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Abstract. Let T be an absolutely continuous contraction acting on a Hilbert
space. Its boundary set XT can be seen as a localization, on a Borel subset of
the unit circle T, of a sequence condition whose validity on all of T is equiv-
alent to membership of T in the classAℵ0 . The main result is the following:
if b is a Blaschke product of degree d for which there exist d distinct Möbius
transforms u such that b ◦ u = b, then b(XT ) = Xb(T ).
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1. INTRODUCTION

For an absolutely continuous contraction T , its boundary set XT , introduced in
[12], can be seen as a localization, on a Borel subset of the unit circle T, of a
sequence condition whose validity on all of T is equivalent to membership of T in
the class Aℵ0 . In other words (cf. Corollary 3.4 in [12] and [1], with a different
formulation):

T ∈ Aℵ0 ⇔ XT = T.

This class is the smallest of the subclasses Am,n of the class A of absolutely con-
tinuous contractions with isometric functional calculus.

The set XT , along with other subsets of T arising naturally from the minimal
isometric dilation and minimal coisometric extension of T , has been useful in the
study of the membership in the classes Am,n (cf. [5], [10], [12]). In [5], starting
from the observation that inner functions operate on A (i.e. if u is inner and T ∈ A,
then u(T ) ∈ A), we studied how the subclasses Am,n are transformed under this
operation. In this study we were naturally led to investigate possible mapping
theorems for boundary sets as initiated in [12]. In particular, we proved that for
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any non constant inner function u and for any absolutely continuous contraction
T , we have (Proposition 3.1 in [6]):

(1.1) u(XT ) ⊂ Xu(T ).

In the particular case where u(z) = φ(z)n, n > 1 where φ is any conformal auto-
morphism of D the inclusion (1.1) is an equality (Theorem 5.1 and Proposition 3.9
in [12]). Nevertheless the equality in (1.1) may drastically fail to hold as shown by
the example of the unilateral shift and any inner function u of infinite degree (recall
that the degree of an inner function is the number of zeros, counting multiplicity,
in the case of a finite Blaschke product and ℵ0 elsewhere). Indeed, by Proposi-
tion 3.2 in [5], u(S) ∈ Aℵ0 and thus Xu(S) = T, while XS = ∅ (Proposition 3.5 in
[12]).

The main result of this paper (Theorem 4.1 below) says that equality holds
in (1.1) whenever u is a finite Blaschke product of degree d with d distinct analytic
invariants. The invariants of a Blaschke product have been recently studied in [4].
The needed facts about the domain of analyticity of these invariants are recalled
at the beginning of Section 3.

The paper is organized as follows. In Section 2, we recall some notations and
terminology as well as some facts about the boundary set XT . Then in Section 3,
we state and prove an intermediate result. We prove that if b is a finite Blaschke
product of degree d with d distinct analytic invariants ũ1, . . . , ũd, the membership
of b(T ) in the class Aℵ0 is equivalent to the membership of ũ1(T ) ⊕ · · · ⊕ ũd(T )
in the class Aℵ0 . In Section 4 we prove the main result and develop additional
mapping theorems for various boundary sets.

2. NOTATIONS AND TERMINOLOGY

Let H be a separable, infinite-dimensional complex Hilbert space and let L(H)
denote the algebra of all bounded linear operators on H. A contraction T ∈ L(H)
is absolutely continuous if T is completely non unitary or if the spectral measure
of its unitary part is absolutely continuous with respect to Lebesgue measure. If
T ∈ L(H) is an absolutely continuous contraction, then, for any x, y ∈ H, there
exists a function x

T· y ∈ L1 such that the Fourier coefficients of x
T· y satisfy:

(x
T· y)∧(n) =

{
(T ∗nx, y), n > 0,
(T−nx, y), n < 0.

