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Abstract. It has recently been established that if V is the classical Volterra
(indefinite integration) operator acting on the Hilbert space L2([0, 1]), then
the operator and Hilbert-Schmidt norms of V n are both asymptotically
1/(2n!). We extend this in two ways: firstly, we give a generalisation which
applies to Volterra convolution operators with kernels satisfying a mild
smoothness condition, and secondly we show that in the constant-kernel case
the same asymptotic behaviour is shared by the trace norm, and hence by a
wide class of operator norms.
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1. INTRODUCTION

Consider the Volterra operator V acting on the Hilbert space L2([0, 1],R) defined
by

(V u)(t) =

t∫

0

u(s) ds.

Lao and Whitley (Equation (17), [5]), prompted by a question raised by Halmos,
showed that

1
2
√

e
6 lim inf

n→∞
n!‖V n‖ 6 lim sup

n→∞
n!‖V n‖ 6 1

2

where ‖ · ‖ denotes the operator norm, and conjectured based on numerical ev-
idence (Equation (16), [5]) that n!‖V n‖ → 1/2 as n → ∞. This conjecture was
proved by Kershaw ([4]), who showed that

1
2n!

6 ‖V n‖ 6 1
2n!

(
1− 1

2n

)−1/2

= ‖V n‖2



370 S.P. Eveson

where ‖ · ‖2 denotes the Hilbert-Schmidt norm. In particular, both ‖V n‖ and
‖V n‖2 are asymptotically equal to 1/(2n!) as n → ∞. This result has been
reproduced by Little and Reade ([6]) using slightly more elementary techniques.
Independently, Thorpe (Remark 3, [10]) has shown that ‖V n‖ and ‖V n‖2 are both
asymptotically equal to 1/(2Γ(n + 1)) as n → ∞ through R+, not just N, where
V n is the Riemann-Liouville fractional integration operator defined for any real
n > 0 by

(1.1) (V nu)(t) =
1

Γ(n)

t∫

0

(t− s)n−1u(s) ds,

(which agrees with the definition of V n as the nth iterate of V for n ∈ N).
Concerning the class of Volterra convolution operators Vk defined on

L2([0, 1],R) by

(Vku)(t) =

t∫

0

k(t− s)u(s) ds

for k ∈ L1([0, 1],R), Lao and Whitley also asked “for which convolution operators
Vk does lim

n→∞
n!‖V n

k ‖ exist and how can this limit be determined from the kernel
function k?”

This paper addresses this and more general questions. To answer exactly
this question, if k is any real L1 function such that k′(0) exists and k(0) = ±1
then

n!‖V n
k ‖ →

ek′(0)/k(0)

2
as n →∞, and the same is true for the Hilbert-Schmidt norm. More generally, if
k(t) = f(t)tr for some r > −1, f(0) 6= 0 and f ′(0) exists then

‖V n
k ‖ ∼ ‖V n

k ‖2 ∼
(
Γ(r + 1)|f(0)|)nef ′(0)/f(0)

2Γ((r + 1)n + 1)

as n →∞.
Returning to the fractional integration operators defined in (1.1), we also

show that

‖V n‖1 ∼ 1
2Γ(n + 1)

as n →∞ through R+, where ‖ · ‖1 denotes the trace norm. It is then immediate
that

Φ(V n) ∼ 1
2Γ(n + 1)

where Φ is any Schatten-von Neumann norm corresponding to a symmetric se-
quence norm which is normalised so that the singular value sequence (1, 0, 0, . . .)
has norm 1.
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2. NOTATION

The singular values of a bounded operator T on a separable Hilbert space H are
denoted by (σn(T ))n>0, defined by

σn(T ) = inf{‖T −R‖ : rank(R) 6 n}.

It follows immediately from this definition that

(2.1) σm+n(S + T ) 6 σm(S) + σn(T ).

As mentioned above, we denote by ‖ · ‖ the operator norm and by ‖ · ‖2 the
Hilbert-Schmidt norm. More generally, we shall use ‖ · ‖p for the Schatten p-norm
defined by

‖T‖p
p =

∞∑
n=0

σp
n(T )

and Ip(H) for the ideal of operators on H for which this sum converges. For
functions on the real line, we use ‖ · ‖p to denote the Lp norm; it should always
be clear from context which norm is meant.

If k ∈ L1([0, 1],R) we define the Volterra operator Vk on L2([0, 1],R) by

(Vku)(t) =

t∫

0

k(t− s)u(s) ds.

The Hilbert-Schmidt norm of Vh is evidently given by

‖Vk‖22 =

1∫

0

(1− x)k(x)2 dx.

For n ∈ N, the nth convolution power k∗n of k is defined for t ∈ [0, 1] by

k∗1(t) = k(t), k∗(n+1)(t) =

t∫

0

k∗n(s)k(t− s) ds,

so Vk∗n = (Vk)n.

