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NORMS OF ITERATES OF VOLTERRA OPERATORS ON L?

S.P. EVESON

Commumnicated by Nikolai K. Nikolski

ABSTRACT. It has recently been established that if V' is the classical Volterra
(indefinite integration) operator acting on the Hilbert space L?([0,1]), then
the operator and Hilbert-Schmidt norms of V" are both asymptotically
1/(2n!). We extend this in two ways: firstly, we give a generalisation which
applies to Volterra convolution operators with kernels satisfying a mild
smoothness condition, and secondly we show that in the constant-kernel case
the same asymptotic behaviour is shared by the trace norm, and hence by a
wide class of operator norms.
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MSC (2000): 47G10.

1. INTRODUCTION

Consider the Volterra operator V acting on the Hilbert space L?([0, 1], R) defined
by

(Vu)(t) = / u(s) ds.
0

Lao and Whitley (Equation (17), [5]), prompted by a question raised by Halmos,

showed that 1
< liminf n!||[V?| < limsup n!|[ V"] < =
n—oo n—oo

1
NG 2
where || - || denotes the operator norm, and conjectured based on numerical ev-
idence (Equation (16), [5]) that n!||V™|| — 1/2 as n — oo. This conjecture was
proved by Kershaw ([4]), who showed that

1 1 1\-1/2
v oo (1-) T = v
on! V=l 2n!( on V1o
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where || - ||2 denotes the Hilbert-Schmidt norm. In particular, both ||[V"| and
[IV™||2 are asymptotically equal to 1/(2n!) as n — oo. This result has been
reproduced by Little and Reade ([6]) using slightly more elementary techniques.
Independently, Thorpe (Remark 3, [10]) has shown that ||[V"|| and ||[V"||2 are both
asymptotically equal to 1/(2I'(n + 1)) as n — oo through R, not just N, where
V"™ is the Riemann-Liouville fractional integration operator defined for any real
n > 0 by

1
1.1 " —— [ (t—s)"""u(s)d

(1) (V")) = 5 / 5" u(s) ds,

0
(which agrees with the definition of V" as the nth iterate of V for n € N).

Concerning the class of Volterra convolution operators Vi defined on

L*([0,1),R) by

t

(Veu)(t) = /k(t — s)u(s)ds
0

for k € L'([0,1],R), Lao and Whitley also asked “for which convolution operators
Vi does lim n!||V}"|| exist and how can this limit be determined from the kernel
function k77

This paper addresses this and more general questions. To answer exactly
this question, if k is any real L' function such that k’(0) exists and k(0) = +1

then
ok’ (0)/k(0)

2

as n — 0o, and the same is true for the Hilbert-Schmidt norm. More generally, if
k(t) = f(t)t" for some r > —1, f(0) # 0 and f'(0) exists then

(D + DIFO))"e /10
o ((r+ L)n+1)

Vil —

IVE N~ Vil ~

as n — 0o.
Returning to the fractional integration operators defined in (1.1), we also
show that

1
Vil ~
Vo~ e
as n — oo through RT, where [ - [|; denotes the trace norm. It is then immediate
that
(V™) !
2'(n+1)

where ® is any Schatten-von Neumann norm corresponding to a symmetric se-
quence norm which is normalised so that the singular value sequence (1,0,0,...)
has norm 1.
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2. NOTATION

The singular values of a bounded operator T on a separable Hilbert space H are
denoted by (0, (T))n>0, defined by

on(T) = inf{||T — R|| : rank(R) < n}.

It follows immediately from this definition that

(2.1) Oman(S +T) < om(S) + o (T).

As mentioned above, we denote by || - || the operator norm and by || - ||2 the
Hilbert-Schmidt norm. More generally, we shall use || - ||, for the Schatten p-norm
defined by

)
TN = oh(T)
n=0

and Z,(H) for the ideal of operators on H for which this sum converges. For
functions on the real line, we use || - ||, to denote the L? norm; it should always

be clear from context which norm is meant.
If k € L'([0,1],R) we define the Volterra operator Vi on L2([0,1],R) by

t
(Vku)(t) = /k(t — s)u(s) ds.
0
The Hilbert-Schmidt norm of V}, is evidently given by
1

IVill2 = / (1 — 2)k(z)? da.