We write D for the open unit disc in the complex plane C, and T for the
unit circle. The spaces Lp = Lp(T), 1 6 p 6 ∞ are the usual Lebesgue function
spaces relative to Lebesgue measure m on T. The spaces Hp = Hp(T), 1 6 p 6 ∞
are the usual Hardy spaces. It is well-known ([15]) that the dual space of L1/H1

0 ,

where H1
0 =

{
f ∈ L1

2π∫
0

f(eit)eint dt = 0 : n = 0, 1, . . .
}

, can be identified with

H∞. If we denote by [g] the class of g ∈ L1 in L1/H1
0 , the duality is given by the

pairing:

〈f, [g]〉 =
∫

T

fg dm, f ∈ H∞, g ∈ L1.
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We denote by A = A(H) the class of all absolutely continuous contractions
T ∈ L(H) for which the Sz.-Nagy–Foias functional calculus ΦT : H∞ → L(H) is
an isometry. For a given (m, n) ∈ {1, . . . ,ℵ0}2, the subclass Am,n of A, consists of
those contractions T ∈ A for which given any family (fi,j)i,j , 0 6 i < m, 0 6 j < n
of elements of L1, there exist two sequences (xi)06i<m and (yj)06j<n of elements
of H such that [fi,j ] = [xi

T· yj ], i, j > 1. The class Aℵ0,ℵ0 = Aℵ0 is well-known for
being a class of contractions whose lattice of invariant subspaces is extremely rich
since it contains a sub-lattice which is isomorphic to the lattice of all the closed
subspaces of H (for further informations on the invariant subspaces of any element
of the class Aℵ0 see Chapter IX in [1]).

The boundary set XT introduced in [12], Proposition 3.1, is the unique max-
imal Borel subset XT of T such that, for any f ∈ L1(XT ), ‖f‖1 6 1, there exist
two sequences (xn)n and (yn)n in the unit ball of H such that:





lim
n→∞

‖[f ]− [xn
T· yn]‖ = 0,

lim
n→∞

‖[xn
T· w]‖ = 0, w ∈ H,

lim
n→∞

‖[w T· yn]‖ = 0, w ∈ H.

In other words, XT is the largest Borel subset of the unit circle on which the “clas-
sical” Scott Brown approximation procedure works for T . (Recall that throughout
the paper, expressions such as maximality, uniqueness, and equality of Borel sub-
sets of T are to be interpreted as pertaining to the equivalence classes arising from
the relation “equal a.e. (m)”.) As was already the case in previous works (e.g.
Theorem 6.2 in [12]), we will use the set XT in connection with membership of
sufficiently many classes [Pλ] of Poisson kernels in the approximation set χ0(T )
(cf. Proposition 3.6 below).

It has been known for some time that the doubly-infinite equation-solving
procedure defining the class Aℵ0 can be lifted from the quotient L1/H1

0 to L1

itself. In fact this was established, via the functional model, for T in the subclasses
(BCP)θ of Aℵ0 , in Corollary 6.9 of [2] (the extension to Aℵ0 , though not explicitly
stated there, proceeds from standard dilation properties of the class Aℵ0). More
recently, the same result was obtained in Section 4 of [9] via a new more direct
approach. In other words, we can see the class Aℵ0 as the class of contractions
T ∈ L(H) such that for any infinite array (fi,j)i,j>1 of functions in L1, there exist
some sequences (xi)i>1 and (yj)j>1 of elements of H such that fi,j = (xi

T· yj),
i > 1, j > 1. Equivalently, for T ∈ Aℵ0 , one can recover all the Fourier coefficients
(and not simply the negative ones) of a system of functions in L1. Corollary 6.9
of [2] also provides some localization of the above factorizations. The localization
is generalized to the entire XT in [8], Theorem 2.3. Indeed, for any infinite array
(fi,j)i,j>1 of functions in L1, there exist some sequences (xi)i>1 and (yj)j>1 of
elements of H such that fi,j |XT

= (xi
T· yj)|XT

, i > 1, j > 1.
Sufficient conditions for factorizing lower semi-continuous positive L1-func-

tions in the form x
T· x have been obtained in [9] in the case T ∈ Aℵ0 and in [7] in

the case T ∈ A1,ℵ0 via very different techniques.
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3. INTERMEDIATE RESULTS

Let b be a finite Blaschke product of degree d. By Theorem 3.1 in [4] we know that
the set of continuous functions u : T→ T such that b◦u = b on T is a cyclic group
G (under the composition) of order d. Moreover, by Proposition 3.1 in [4], each
element u of G has an analytic extension ũ in the annulus CM =

{
z ∈ C : M <

|z| < 1/M
}

(where M = max{|α| : α ∈ b(α) = 0}), which still satisfies b ◦ ũi = b
in CM .