If (an) and (bn) are positive real sequences indexed by either n ∈ N or
n ∈ R+, we write an ∼ bn as n →∞ to mean that an/bn → 1 as n →∞, an . bn

as n → ∞ to mean that lim sup
n→∞

an/bn 6 1 and an & bn as n → ∞ to mean that

lim inf
n→∞

an/bn > 1.
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3. APPROXIMATION BY RANK 1 OPERATORS

A striking feature of Kershaw’s and Thorpe’s results is that the operator and
Hilbert-Schmidt norms of V n are asymptotically equal to each other. These norms
only coincide exactly for operators of rank 0 or 1, so the fact that ‖V n‖/‖V n‖2 → 1
as n →∞ should mean that V n is tending towards the set of rank 1 operators in
some sense. This idea, generalised to any Schatten p-class with p < ∞, is made
precise in the following result (in fact, we shall only use p = 1 and p = 2 below).

Lemma 3.1. Suppose that H is a Hilbert space and that (Sn) is a sequence of
non-zero operators in Ip(H), where 1 6 p < ∞. Then the following are equivalent:

(i) ‖Sn‖/‖Sn‖p → 1 as n →∞;
(ii) there exists a sequence (Tn) of rank 1 operators on H such that ‖Sn −

Tn‖p/‖Sn‖p → 0 as n →∞.

Proof. Let rn = ‖Sn‖/‖Sn‖p and dn = inf{‖Sn−S‖p : rank(S) 6 1}/‖Sn‖p.
We claim that rp

n + dp
n = 1, from which the equivalence of the two statements

immediately follows.

We have ‖Sn‖ = σ0(Sn), ‖Sn‖p
p =

∞∑
j=0

σp
j (Sn) and the ‖ · ‖p distance between

Sn and the set of rank 1 operators is
( ∞∑

j=1

σp
j (Sn)

)1/p

(the finite-dimensional

version of this is due to Mirsky ([7]), or see Example 7.4.52 in [3], and the extension
to infinitely many dimensions is immediate). We now have

rp
n =

σp
0(Sn)

∞∑
j=0

σp
j (Sn)

, dp
n =

∞∑
j=1

σp
j (Sn)

∞∑
j=0

σp
j (Sn)

so rp
n + dp

n = 1, as claimed.

The well-known theorem of Adamjan, Arov and Krein, or “AAK Theorem”
(see for example Chapter 6 in [8]), states that exactly one of the operator-norm
optimal rank n approximants to a compact Hankel operator Γ, is itself a Hankel
operator. This is not in general true for norms other than the operator norm, but
there are various weaker results known; see Section 6 in [2]. We shall need only
the following very special case which, for the sake of completeness, we prove.

Lemma 3.2. Suppose that H is a Hilbert space and that Γ ∈ Ip(H) is a
Hankel operator. Let Γ′ be the rank 1 Hankel operator with ‖Γ − Γ′‖ = σ1(Γ).
Then

‖Γ− Γ′‖2 6
√

3 inf{‖Γ− T‖2 : rank(T ) 6 1}.

Proof. Applying equation (2.1), we see that

σj+1(Γ− Γ′) 6 σj(Γ) + σ1(Γ′) = σj(Γ)
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since rank(Γ′) = 1. Now,

‖Γ− Γ′‖22 =
∞∑

j=0

σ2
j (Γ− Γ′) = σ2

0(Γ− Γ′) + σ2
1(Γ− Γ′) +

∞∑

j=1

σ2
j+1(Γ− Γ′)

6 2σ2
1(Γ) +

∞∑

j=1

σ2
j (Γ) 6 3

∞∑

j=1

σ2
j (Γ) = 3 inf{‖Γ− T‖22 : rank(T ) 6 1}

again using the result of Mirsky cited in the proof of Lemma 3.1.

For convenience, we also record the trivial results:

Lemma 3.3. Let (pn) and (qn) be sequences in a normed space. Then:
(i) ‖pn − qn‖/‖qn‖ → 0 as n → ∞ if and only if ‖pn − qn‖/‖pn‖ → 0 as

n →∞;
(ii) if ‖pn − qn‖/‖qn‖ → 0 as n →∞ then ‖pn‖/‖qn‖ → 1 as n →∞;
(iii) in an inner product space, |〈pn, qn〉|/(‖pn‖ ‖qn‖) → 1 as n → ∞ if

and only if there exists a sequence (αn) of non-zero scalars such that ‖pn −
αnqn‖/‖pn‖ → 0 as n →∞.

For the time being, we shall only consider the Hilbert-Schmidt and operator
norms, returning to other norms in Section 8. We show first that when Sn = V n

h

in Lemma 3.1, we need only consider rank 1 approximants T of the form

(Tu)(t) =

1∫

0

αeβ(t−s)u(s) ds.

Theorem 3.4. Suppose that k ∈ L1([0, 1],R) is such that V n
k is Hilbert-

Schmidt for some n ∈ N. Then the following are equivalent:
(i) ‖V n

k ‖/‖V n
k ‖2 → 1 as n →∞;

(ii) there exist real sequences (αn) and (βn) with βn → ∞ as n → ∞ such
that

β2
n

α2
ne2βn

1∫

0

(1− x)(k∗n(x)− αneβnx)2 dx → 0 as n →∞;

(iii) there exists a real sequence (βn) tending to ∞ such that

4β2
n

( 1∫
0

(1− x)k∗n(x)eβnx dx
)2

e2βn

1∫
0

(1− x)k∗n(x)2 dx

→ 1 as n →∞.