0
For n € N, the nth convolution power k*™ of k is defined for ¢ € [0, 1] by

B = k(1), RO (p) = / E (s)k(t — 5) ds,
0

SO Vk*n = (Vk)n

If (a,) and (b,) are positive real sequences indexed by either n € N or
n € RY, we write a,, ~ b, as n — oo to mean that a,, /b, — 1 as n — 00, a, Jby,
as n — oo to mean that limsupa, /b, < 1 and a, 2b, as n — co to mean that

n—oo

liminf a,, /b, > 1.

n—oo
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3. APPROXIMATION BY RANK 1 OPERATORS

A striking feature of Kershaw’s and Thorpe’s results is that the operator and
Hilbert-Schmidt norms of V" are asymptotically equal to each other. These norms
only coincide exactly for operators of rank 0 or 1, so the fact that |[V"||/||[V"]|2 — 1
as n — 0o should mean that V" is tending towards the set of rank 1 operators in
some sense. This idea, generalised to any Schatten p-class with p < oo, is made
precise in the following result (in fact, we shall only use p = 1 and p = 2 below).

LEMMA 3.1. Suppose that H is a Hilbert space and that (S,) is a sequence of
non-zero operators in I,(H), where 1 < p < co. Then the following are equivalent:

(1) [1Sull/[[Snllp — 1 as n — oo;

(ii) there exists a sequence (T),) of rank 1 operators on H such that ||S, —
Tollp/1Snlly = 0 as n — oo.

Proof. Let 1, = ||Snll/||Snllp and dy, = inf{||S,, — S|, : rank(S) < 1}/||Snllp-
We claim that 72 + d? = 1, from which the equivalence of the two statements
immediately follows.

We have ||S,|| = 0(Sn), [Snllh = 3 05(S,) and the || - ||, distance between
7=0
=] 1/
S, and the set of rank 1 operators is (Z ol (S'n,>> ' (the finite-dimensional
j=1

version of this is due to Mirsky ([7]), or see Example 7.4.52 in [3], and the extension
to infinitely many dimensions is immediate). We now have

18
A
£

L
3T
|
<
I
_

g/
S
==
N
z
&uq'-g
B

<
Il
o

<
Il
o

sor? +dP =1, as claimed. 1

The well-known theorem of Adamjan, Arov and Krein, or “AAK Theorem”
(see for example Chapter 6 in [8]), states that exactly one of the operator-norm
optimal rank n approximants to a compact Hankel operator I', is itself a Hankel
operator. This is not in general true for norms other than the operator norm, but
there are various weaker results known; see Section 6 in [2]. We shall need only
the following very special case which, for the sake of completeness, we prove.

LEMMA 3.2. Suppose that H is a Hilbert space and that I' € I,(H) is a
Hankel operator. Let T be the rank 1 Hankel operator with |[I' — I"|| = o1(T).
Then

IT —T’||2 < V3inf{||T — T : rank(T) < 1}.

Proof. Applying equation (2.1), we see that
01 (L =T") < 0(1) + o1 (I") = 05(T)
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since rank(I'") = 1. Now,

IT-T3=> "o -T)=0f(T —T") +o{ (T —T)+ » o7, (I =T
j=0 j=1

() + > o3(T) <3> of(I) = Binf{||I — 7|3 : rank(T) < 1}
j=1 j=1

again using the result of Mirsky cited in the proof of Lemma 3.1. 1
For convenience, we also record the trivial results:

LEMMA 3.3. Let (pn) and (gn) be sequences in a normed space. Then:
(i) Npn = gnll/llgnll — 0 as n — oo if and only if |pn — gnll/llpnll — 0 as
n — 0o;
(i) & lpn = gnll/llgnll = 0 as n — oo then |[pal|/llgnll — 1 as n — oo;
(iii) in an inner product space, |{pn,qn)|/(|Pnllllgnll) — 1 as n — oo if
and only if there exists a sequence (o) of non-zero scalars such that ||p, —
angnll/lon| — 0 as n — oo.

