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Abstract. A version of Cuntz-Krieger algebras associated with infinite,
possibly infinite valued matrices with any number of zero entries correspond
to C∗-algebras of directed graphs with any number of edges, sources, sinks,
and isolated vertices. We show that the correspondence established previ-
ously between representations and ∗-endomorphisms involving the original
Cuntz-Krieger algebras extends to this setting, so to a correspondence be-
tween representations of Cuntz-Krieger algebras for infinite matrices and ∗-
endomorphisms of a direct sum of type I factors.
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ENDOMORPHISMS OF TYPE I VON NEUMANN ALGEBRAS WITH DISCRETE CENTER

In [3] a correspondence between unital ∗-endomorphisms of finite direct sums of
type I∞ von Neumann factors and representations of Cuntz-Krieger algebras OA

([5]) is established, extending the well known correspondence ([1]) between unital
∗-endomorphisms of the algebra B(H), of all bounded operators on a Hilbert space
H, and nondegenerate representations of the Cuntz algebras On. Here A is a
finite square, nonnegative integer valued matrix, with no zero rows or columns.
In [4], Cuntz-Krieger algebras OB are introduced where B is a possibly infinite
and infinite valued square matrix with no restriction on the entries. This family
of algebras coincides with the family of graph algebras G∗(E), E an arbitrary
directed graph, also introduced in [4]. References to other approaches to Cuntz-
Krieger algebras for various families of matrices, and also to graph C∗-algebras may
be found in [4] and [7]. The correspondence is determined by OB

∼= G∗(E) where
B is the vertex matrix of the graph E. In this note we describe an aspect of these
algebras which underscores their suitability for further investigations. Namely, the
above mentioned correspondence between endomorphisms and representations of
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Cuntz and Cuntz-Krieger algebras ([3]), extends to this enlarged class of Cuntz-
Krieger or graph algebras. Thus there is a correspondence between a class of
∗-endomorphisms, not necessarily unital or injective, of countable sums of type I
factors and representations of the graph C∗-algebras G∗(E) for arbitrary directed
graphs E. The presence of such a correspondence may be taken as a guiding
principle to further investigate other generalizations of Cuntz-Krieger algebras,
especially to continuous situations (Section, [9], [10]).

We begin in Section 1 with a description of the graph C∗-algebra C∗(E) for
arbitrary directed graphs E of [7] as a relative Cuntz-Pimsner algebra, and then in-
dicate how the graph C∗-algebra G∗(E) of [4] may be viewed as an “unaugmented”
relative Cuntz-Pimsner algebra. This characterization is used later in Section 3
to show that the endomorphism associated with a given representation of G∗(E)
does not depend on the chosen basis of the Hilbert bimodule. In Section 2 we
quickly describe how an arbitrary, possibly infinite, matrix — or index — with
nonnegative integer or infinite values can be associated with an endomorphism of
a countable direct sum of type I factors. Although the endomorphisms we consider
are not necessarily unital, or injective, there are several conditions we impose on
the endomorphisms. The first condition requires that the endomorphism be unital
on certain finite parts of the domain. The second condition is a reflection of the
nondegeneracy of the representations we consider, while the third condition max-
imizes the domain of the endomorphism by collecting the factors in the kernel of
the endomorphism into one containing factor.

Section 3 describes the correspondence between these endomorphisms and
the nondegenerate representations of graph C∗-algebras G∗(E) for arbitrary di-
rected graphs E, extending the results of [3]. In Section 4 we use the established
structure of endomorphisms to see how a condition on the graph of the endomor-
phism determines structure of the domain, ensuring that no finite factors appear.

Notation. If Y is a locally compact topological space, then Cc(Y ), C0(Y ), and
Cb(Y ) respectively denote the space of continuous complex valued functions on Y
that have compact support, vanish at infinity, and are bounded. They are normed
linear spaces with the sup norm ‖ · ‖∞ and an involution ∗ given by complex
conjugation. If S is a subset of a set Y then χs denotes the characteristic function
of S, and δx = χ{x}. For S a linear subspace of a Hilbert space H, [S] denotes
its closure in H and [S]⊥ the closed subspace of vectors in H orthogonal to S.
The C∗-algebra of all bounded operators on H is denoted B(H), and if A is a ∗-
closed subset of B(H) then A′ is the von Neumann algebra of bounded operators
commuting with A.
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1. GRAPH ALGEBRAS AS CUNTZ-PIMSNER ALGEBRAS