Nevertheless, for general finite Blaschke products of degree at least equal
to three, the elements of G are not necessarily the restriction of functions in the
disc algebra A(D), the algebra of analytic functions on D which are continuous on
T (see Section 4 in [4] for more informations about the finite Blaschke products
whose invariants are analytic).

Definition 3.1. Let b be a finite Blaschke product. We say that b is of type
(AI) if each element u of G, the cyclic group of the continuous invariants of b, is
the restriction of a function ũ ∈ A(D) which satisfies b ◦ ũ = b on D.

Remark 3.2. It follows from [14] that if b is a finite Blaschke product and
if ũ ∈ A(D) satisfies b ◦ ũ = b on D, then necessarily ũ is an elliptic Möbius
transformation (i.e. an automorphism of the unit disc with a fixed point in D) and
thus, in particular, a Blaschke product of degree one.

The main result of this section is the following theorem:

Theorem 3.3. Let b be a finite Blaschke product of type (AI) and denote by
ũ1, . . . , ũd its pairwise distinct analytic invariants. If T is an absolutely continuous
contraction, then the following assertions are equivalent:

(i) the operator b(T ) belongs to the class Aℵ0 ;
(ii) the operator ũ1(T )⊕ · · · ⊕ ũd(T ) belongs to the class Aℵ0 .

Throughout the remainder of this section we will denote by T̃ the operator
ũ1(T )⊕ · · · ⊕ ũd(T ).

3.1. Proof of Theorem 3.3. The next lemma is the “easy part” in the proof
of the equivalence announced in Theorem 3.3.

Lemma 3.4. Let b be a finite Blaschke product of type (AI) and denote by
ũ1, . . . , ũd its pairwise distinct analytic invariants. Let T be an absolutely continu-
ous contraction. If the operator T̃ belongs to the class Aℵ0 , then the operator b(T )
belongs to the class Aℵ0 .

Proof. By Theorem 2.2 in [6], if T̃ ∈ Aℵ0 , then b(T̃ ) ∈ Aℵ0 . Since b(T̃ ) =
b(T )⊕ · · · ⊕ b(T ), using Theorem 3.8 in [1], we get b(T ) ∈ Aℵ0 .

For the proof of Theorem 3.3, it remains to check that if b(T ) ∈ Aℵ0 then T̃ ∈
Aℵ0 . In order to make clearer our strategy we review further classical definitions
and results in dual algebra theory.
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Definition 3.5. (Definition 2.3 and 3.7 in [12]) If T is an absolutely contin-
uous contraction in L(H) we denote by χ0(T ) the subset of (L1/H1

0 )(T) consisting
of those cosets [f ] for which there exist sequences (xn)n>1 and (yn)n>1 in the
(closed) unit ball of H satisfying:

(a) lim ‖[f ]− [xn
T· yn]‖ = 0, and

(b) lim
n→∞

(‖[xn
T· w]‖+ ‖[w T· yn]‖) = 0, w ∈ H.

Thus, the definition of XT can be reformulated in the following way: XT

is the maximal Borel subset of T such that, for any f in L1(XT ), [f ] belongs
to χ0(T ).

If λ ∈ D, recall that the Poisson kernel Pλ is defined by:

Pλ(z) = 1 +
∞∑

n=1

λnzn +
∞∑

n=1

λnzn =
1− |λ|2
|1− λz|2 .

If Λ ⊂ D we write NTL(Λ) for the subset of T consisting of all the non-tangential
limits of sequences from Λ. We will say that Λ is dominating for T if T \NTL(Λ)
has Lebesgue measure zero (this notion originated in [3]). The next result is just
a reformulation of Proposition 6.1 in [1] using the Hahn–Banach theorem.

Proposition 3.6. Let T be an absolutely continuous contraction. Suppose
that Λ ⊂ D is dominating for T and suppose that there exists a positive constant c

such that, for every λ ∈ Λ, c[Pλ] ∈ χ0(T ). Then T belongs to the class Aℵ0 .