For the time being, we shall only consider the Hilbert-Schmidt and operator
norms, returning to other norms in Section 8. We show first that when S, = V"
in Lemma 3.1, we need only consider rank 1 approximants 7" of the form

1

/a Blt—s),,

0

THEOREM 3.4. Suppose that k € L'([0,1],R) is such that V;* is Hilbert-
Schmidt for some n € N. Then the following are equivalent:
G) IV I/ IVl — 1 as n— oo;
(ii) there exist real sequences (ay,) and (B,) with B, — 00 as n — oo such
that

ﬁQ

a2 e2Bn

/(1 — 2)(k*"(x) — e’ ®)2dz — 0 asn — oo;
0

(iii) there exists a real sequence (B,) tending to oo such that

46%({1(1 — z)k*"(x)en® dx)2

—1 asn— oo.

1
e [(1 — z)k*(2)? dz
0

Proof. (i) = (ii) If ||V;?|| ~ [|Vi?]l2 as n — oo then by Lemma 3.1 there exists
a sequence (T},) of rank 1 operators such that ||V,» — T, ||2/||V]]2 — 0 as n — oo.
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Consider the unitary operator U on L?([0,1]) defined by (Uu)(t) = u(1 —t),
and extend the operators UV} and S, := UT,, to map from L?([0,0)) to itself
by making them zero on L?([1,00)). We have

1-t

UV u)(t) = / E(1 —t—s)u(s)ds
0

for 0 <t <1, so if we define

_ M1 -y) f0o<<y<,
knly) = {o if y > 1,

then we have
oo

(Tru)(t) = /kn(t + s)u(s)ds
0

for u € L%*([0,00) and ¢t > 0, which shows that I',, is a Hankel operator on
L?([0,00)). Moroever, S, has rank 1 and
ITn = Sulla _ UV = UTnllz _ Vi = Tull2

= = — 0
HFn”Z HUan”? Hvlan2

as n — 00. Now, Lemma 3.2 shows that there exists a sequence of rank 1 Hankel
operators I/, such that

ITn = Thll2 _ V3ITs — Sull2
T2 ITnl2

as n — oo which implies (Lemma 3.3 part (i)) that

[Ty —T%12

— 0
117012

as n — o0o. Rank 1 Hankel operators have a very simple structure: we have

oo

(Thu)(t) = / Ve Pty (s) ds

for some 7, 8, € R with 8, > 0, and

oo

2
—28, 7
T3 113 =/%2,ye 20y dy = I
0

This gives
4 [ .
2 /y(kn(y) —Yne P¥)?dy — 0
"0
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as n — oo. Since k,(y) =0 if y > 1, we have

T, —Tlls 462 . a2 T,
ITn = Lull> A - _ ?/y(kn(y)—%e 5"‘”)2dy+7/73ye 20y dy

482 . .

N %/y(’fn(y) — e )2 dy + e (B, + 1),
n

0

But this sum tends to 0 as n — oo and both terms are positive, so both terms
must tend to zero; this shows that &, — oo and that

g2 | )
= / (ki (y) — Ame)? dy — 0
"0

as n — oo. Now, k,(y) = k**(1 — y) for 0 < y < 1; using this and making the
substitution y = 1 — x in the above integral gives

ﬁQ

72 / (1~ 2) (k™" (2) — yae~ PP ") dz — 0

as n — oo. Finally, write a,, = v, %" to give

1

/(1 —2)(*™(2) — ape®®)?dz — 0

0

B

a2 2

which is statement (ii).

(i) = (i) By Lemma 3.1 and Lemma 3.3 part (i), [|[V||/|[V&]2 — 1 if
and only if there exists a sequence (7)) of rank 1 operators such that ||[V* —
Tull3/11T]|3 — 0. It is therefore sufficient for this that sequences () and (3,)
exist with (3, tending to oo such that the operators (T},) defined by

1
/a P (t— 5)u s)ds
0

satisfy | V" — T ||3/]|T]|3 — 0. We can evaluate these Hilbert-Schmidt norms by
breaking the square into an upper and a lower triangle and making the obvious
substitutions to give:

1

VP — T3 = / (1= 2) (K™ (2) — ape™)? da+ 20
0

2
e 206n _

=:by

=:iln
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where the first term, a,, is from the upper triangle and the second term, b,, is
from the lower triangle, and that
1

2
1712 = / (1 - ) (ane® )2 da + 22 (720 196, — 1)