Assume E is a directed graph (E1, E0, r, s) where the edge set E1 and the vertex
set E0 are countable, and r, s are the range and source maps of E1 to E0. Let I
be the set of isolated vertices, I = E0 \ (R ∪G) where R = r(E1) and G = s(E1).
The maps r and s define maps r# and s# of A = C0(E0) to Cb(E1) where, for
example, r#(f) = f ◦ r. We may also view r# as a map of C0(R) → Cb(E1) and
s# : C0(G) → Cb(E1). Since Cc(E1) is an ideal in the algebra Cb(E1) we may
define a right C0(R)-module structure, or a right C0(E0)-module structure on the
space Xc = Cc(E1) by f · h = f · r#(h) for f ∈ Xc, and h ∈ C0(R) or C0(E0).
Similarly Xc can be viewed as a left C0(G), or a left C0(E0)-module with the left
action defined using the map s#.

One can check that the map ψr : Xc → C0(R) defined by ψr(δe) = δr(e)
for e ∈ E1 is a conditional expectation with respect to the right module struc-
ture on Xc; so ψr(f∗) = ψr(f)∗ and ψr(f · h) = ψr(f) · h for f ∈ Xc and
h ∈ C0(R). We may also view ψr as having values in C0(E0) = A in which
case it is a conditional expectation with respect to the right A-module structure
on Xc. With this structure there is a routine method of forming a Hilbert bimod-
ule, or a right A-rigged, left A-module ([6]). Define an A-valued inner product on
Xc via ψr by 〈x, y〉 = ψr(x∗ · y) which yields a norm on Xc, ‖x‖2 = ‖〈x, x〉‖∞.
If X is the completion of Xc with respect to this norm, then X is a Hilbert A-
module. This Hilbert bimodule is used in [7], [8]. In fact, if Xv is the Hilbert
A-module L2(r−1(v)) for v ∈ R, where 〈f, f〉 =

∑{|f(e)|2δv : r(e) = v} for
f ∈ Xv, then X is the direct sum

⊕
v∈R

Xv of the Hilbert A-modules. We have

X =
{
f : E1 → C :

∑
v∈R

({∑ |fe|2 : r(e) = v
})
δv ∈ A

}
. The left action of A is

an action by adjointable maps on X, so by elements of L(X). We note that the
left action ϕ : A → L(X) of A on X is not faithful. In fact A = C0(G) ⊕ C0(F )
as C∗-algebras, where F = E0 \G are the sinks — including the isolated points I
— of the graph E. The elements of C0(F ) act as 0 on X, while the left action of
C0(G) on X is faithful. Note that for x = δe ∈ X and a = δv ∈ A we have:

ϕ(a)x = ϕ(δv) · δe = χs−1(v) · δe = δe if s(e) = v, zero otherwise;
x · a = δe · δv = δe · χr−1(v) = δe if r(e) = v, zero otherwise;

〈δe, δl〉 = ψ(δe) = δr(e) if e = l, zero otherwise.

The first identity implies that the left A-moduleX is essential, so Span{ϕ(a)f
: a ∈ A, f ∈ X} is dense in X. Also, for l ∈ E1, the compact operator δl ⊗ δ∗l on
X, maps δe to δl〈δl, δe〉 = δl · r#ψ(δlδe) = δe if e = l, and to zero if e 6= l. By
Proposition 4.4 of [8] the ideal ϕ−1(K(X)) = J of A is C0({v ∈ E0 : |s−1(v)| <
∞}), so since ϕ is injective on C0(G), it is also injective on the ideal J0 = C0({v ∈
E0 : 0 < |s−1(v)| <∞}) contained in J . By Theorem 1.5 of [11] there is a unique
C∗-algebra Õ(J0, X), the relative Cuntz-Pimsner algebra determined by the ideal
J0 satisfying the following universal property:

For T : X → B(H) a linear map and σ : A → B(H) a nondegenerate ∗-
homomorphism satisfying:

(1) T (f · a) = T (f)σ(a);