From now on, by means of several intermediate results, our aim is to check
that if b(T ) ∈ Aℵ0 then there exist a dominating set Λ for T and a positive constant
c such that for every λ ∈ Λ, c[Pλ] ∈ χ0(T̃ ).

The next proposition and its corollary show how to transfer “left and right
vanishing conditions” from the operator b(T ) to the operator T̃ .

Proposition 3.7. Let b a finite Blaschke product of degree d > 1 and of
type (AI). Take f1, . . . , fd ∈ H∞ and g1, . . . , gd ∈ H∞ such that b ◦ gi = li ◦ b

with li ∈ H∞, 1 6 i 6 d. Set ˜̃
T = g1(T ) ⊕ · · · ⊕ gd(T ) and for xn ∈ D, set

x̃n = f1(T )xn ⊕ · · · ⊕ fd(T )xn. Then we have:

(i) lim
n→∞

∥∥∥
[
xn

b(T )· w
]∥∥∥ = 0, w ∈ H ⇒ lim

n→∞

∥∥∥
[
x̃n

˜̃
T· w̃

]∥∥∥ = 0, w̃ = w1⊕ · · · ⊕
wd ∈ H(d).

(ii) lim
n→∞

‖[w b(T )· xn]‖ = 0, w ∈ H ⇒ lim
n→∞

∥∥∥
[
w̃

˜̃
T· x̃n

]∥∥∥ = 0, w̃ = w1 ⊕ · · · ⊕
wd ∈ H(d).

Proof. For h ∈ H∞, w̃ = w1 ⊕ · · · ⊕ wd ∈ H(d) and xn ∈ H we compute

Jn =
〈[

x̃n

˜̃
T· w̃

]
, h

〉
=

(
h( ˜̃T )x̃n, w̃

)
=

d∑

i=1

(h ◦ gi(T )fi(T )xn, wi).
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By Theorem 2.1 in [6] we know that there exist some functions v1, . . . , vd ∈ H∞ ∩
(H2 ª bH2) such that for any function h ∈ H∞:

h(z) =
d∑

k=1

hk(b(z))vk(z)

with hk ∈ H∞, ‖fk‖∞ 6 C‖h‖∞ and where C is a positive numerical constant.
We thus obtain

Jn =
d∑

i=1

d∑

k=1

((hk ◦ b ◦ gi)(T )(vk ◦ gi)(T )fi(T )x,wi).

Since b ◦ gi = li ◦ b for 1 6 i 6 d, we get:

Jn =
d∑

i=1

d∑

k=1

((hk◦li◦b)(T )(vk◦gi)(T )fi(T )x, wi) =
d∑

i=1

d∑

k=1

〈[
x

b(T )· Mk,iwi

]
, hk◦li

〉
,

with Mk,i = ((vk ◦ gi)(T )fi(T ))∗. From this computation we get the transfer of

the right vanishing condition. Indeed suppose that lim
n→∞

‖[xn
b(T )· w]‖ = 0, w ∈ H.

Then for a given w̃ = w1 ⊕ · · · ⊕ wd ∈ H(d) and each n there exists a function
hn ∈ H∞ of norm 1 such that

〈[
x̃n

˜̃
T· w̃

]
, hn

〉
=

∥∥∥
[
x̃n

˜̃
T· w̃

]∥∥∥.

By the previous computation we get

∥∥∥
[
x̃n

˜̃
T· w̃

]∥∥∥ 6 K

d∑

i=1

d∑

k=1

∥∥∥
[
x

b(T )· Mk,iwi

]∥∥∥,

where K is a positive numerical constant equal to max{‖hn,k ◦ li‖∞ : 1 6 k, i 6 d}

with ‖hn,k‖∞ 6 C for every n. Therefore lim
n→∞

∥∥∥
[
x̃n

˜̃
T· w̃

]∥∥∥ = 0.

The second assertion follows from similar arguments.

Corollary 3.8. Let b be a finite Blaschke product of type (AI) and de-
note by ũ1, . . . , ũd its pairwise distinct analytic invariants. Let T ∈ L(H) be
an absolutely continuous contraction and ϕ ∈ H∞. For xn ∈ D, set x̃n =
(ϕ ◦ ũ1)(T )xn ⊕ · · · ⊕ (ϕ ◦ ũd)(T )xn, x̂n = xn ⊕ · · · ⊕ xn. Then we have:

(i) lim
n→∞

∥∥∥
[
xn

b(T )· w
]∥∥∥ = 0 for all w ∈ H ⇒ lim

n→∞
v
∥∥∥
[
x̃n

T̃· w̃
]∥∥∥ = 0 for all

w̃ = w1 ⊕ · · · ⊕ wd ∈ H(d).

