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ABSTRACT. A version of Cuntz-Krieger algebras associated with infinite,
possibly infinite valued matrices with any number of zero entries correspond
to C*-algebras of directed graphs with any number of edges, sources, sinks,
and isolated vertices. We show that the correspondence established previ-
ously between representations and *-endomorphisms involving the original
Cuntz-Krieger algebras extends to this setting, so to a correspondence be-
tween representations of Cuntz-Krieger algebras for infinite matrices and *-
endomorphisms of a direct sum of type I factors.
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ENDOMORPHISMS OF TYPE I VON NEUMANN ALGEBRAS WITH DISCRETE CENTER

In [3] a correspondence between unital *-endomorphisms of finite direct sums of
type I, von Neumann factors and representations of Cuntz-Krieger algebras O 4
([5]) is established, extending the well known correspondence ([1]) between unital
s-endomorphisms of the algebra B(H), of all bounded operators on a Hilbert space
‘H, and nondegenerate representations of the Cuntz algebras O,,. Here A is a
finite square, nonnegative integer valued matrix, with no zero rows or columns.
In [4], Cuntz-Krieger algebras Op are introduced where B is a possibly infinite
and infinite valued square matrix with no restriction on the entries. This family
of algebras coincides with the family of graph algebras G*(E), E an arbitrary
directed graph, also introduced in [4]. References to other approaches to Cuntz-
Krieger algebras for various families of matrices, and also to graph C*-algebras may
be found in [4] and [7]. The correspondence is determined by Op = G*(E) where
B is the vertex matrix of the graph E. In this note we describe an aspect of these
algebras which underscores their suitability for further investigations. Namely, the
above mentioned correspondence between endomorphisms and representations of



20 BERNDT BRENKEN

Cuntz and Cuntz-Krieger algebras ([3]), extends to this enlarged class of Cuntz-
Krieger or graph algebras. Thus there is a correspondence between a class of
x-endomorphisms, not necessarily unital or injective, of countable sums of type I
factors and representations of the graph C*-algebras G*(FE) for arbitrary directed
graphs E. The presence of such a correspondence may be taken as a guiding
principle to further investigate other generalizations of Cuntz-Krieger algebras,
especially to continuous situations (Section, [9], [10]).

We begin in Section 1 with a description of the graph C*-algebra C*(E) for
arbitrary directed graphs E of [7] as a relative Cuntz-Pimsner algebra, and then in-
dicate how the graph C*-algebra G*(FE) of [4] may be viewed as an “unaugmented”
relative Cuntz-Pimsner algebra. This characterization is used later in Section 3
to show that the endomorphism associated with a given representation of G*(E)
does not depend on the chosen basis of the Hilbert bimodule. In Section 2 we
quickly describe how an arbitrary, possibly infinite, matrix — or index — with
nonnegative integer or infinite values can be associated with an endomorphism of
a countable direct sum of type I factors. Although the endomorphisms we consider
are not necessarily unital, or injective, there are several conditions we impose on
the endomorphisms. The first condition requires that the endomorphism be unital
on certain finite parts of the domain. The second condition is a reflection of the
nondegeneracy of the representations we consider, while the third condition max-
imizes the domain of the endomorphism by collecting the factors in the kernel of
the endomorphism into one containing factor.

Section 3 describes the correspondence between these endomorphisms and
the nondegenerate representations of graph C*-algebras G*(F) for arbitrary di-
rected graphs F, extending the results of [3]. In Section 4 we use the established
structure of endomorphisms to see how a condition on the graph of the endomor-
phism determines structure of the domain, ensuring that no finite factors appear.

NoTaTION. If Y is a locally compact topological space, then C.(Y), Co(Y), and
Cy (Y) respectively denote the space of continuous complex valued functions on Y’
that have compact support, vanish at infinity, and are bounded. They are normed
linear spaces with the sup norm | - || and an involution * given by complex
conjugation. If S is a subset of a set Y then y, denotes the characteristic function
of S, and 0, = x{}. For S a linear subspace of a Hilbert space H, [S] denotes
its closure in H and [S]* the closed subspace of vectors in H orthogonal to S.

The C*-algebra of all bounded operators on H is denoted B(H), and if A is a -
closed subset of B(H) then A’ is the von Neumann algebra of bounded operators

commuting with A.
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1. GRAPH ALGEBRAS AS CUNTZ-PIMSNER ALGEBRAS

Assume FE is a directed graph (E*, E°, 7, s) where the edge set E' and the vertex
set E° are countable, and r, s are the range and source maps of E' to E°. Let I
be the set of isolated vertices, I = E°\ (RUG) where R = r(E') and G = s(E").
The maps r and s define maps ry and sy of A = Cy(E°) to Cy(E') where, for
example, 74 (f) = f or. We may also view rx as a map of Cy(R) — C,(E') and
su : Co(G) — Cy(E"). Since C.(E") is an ideal in the algebra Cy,(E') we may
define a right Co(R)-module structure, or a right Co(E°)-module structure on the
space X, = C.(E') by f-h = f-rg(h) for f € X, and h € Co(R) or Co(E").
Similarly X, can be viewed as a left Cy(G), or a left Co(EY)-module with the left
action defined using the map su.