22 Berndt Brenken

(2) T (ϕ(a) · f) = σ(a)T (f);
(3) T ∗(f)T (g) = σ(〈f, g〉) for f, g ∈ X, a ∈ A; and
(4) σ1(ϕ(a)) = σ(a), a ∈ J0, where σ1 : K(X) → B(H) is defined by σ1(f ⊗

g∗) = T (f)T (g)∗;

there is a unique nondegenerate representation π : Õ(J0, X) → B(H) with π(qTf )
= T (f) for f ∈ X and π(q(ϕ∞(a))) = σ(a) for a ∈ A. Here q : T (X) → Õ(J0, X)
is a quotient map determined by J0 of the Toeplitz C∗-algebra T (X) associated
with the bimodule X, namely the C∗-subalgebra of the adjointable operators on
the Fock space F(X) over X generated by the creation operators Tf , f ∈ X, and
the diagonal action of A on F(X). The representation π is denoted by T × σ,
and any representation π of Õ(J0, X) arises in this manner. The elements qTf are
denoted by Sf , f ∈ X. We point out that the realization of the universal Toeplitz
C∗-algebra on Fock space is an isomorphism ([8]).

Note that the fourth condition is equivalent to
∑

l∈s−1(v)

T (δl)T (δl)∗ = σ(δv)

for v ∈ E0 emitting a finite, nonzero number of edges, since ϕ(δv) is the compact
operator

∑
l∈s−1(v)

δl⊗δ∗l for such v ([8]). Using that A is generated by {δv : v ∈ E0}

and X = Span{δe : e ∈ E1}, along with the bimodule structure of X, we may
restate the universal property of Õ(J0, X) to be:

For a family {T (e) : e ∈ E1} of elements in B(H) and an orthogonal family
of projections {ρv : v ∈ E0} in B(H) with

∑
ρv = IH satisfying:

(1) T (e)ρv = T (e) if r(e) = v, and zero otherwise;
(2) ρv · T (e) = T (e) if s(e) = v, and zero otherwise;
(3) T (e)∗T (l) = ρr(e) if e = l, and zero otherwise;
(4)

∑
l∈s−1(v)

T (l)T (l)∗ = ρv if 0 < |s−1(v)| <∞;

there is a nondegenerate representation π of Õ(J0, X) in B(H) such that π(Sδe) =
T (e) and π(qϕ∞(δv)) = ρv.

Since the third condition states that the T (e) are partial isometries with
orthogonal final ranges, the first condition follows from the third and the fact
that the projections ρv are orthogonal. Also Condition (2) can be restated as
T (e)T (e)∗ 6 ρs(e). To see this we need to be assured that such a family of
partial isometries with an orthogonal family of projections defines a covariant
representation (T, σ) of the Hilbert bimodule X. We may define σ by extending
the map ρ linearly to Cc(E0) and noting that this map is continuous. The same is
true for T : if f =

∑
feδe ∈ X0 then T (f) =

∑
feT (e) =

∑
v∈R

( ∑
e∈r−1(v)

fe

)
T (e)ρv

which has norm sup
v∈R

∥∥∥ ∑
e∈r−1

feT (e)
∥∥∥ since the partial isometries T (e), T (l) have

orthogonal initial spaces if r(e) 6= r(l), and otherwise have identical initial spaces.
Now the final spaces of the partial isometries T (e) are orthogonal, so the operator

∑
r(e)=v

f(e)T (e) has operator norm bounded by
[∑ |f(e)|2

]1/2

, and so T : Xc →
B(H) is continuous.
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Thus we see that Õ(J0, X) is the universal C∗-algebra C∗(E) of [7] generated
by a family {Se : e ∈ E1} of partial isometries with orthogonal final ranges,
and a family of orthogonal projections {pv : v ∈ E0} such that SeS

∗
e 6 ps(e),

S∗eSe = pr(e), and
{ ∑

SlS
∗
l : l ∈ s−1(v)

}
= pv if 0 < |s−1(v)| <∞.

Theorem 1.1. If E is a directed graph and X the Hilbert A-bimodule de-
scribed above, then the graph C∗-algebra C∗(E) is isomorphic to the relative Cuntz-
Pimsner algebra Õ(J0, X) determined by the ideal J0 = C0({v ∈ E0 : 0 <
|s−1(v)| <∞}) of C0(E0).

In [7] a corresponding statement for the Cuntz-Pimsner algebra OX is given
under the assumption that the graph E has no sinks.