Proof. (i) ⇒ (ii) If ‖V n
k ‖ ∼ ‖V n

k ‖2 as n →∞ then by Lemma 3.1 there exists
a sequence (Tn) of rank 1 operators such that ‖V n

k − Tn‖2/‖V n
k ‖2 → 0 as n →∞.
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Consider the unitary operator U on L2([0, 1]) defined by (Uu)(t) = u(1− t),
and extend the operators UV n

k and Sn := UTn to map from L2([0,∞)) to itself
by making them zero on L2([1,∞)). We have

(UV n
k u)(t) =

1−t∫

0

k∗n(1− t− s)u(s) ds

for 0 6 t 6 1, so if we define

kn(y) =
{

k∗n(1− y) if 0 6 y 6 1,
0 if y > 1,

then we have

(Γnu)(t) =

∞∫

0

kn(t + s)u(s) ds

for u ∈ L2([0,∞) and t > 0, which shows that Γn is a Hankel operator on
L2([0,∞)). Moroever, Sn has rank 1 and

‖Γn − Sn‖2
‖Γn‖2 =

‖UV n
k − UTn‖2
‖UV n

k ‖2
=
‖V n

k − Tn‖2
‖V n

k ‖2
→ 0

as n →∞. Now, Lemma 3.2 shows that there exists a sequence of rank 1 Hankel
operators Γ′n such that

‖Γn − Γ′n‖2
‖Γn‖2 6

√
3‖Γn − Sn‖2
‖Γn‖2 → 0

as n →∞ which implies (Lemma 3.3 part (i)) that

‖Γn − Γ′n‖2
‖Γ′n‖2

→ 0

as n →∞. Rank 1 Hankel operators have a very simple structure: we have

(Γ′nu)(t) =

∞∫

0

γne−βn(t+s)u(s) ds

for some γn, βn ∈ R with βn > 0, and

‖Γ′n‖22 =

∞∫

0

γ2
nye−2βny dy =

γ2
n

4β2
n

.

This gives

4β2
n

γ2
n

∞∫

0

y(kn(y)− γne−βny)2 dy → 0
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as n →∞. Since kn(y) = 0 if y > 1, we have

‖Γn − Γ′n‖2
‖Γ′n‖2

=
4β2

n

γ2
n

1∫

0

y(kn(y)− γne−βny)2 dy +
4β2

n

γ2
n

∞∫

1

γ2
nye−2βny dy

=
4β2

n

γ2
n

1∫

0

y(kn(y)− γne−βny)2 dy + e−2βn(βn + 1).

But this sum tends to 0 as n → ∞ and both terms are positive, so both terms
must tend to zero; this shows that βn →∞ and that

β2
n

γ2
n

1∫

0

y(kn(y)− γne−βny)2 dy → 0

as n → ∞. Now, kn(y) = k∗n(1 − y) for 0 6 y 6 1; using this and making the
substitution y = 1− x in the above integral gives

β2
n

γ2
n

1∫

0

(1− x)(k∗n(x)− γne−βneβnx)2 dx → 0

as n →∞. Finally, write αn = γne−βn to give

β2
n

α2
ne2βn

1∫

0

(1− x)(k∗n(x)− αneβnx)2 dx → 0

which is statement (ii).
(ii) ⇒ (i) By Lemma 3.1 and Lemma 3.3 part (i), ‖V n

k ‖/‖V n
k ‖2 → 1 if

and only if there exists a sequence (Tn) of rank 1 operators such that ‖V n
k −

Tn‖22/‖Tn‖22 → 0. It is therefore sufficient for this that sequences (αn) and (βn)
exist with βn tending to ∞ such that the operators (Tn) defined by

(Tnu)(t) =

1∫

0

αneβn(t−s)u(s) ds

satisfy ‖V n
k − Tn‖22/‖Tn‖22 → 0. We can evaluate these Hilbert-Schmidt norms by

breaking the square into an upper and a lower triangle and making the obvious
substitutions to give:

‖V n
k − Tn‖22 =

1∫

0

(1− x)(k∗n(x)− αneβnx)2 dx

︸ ︷︷ ︸
=:an

+
α2

n

4β2
n

(e−2βn + 2βn − 1)
︸ ︷︷ ︸

=:bn
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where the first term, an, is from the upper triangle and the second term, bn, is
from the lower triangle, and that

‖Tn‖22 =

1∫

0

(1− x)(αneβnx)2 dx

︸ ︷︷ ︸
=:cn

+
α2

n

4β2
n

(e−2βn + 2βn − 1)
︸ ︷︷ ︸

=bn

=
α2

n

4β2
n

(e2βn − 2βn − 1)
︸ ︷︷ ︸

=cn

+
α2

n

4β2
n

(e−2βn + 2βn − 1)
︸ ︷︷ ︸

=bn

where again the first term, cn, is from the upper triangle and the second term,
again bn, is from the lower triangle. Now,