One can check that the map ¢, : X. — Co(R) defined by 9,.(0c) = 0p(e)
for e € E' is a conditional expectation with respect to the right module struc-
ture on X¢; so ¥.(f*) = ¥.(f)* and ¥.(f - h) = ¥.(f) - h for f € X, and
h € Co(R). We may also view v, as having values in Co(EY) = A in which
case it is a conditional expectation with respect to the right A-module structure
on X.. With this structure there is a routine method of forming a Hilbert bimod-
ule, or a right A-rigged, left A-module ([6]). Define an A-valued inner product on
X, via ¥, by (z,y) = .(x* - y) which yields a norm on X, ||z[|®> = [|[(z,7)] co-
If X is the completion of X. with respect to this norm, then X is a Hilbert A-
module. This Hilbert bimodule is used in [7], [8]. In fact, if X, is the Hilbert
A-module L%(r=t(v)) for v € R, where (f,f) = S {|f(e)|?6, : r(e) = v} for
f € X,, then X is the direct sum € X, of the Hilbert A-modules. We have

vER

X = {f :E'—-C: Y ({Z:|fe|2 :r(e) = v})év € A}. The left action of A is
vER

an action by adjointable maps on X, so by elements of £(X). We note that the
left action ¢ : A — L(X) of A on X is not faithful. In fact A = Co(G) ® Co(F)
as C*-algebras, where F' = E°\ G are the sinks — including the isolated points I
— of the graph E. The elements of Cy(F) act as 0 on X, while the left action of
Co(G) on X is faithful. Note that for x = 6. € X and a = ¢, € A we have:

pla)r = @(0y) - de = Xs-1(v) - 0c = O if s(e) = v, zero otherwise;
Tra = ¢ 0p=0dc Xr1(v) = O if r(e) = v, zero otherwise;
(0c,01) = (0e) = Op(e) ife=1, zero otherwise.

The first identity implies that the left A-module X is essential, so Span{y(a)f
ta € A, f € X}is dense in X. Also, for [ € E', the compact operator §; ® d; on
X, maps . to §;(0;,0e) = 0; - rp(6;0.) = 0 if e = [, and to zero if e # . By
Proposition 4.4 of [8] the ideal ¢ 1(K(X)) = J of Ais Co({v € EY : [s71(v)| <
00}), so since  is injective on Cy(G), it is also injective on the ideal Jy = Co({v €
E°:0 < |s7!(v)] < 0o}) contained in J. By Theorem 1.5 of [11] there is a unique
C*-algebra O(Jy, X), the relative Cuntz-Pimsner algebra determined by the ideal
Jo satisfying the following universal property:

For T : X — B(H) a linear map and ¢ : A — B(H) a nondegenerate *-
homomorphism satisfying:

(1) T(f -a) = T(f)o(a);
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(2) T(p(a) - f) = o(a)T(f);
(3) T*(f)T(g) = o((f.g)) for f,g € X, a € A; and
(4) o (p(a)) = o(a), a € Jy, where o' : K(X) — B(H) is defined by o' (f ®

9" ) =T()T(g9)";
there is a unique nondegenerate representation 7 : O(Jy, X) — B(H) with m(qTy)
= T(f) for f € X and 7(q(sc(a))) = o(a) for a € A. Here q: T(X) — O(Jy, X)
is a quotient map determined by Jy of the Toeplitz C*-algebra 7 (X) associated
with the bimodule X, namely the C*-subalgebra of the adjointable operators on
the Fock space F(X) over X generated by the creation operators Ty, f € X, and
the diagonal action of A on F(X). The representation 7 is denoted by T X o,
and any representation 7 of (5(J0, X) arises in this manner. The elements ¢T are
denoted by Sy, f € X. We point out that the realization of the universal Toeplitz
C*-algebra on Fock space is an isomorphism ([8]).

Note that the fourth condition is equivalent to Y.  T(&,)T(6)* = o(dy)

les—1(v)
for v € E° emitting a finite, nonzero number of edges, since ¢(d,) is the compact
operator Y. §®4; for such v ([8]). Using that A is generated by {8, : v € E°}
les—1(v)

and X = Span{é. : e € E'}, along with the bimodule structure of X, we may
restate the universal property of (’QV(JO7 X) to be:

For a family {T'(e) : e € E'} of elements in B(H) and an orthogonal family
of projections {p, : v € E} in B(H) with 3" p, = I3, satisfying:

(1) T(e)py, = T(e) if r(e) = v, and zero otherwise;
(2) po ( ) =T(e) if s(e) = v, and zero otherwise;
(3) ( T(l) = pr(e) if e =1, and zero otherwise;
(4) l 2( )T( )T(1)* = py if 0 < |s7H(v)] < 00

€s v

there is a nondegenerate representation 7 of O(Jy, X) in B(H) such that (S, ) =
T'(e) and m(qoo(dv)) = po-

Since the third condition states that the T'(e) are partial isometries with
orthogonal final ranges, the first condition follows from the third and the fact
that the projections p, are orthogonal. Also Condition (2) can be restated as
T(e)T(e)* < pse). To see this we need to be assured that such a family of
partial isometries with an orthogonal family of projections defines a covariant
representation (7', o) of the Hilbert bimodule X. We may define o by extending
the map p linearly to C.(E°) and noting that this map is continuous. The same is

true for T: if f = 3 fu0e € Xo then T(f) = 3> £.T(e) = 3 ( > fe)T(e)pU

vER “eer—1(v)
which has norm sup | > feT(e)H since the partial isometries T'(e), T'(l) have
veER " egpr—1
orthogonal initial spaces if r(e) # (1), and otherwise have identical initial spaces.
Now the final spaces of the partial isometries T'(e) are orthogonal, so the operator

1/2
> f(e)T(e) has operator norm bounded by [Z |f(e)|2} ,and so T : X, —
r(e)=v
B(H) is continuous.
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Thus we see that O(Jy, X) is the universal C*-algebra C* (E) of [7] generated
by a family {S. : e € E'} of partial isometries with orthogonal final ranges,
and a family of orthogonal projections {p, : v € E°} such that S.S* < Ds(e)s

S%Se = pr(e), and {ZSISI* le s_l(v)} =p, if 0 < |s71(v)] < o0.