In his original approach to the algebraOX associated with a Hilbert bimodule
X over a C∗-algebra A, Pimsner ([9]) considered the image of X as generating the
algebra OX , while the algebra generated by both X and A he referred to as the
augmented algebra ÕX . We may take the same approach here, considering the
relative algebra Õ(J0, X) as the augmented algebra determined by the ideal J0,
and denote the relative algebra generated by X alone as O(J0, X).

Recall ([4], Remark 2.6) that if E is a directed graph then Eess, the essential
part of E, is E \ I where I are the isolated points or vertices of E, and that the
graph C∗-algebra G∗(E) ∼= G∗(Eess) ⊕ C0(I). For a graph E with no isolated
vertices the graph C∗-algebra G∗(E) of [4] is the universal C∗-algebra generated
by partial isometries {Se : e ∈ E1} with orthogonal range projections such that

S∗eSe =
∑

{SlS
∗
l : l ∈ s−1(r(e))} if 0 < |s−1(r(e))| <∞,

S∗eSeS
∗
l Sl =

{
S∗l Sl if r(e) = r(l),
0 otherwise, and S∗eSeSlS

∗
l =

{
SlS

∗
l if r(e) = s(l),

0 otherwise.

We are interested here in viewing G∗(Eess) as such a relative Cuntz-Pimsner
algebra O(J0, X) generated by X alone. We do not digress to define these Cuntz-
Pimsner algebras and fit them into a general context, but briefly describe a uni-
versal property:

Given T : X → B(H) a linear map so that the C∗-algebra generated by T (X)
acts nondegenerately on H and σ : 〈X,X〉 → B(H) a ∗-homomorphism satisfying:

(1) T (f · a) = T (f)σ(a), f ∈ X, a ∈ 〈X,X〉;
(2) T (ϕ(a) · f) = σ(a)T (f), f ∈ X, a ∈ 〈X,X〉;
(3) T ∗(f)T (g) = σ(〈f, g〉), f, g ∈ X;
(4) σ1(ϕ(a)) = σ(a) for a ∈ J0 ∩ 〈X,X〉;

then there is a unique nondegenerate representation π : O(J0, X) → B(H) with
π(qTf ) = T (f) for f ∈ X and π(qϕ∞(a)) = σ(a) for a ∈ 〈X,X〉. Here 〈X,X〉 is
the closed linear span of {〈f, g〉 : f, g ∈ X}, a two-sided ∗-ideal of the C∗-algebra
A, and q, ϕ∞ are as above.

Let X be the Hilbert bimodule over A = C0(E0) corresponding to a directed
graph E with no isolated vertices. Then 〈X,X〉 is the ideal of functions of A that
vanish at the sources of E0, so can be identified with C0(R). As before, Con-
dition (3) implies that the T (δe), e ∈ E1 are partial isometries with orthogonal
final ranges, and Condition (1) follows from (3). We also see from Condition (2)
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that T ∗(δe)T (δe)T (δl)T (δ∗l ) = σ(δr(e))T (δl)T (δl)∗ = T (ϕ(δr(e)) · δl)T (δl)∗. Since
ϕ(δr(e)) · δl = δl if and only if s(l) = r(e) and zero otherwise, the later expres-
sion is T (δl)T (δl)∗ if s(l) = r(e), and zero otherwise. Thus the final projection
T (δl)T (δl)∗ 6 T ∗(δe)T (δe) if and only if s(l) = r(e). It now follows that O(J0, X)
is the universal C∗-algebra G∗(E).

Theorem 1.2. If E is a directed graph with no isolated vertices with vertex
matrix B and X the C0(E0)-Hilbert bimodule associated with E then the graph
C∗-algebra G∗(E), or the Cuntz-Krieger algebra OB, is isomorphic to the “unaug-
mented” Cuntz-Pimsner algebra O(J0, X) generated by X.

Since G∗(X) is the C∗-subalgebra of C∗(E) generated by the partial isome-
tries {Se : e ∈ E1} alone ([4]) we have that O(J0, X) is the C∗-subalgebra of
Õ(J0, X) generated by {Sf : f ∈ X}. By analogy with the situation for Cuntz
algebras we may view X as a Hilbert module generating the C∗-algebra G∗(E)
via a linear contraction S.