‖V n
k − Tn‖22
‖Tn‖22

=
an + bn

cn + bn
=

an

cn
+ bn

cn

1 + bn

cn

and bn/cn → 0 as n → ∞ since βn → ∞ as n → ∞. We therefore have (‖V n
k −

Tn‖2)/‖Tn‖ → 0 as n →∞ if and only if an/cn → 0 as n →∞; explicitly

4β2
n

1∫
0

(1− x)(k∗n(x)− αneβnx)2 dx

α2
n(e2βn − 2βn − 1)

→ 0

as n →∞. But since βn →∞, this is equivalent to

β2
n

α2
ne2βn

1∫

0

(1− x)(k∗n(x)− αneβnx)2 dx → 0 as n →∞

which is exactly statement (ii).
(ii) ⇔ (iii) In the notation from the previous part, write an/cn in the form

1∫
0

(1− x)(k∗n(x)− αneβnx)2 dx

1∫
0

(1− x)(αneβnx)2 dx

which is of the form ‖pn−αnqn‖2/‖αnqn‖2 where (pn) and (qn) are sequences in a
weighted L2 space. By Lemma 3.3 (iii), this is equivalent to |〈pn, qn〉|/(‖pn‖ ‖qn‖)→
1 as n →∞, that is

( 1∫
0

(1− x)k∗n(x)eβnx dx
)2

1∫
0

(1− x)k∗n(x)2 dx
1∫
0

(1− x)e2βnx dx

→ 1

as n →∞. Now,
1∫

0

(1− x)e2βnx dx =
e2βn − βn − 1

4β2
n

∼ e2βn

4β2
n
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as n →∞, so this is equivalent to

4β2
n

( 1∫
0

(1− x)k∗n(x)eβnx dx
)2

e2βn

1∫
0

(1− x)k∗n(x)2 dx

→ 1

as n →∞, which is exactly the second condition above.

4. SOME ASYMPTOTIC EXPANSIONS OF INTEGRALS

In order to apply Theorem 3.4 to some concrete examples, we need to find the
asymptotic behaviour of some integrals. Consider the Laplace integral

I(λ) =

b∫

a

f(t)e−λϕ(t) dt

where ϕ and f are C2 in a neighbourhood of b, the absolute minimum of ϕ over
[a, b] is attained at b, and ϕ′(b) < 0. It is well known that the first term in the
asymptotic expansion of I(λ) is

I(λ) ∼ −e−λϕ(b) f(b)
ϕ′(b)

1
λ

as λ →∞. For the applications below, we shall also need the second term in this
expansion. This seems to be less easy to locate in the literature, so we sketch a
proof.

Under the stated hypotheses, ϕ is certainly invertible in a neighbourhood
of b, and since ϕ has an absolute minimum at b, standard considerations show
that its values outside any neighbourhood of b have no effect on the aymptotic
behaviour of I(λ) as λ →∞. We may therefore assume without loss of generality
that ϕ is invertible on [a, b].

Using the same approach and notation as Bleistein and Handelsman (Sec-
tion 5.1, [1]) use for the case of a stationary extremum, we write

I(λ) = −e−λϕ(b)(LG)(λ), where G(τ) =
f(t)
ϕ′(t)

∣∣∣
t=ϕ−1(ϕ(b)+τ)

and L denotes the Laplace transform. To obtain the asymptotics of LG, we need
to expand G as a Taylor series about the origin and apply Watson’s Lemma (see
for example Section 4.1 in [1]).

Plainly, G(0) = f(b)/ϕ′(b). Next,

G′(τ) =
ϕ′(t)f ′(t)− f(t)ϕ′′(t)

ϕ′(t)2

∣∣∣
t=ϕ−1(ϕ(b)+τ)

1
ϕ′(ϕ−1(ϕ(b) + τ))

so

G′(0) =
ϕ′(b)f ′(b)− f(b)ϕ′′(b)

ϕ′(b)3
.
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Now, Watson’s Lemma shows that

(LG)(λ) ∼ f(b)
ϕ′(b)

1
λ

+
ϕ′(b)f ′(b)− f(b)ϕ′′(b)

ϕ′(b)3
1
λ2

as λ →∞. It follows that

I(λ) ∼ −e−λϕ(b)
( f(b)

ϕ′(b)
1
λ

+
ϕ′(b)f ′(b)− f(b)ϕ′′(b)

ϕ′(b)3
1
λ2

)

as λ →∞.
We now record for future reference the asymptotic behaviour of some Laplace

type integrals. All of these results can be obtained from the formula given above.
1∫

0

(1− x)xme(ξ+m)x dx ∼ em+ξ

4m2
(4.1)

1∫

0

(1− x)eξxxm dx ∼ eξ

m2
(4.2)

1−δ∫

0

eξxxm ∼ eξ(1−δ) (1− δ)m−1

m
(4.3)

as m → ∞ for any ξ ∈ R and δ ∈ (0, 1). Finally, it is an immediate consequence
of Stirling’s formula that for any a, b ∈ R with a > 0,

(4.4)
Γ(am + b)

Γ(am)
∼ (am)b

as m →∞.