THEOREM 1.1. If E is a directed graph and X the Hilbert A-bimodule de-
scribed above, then the graph C*-algebra C*(E) is isomorphic to the relative Cuntz-
Pimsner algebra O(Jo, X) determined by the ideal Jy = Co({v € E° : 0 <
571 (v)] < 00}) of Co(E°).

In [7] a corresponding statement for the Cuntz-Pimsner algebra Ox is given
under the assumption that the graph E has no sinks.

In his original approach to the algebra O x associated with a Hilbert bimodule
X over a C*-algebra A, Pimsner ([9]) considered the image of X as generating the
algebra Ox , while the algebra generated by both X and A he referred to as the
augmented algebra Ox. We may take the same approach here, considering the
relative algebra O(Jy, X) as the augmented algebra determined by the ideal Jp,
and denote the relative algebra generated by X alone as O(Jy, X).

Recall ([4], Remark 2.6) that if F is a directed graph then FEegs, the essential
part of E, is E'\ I where I are the isolated points or vertices of F, and that the
graph C*-algebra G*(E) & G*(FEess) @ Co(I). For a graph E with no isolated
vertices the graph C*-algebra G*(E) of [4] is the universal C*-algebra generated
by partial isometries {S. : e € E'} with orthogonal range projections such that

S¥Se = Z{SZSI* clesHr(e)} if0< s (r(e))] < oo,

" va _ ) SFS ifr(e) =r(l), * « _ [ S8 ifr(e) =s(l),
5561 51 = {Ol oth‘(erzvise,< " and SeSeSi5) = {Ol l othferzzvise.( )

We are interested here in viewing G*(Eess) as such a relative Cuntz-Pimsner
algebra O(Jp, X) generated by X alone. We do not digress to define these Cuntz-
Pimsner algebras and fit them into a general context, but briefly describe a uni-
versal property:

Given T : X — B('H) a linear map so that the C*-algebra generated by T'(X)
acts nondegenerately on H and o : (X, X) — B(H) a x-homomorphism satisfying:

(1) T(f : a’) = T(f)g(a)v f S Xa a € <X7X>7

(2) T(p(a) - f) = o(a)T(f), f € X, ae(X,X);

(3) T*(f)T(9) = o({f,9)), f.9 € X;

(4) o (p(a)) = o(a) for a € JoN (X, X);
then there is a unique nondegenerate representation 7 : O(Jy, X) — B(H) with
w(qTy) = T(f) for f € X and 7(gp(a)) = o(a) for a € (X, X). Here (X, X) is
the closed linear span of {(f,g) : f,g € X}, a two-sided *-ideal of the C*-algebra
A, and ¢, poo are as above.

Let X be the Hilbert bimodule over A = Co(E®) corresponding to a directed
graph E with no isolated vertices. Then (X, X) is the ideal of functions of A that
vanish at the sources of E°, so can be identified with Co(R). As before, Con-
dition (3) implies that the T'(d.), e € E! are partial isometries with orthogonal
final ranges, and Condition (1) follows from (3). We also see from Condition (2)



24 BERNDT BRENKEN

that T*(55)T((56)T(51)T((57) = U((sr(e))T(él)T((SZ)* = T(@(ér(e)) . (51)T((5l)*. Since
©(0r(ey) - 0y = &y if and only if s(I) = r(e) and zero otherwise, the later expres-
sion is T'(6;)T(6;)* if s(l) = r(e), and zero otherwise. Thus the final projection
T(6:)T(6)* <T*(6)T(0.) if and only if s(I) = r(e). It now follows that O(Jy, X)
is the universal C*-algebra G*(FE).

THEOREM 1.2. If E is a directed graph with no isolated vertices with vertex
matriz B and X the Co(E°)-Hilbert bimodule associated with E then the graph
C*-algebra G*(E), or the Cuntz-Krieger algebra Op, is isomorphic to the “unaug-
mented” Cuntz-Pimsner algebra O(Jy, X) generated by X.

Since G*(X) is the C*-subalgebra of C*(E) generated by the partial isome-
tries {S. : e € E'} alone ([4]) we have that O(Jy, X) is the C*-subalgebra of

O(Jo, X) generated by {S; : f € X}. By analogy with the situation for Cuntz
algebras we may view X as a Hilbert module generating the C*-algebra G*(F)
via a linear contraction S.

REMARK 1.3. In the following the representations = : G*(E) — B(H) that
we deal with are chosen so that m(S.) # 0 for e € E'. This is equivalent to
requiring that the projections py¢) = (S} Se) are nonzero, or equivalently that the
k-homomorphism o : Cy(R) — B(H) occurring in the pair (T, o) corresponding to
7 is injective.