Remark 1.3. In the following the representations π : G∗(E) → B(H) that
we deal with are chosen so that π(Se) 6= 0 for e ∈ E1. This is equivalent to
requiring that the projections p[e] = π(S∗eSe) are nonzero, or equivalently that the
∗-homomorphism σ : C0(R) → B(H) occurring in the pair (T, σ) corresponding to
π is injective.

2. ENDOMORPHISMS OF SUMS OF TYPE I FACTORS

Consider ∗-endomorphisms of a countable direct sum R =
⊕Ri of type I factors

Ri, where Ri = piRpi is type Ini and pi are orthogonal central and minimal
countably decomposable projections of R. Although we need not assume that
the endomorphisms are either unital or injective, there are some restrictions we
impose.

We form a matrix ϕ∗ from the endomorphism ϕ by slightly modifying the
approach in [2]. Consider the map γ = piϕ|Rk from Rk to Ri, which must
either be injective or the zero map. In the later case set ϕ∗(i, k) = 0. Otherwise,
let Γi be a representation of Ri. It is unitarily equivalent to an isomorphism of
Ri with B(Hi) ⊗ ILi for Hilbert spaces Hi, Li. The representation Γiγ of Rk is
unitarily equivalent to a representation (πik⊕0)⊗ILi where πik is a nondegenerate
representation of Rk on a subspace Hik of Hi. The commutant πik(Rk)′ is a type
Im factor where m = mik is the multiplicity of the representation πik. Since
πik(Rk)′ is isomorphic to piϕ(pk)[ϕ(Rk)′ ∩ Ri] the multiplicity is well defined,
independently of the representation Γi chosen. Set the (i, k) entry of the matrix
ϕ∗, ϕ∗(i, k) = mik.

The von Neumann algebra ϕ(R)∩Ri is isomorphic to
[⊕

k

πik(Rk)⊕0
]
⊗ILi

where 0 denotes the zero representation on the subspace
[ ⊕

k

Hik

]⊥
of Hi corre-

sponding to (the image under Γi of) the projection IRi − piϕ(I). The projec-
tion piϕ(I) is the unique largest central projection in ϕ(R)′ ∩ Ri with (IRi −
piϕ(I))(ϕ(R) ∩Ri) = 0.
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If p is a minimal central projection of R then the projection pϕ(I) of Rp is
in general a proper subprojection of p. We will consider those endomorphisms ϕ
of R which are described by certain conditions.

Condition 2.1. If p is a minimal central projection of R with ϕ(p) and
pϕ(I) both nonzero, then pϕ(I)� p implies that pϕ(I)[ϕ(R)′ ∩ Rp] has infinite
projections.

Loosely speaking this first condition requires that certain finite parts of the
endomorphism ϕ are unital, so pϕ(I), if not zero, must be all of p if ϕ(p) is not zero
and pϕ(I)(ϕ(R)′ ∩ Rp) is a finite von Neumann algebra. This, as we shall later
see, is a reflection of the relation occuring in the definition of G∗(E) that requires
initial projections of certain generating partial isometries to be equal to finite sums
of certain other final projections. Indeed, note that if ϕ is a unital endomorphism,
or if ϕ(I) is required to be a central projection of R, then ϕ vacuously satisfies
this first condition since pϕ(I) must either be 0 or p for each p.

The second condition involves the relation of pϕ(I) to p if p is a minimal
central projection of R in the kernel of ϕ with pϕ(I) nonzero. If the projection
h = p − pϕ(I) is nonzero then, since ϕ maps the factor pR to zero, ϕ maps the
subspaces hR and Rh to zero. Also, since 1 − h = 1 − p + pϕ(I), we have that
ϕ(x) = (1 − h)ϕ(x)(1 − h) for x ∈ R. Thus information on ϕ is retained if we
restrict the domain of ϕ by replacing the factor pR with the factor pϕ(I)Rpϕ(I).
Basically with this condition we arrange that p = pϕ(I) for these particular central
projections in the kernel of ϕ.

Condition 2.2. If p is a minimal central projection of R with ϕ(p) = 0 and
pϕ(I) nonzero then p = pϕ(I).