5. KERNELS OF THE FORM k(t) = eµttr

We now consider kernels of the form k(t) = eµttr for r, µ ∈ R with r > −1. It is
easy to check, either by induction or by using a Laplace transform, that the nth
convolution power of k is given by

k∗n(t) =
(Γ(r + 1))n

Γ((r + 1)n)
eµtt(r+1)n−1.

Moreover, we can use this as a definition of k∗n, and hence of V n
k , for any real

n > 0. With this definition, we can give our first extension of Kershaw’s and
Thorpe’s results.

Theorem 5.1. If k(t) = ceµttr where µ, r ∈ R with r > −1 then

‖V n
k ‖ ∼ ‖V n

k ‖2 ∼
(cΓ(r + 1))neµ

2Γ((r + 1)n + 1)

as n →∞ through R+.



Norms of iterates of Volterra operators on L2 379

Proof. Firstly, it is apparent from the explicit formula above that V n
k is a

Hilbert-Schmidt operator for sufficiently large n; precisely, if 2(r + 1)n > 1.
We claim that the condition in Theorem 3.4, item (iii), is satisfied with

βn = (r + 1)n− 1. We need to show that

4β2
n

( 1∫
0

(1− x)(k∗n(x)eβnx dx
)2

e2βn

1∫
0

(1− x)k∗n(x)2 dx

→ 1

as n →∞. Substituting the explicit formula for k∗n in the left-hand side gives

4β2
n

( 1∫
0

(1− x)e(µ+βn)xxβn dx
)2

e2βn

1∫
0

(1− x)e2µxx2βn dx

.

Now, the integral in the numerator is asymptotically eµ+βn/(4β2
n) as n → ∞ by

equation (4.1) with ξ = µ and m = βn and the integral in the denominator is
asymptotically e2µ/(4β2

n) as n →∞ by equation (4.2) with ξ = 2µ and m = 2βn.
Thus, the whole expression is asymptotically 1 as n →∞, as required.

It now follows from Theorem 3.4 that ‖V n
k ‖ ∼ ‖V n

k ‖2 as n →∞. But

‖V n
k ‖22 =

( (cΓ(r + 1))n

Γ((r + 1)n)

)2
1∫

0

(1− x)e2µxx2βn dt ∼
( (cΓ(r + 1))n

Γ((r + 1)n)

)2 e2µ

4β2
n

by equation (4.2). We thus have that

‖V n
k ‖ ∼ ‖V n

k ‖2 ∼
(cΓ(r + 1))neµ

((r + 1)n− 1)Γ((r + 1)n)
∼ (cΓ(r + 1))neµ

Γ((r + 1)n + 1)
as n →∞.

6. ESTIMATES FOR MORE GENERAL KERNELS

If a kernel can be bounded above or below by a function of the form considered
in the previous section, then we can make obvious estimates on the behaviour of
its iterates. We need only observe that if 0 6 k 6 h then for all n ∈ N we have
0 6 k∗n 6 h∗n and hence ‖V n

k ‖ 6 ‖V n
h ‖ and ‖V n

k ‖2 6 ‖V n
h ‖2 to see that:

Lemma 6.1. Suppose that k ∈ L1([0, 1],R), that c, r, µ, ν ∈ R with r > −1
and c > 0 and that ctreµt 6 k(t) 6 ctreνt for t ∈ [0, 1]. Then

(cΓ(r + 1))neµ

Γ((r + 1)n + 1)
. ‖V n

k ‖ 6 ‖V n
k ‖2 . (cΓ(r + 1))neν

Γ((r + 1)n + 1)
.

In particular,

eµ−ν . ‖V n
k ‖

‖V n
k ‖2

6 1
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as n →∞.
We shall need another result concerning kernels of this type. The significance

of this will become apparent later, but it captures in a particular technical sense
the idea that convolution powers take on much larger values near 1 than they do
near 0.

Lemma 6.2. Suppose that k ∈ L1([0, 1],R), that c, r, µ, ν ∈ R with r > −1
and c > 0 and that ctreµt 6 k(t) 6 ctreνt for t ∈ [0, 1]. Then for any δ ∈ (0, 1),
any j ∈ Z and any polynomial P ,

P (n)

1−δ∫
0

k∗(n−j)(x)2 dx

1∫
0

(1− x)k∗n(x)2 dx

→ 0

as n →∞.
Proof. Since 0 < ctreµt 6 k(t) 6 ctreνt for all t ∈ [0, 1], it follows that for all

n ∈ N,

0 <
(cΓ(r + 1))n

Γ((r + 1)n)
eµtt(r+1)n−1 6 k∗n(t) 6 (cΓ(r + 1))n

Γ((r + 1)n)
eνtt(r+1)n−1.