4p%
0 ~ ne
_ oy 26, o —28,
__@E@ —m%—1y+@g@ +28, — 1)
=cn =bn

where again the first term, c¢,, is from the upper triangle and the second term,
again b, is from the lower triangle. Now,
n by
[V = Tall3 _ an+b, o+ 2

IT.3  cntbn 148

Cn

and by, /¢, — 0 as n — oo since 3, — 00 as n — 0o. We therefore have (||V}* —
Toll2)/I|1Tw|| — 0 as n — oo if and only if a, /¢, — 0 as n — oo; explicitly
1
432 f(l —2)(k*"(z) — ape®)2 da

0 =0

o2 (7 — 25, — 1)
as n — o0o. But since 3, — oo, this is equivalent to
) 1
e [ @) — e Az 0 asn
2020, x ) — ape x asn — oo
n
0

which is exactly statement (ii).
(i) < (iii) In the notation from the previous part, write a, /¢, in the form
1
S —2)(k*" () — ane’n®)? dx
0

(1 — x)(apefn®)2de

Ct—=r

which is of the form ||p,, — an@nl|?/||Ctngn||? where (p,) and (g,,) are sequences in a
weighted L? space. By Lemma 3.3 (iii), this is equivalent to | (pn, ¢.)|/(|pnll lgnl]) —
1 as n — oo, that is

1 2
(f(l — z)k*" (x)eln® dx)

0 1

(1 —z)k*(z)?dx J(l — z)e2fnt dy

Ot —

as n — o0o. Now,

e2ﬁn _ ﬂn -1 e2ﬁn
apz A

1
/(1 —z)e?n® gy =
0
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as n — 00, so this is equivalent to
1

45,2(({(1 — x)k*" (x)elnT dx)2

1
e2hn [(1 — z)k*(x)? dx
0

— 1

as n — 00, which is exactly the second condition above. 1

4. SOME ASYMPTOTIC EXPANSIONS OF INTEGRALS

In order to apply Theorem 3.4 to some concrete examples, we need to find the
asymptotic behaviour of some integrals. Consider the Laplace integral

b

I(\) = / f(t)e ™ dt

a

where ¢ and f are C? in a neighbourhood of b, the absolute minimum of ¢ over
[a,b] is attained at b, and ¢'(b) < 0. It is well known that the first term in the
asymptotic expansion of I()\) is

I()\) ~ _e—Ago(b) f(b) 1
' (b)
as A — oo. For the applications below, we shall also need the second term in this
expansion. This seems to be less easy to locate in the literature, so we sketch a
proof.

Under the stated hypotheses, ¢ is certainly invertible in a neighbourhood
of b, and since ¢ has an absolute minimum at b, standard considerations show
that its values outside any neighbourhood of b have no effect on the aymptotic
behaviour of I(\) as A — co. We may therefore assume without loss of generality
that ¢ is invertible on [a, b].

Using the same approach and notation as Bleistein and Handelsman (Sec-
tion 5.1, [1]) use for the case of a stationary extremum, we write

f(®)
@' () lt=p=1 (o))
and L denotes the Laplace transform. To obtain the asymptotics of LG, we need
to expand G as a Taylor series about the origin and apply Watson’s Lemma (see
for example Section 4.1 in [1]).
Plainly, G(0) = f(b)/¢’(b). Next,
iy L) — f)e"(t) 1
G (T) - /(+)2 1(r—1
'(t) t=p=1(e(®)+7) ¢’ (1 (p(b) + 7))

L PO~ FB) ()
G = EIO

>

IN) = —e O (LG)(N),  where G(1) =

SO
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Now, Watson’s Lemma shows that

)1, ¢OFO) - FOL ) 1
EOR EIOEP

(LG)(A) ~
as A — oo. It follows that

I()\) ~ _ef)\ap(b) (g/((l;))

as A — oo.
We now record for future reference the asymptotic behaviour of some Laplace
type integrals. All of these results can be obtained from the formula given above.