(ii) lim
n→∞

∥∥∥
[
w

b(T )· xn

]∥∥∥ = 0 for all w ∈ H ⇒ lim
n→∞

∥∥∥
[
w̃

T̃· x̂n

]∥∥∥ = 0 for all

w̃ = w1 ⊕ · · · ⊕ wd ∈ H(d).

Proof. It is an immediate application of Proposition 3.7 taking fi = ϕ ◦ ũi

or fi(z) = z and gi = ũi, 1 6 i 6 d, so that b ◦ ũi = b = li ◦ b with li(z) = z.



A mapping theorem for absolutely continuous contractions 337

The next two results are devoted to show how to transfer a factorization in
L1/H1

0 of a Poisson kernel Pb(λ) linked to the operator b(T ) into a factorization of
[Pλ] linked to the operator T̃ . In order to state the next proposition we need the
following lemma.

Lemma 3.9. Let b be a finite Blaschke product. Suppose that f analytic in
D satisfies f(z) = f(z′) as soon as b(z) = b(z′). Then there exists f̃ analytic in D
such that f = f̃ ◦ b. Moreover, if f ∈ H∞(D) then f̃ ∈ H∞(D).

Proof. Define f̃ on D by f̃(w) = f(z) for any z ∈ D such that b(z) = w (note
that b is onto). The hypothesis f(z) = f(z′) as soon as b(z) = b(z′) guarantees
that f̃ is well-defined. It remains to check that f̃ is holomorphic on D. In fact,
locally, except for finitely many points in b({z ∈ D : b′(z) = 0}), b has an analytic
inverse and thus f̃ = f ◦b−1 is holomorphic in a neighborhood of any w ∈ D\b({z ∈
D : b′(z) = 0}). Also, its definition implies that f̃ is bounded on every compact
subset of D; hence its singularities are removable and it has an analytic extension
on D. Obviously sup

z∈D
|f(z)| = sup

z∈D
|f̃(z)|, which proves the last assertion of the

lemma.

Proposition 3.10. Let b be a finite Blaschke product of type (AI) and de-
note by ũ1, . . . , ũd = Id its pairwise distinct analytic invariants. Let T ∈ L(H)
be an absolutely continuous contraction. Take w ∈ D, λ = b(w) and ϕw(z) =
d−1∏
i=1

z−ũi(w)

w−ũi(w)
. For x ∈ D, set x̃ = (ϕw◦ũ1)(T )x⊕· · ·⊕(ϕw◦ũd)(T )x, x̂ = x⊕· · ·⊕x.

Then we have:

[Pλ] = [x
b(T )· x] ⇒ [Pw] = [x̃

T̃· x̂].

Proof. For h ∈ H∞ we compute

〈[
x̃

T̃· x̂
]
, h

〉
= (h(T̃ )x̃, x̂) =

d∑

i=1

(h ◦ ũi)(T )(ϕw ◦ ũi)(T )x, x).

By Theorem 2.1 in [6] we know that there exist some functions v1, . . . , vd ∈ H∞ ∩
(H2 ª bH2) such that for any function h ∈ H∞:

h(z) =
d∑

k=1

hk(b(z))vk(z)

with hk ∈ H∞, ‖fk‖∞ 6 C‖h‖∞ and where C is a positive numerical constant.
We thus obtain

〈[
x̃

T̃· x̂
]
, h

〉
=

d∑

i=1

d∑

k=1

((hk ◦ b)(T )(vk ◦ ũi)(T )(ϕw ◦ (T )ũi)(T )x, x)

=
d∑

k=1

(hk(b(T ))Ak,ϕw(T )x, x),
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where Ak,ϕw
is a function of H∞ equal to

d∑
i=1

(vkϕw) ◦ ũi. Obviously this function

is invariant (by composition) under every ũi, 1 6 i 6 d. It follows from Lemma 3.9
that Ak,ϕw

is of the form Ãk,ϕw
◦ b. Thus we get:

〈[
x̃

T̃· x̂
]
, h

〉
=

〈[
x

b(T )· x
]
,

d∑

k=1

hkÃk,ϕw

〉
.