The left-hand inequality gives
1∫

0

(1− x)k∗n(x)2 dx > (cΓ(r + 1))2n

Γ((r + 1)n)2

1∫

0

(1− x)e2µxx2(r+1)n−2 dx

∼ (cΓ(r + 1))2n

Γ((r + 1)n)2
e2µ

(2(r + 1)n)2

by equation (4.2) with ξ = 2µ and m = 2(r + 1)n− 2. The right-hand inequality
with n− j in place of n gives

1−δ∫

0

k∗(n−j)(x)2 dx 6 (cΓ(r + 1))2(n−j)

Γ((r + 1)(n− j))2

1−δ∫

0

e2νxx2(r+1)(n−j)−2 dx

∼ (cΓ(r + 1))2(n−j)

Γ((r + 1)(n− j))2
e2ν(1−δ) (1− δ)2(r+1)(n−j)−2

2(r + 1)n
by equation (4.3) with ξ = 2ν and m = 2(r − 1)(n− j)− 2. We therefore have

P (n)

1−δ∫
0

k∗(n−j)(x)2 dx

1∫
0

(1− x)k∗n(x)2 dx

.P (n)
(cΓ(r + 1))2(n−j)

Γ((r + 1)(n− j))2
(1− δ)2(r+1)(n−j)−2

2(r + 1)n
e2ν(1−δ) Γ((r + 1)n)2

(cΓ(r + 1))2n

(2(r + 1)n)2

e2µ

= CnP (n)
Γ((r + 1)n)2

Γ((r + 1)(n− j))2
(1− δ)2(r+1)n

where C = 2(r + 1)e2ν(1−δ)−2µ(cΓ(r + 1))−2j , which does not depend on n
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∼ CnP (n)((r + 1)n)2(r+1)j(1− δ)2(r+1)(n−j)−2

by equation (4.4). This tends to zero as n →∞ since r > −1 and 0 < δ < 1.

7. MAIN RESULTS

We have now assembled the tools to analyse a reasonably wide class of kernels.
The first result is a localisation lemma: if k and f agree in a neighbourhood of the
origin and one of them can be bounded above and below in the way described in the
previous section, then the Hilbert-Schmidt norms of V n

k and V n
f are asymptotically

equal and the operator norms of V n
k and V n

f are asymptotically equal.

Lemma 7.1. Suppose that k, h ∈ L1([0, 1],R), that there exists δ ∈ (0, 1)
such that for all t ∈ [0, δ], k(t) = h(t), and that there exist µ, ν, r, c ∈ R with
r > −1 and c > 0 such that for all t ∈ [0, 1], ctreµt 6 k(t) 6 ctreνt. Then
‖V n

k ‖ ∼ ‖V n
h ‖ as n →∞ and ‖V n

k ‖2 ∼ ‖V n
h ‖2 as n →∞.

Proof. Note that all of the calculations below take place in the convolution
algebra L1([0, 1],R).

Let g = h− k, so h = k + g and g is zero on [0, δ]. We have

h∗n = (k + g)∗n = k∗n + g∗n +
n−1∑

j=1

(
n

j

)
k∗(n−j) ∗ g∗j .

Since g is zero to the left of δ, g∗n is zero to the left of nδ and, since we are working
only on [0, 1], is identically zero if n > 1/δ. Similarly, k∗(n−j) ∗ g∗j is zero to the
left of jδ and hence identically zero if j > 1/δ. It follows that if we choose N ∈ N
with N > 1/δ then for all n > N ,

h∗n = k∗n +
N−1∑

j=1

(
n

j

)
k∗(n−j) ∗ g∗j .

Moreover, the fact that g∗j is zero to the left of jδ implies that

k∗(n−j) ∗ g∗j = (k∗(n−j)χ[0,1−jδ]) ∗ g∗j

since values of k∗(n−j) to the right of 1− jδ are multiplied by zero in the definition
of k∗(n−j) ∗ g∗j . We thus have

h∗n = k∗n +
N−1∑

j=1

(
n

j

)
(k∗(n−j)χ[0,1−jδ]) ∗ g∗j .

Now,

‖V n
h − V n

k ‖22 =

1∫

0

(1− x)(h∗n(x)− k∗n(x))2 dx 6
1∫

0

(h∗n(x)− k∗n(x))2 dx

= ‖h∗n − k∗n‖22.
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We therefore have

‖V n
h − V n

k ‖2
‖V n

k ‖2
6 1
‖V n

k ‖2
N−1∑

j=1

(
n

j

)
‖(k∗(n−j)χ[0,1−jδ]) ∗ g∗j‖2

6
N−1∑

j=1

(
n

j

)‖k∗(n−j)χ[0,1−jδ]‖2‖g∗j‖1
‖V n

k ‖2

=
N−1∑

j=1

(
n

j

)
‖g∗j‖1

( 1−jδ∫
0

(k∗(n−j)(x)2 dx
)1/2

( 1∫
0

(1− x)k∗n(x)2 dx
)1/2

.

We can now apply Lemma 7.1:
(
n
j

)‖g∗j‖1 is a polynomial in n for each j, so each of
these terms tends to zero as n tends to ∞. We thus have ‖V n

h −V n
k ‖2/‖V n

k ‖2 → 0
as n →∞ and hence ‖V n

h ‖2 ∼ ‖V n
k ‖2 as n →∞ (Lemma 3.3 (ii)). We also know

from Lemma 6.1 that ‖V n
k ‖2 . eµ−ν‖V n

k ‖, so

‖V n
h − V n

k ‖
‖V n

k ‖
6 eν−µ‖V n

h − V n
k ‖2

‖V n
k ‖2

→ 0

as n →∞, and hence, again from Lemma 3.3 (ii), that ‖V n
h ‖ ∼ ‖V n

k ‖ as n →∞.