2. ENDOMORPHISMS OF SUMS OF TYPE I FACTORS

Consider #-endomorphisms of a countable direct sum R = @ R; of type I factors
Ri, where R; = p;Rp; is type I, and p; are orthogonal central and minimal
countably decomposable projections of R. Although we need not assume that
the endomorphisms are either unital or injective, there are some restrictions we
impose.

We form a matrix ¢, from the endomorphism ¢ by slightly modifying the
approach in [2]. Consider the map v = p;p|Ry from Ry to R;, which must
either be injective or the zero map. In the later case set ¢, (i,k) = 0. Otherwise,
let T'; be a representation of R;. It is unitarily equivalent to an isomorphism of
R; with B(H;) ® I, for Hilbert spaces H;, £;. The representation I';y of Ry is
unitarily equivalent to a representation (m;; ®0)® I, where 7 is a nondegenerate
representation of Ry on a subspace H; of H;. The commutant m;(R)’ is a type
I,, factor where m = my; is the multiplicity of the representation m;;. Since
mik(Ry)' is isomorphic to p;o(pr)[e(Rr) N R;] the multiplicity is well defined,
independently of the representation I'; chosen. Set the (¢, k) entry of the matrix
80*7 @*(27 k) = M-

The von Neumann algebra ¢(R)N'R; is isomorphic to [@ ik (Ri) @O} ®Ir,

k

i
where 0 denotes the zero representation on the subspace [EBH“} of H; corre-
k

sponding to (the image under T'; of) the projection Ir, — p;e(I). The projec-
tion p;p(I) is the unique largest central projection in ¢(R) NR; with (Ig, —
pie(1))(p(R)NR;) = 0.
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If p is a minimal central projection of R then the projection pp(I) of R, is
in general a proper subprojection of p. We will consider those endomorphisms ¢
of R which are described by certain conditions.

CONDITION 2.1. If p is a minimal central projection of R with p(p) and
pp(I) both nonzero, then po(I) $p implies that po(I)[p(R) N Ry has infinite
projections.

Loosely speaking this first condition requires that certain finite parts of the
endomorphism ¢ are unital, so pp([I), if not zero, must be all of p if ¢(p) is not zero
and pp(I)(p(R) NR,) is a finite von Neumann algebra. This, as we shall later
see, is a reflection of the relation occuring in the definition of G*(E) that requires
initial projections of certain generating partial isometries to be equal to finite sums
of certain other final projections. Indeed, note that if ¢ is a unital endomorphism,
or if p(I) is required to be a central projection of R, then ¢ vacuously satisfies
this first condition since pe(I) must either be 0 or p for each p.

The second condition involves the relation of pp(I) to p if p is a minimal
central projection of R in the kernel of ¢ with pp(I) nonzero. If the projection
h = p — pp(I) is nonzero then, since ¢ maps the factor pR to zero, ¢ maps the
subspaces hR and Rh to zero. Also, since 1 —h = 1 —p+ pp(I), we have that
o(x) = (1 — h)p(z)(1 — h) for z € R. Thus information on ¢ is retained if we
restrict the domain of ¢ by replacing the factor pR with the factor po(I)Rpp(I).
Basically with this condition we arrange that p = pp(I) for these particular central
projections in the kernel of ¢.

CONDITION 2.2. If p is a minimal central projection of R with o(p) =0 and
po(I) nonzero then p = po(I).

Again note that if ¢ is unital, or if ¢(I) is central, then ¢ also satisfies the
second condition. The third condition again involves a simplifying condition on
the domain R of ¢. If p and ¢ are minimal central projections of R in the kernel of
o with pp(I) and go(I) nonzero then we may enlarge the domain of ¢ by replacing
the sum of factors pR @ qR with a single type I factor in the kernel of ¢ with unit
p + q. We will see that this simplification is a reflection of Proposition 3.1 below
where maximal domains defining an endomorphism are chosen. This last condition
is different from the first two as it affects the actual matrix ¢., namely @, may
only have one zero column if ¢ satisfies Condition (3).

CONDITION 2.3.  If p, q are central projections in R with ¢(p) = ¢(q) =0
and po(I), qp(I) are nonzero, then p = q.

The entries of the matrix ¢, satisfy a compatibility condition with the se-
quence (ny) of nonzero elements of N U {oo}, where Ry, is a factor of type I,,,;
namely > . (i, k)ni < n;. Since the statement that p;o(I)[p(R)'NR;] has infinite
projections is equivalent to Y . (i,k) = oo we see that Conditions 2.1 and 2.2

k

imply that > . (i, k)ng = n; whenever the i-row of ¢, is nonzero, so whenever
the left hand side is nonzero. If R is a sum of type I, factors, so ny = oo for
all k, then this stronger compatibility condition is automatically satisfied for any
matrix ¢, associated with an endomorphism ¢ of R.

If the projection p;p(I) of R; is nonzero, and not equal to p;, then the
matrix ¢, contains no information on how large the projection p; — p;(I), so it
may be finite or infinite in p(R)' NR;. The size of these projections are preserved
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under inner automorphisms of R, so if ¢ and ¥ are two endomorphisms of R with
@« = P, then it does not follow that there is an inner automorphism « of R with
a- @ = 1. If ¢ is a unital endomorphism, or if ¢(I) is a central projection of R
then, as in [2], the matrix ¢, does determine the endomorphism up to an inner
automorphism.