1 _—
41 1— z)amel&tme qg ~ &
(41) Ja-mamecmiearn S
0
1 ¢
Ex, m ©
(4.2) /(1 —xz)etfax™ dx ~ o
0
1-6 .
(4.3) / ST 65(1*5)&
m
0

as m — oo for any £ € R and § € (0,1). Finally, it is an immediate consequence

of Stirling’s formula that for any a,b € R with a > 0,
I'(am +b) b

4.4 —_—~

(14) s~ (am)

as m — oQ.

5. KERNELS OF THE FORM k(t) = e#tt"

We now consider kernels of the form k(t) = e*'t" for r,u € R with » > —1. Tt is
easy to check, either by induction or by using a Laplace transform, that the nth
convolution power of k is given by

*n _ (F(T+1))n pty(r+1)n—1
k (t)—me rFin=1,

Moreover, we can use this as a definition of k™, and hence of V}}*, for any real
n > 0. With this definition, we can give our first extension of Kershaw’s and
Thorpe’s results.

THEOREM 5.1. If k(t) = cet” where u,r € R with r > —1 then
(cT'(r 4 1))™eH

Vit ~ Vit llz ~
I~ Il ~ S Tt T

as n — oo through RT.
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Proof. Firstly, it is apparent from the explicit formula above that V" is a
Hilbert-Schmidt operator for sufficiently large n; precisely, if 2(r + 1)n > 1.

We claim that the condition in Theorem 3.4, item (iii), is satisfied with
Brn = (r+1)n — 1. We need to show that

432 ( z(l — ) (k*" (z)efn® da:)2

1
e [(1 — z)k*(x)? dz
0

—1

as n — 00. Substituting the explicit formula for £*"* in the left-hand side gives

1 2
432 ( J(1 = a)elrtBn)zghn dx)
0

1
e2fn (1 — z)e2reg2Pn da
0
Now, the integral in the numerator is asymptotically e#*#» /(432) as n — oo by
equation (4.1) with & = p and m = f,, and the integral in the denominator is
asymptotically e?#/(4(32) as n — oo by equation (4.2) with £ = 2u and m = 203,,.
Thus, the whole expression is asymptotically 1 as n — oo, as required.
It now follows from Theorem 3.4 that ||V;|| ~ |[V}|2 as n — oco. But

2 (CF(?“-l—l))n 2 | i ) (cF(r—i—l))" 2 p20
Vel = (o) [ ot () o

by equation (4.2). We thus have that

(cI(r 4 1))™e (cI(r 4 1))™e

WEl~IVEl ~ e =T (G D) ™ TG + D+ 1)

asn —o0o. 1

6. ESTIMATES FOR MORE GENERAL KERNELS

If a kernel can be bounded above or below by a function of the form considered
in the previous section, then we can make obvious estimates on the behaviour of
its iterates. We need only observe that if 0 < k& < h then for all n € N we have
0 < k™ < h* and hence [|[V|| < ||V;?]| and [[V}||2 < ||Vi*]|2 to see that:

LEMMA 6.1. Suppose that k € L*([0,1],R), that c,r,u,v € R with r > —1
and ¢ > 0 and that ct"e! < k(t) < ct"et for t € [0,1]. Then
(cT(r+1))"e (cT'(r+1))"e”
o S IV <V S v
M((r+1n+1) L((r+1)n+1)

In particular,

- Vi
eH us || kn” <
IVill2
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as n — oQ.

We shall need another result concerning kernels of this type. The significance
of this will become apparent later, but it captures in a particular technical sense
the idea that convolution powers take on much larger values near 1 than they do
near 0.

LEMMA 6.2. Suppose that k € L*([0,1],R), that c,r,u,v € R with r > —1
and ¢ > 0 and that ct"e* < k(t) < ct"et for t € [0,1]. Then for any ¢ € (0,1),
any j € Z and any polynomial P,

1-6 ‘

f E*(=9)(2)? dz
P(n)-=> - —0
J(1 = 2)k*(z)? da

0

as n — oQ.