We can now finally establish the results claimed in the introduction.

Theorem 7.2. Suppose that k ∈ L1([0, 1],R) and that we can write k(t) =
trf(t), where r > −1, f(0) 6= 0 and in some neighbourhood of the origin f does
not change sign and log(f(t)/f(0)) is bounded (which implies that f is continuous
at 0). Let

µ = lim inf
t→0+

log
f(t)
f(0)

, ν = lim sup
t→0+

log
f(t)
f(0)

.

Then
(Γ(r + 1)|f(0)|)neµ

2Γ((r + 1)n + 1)
. ‖V n

k ‖ 6 ‖V n
k ‖2 . (Γ(r + 1)|f(0)|)neν

2Γ((r + 1)n + 1)
.

If f is differentiable (from the right) at 0 then µ = ν = f ′(0)/f(0) and

‖V n
k ‖ ∼ ‖V n

k ‖2 ∼
(Γ(r + 1)|f(0)|)nef ′(0)/f(0)

2Γ((r + 1)n + 1)
.

Proof. Note that since k is bounded in a neighbourhood of 0, it can be written
as the sum of a bounded function and a function nilpotent in the convolution
algebra L1([0, 1]). It follows that all sufficiently large powers of Vk are Hilbert-
Schmidt operators.

We can assume without loss of generality that f is positive in a neighbour-
hood of 0. Then for any ε > 0 there exists δ > 0 such that if 0 < t < δ then

µ− ε 6 1
t

log
f(t)
f(0)

6 ν + ε
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and hence
f(0)tre(µ−ε)t 6 k(t) 6 f(0)tre(ν+ε)t.

Let

kε(t) =
{

k(t) if 0 6 t 6 δ,
k(0)tre(µ−ε)t if δ < t 6 1,

so k agrees with kε on [0, δ] and for all t ∈ [0, 1] we have

f(0)tre(µ−ε)t 6 kε(t) 6 f(0)tre(ν+ε)t.

By Lemma 6.1,

(f(0)Γ(r + 1))neµ−ε

Γ((r + 1)n + 1)
. ‖V n

kε
‖ 6 ‖V n

kε
‖2 . (f(0)Γ(r + 1))neν+ε

Γ((r + 1)n + 1)

as n →∞. Now, Lemma 6.2 shows that ‖V n
kε
‖ ∼ ‖V n

k ‖ and that ‖V n
kε
‖2 ∼ ‖V n

k ‖2
as n →∞, so we have

(f(0)Γ(r + 1))neµ−ε

Γ((r + 1)n + 1)
. ‖V n

k ‖ 6 ‖V n
k ‖2 . (f(0)Γ(r + 1))neν+ε

Γ((r + 1)n + 1)

as n →∞. Since ε was arbitrary, it follows that

(f(0)Γ(r + 1))neµ

Γ((r + 1)n + 1)
. ‖V n

k ‖ 6 ‖V n
k ‖2 . (f(0)Γ(r + 1))neν

Γ((r + 1)n + 1)
.

If f is differentiable from the right at 0, then so is log f and

(log f)′(0) = lim
t→0+

log(f(t))− log(f(0))
t

= lim
t→0+

log(f(t)/f(0))
t

so we have µ = ν = (log f)′(0) = f ′(0)/f(0) and the two asymptotic bounds
coincide to give

‖V n
k ‖ ∼ ‖V n

k ‖2 ∼
(Γ(r + 1)|f(0)|)nef ′(0)/f(0)

2Γ((r + 1)n + 1)
.

8. THE TRACE NORM AND OTHER NORMS

We now have a class of kernels k for which ‖V n
k ‖ and ‖V n

k ‖2 have the same asymp-
totic behaviour. One immediate consequence of this is that if p > 2 then ‖V n

k ‖p

also has the same asymptotic behaviour (because ‖ · ‖ 6 ‖ · ‖p 6 ‖ · ‖2).
To make similar inferences about a wider class of operator norms, we need to

consider the trace norm ‖ · ‖1. The significance of the trace norm is that if H is a
separable Hilbert space and Φ is an complete operator norm on a non-trivial ideal I
in B(H) such that for all A,∈ B(H) and B ∈ I we have Φ(ABC) 6 ‖A‖Φ(B)‖C‖,
then there is a constant c > 0 such that for all T ∈ I,

c‖T‖ 6 Φ(T ) 6 c‖T‖1.
(See, for example, Simon (Chapter 2, [9]).)

If we could show that ‖V n
k ‖1 ∼ ‖V n

k ‖ then it would follow from this that
Φ(V n

k ) ∼ c‖V n
k ‖ for any of the Schatten-von Neumann norms described in the
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previous paragraph. We shall now show that this is indeed true for the classical
Volterra operator V and its iterates, the fractional integration operators defined
in (1.1). Although V itself is not trace class (it is not difficult to show that its
mth singular value is ((m + 1/2)π)−1), V n is trace class for all n > 1, because
V n = V n/2V n/2 and a simple calculation shows that V n/2 is Hilbert-Schmidt if
n > 1. It therefore makes sense to ask about the asymptotic behaviour of ‖V n‖1
as n →∞ through R+.