3. REPRESENTATIONS AND ENDOMORPHISMS

We describe a correspondence between endomorphisms of sums of type I factors
and representations of graph algebras G*(F) extending the earlier such correspon-
dences ([1], [3])-

If E is a directed graph then G*(FE) is of the form G*(FEess) @ Co(I) where
Eoss = E\ I, I the set of isolated vertices, and G*(FE,ss) is generated by partial
isometries S., e € E! satisfying the relations listed after Theorem 1.1 in ([4]).
For 7 a nondegenerate representation of G*(F) on a Hilbert space H and H, the
orthogonal subspaces of H corresponding to the projections 7(d,), v € I, set H
to be the subspace (@ 'HU)L of H corresponding to the projection 19y — > 7(dy).

vel

Then 7 defines a nondegenerate representation of G*(Eess) on He.

Given 7 a nondegenerate representation of G*(E) on H define a *-linear

map ¢n of B(H.) ® @ B(H,) by ¢r(x) = > m(Se)xm(Se)*. We note that
vel eeE1l
ox| P B(H,) = 0, so we restrict attention from now on to ¢ |B(H.) and assume
vel
that E has no isolated points, so H = H.. Since the partial isometries m(S,)

have orthogonal final ranges the sum defining ¢, converges in the strong operator
topology, and furthermore |ox(z)h| < ||z| ||| for b € H, so ¢, is a linear
contraction on B(H).

Note that @ (z) =Y (S SE)m(Se)axm(Se)* (S S%) is contained in

P ©(S.SHBH)T(S.S:) = B D {r(SS:)BH)m(SS;) : s(e) = v}

ecE! ver(El) ecE!
® @ {m(SeS)B(H)T(SeS) : s(e) a source}.
ecE!
Since S.S} < S/ S; if (1) = s(e) this is a subalgebra of @ (S} S;)B(H)7(S;S:) @
leEY/~
qB(H)q, where ¢ = Iy — > 7(S;S;) and where two edges [, k € E' are equiva-
leEY )~

lent, [ ~ k, if (1) = r(k). Thus ¢, has range in the subalgebra {7 (S*S.) : e € E'}/
of B(H).
As in [3] there is a maximal domain R C B(H), (or R C B(H.) ® @ B(H.,)
vel
if we keep track of the isolated points I of E) for ¢, so that ¢ |R is a *-
homomorphism. The proof of the following proposition is the same as Propo-

sition 2.1 of [3].
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ProproSITION 3.1. The maximal domain R on which ¢, is a x-homomor-
phism is the von Neumann algebra {m(S*S.) : e € E}'.

Thus ¢, is a *-endomorphism of R. Since two projections in {m(S%S.) :
e € E'} are either orthogonal or equal, R’ is abelian and R is a type I von
Neumann algebra with center countably generated by the orthogonal projections
{m(8rS.) : e € EY/ ~}U{q}. The subalgebra ¢B(H)q is evidently in the kernel of
wr, in fact @, is injective if and only if ¢ = 0. Thus the endomorphism ¢, has at
most one type I factor summand of the domain R in its kernel, and

qo(I) = q( Z W(Se)ﬂ'(se)*) = q( Z {m(Se)7(S:)" : s(e) a source of E})

ceE! e€E1

If we assume that 7 is a nondegenerate representation of G*(E), we have that
In= 3 =w(S;S)+ > {m(Se)m(Se)* : s(e) a source of E}, so
IEEY/~ ecE1

q= Z {m(Se)m(Se)* : s(e) a source}.
ecE
Thus ¢ satisfies Conditions 2.2 and 2.3 of Section 2. We shall see later that ¢
satisfies Condition 2.1 as well.

For 7 the given nondegenerate representation of G*(E) there is a unique iso-
metric covariant representation (T, o) of (X, (X, X)) on H where X is the Hilbert
bimodule over A = Cy(E?) associated with E and T'(8,.) = m(S,) for e € E1. Note
that we are assuming here that F has no isolated points, which we may do by
previous comments.

To show that the endomorphism ¢, depends only on the image T'(X) of the
Hilbert bimodule we first show that the domain R is determined by 7.

PROPOSITION 3.2. The domain R of pr is {T(f)*T(f): fe X}.

Proof. Clearly R 2 {T(f)*T(f) : f € X}. If f =3 fede € Co(E') then
T(f)*T(f) € Span{m(S:S.) : e € E'} since m(S.)*n(S;) = 0 unless e = . Since T
is a continuous map of X to B(H), of norm 1, the result follows. 1

As in [1] and [3], set L, = {M € B(H) : ox(x)M = Mz, z € R} a o-weakly
closed linear subspace of B(H) which is a right A-module, with A the abelian
algebra R'.

LEMMA 3.3. With ¢ = 130 — >, w(S¥Se), p = 1y — > 7(S.SF), and
e€El/~ ecE!
M e L, we have Mq =pM = 0.

Proof. We have ¢,(q) = 0 since ¢B(H)q C kerg,, so for M € L,, 0 =
or(q)M = Mgq. Since range ¢ C @ 7(SS)B(H)n(S.S%) we have ¢ (z)p =
ecE!
ppx(x) =0, 50 for M € L, 0 =por(Iy)M =pM. 1

Since M*S € R' = A for M,S € L,, (M,S) = M*S defines a Hilbert
A-module structure on L.
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PROPOSITION 3.4. L, = Span,T(X) where the closure is in the o-weak
topology and Span 4T(X) is the right A-module generated by T(X).