Proof. Since 0 < ct"ett < k(t) < ct"e”! for all t € [0, 1], it follows that for all
n €N,
0< (CF(T + 1))ne;¢tt(r+1)n—1 < k*n(t) < (CF(T + 1))neytt(r+1)n—1.
T'((r+1)n) I'((r+1)n)
The left-hand inequality gives
1

/(1 )k ()2 da >

0

1
(cl(r+1))*" / 2w, 2 -
AN 1— pe, 2(r+1)n—2 d
T((r & D)n)? (1 —x)eHx x
0
(cT(r +1))%" et
T((r+1)n)? (2(r + 1)n)?
by equation (4.2) with £ = 2u and m = 2(r 4+ 1)n — 2. The right-hand inequality
with n — j in place of n gives

1-6 1—-6
/ k*(nfj)(l,)Q dr < (CF(T + 1 (n=3) / 2vw .2 (r+1)(n—j3)— 24z
L((r+1)( )2
0 0
~ (cL(r+1)) 2n—) e2u(175)( —9) A
T((r+1)(n—j))2 2(r+1)n

by equation (4.3) with & = 2v and m = 2(r — 1)(n — j) — 2. We therefore have
1-6
[ k*=9)(2)2 da
P(n) 10
J @ —2)k*(z)? da
0

(cL(r+1))*09) (1= §)*CHDO=D=2 s D+ Dn)* (2(r +1)n)?

T+ D(n— )2 2r+ n ((r+1))2n o
T((r + 1)n)?
L((r+1)(n—j))2

where C' = 2(r 4 1)e?*(1=9)=2(cT'(r 4 1)) =%/, which does not depend on n

= CnP(n) (1 — §)2r+bn
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~ CnP(n)((r + 1)n)20+0i (] — §)2(r+D(n=5)-2

by equation (4.4). This tends to zero as m — oo since r > —land 0 <d < 1. 1

7. MAIN RESULTS

We have now assembled the tools to analyse a reasonably wide class of kernels.
The first result is a localisation lemma: if £ and f agree in a neighbourhood of the
origin and one of them can be bounded above and below in the way described in the
previous section, then the Hilbert-Schmidt norms of V;** and Vit are asymptotically
equal and the operator norms of V;* and V}* are asymptotically equal.

LEMMA 7.1. Suppose that k,h € L'([0,1],R), that there exists § € (0,1)
such that for all t € [0,4], k(t) = h(t), and that there exist p,v,r,c € R with
r > —1 and ¢ > 0 such that for all t € [0,1], ct"e"" < k(t) < ct"e”t. Then
IV~ IV as no— oo and [[Vi'|l2 ~ [[Vill2 as n — oo.

Proof. Note that all of the calculations below take place in the convolution
algebra L1([0, 1], R).
Let g=h—k,s0 h=k+ g and g is zero on [0,4]. We have

n—1

=1 M
Since g is zero to the left of §, ¢g*™ is zero to the left of nd and, since we are working
only on [0, 1], is identically zero if n > 1/§. Similarly, k*("=7) x g*J is zero to the
left of jo and hence identically zero if j > 1/4. It follows that if we choose N € N
with N > 1/6 then for all n > N,

N-1
i B (e
=1

=
Moreover, the fact that ¢*7 is zero to the left of j6 implies that
K7D 5 g9 = (kX0 140)) % 9™

since values of lk:*(”_j ) to the right of 1 — j§ are multiplied by zero in the definition
of k*("=7) % ¢*J. We thus have

_ k*n+ Z ( ) k*(n 7) X[O,l—j&]) *g*j'

Now,
1 1
Ve — Vel = / (1— o) (™" () — k"« / (h*"(2) — k*(2))? da
0 0
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We therefore have

N-1
| VAL, AL 1 n *(n—j *J
Vi i ll2 < E ()H(k ( J)X[o,l—jé]) S|P

Vel Vel =\
N—-1 w(n—i i
< Z (n> =D x10.1-50) 121977 |11
~X .
j=1 J ||Vk;nH2
1-j6

. [ (k*(”*j)(x)zdx)lm
=S (") —° —.
; (j> T (f(l — x)k*n(z)? dx) !

0

We can now apply Lemma 7.1: (?) lg*7 1|1 is a polynomial in n for each j, so each of

these terms tends to zero as n tends to co. We thus have ||[V;" =V ||2/||[V*|l2 — 0
as n — oo and hence [|[V;*||2 ~ ||[V}*|l2 as n — oo (Lemma 3.3 (ii)). We also know
from Lemma 6.1 that ||[V}*||2 Se ||V}, so

Vi = Vit < "MV = Vil

X n — 0
Vil Vil

as n — 00, and hence, again from Lemma 3.3 (ii), that |V;*|| ~ |V}?] asn — oco. 1
We can now finally establish the results claimed in the introduction.