Since [x
b(T )· x] = [Pλ], we obtain:

〈[
x̃

T̃· x̂
]
, h

〉
=

d∑

k=1

hk(λ)Ãk,ϕw(λ).

Moreover, by definition of the function ϕw we have:

Ãk,ϕw
(λ) =

d∑

i=1

(vkϕw) ◦ ũi(w) = vk(w).

So, finally, we get:
〈[

x̃
T̃· x̂

]
, h

〉
=

d∑

k=1

hk(λ)vk(w) =
d∑

k=1

hk(b(w))vk(w) = h(w),

that is,
[
x̃

T̃· x̂
]

= [Pw], which ends the proof of the proposition.

We are now ready to conclude the proof of the main result of this section.
We know from [4] that

min{|w − ũi(w)| : w ∈ T, 1 6 i 6 d− 1} > 0.

Thus, by continuity, there exists δ > 0 and an annulus Ω of the form Ω = {z ∈ C :
r < |z| < 1} such that:

|w − ũi(w)| > δ for w ∈ Ω and 1 6 i 6 d− 1.

For w ∈ Ω, let λ = b(w) and ϕw the polynomial defined by:

ϕw(z) =
d−1∏

i=1

z − ũi(w)
w − ũi(w)

.

Note that ‖ϕw‖∞ 6 M where M = (2δ−1)d−1.
Since b(T ) ∈ Aℵ0 , by Proposition 6.1 in [1], there exists a sequence of unit

vectors (xn)n in H such that:

[Pλ] =
[
xn

b(T )· xn

]
and lim

n→∞

(∥∥∥
[
w

b(T )· xn

]∥∥∥ +
∥∥∥
[
xn

b(T )· w
]∥∥∥

)
= 0, w ∈ H.

It follows from Proposition 3.10 and Corollary 3.8 that if we take x̃n = (ϕw ◦
ũ1)(T )xn ⊕ · · · ⊕ (ϕw ◦ ũd)(T )xn and x̂n = xn ⊕ · · · ⊕ xn, we obtain:

[Pw] =
[
x̃n

T̃· x̂n

]
and lim

n→∞

(∥∥∥
[
w̃

T̃· x̂nv]
∥∥∥ +

∥∥∥
[
x̃n

T̃· w̃
]∥∥∥

)
= 0, w̃ ∈ H(d).

Now, observing that ‖x̃n‖ 6 M
√

d and ‖x̂n‖ 6
√

d, we see that 1
Md [Pw] ∈ χ0(T̃ )

for any w ∈ Ω. Therefore, by Proposition 3.6, T̃ belongs to Aℵ0 as was to be
shown.
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4. PROOF OF THE MAIN RESULT AND ADDITIONAL MAPPING THEOREMS

It will be convenient in what follows to record some useful properties of the bound-
ary set XT (see Proposition 3.5 and Proposition 3.9 in [12]).

Proposition 4.1. Let T and T ′ be absolutely continuous contractions in
L(H). Then

(i) XT⊕T ′ = XT ∪XT ′ ;
(ii) if φ is any conformal automorphism of D (i.e. Blaschke product of degree

one), then φ(XT ) = Xφ(T ).

Proposition 4.2. (Proposition 3.1 in [6]) For any non constant inner func-
tion u and for any absolutely continuous contraction T , we have:

u(XT ) ⊂ Xu(T ).

The main application of Theorem 3.3 is the following mapping result.

Theorem 4.3. Let b be a finite Blaschke product of type (AI) and let T be
an absolutely continuous contraction. Then we have the following mapping result:

b(XT ) = Xb(T ).