Proof. We have
p(z)m(Se) = Z w(S)am(S))*m(Se) =m(Se)xm(Se)*w(Se) =m(Se St Se)x=7(Se)x

for z € R, so T(6.) = n(S.) € Ly, for e € E' and L, O Span 4T(X). The other
inclusion follows by noting that for M € L,

M= (1=p)M = 3" w(S.S)M =3 7(S.)((S.), M),

e€E!

where the first sum converges in the strong topology on the unit ball of B(H) since
the projections 7(S.S¥) are orthogonal. &

We had remarked in the previous lemma that ¢.(a)p = 0 for a« € R and
p=1=> m(Se)m(Se)* =1—=>.T(8.)T(dc)*. Since T is a linear contraction

TX)H] = [ D2 T@H] = 3 T@)TE) H = (1 - p)H,

e€ B
so the kernel of ¢, (a) contains [T'(X)H]* for each a € R.

ProproSITION 3.5. Let E be a directed graph with no isolated points and
X the Hilbert bimodule associated with E generating the C*-algebra G*(E). Let
7w be a nondegenerate representation of G*(E) on H with (T,0) the associated
isometric covariant representation of (X, (X, X)), and ¢, the x-endomorphism of
R=A{T(/)*T(f): feX}. IfbM = Ma (M € T(X)) for some a € R, b € B(H)
with blirxyrr = 0 then b= ¢ (a).

Proof. Since T(X) C L, we have pr(a)M = Ma for M € T(X), so (b—
0x(a))T(f) =0for f € X and (b — ¢x(a))|rxyx = 0. Since (b — (pﬂ—(a))hT(X)'H]L
= 0 it follows that b = ¢r(a). 1

These results show that although the endomorphism was initially defined
using specific generators of X, it only depends on X and the representation .
If U is a unitary of the Hilbert A-bimodule X, and (T, 0) an isometric covariant
representation of (X, (X, X)), then so is (T o U,0). The endomorphism ¢ o is
given by ¢rov(z) =, T(Ude)xT (Ude)* with domain {T(Uf)*T(Uf) : f € X}
which is the same as R, the domain of ¢, since

TUTUS) =o(ULUL)) =o({f, ) =T)T(f)

for f € X. Also, for a € R, ker p oy (a) contains [T(UX)H]* = [T(X)H]*.
Proposition 3.4 implies L, = Ly, 50 prov(a)M = Ma for M € L, and a € R.
Proposition 3.5 applies to show ¢,y = ©r-

The fixed point algebra of the endomorphism ¢, is determined by the rep-
resentation 7 of the bimodule X.
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THEOREM 3.6. Let E be a directed graph with no isolated points, ™ a non-
degenerate representation of G*(E) and T the corresponding representation of the
bimodule X associated with the directed graph E. If @r is the endomorphism of
R = {T*(/)T(f) : f € X} associated with w then the fized point subalgebra of

={TX)UT*(X)}V N1 —p)R( —p) where 1 —p= > w(S.Sk).

e€eE1

Proof. If a € (1 — p)R(1 — p) commutes with T(X) then
or(a) = Z T(6c)aT (0:)" = aZT(ée)T(ée)* =a(l —p) =a,

e€R!

so the set is contained in the fixed point subalgebra. For the other inclusion first
recall that we have already noted, in Lemma 3.3, that range ¢, C (1—p)R(1—p),
and that ¢, is a *-homomorphism. It is therefore enough to show that the fixed
point algebra is contained in T(X)’. This follows from Proposition 3.4 since the
fixed point algebra of ¢, is contained in E:D. ]

Although (1 — p)R(1 — p) may not be zero, the fixed point algebra of the
endomorphism ¢, may certainly be zero, as the example with the directed graph
containing exactly one edge e with r(e) # s(e) shows.

Given a directed graph E, with no isolated points, we may coalesce all sources
of E into one single source to obtain a directed graph FE. Since the defining
relations for G*( ) only involve the edge set E', and do not involve sources, and

since E' = E| it is clear that G*(E) = G*(E).

REMARK 3.7. The graph Eisa partial in-amalgamation of the graph F in
the terminology of [4]. Also, if B and B are the vertex matrices for E and E
respectively, then the complete in-split matrices B,, and B, are equal, so once
again calOp = Op. Note that the complete in-amalgamations of By, and B, are

both equal to B.

Theorem 4.7 of [3] holds in the current, more general, situation. That situa-
tion dealt with finite graphs, and unital injective endomorphisms; so in particular
no sources. 1o see that the former situation is a special case of Theorem 3.8 below
recall that the Cuntz-Krieger algebras Op are defined using the complete in-split
matrix B, of B ([4]).

THEOREM 3.8. If E is a directed graph with no isolated points and ™ is a
nondegenerate representation of G*(E) on a separable Hilbert space with o, its
associated endomorphism, then the endomorphism satisfies Conditions 2.1, 2.2,
and 2.3, and the matriz (pr)s = B the vertex matriz of the graph E where all
sources of E are coalesced into one source. In particular, if E has no sources, or
only one source, then (o)« = B, the vertex matriz of E.

