is attained by k = k.

We prove (ii). By Corollary 3.5, there exists €, € L™, &, > 0, |len]|oc — 0,
n — oo, such that ||ay,| —|B|| > 0, and ||, Py ||L2w) — 0, n — oco. Since
[(an—a) Pl 2wy = [[(axe, +x8o)enPi 20wy < [[(ax e +xEo) o lEn Pl L2(w),

it follows that
|(an — )Pyl 2wy — 0, n — oo.

Since
| 1San .8l 2wy = 1SasllLzowy| < 1San.8 = SasllLzow) = l(an — @) PyllL2(w),
it follows that
[ [San.s
This completes the proof. 1

lL2wy = [Sasllzzowy| — 0, n— oc.

If W is a constant function, then ¢ becomes a constant function. In this
case, the formula of || S, g||z2 was given by Corollary 2.9. The another formula of
[ISw,allL2 is given by Corollary 4.3.

COROLLARY 4.3. Let o, € L. If | |a| — |5]| > 0, then

H la? + B> — 2Re(afy))

Sulls = oy |
[Seslz2 1 1— g2 o

geEH>
lgl<1
2 2
= inf_ H|a\2 |5 a92| H = inf HW\Q 592| H
geH — |9 geH™ — |9
lgl<1 lgl<1

COROLLARY 4.4. Let o, € L>. Let p and W be functions such that there
exists an outer function h € H? satisfying ¢ = h/h and W = |h|%. If | |a| —|8]] >
0, then

: || — |A] max{|3 —a(l — k)|, Ja — B(1 —Bk)[}
0,2 | = T— o= A2 lloo | <t N .

< |Sasllzzowy < MH

inf_||
keH®° 1—‘¢—k|2 0o
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) . la| - 18]
(ii) max{||a|oo, 18, inf | A=
€ \/17|§07k| [e’e)
<Saslzzm < inf [—=2=L | 1 minflaloo, 6llac}
X « 2 B 00y oo S
IR b || T— o — AP llso

Proof. (i) follows from Theorem 4.2 (i) and Lemma 4.1.
(ii) follows from Corollary 3.4 and

1082wy < [ = B)PyllL2(wy + (1Bl oo
1082wy < (B = ) P-llL2w) + llalloc-
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