THEOREM 7.2. Suppose that k € L'([0,1],R) and that we can write k(t) =
t"f(t), where r > —1, f(0) # 0 and in some neighbourhood of the origin f does
not change sign and log(f(t)/f(0)) is bounded (which implies that f is continuous

at 0). Let
t t
uw= litmggf log & v = limsup log &

f(o)’ t—0+ f(O)

Then
(T(r +1[f(0)])"e (T(r + 1) £(0)])e”

((r+1)n+1) 2U((r+n+1) -~
If f is differentiable (from the right) at 0 then p=v = f'(0)/f(0) and
(G + 1) (O)])e OO
A ((r+1)n+1)

m
SV <Vl <

IVE ~ IVl ~

Proof. Note that since k is bounded in a neighbourhood of 0, it can be written
as the sum of a bounded function and a function nilpotent in the convolution
algebra L'([0,1]). It follows that all sufficiently large powers of V; are Hilbert-
Schmidt operators.

We can assume without loss of generality that f is positive in a neighbour-
hood of 0. Then for any € > 0 there exists § > 0 such that if 0 < ¢ < ¢ then

1. f(t)

p—e< -log—% <v+e

t 7 £(0)
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and hence
FO)trer =t L k(1) < F(0)tT e+t

Let
hu(t) = k(t) if 0 <t <9,
T k(0) et i § <t < 1,

so k agrees with k. on [0, ] and for all ¢ € [0,1] we have
FO) et Lk (t) < f(0)tmeHo)E,
By Lemma 6.1,
(SO (r +1))"er™* (f(OL(r+1))"e”*e
T((r+1)n+1) T((r+1)n+1)

as n — oo. Now, Lemma 6.2 shows that [[V;* || ~ [|[V;*|| and that [V [|2 ~ [[V}]|2
as n — 00, so we have

(fOL(r +1))"er e
L((r+1)n+1)
as n — 00. Since € was arbitrary, it follows that
(f(OT(r +1))"e" (fOT(r+1))"e”
D((r+1)n+1) T((r+1n+1) "
If f is differentiable from the right at 0, then so is log f and
log £Y(0) — 1im 2EU®) —108U(0) _ \ oa(/(0)/(0)

t—0+ t TS0+ t
so we have p = v = (log f)'(0) = f/(0)/f(0) and the two asymptotic bounds
coincide to give

SV <IViEZlz 5

(f(O)L(r+1))"e" "=
T((r+1n+1)

SIVEl < Vil <

SIVEE < IVi'llz =

ol 1y, O+ DI OO
I~ Il ~ S e !

8. THE TRACE NORM AND OTHER NORMS

We now have a class of kernels k for which [|V}*|| and ||V;?||2 have the same asymp-
totic behaviour. One immediate consequence of this is that if p > 2 then ||[V/*||,
also has the same asymptotic behaviour (because || - || < || - |lp < I - |l2)-

To make similar inferences about a wider class of operator norms, we need to
consider the trace norm || - ||;. The significance of the trace norm is that if H is a
separable Hilbert space and ® is an complete operator norm on a non-trivial ideal Z
in B(H) such that for all A,€ B(H) and B € Z we have ®(ABC) < || A||®(B)|C]|,
then there is a constant ¢ > 0 such that for all T € Z,

| T < @(T) < el T

(See, for example, Simon (Chapter 2, [9]).)
If we could show that ||V;*||1 ~ ||V} then it would follow from this that
O(Vi*) ~ ¢||[V] for any of the Schatten-von Neumann norms described in the
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previous paragraph. We shall now show that this is indeed true for the classical
Volterra operator V and its iterates, the fractional integration operators defined
n (1.1). Although V itself is not trace class (it is not difficult to show that its
mth singular value is ((m + 1/2)m)~1), V" is trace class for all n > 1, because
Vn = Vn/2yn/2 and a simple calculation shows that V™/2 is Hilbert-Schmidt if
n > 1. It therefore makes sense to ask about the asymptotic behaviour of ||[V"||;
as n — oo through RT.