Proof. First, suppose that Xb(T ) = T, that is, suppose that b(T ) ∈ Aℵ0 .
Our aim is to prove that b(XT ) = T. In order to prove that, let us introduce the
operator T̃ defined by T̃ = ũ1(T ) ⊕ · · · ⊕ ũd(T ) where d is the degree of b and
where (ũi)16i6d is the finite sequence of elliptic Möbius transformations satisfying
b ◦ ũi = b on D for every i ∈ {1, . . . , d}. Using Proposition 4.1, we get

X
T̃

= ũ1(XT ) ∪ · · · ∪ ũd(XT ),

and thus we obtain:

b(X
T̃
) = b ◦ ũ1(XT ) ∪ · · · ∪ b ◦ ũd(XT ) = b(XT ).

Since b(T ) ∈ Aℵ0 , by Theorem 3.3, we get T̃ ∈ Aℵ0 . Therefore we have X
T̃

= T
and b(X

T̃
) = b(XT ) = T.

Now suppose that Xb(T ) 6= T. If γ is any Borel subset of T we denote by Mγ

the absolutely continuous unitary operator on L2(γ), defined by:

(Mγx)(eit) = eitx(eit), x ∈ L2(γ), eit ∈ T,

and by M̃γ the direct sum of ℵ0 copies of Mγ acting on the Hilbert space L̃2(Γ) =⊕
n∈N

L2(Γ). Note that X
M̃γ

= γ. Take σ = T \ Xb(T ) and consider the operator

T̂ = T ⊕ M̃γ where γ is a Borel subset of T such that b(γ) = σ. It follows that

b(T̂ ) = b(T )⊕ M̃σ,

and thus X
b(T̂ )

= Xb(T ) ∪ σ = T by Proposition 4.1. Previously we have seen that
necessarily b(X

T̂
) = T. Since we have:

Xb(T ) ∪ σ = T = b(XT ∪ γ) = b(XT ) ∪ σ,

the fact that b(XT ) ⊂ Xb(T ) (cf. Proposition 4.2) implies that Xb(T ) = b(XT ).
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The second assertion of the next corollary has already been proved in [12]
but we would like to emphasize the fact that it is now an immediate consequence
of Theorem 4.3.

Corollary 4.4. Let b be a finite Blaschke product satisfying at least one of
the following conditions:

(i) the degree of b is less than or equal to 2, or
(ii) the set of the zeros of b, Z(b), is reduced to a single point of D.
Then we have Xb(T ) = b(XT ) for any absolutely continuous contraction T .

Proof. By Theorem 4.3, the only thing to do is to check that the finite
Blaschke products satisfying one of the above conditions are in fact of type (AI).
If b is of degree one, it is clear since the identity map Id : z 7→ z is always an
analytic invariant for every Blaschke product. When b is of degree two, that is, if
b is of the form b(z) = eiθ z−α

1−αz
z−β

1−βz
with θ ∈ [0, 2π) and α, β in D, then b is also

of type (AI) since the group G of the continuous invariants of b on T is generated
by the involution z 7→ γ−z

1−γz where γ is the solution of the equation

γ + γ(αβ) = α + β.

Finally, if b is of the form b(z) = eiθ
(

α−z
1−αz

)n

, n > 1, with θ ∈ [0, 2π) and α ∈ D,
then b is of type (AI) since the group G of the continuous invariants of b on T is
generated by the function ϕα ◦ξn ◦ϕα where ϕα(z) = α−z

1−αz and ξn(z) = e2iπ/nz.

The next corollary is an obvious consequence of Theorem 4.3 and generalizes
Corollary 4.4.

Corollary 4.5. Let b be a Blaschke product for which there exists a finite
sequence (bk)16k6n of finite Blaschke products of type (AI) such that

b = b1 ◦ · · · ◦ bn.

Then we have Xb(T ) = b(XT ) for any absolutely continuous contraction T .

Proof. Applying Theorem 4.3 n times we obtain:

Xb(T ) = Xb1◦···◦bn(T ) = b1(Xb2◦···◦bn(T ))

= b1 ◦ b2(Xb3◦···◦bn(T ))
...

= b1 ◦ · · · ◦ bn(XT ) = b(XT ).