Proof. By the comments preceding Remark 3.7 we may assume that £ = F,
so that E has at most one source. Setting two edges e, ! to be equivalent, e ~ [, if
and only if r(e) = r(I) we have that the projections py) = 7(S;S.), [e] € E'/ ~,
are minimal central projections of the domain R of o, and R = @ pqREGR

e€EEl/~



30 BERNDT BRENKEN

with ¢ = 1 — 3 pj. Note that ¢ # 0 if and only if E has a source. In this case
set a € E° to be the source of E.

Now ()« is a square matrix over the index set (E'/ ~)U {¢} and B is a
square matrix over the index set EY, with B(v,w) = [{k € E' : s(k) = v, r(k) =
w}| for v,w € E°. The map of (E'/ ~) U {q} — E° defined by [e] — r(e) and, if
q # 0, g — ais a well defined set bijection.

Since the g-th column of (¢ ). describes the map ¢, |,z we see that the ¢-th
column of (¢ )4 is the same as the a column of B, namely both are zero. Now
choose w € EY and | € E! with r(I) = w. To identify the entries in the [I] column
of (¢r)«, fix z € pyR. Then

pr(@) = Y w(Sp)am(Sp)" =D w(Sk)am(SFSiSh) =D w(Sk)zm(Sk)*
keE! kel
since S;S;S;S, = 0 if r(k) # r(l), and S; Sk otherwise. If v € E° and v # a then
there is an e € E* with r(e) = v. The element

Plypn(@) = Y m(S;SeSk)rm(Sk)* =Y m(S7SeSkSkSk)am(Sk)*

k1 k~l

=Y {m(Sk)xm(Sk)" : k ~1,s(k) =r(e) = v}
k

by the relations for G*(E), so (¢x)«([e],[[]) = |[{k € E* : r(k) = w,s(k) = v}| =
B(v,w). We also compute

apr(x) = Y (1= Y 7(S;8,) ) w(S)am(Se)*

kel g
= > {w(S)am(Sk)" : k ~ 1, s(k) = a}

since E has only one source a and 7 is nondegenerate. Thus (¢)«(q, [l]) = B(a,w),

and we have shown (¢, ), = B.

That ¢, satisfies Conditions 2.2 and 2.3 was noted earlier. To show Con-
dition 2.1 is satisfied, it is enough to show, since ¢,(q) = 0, that if for a fixed
e € BY, pigex(I) # 0 and pyex(1)(9(R)' N Rpy) is a finite von Neumann al-
gebra then pr = prex(I). However the indicated algebra is finite if and only

i > (pr)«([e], k) < o0, so, since the g-column of (pr). is zero, exactly
ke(E'/~)U{q}
when > (¢r)«([e],[]]) < co. The later sum is
lEEY )~
Y. Wk e E ir(k)=r(l),s(k)=r(e)}|=|{k € E" : s(k)=r(e)}|=[s""(r())]-
lEEY )~

We compute
pges(D) =(S;8e) Y w(SiS)) = Y w(Sis)),
leE? les—1(r(e))
which is nonzero precisely when 0 < |s~1(r(e))|. To show Condition 2.1 we are thus
reduced to showing that if 0 < [s7!(r(e))| < oo then w(S:S.) = > 7w(S,S)).
les—1(r(e))
This is however 7 applied to a defining relation for G*(E). 1
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THEOREM 3.9. Let R = @@ R be a countable direct sum of countably decom-
posable type 1 factors Ry, | € f]e'J Assume that each Ry is represented irreducibly
on a Hilbert space H; and that R is thus represented on H = @ H,;. If ¢ is a
x-endomorphism of R satisfying Conditions 2.1, 2.2 and 2.3 then there is a nonde-

generate representation w : Op — B(H) of the generalized Cuntz-Krieger algebra

Op with B = @, so that ¢, the x-endomorphism associated with m, is equal to .

Proof. Let Ry = Ry, where p; is the unit of R;, a minimal central projection
of R. Condition 2.3 implies that there is at most one projection ¢ with gp(I) # 0

and p(g) = 0, so in other words where the g-column of ¢, is zero and the g-row

of . is nonzero. If I is the subset of J with [ € I if and only if both the I-column

1
and [-row of ¢, are zero, then set H, to be the subspace ( &b HU) of H. We
vel
will define a representation m of G*(E) on H, where E is a directed graph with
vertex set EY = J, so that the isolated vertices of E consist of the set I, and ¢
is the one possible vertex of EV emitting edges but not receiving edges. By the

definition of ¢, it now suffices to construct a representation 7 of G*(Eegs) on H,
where Eos = E\ I, Eus is a directed graph with no isolated vertices. Thus,
without loss of generality, we may suppose that I = ¢.