Theorem 8.1.

‖V n‖1 ∼ 1
2Γ(n + 1)

as n →∞ through R+.

Proof. We have for any n > 0

(V nu)(t) =
1

Γ(n)

t∫

0

(t− s)n−1u(s) ds.

For n > k > 0, define rank 1 operators Tk,n and Sk,n by

(Tk,nu)(t) =
1

Γ(n)en−k

1∫

0

e(n−k)(t−s)u(s) ds

=
1

Γ(n)

( 1∫

0

e−(n−k)su(s) ds
)
e−(n−k)e(n−k)t

(Sk,nu)(t) =
1

Γ(n)

( 1∫

0

e−(n−k)su(s) ds
)
tn−1.

If we introduce the notation pn(t) = tn and en(t) = ent then we have

Tk,nu =
1

Γ(n)
〈u, e−(n−k)〉e−(n−k)en−k

Sk,nu =
1

Γ(n)
〈u, e−(n−k)〉pn−1.

Since Sk,n has rank 1, we can write its trace norm as

‖Sk,n‖1 =
1

Γ(n)
‖e−(n−k)‖2‖pn−1‖2.

The two norms are easily evaluated, and we have ‖Sk,n‖1 ∼ 1/(2nΓ(n)) as n →∞.
Similarly, rank(Sk,n − Tk,n) = 1, so in the same way

‖Sk,n − Tk,n‖2 =
1

Γ(n)
‖e−(n−k)‖2‖e−n(n−k)e−(n−k) − pn−1‖2.
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The first of these norms is again easy to evaluate, but the second is not so easy.
Expanding the square in the integral defining ‖e−(n−k) − pn−1‖22 gives three in-
tegrals, two straightforward and one which can be expanded to third order using
the methods described in Section 4. A tedious calculation leads to

‖Sk,n − Tk,n‖2 ∼ Ck

n2Γ(n)

where Ck is a constant depending only on k.

We also have

‖V n − Sk,n‖2 =
1

Γ(n)

( 1∫

0

(1− x)(e−(n−k)e(n−k)x − xn−1)2 dx
)1/2

+
O(e−n)
Γ(n)

and a similiar calculation involving a fourth-order expansion gives

‖V n − Sk,n‖2 ∼ C ′k
n2Γ(n)

as n → ∞, where C ′k is another constant depending only on k. Combining these
last two results gives us

‖V n − Sk,n‖2 6 C ′′k
n2Γ(n)

.

Now, we shall use this Hilbert-Schmidt norm estimate to obtain a trace norm
estimate. Abbreviating S1,n to Sn, we have

(V n − Sn)u = V nu− 1
Γ(n)

〈u, e−(n−1)〉pn−1 =V nu− 1
Γ(n)

〈u, e−(n−1)〉Γ(n)V n−11

= V nu− 〈u, e−(n−1)〉V n−11=V α(V n−αu−〈u, e−(n−1)〉V n−1−α1)

= V α

(
V n−αu− 〈u, e−(n−1)〉

pn−α−1

Γ(n− α)

)
=V α(V n−αu− S1−α,n−αu).

We therefore have that if α > 1/2, so V α is Hilbert-Schmidt,

‖V n − Sn‖1 6 ‖V α‖2‖V n−α − S1−α,n−α‖2 6 ‖V α‖2
C ′′1−α

(n− α)2Γ(n− α)

so
‖V n − Sn‖1
‖Sn‖1 6 2nΓ(n)‖V α‖2C ′′1−α

(n− α)2Γ(n− α)
∼ 2‖V α‖2C ′′1−αnα−1

using (4.4). This estimate tends to zero as n → ∞ if α < 1 so, by the Lemma
3.1, ‖V n‖1 ∼ ‖V n‖ as n → ∞. But we know from Theorem 5.1 that ‖Vn‖ ∼
1/(2Γ(n + 1)) as n →∞, so ‖V n‖1 ∼ 1/(2Γ(n + 1)) as n →∞, as claimed.



386 S.P. Eveson

9. FURTHER QUESTIONS

These results raise some further questions:
Firstly, what happens if a kernel is not of the form needed for Theorem 7.2?

Perhaps the simplest example of this is k(t) = 1 + t1/2. If we write ‖V n
k ‖ = cn/n!,

then we have cn → ∞ and ancn → 0 whenever |a| < 1, but the exact rate of
growth is unclear.

Secondly, the calculations in the last section are rather tedious, and the final
estimate for ‖V n − Tn‖1/‖Tn‖1 is, up to a constant factor, n−1/2+ε. Limited
numerical evidence suggests that the decay is closer to 1/n than 1/n1/2. An
alternative approach might be able to clarify the speed of decay and avoid the
unpleasant computations.

Finally, for what other kernels do the trace and operator norms have the same
asymptotic behaviour? The methods in Section 8, based on fractional powers,
clearly have very limited applicability to more general kernels.
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