THEOREM 8.1.
1

as n — oo through RT.

Proof. We have for any n > 0

t
(Vn / n 1 )ds
0

For n > k > 0, define rank 1 operators T}, ,, and Sj ,, by

1

e(n=R(t=s)y, (s)d
s
e’ﬂ k‘

(Thnu)(t) =

D\H

e_(n k)s ( )dS) (n—k) (n k)t

e —(n—k)s ()ds)t" 1

o\.'H o _

(k)0 = 775

(n
If we introduce the notation p,(t) = t" and e, (t) = €™ then we have
1 (n—
Tk,nu = @OL, 6_(n_k)>e ( k)en_k
1
Sk,nu = m<U7 ef(nfk)>pn—1-
Since Sj ,, has rank 1, we can write its trace norm as
[Sknllr = T )||€ (n—t)ll2llPn—1ll2-

The two norms are easily evaluated, and we have ||Sk ,|[1 ~ 1/(2nI'(n)) as n — oco.
Similarly, rank(Sk , — Tk,n) = 1, so in the same way

|Sk,n — Thonll2 = He_(n_k)H2||€_n("_k)€—(n—k) — Pn—1]l2-

1
I(n)
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The first of these norms is again easy to evaluate, but the second is not so easy.
Expanding the square in the integral defining [le_(,_x) — pn—1]3 gives three in-
tegrals, two straightforward and one which can be expanded to third order using

the methods described in Section 4. A tedious calculation leads to

Ck
Sk.n — T ~—_——
H k,n k‘,n||2 n2F(n)
where C}, is a constant depending only on k.
We also have
L 12 O

V" — Sk nlle = (/ 1— —(n—k) (n—k)z _ ,n—1 2d ) €
|| k, ”2 F(?’l) / ( x)(e € €z ) €T + F(Tl)

and a similiar calculation involving a fourth-order expansion gives

C/
VAL ~——k
|| k7n||2 nQF(n)
as n — 0o, where C}, is another constant depending only on k. Combining these
last two results gives us
cy

V™ — Skanll2 < .
R

Now, we shall use this Hilbert-Schmidt norm estimate to obtain a trace norm
estimate. Abbreviating S} ,, to S,,, we have

(V" = S)u= V- W=V~

n)U = U F(TL) Uy €_(n—1)/Pn—-1= U F('fl)

=V"u — (u, e_(n_1)>V"_11:VO‘(V"_O‘u—<u7 e_(n_1)>V”_1_a1)

(u, e,(n,1)>F(n)V"_11

=V (Vn—au — (u, e(n1)>I2‘)(nn_i_ct)> =V*V" % — Sl—a,n—au)'

We therefore have that if o > 1/2, so V¢ is Hilbert-Schmidt,

Cila
(n—a)’T(n—a)

V" = Snlly < V2V = Si—an-allz < [[VF2

SO

V" = Sulls _ 20D (m)[V2201_o

X ~ 2 VOé C//_ana_l
[[Snllx (n —a)2T(n — a) V201

using (4.4). This estimate tends to zero as n — oo if @ < 1 so, by the Lemma
3.1, |[V™]1 ~ |[V™|| as n — oo. But we know from Theorem 5.1 that ||V, | ~
1/(2T(n+ 1)) as n — oo, so [|[V™|1 ~ 1/(2T'(n + 1)) as n — oo, as claimed. 1
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9. FURTHER QUESTIONS

These results raise some further questions:

Firstly, what happens if a kernel is not of the form needed for Theorem 7.27
Perhaps the simplest example of this is k() = 1+ /2. If we write ||V}*|| = ¢, /n!,
then we have ¢, — oo and a™c, — 0 whenever |a| < 1, but the exact rate of
growth is unclear.

Secondly, the calculations in the last section are rather tedious, and the final
estimate for [|[V™ — T,||1/||Tn|l1 is, up to a constant factor, n=/2*¢. Limited
numerical evidence suggests that the decay is closer to 1/n than 1/n'/2. An
alternative approach might be able to clarify the speed of decay and avoid the
unpleasant computations.

Finally, for what other kernels do the trace and operator norms have the same
asymptotic behaviour? The methods in Section 8, based on fractional powers,
clearly have very limited applicability to more general kernels.
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