As in the proof of Theorem 3.9 of [3] there are, for ¢.(l,k) # 0, partial
isometries {Ty : 1 < @ < ¢u(l,k),l,k € J} with orthogonal final spaces, where

Ty;x has initial space Hy, final space a subspace of H; and

e« (1,k) e (1,k)
o)=Y pelrr) = > Y Talpe)Ti = > > TieaThy,.
L,k lLkeJ =1 lLkeJ =1

Define a directed graph E with E° = .J, and for each Tj;; # 0 there is an
edge e € E! with r(e) = k, s(e) = I. Clearly the vertex matrix B for F is the

matrix .. Set T, = Tj;;. Note that the condition Y ¢. (I, k) < oo is equivalent to
k

|s71(1)] < o0, p(pk) # 0 is equivalent to r~1(k) # ¢, pip(I) # 0 means s~1(1) # ¢,
and pip(I) = p; is equivalent to S¢S, = Y{S,S; : g € s7'(I)} if r(e) = I. Thus
the T., e € E', are partial isometries satisfying the defining relations for G*(E)

if ¢ satisfies Condition 2.1. This defines a representation = of G*(E) on H with

@r = ¢. The representation 7 is nondegenerate since ¢ satisfies Condition 2.2. &
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4. ENDOMORPHISMS OF SUMS OF I, FACTORS

Let ¢ be an endomorphism of R where R is a countable sum of type I factors,
and ¢ satisfies Conditions 2.1, 2.2, and 2.3 of Section 2. If F is the directed graph
with vertex matrix B = ¢, we give sufficient conditions on E that ensure that R
must be a sum of type I, factors. By Theorem 3.9 we know that ¢ = ¢, where
7 is a nondegenerate representation of G*(E).

For n € N let E™ be the paths in E of length n, so E™ = {(a1,...,a,) :
s(aiy1) =r(ay) for 1 <i<n—1land o; € E* for 1 <i<n},and E* = |J E™.

n>=1
The conditions on E are most concisely stated in terms of the infinite path space
E> = {oz €[IE": s(ip1) = r(ay) for i € N} with the subspace topology from
N

[1E?, although Theorem 4.2 below could be stated and proved using only E*,
N

without reference to E°.

PROPOSITION 4.1. If E has no sinks and (aq, ..., ay,) € E™ then there is an
a € E*® with (a); = a; fori=1,...,n.

Proof. First note that since F has no sinks, if f € E™ then there is g € E"T!
which extends f, in the sense that the domain of f is contained in that of g, and g
agrees with f on the domain of f. We write f < g. This defines a partial order on
P ={h € E*:(aq,...,ap) < h}, and the Hausdorff maximality principle yields
a maximal chain C in P. Since E has no sinks, the principle of induction shows
(U{domain f : f € C} = N. Define a € E* by a(n) = f(n) for n € domain f,
fec.

The principle condition on F, other than E having no sinks, is: given § € E™
there is an m > n, and distinct o, 8 € E™ with 6 < «a, § < 3. By the last
Proposition we may choose a, 3 € E°, and the condition may be restated in
terms of E°° by saying that E°° has no isolated points. The main tool used in the
proof of the following theorem is the compatibility condition of Section 2, namely
> wu(i, k)ng < my for ¢ any endomorphism of R = @ Ry, with Ry a type I,
factor.

THEOREM 4.2. If the directed graph E has no sinks and E*° has no iso-
lated points then the domain R of the endomorphism ¢ = @, associated with a
nondegenerate representation m of G*(E) is a direct sum of type I factors.

Proof. As in Theorem 3.8, R = & pR & ¢R where pj) = 7(S5S,) and
ecEl /[~
q=1->_pr. We first show that pi R, a type I, factor, is a type I factor for
each e € E'. Fix an arbitrary e € E' and note that since E has no sinks, there
is an [ € E' with 7(e) = s(I). Let a € E* with a; = e and ap = [. Note that if
r(e) = s(e) then it is entirely possible that [ = e. We have

Napia] < Px([om]; [0mi1])nfa,, ) S0y, )
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for all m so ny,,,] is a decreasing sequence of natural numbers (or infinity) bounded
above by n,. Since o € E* is not isolated, for each m € N there is an r,, > m
and an edge ky, # o, 41 with s(ky,) = (o, ). We have

Moy, +1] § @*([arm]7 [O‘T’7n,+1])n[(¥rm+1] + @*([aﬁn]a [km])n[km] < Nay,,]

if n(q,, 417 is finite. Thus, if n( is finite we have that it must bound the strictly
decreasing sequence nj,, 1 of positive natural numbers, which is not possible.

We have shown that p R is a type I factor for all e € E', so it only
remains to show that ¢R is also for ¢ # 0. If ¢ # 0, then F has a source a and if
e € B! with s(e) = a then

nie) < @«(a, [e])ng < Z vi(a,j)n; < ng,
so n, must also be infinite. &

We show that if E has no isolated points and a sink p, and has at most one
source then we may always find an endomorphism ¢ of a sum of type I factors
with ¢, the vertex matrix of E and R containing finite type I factor summands.
If 7 is a nondegenerate representation of G*(E) on H and ¢ = ¢, its associated
endomorphism, then ¢, is the vertex matrix of E and ¢ is an endomorphism of
R= @ pleJR®qR. Ifl € E' is an edge with r(I) = p then by the defining

e€ERY [~
relations for G*(E) the projection py; = 7(S;S;) is orthogonal to each projection
m(5.5%), e € E*, s0 ppjp(R) = 0 and pyR N @(R) = 0. If ¢ is the restriction of
ptoM= @ pegR®Cpy @ qR then 1, = @, the vertex matrix of E and

e€EY/~
e#l
1) is an endomorphism of a sum of type I factors that includes at least one finite
factor. Note also that 1 satisfies Conditions 2.1, 2.2, and 2.3 since the first two
conditions do not apply to py as py¥ (1) = pye(l) = 0.
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