Remark 4.6. Blaschke products for which there exists a finite sequence
(bk)16k6n of finite Blaschke products of type (AI) such that b = b1 ◦ · · · ◦ bn are

not necessarily of type (AI). Indeed, take for example b(z) = z2
(

z−α
1−αz

)2

where

α ∈ D \ {0}. Clearly we have b = b1 ◦ b2 with b1(z) = z2 and b2(z) = z z−α
1−αz . Since

the degree of b1 and b2 is two, b1 and b2 are of type (AI) but the only analytic
invariants of b are the identity map and the involution z 7→ α−z

1−αz , and thus b is
not of type (AI).
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We recall that if T is an arbitrary absolutely continuous contraction in L(H)
and if σ is a Borel subset of T, then we say that σ is essential for T and we write
σ ⊂ ess(T ) (cf. Definition 3.1 in [11]) if:

‖f(T )‖ > ‖f|σ‖∞, f ∈ H∞(T).

We will denote by Ess(T ) the maximal essential Borel subset for T (see Proposi-
tion 3.3 of [11]). Using this terminology we have T ∈ A if and only if Ess(T ) = T.
Also denote by ΣT (respectively Σ∗T ) the support of the spectral measure of the
unitary part R (respectively R∗) of the minimal isometric dilation (respectively
minimal coisometric extension) of T . The link between all the boundary sets
Ess(T ),ΣT , Σ∗T and XT is given by Corollary 4.4 in [12]:

Ess(T ) = XT ∪ ΣT ∪ Σ∗T .

In [12] the authors introduced the boundary set El
T equal to XT ∪ΣT (respectively

Er
T equal to XT ∪ Σ∗T ) whose equality to the unit circle is equivalent to the

membership of T in the class Aℵ0,1 (respectively A1,ℵ0). Since, by Corollary 3.1
in [6], we have u(ΣT ) = Σu(T ) and u(Σ∗T ) = Σ∗u(T ) for every inner functions u,
we obtain immediately the following corollary. Note that the last two equivalences
show that the sufficient conditions for membership of b(T ) in Aℵ0,1 or A1,ℵ0 given
in [6], Corollary 3.2, are indeed necessary.

Corollary 4.7. Let b be a Blaschke product for which there exists a finite
sequence (bk)16k6n of finite Blaschke products of type (AI) such that b = b1◦· · ·◦bn.
Then we have:

Ess(b(T )) = b(Ess(T )), El
b(T ) = b(El

T )] and Er
b(T ) = b(Er

T )

for any absolutely continuous contraction T . In particular we get the following
equivalences: {

b(T ) ∈ A⇔ b(XT ) ∪ b(ΣT ) ∪ b(Σ∗T ) = T
b(T ) ∈ Aℵ0,1 ⇔ b(XT ) ∪ b(ΣT ) = T
b(T ) ∈ A1,ℵ0 ⇔ b(XT ) ∪ b(Σ∗T ) = T.

Remark 4.8. Let b be an arbitrary Blaschke product of finite degree; its
invariants have analytic extension ũi in the annulus CM =

{
z ∈ C : M < |z| < 1

M

}

(where M = max{|α| : α ∈ b(α)}) which still satisfy b◦ũi = b in CM (cf. beginning
of Section 3. Suppose that

(4.1) σ(T ) ⊂ {z ∈ C : M < |z| 6 1}.
The operators ũi(T ) are well-defined (for instance via the Riesz-Dunford-Schwarz
functional calculus). Provided they are absolutely continuous contractions, the
operator T̃ = ũ1(T )⊕· · ·⊕ ũd(T ) is also an absolutely continuous contraction and
the previous argument goes through. In fact, we will show shortly that under the
above spectral inclusion the absolute continuity is automatic. Therefore we have
also

b(XT ) = Xb(T )

when (4.1) holds and ‖ũi(T )‖ 6 1, 1 6 i 6 d.
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To prove the absolute continuity we note that under (4.1), with Ω = {z ∈
C : M < |z| < 1}, we have an H∞(Ω) w*-continuous functional calculus h 7→ h(T )

extending the Sz.-Nagy–Foias functional calculus of T and the rational functional

one (this is standard and can be proved, for example, along the lines of Section 7

in [13]). The representation h 7→ h ◦ ũi, h ∈ H∞(D), extends the polynomial

functional calculus associated with ũi(T ) and is clearly w*-continuous. Hence,

when ‖ũi(T )‖ 6 1, this representation is the Sz.-Nagy–Foias functional calculus

for ũi(T ) which is therefore absolutely continuous.
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