Again note that if ϕ is unital, or if ϕ(I) is central, then ϕ also satisfies the
second condition. The third condition again involves a simplifying condition on
the domain R of ϕ. If p and q are minimal central projections of R in the kernel of
ϕ with pϕ(I) and qϕ(I) nonzero then we may enlarge the domain of ϕ by replacing
the sum of factors pR⊕ qR with a single type I factor in the kernel of ϕ with unit
p + q. We will see that this simplification is a reflection of Proposition 3.1 below
where maximal domains defining an endomorphism are chosen. This last condition
is different from the first two as it affects the actual matrix ϕ∗, namely ϕ∗ may
only have one zero column if ϕ satisfies Condition (3).

Condition 2.3. If p, q are central projections in R with ϕ(p) = ϕ(q) = 0
and pϕ(I), qϕ(I) are nonzero, then p = q.

The entries of the matrix ϕ∗ satisfy a compatibility condition with the se-
quence (nk) of nonzero elements of N ∪ {∞}, where Rk is a factor of type Ink

;
namely

∑
ϕ∗(i, k)nk 6 ni. Since the statement that piϕ(I)[ϕ(R)′∩Ri] has infinite

projections is equivalent to
∑
k

ϕ∗(i, k) = ∞ we see that Conditions 2.1 and 2.2

imply that
∑
ϕ∗(i, k)nk = ni whenever the i-row of ϕ∗ is nonzero, so whenever

the left hand side is nonzero. If R is a sum of type I∞ factors, so nk = ∞ for
all k, then this stronger compatibility condition is automatically satisfied for any
matrix ϕ∗ associated with an endomorphism ϕ of R.

If the projection piϕ(I) of Ri is nonzero, and not equal to pi, then the
matrix ϕ∗ contains no information on how large the projection pi − piϕ(I), so it
may be finite or infinite in ϕ(R)′ ∩Ri. The size of these projections are preserved
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under inner automorphisms of R, so if ϕ and ψ are two endomorphisms of R with
ϕ∗ = ψ∗ then it does not follow that there is an inner automorphism α of R with
α · ϕ = ψ. If ϕ is a unital endomorphism, or if ϕ(I) is a central projection of R
then, as in [2], the matrix ϕ∗ does determine the endomorphism up to an inner
automorphism.

3. REPRESENTATIONS AND ENDOMORPHISMS

We describe a correspondence between endomorphisms of sums of type I factors
and representations of graph algebras G∗(E) extending the earlier such correspon-
dences ([1], [3]).

If E is a directed graph then G∗(E) is of the form G∗(Eess) ⊕ C0(I) where
Eess = E \ I, I the set of isolated vertices, and G∗(Eess) is generated by partial
isometries Se, e ∈ E1 satisfying the relations listed after Theorem 1.1 in ([4]).
For π a nondegenerate representation of G∗(E) on a Hilbert space H and Hv the
orthogonal subspaces of H corresponding to the projections π(δv), v ∈ I, set He

to be the subspace
(⊕Hv

)⊥ of H corresponding to the projection 1H−
∑
v∈I

π(δv).

Then π defines a nondegenerate representation of G∗(Eess) on He.
Given π a nondegenerate representation of G∗(E) on H define a ∗-linear

map ϕπ of B(He) ⊕
⊕
v∈I

B(Hv) by ϕπ(x) =
∑

e∈E1
π(Se)xπ(Se)∗. We note that

ϕπ|
⊕
v∈I

B(Hv) = 0, so we restrict attention from now on to ϕπ|B(He) and assume

that E has no isolated points, so H = He. Since the partial isometries π(Se)
have orthogonal final ranges the sum defining ϕπ converges in the strong operator
topology, and furthermore ‖ϕπ(x)h‖ 6 ‖x‖ ‖h‖ for h ∈ H, so ϕπ is a linear
contraction on B(H).

Note that ϕπ(x) =
∑
π(SeS

∗
e )π(Se)xπ(Se)∗π(SeS

∗
e ) is contained in

⊕

e∈E1

π(SeS
∗
e )B(H)π(SeS

∗
e ) =

⊕

v∈r(E1)

⊕

e∈E1

{π(SeS
∗
e )B(H)π(SeS

∗
e ) : s(e) = v}

⊕
⊕

e∈E1

{π(SeS
∗
e )B(H)π(SeS

∗
e ) : s(e) a source}.

Since SeS
∗
e 6 S∗l Sl if r(l) = s(e) this is a subalgebra of

⊕
l∈E1/∼

π(S∗l Sl)B(H)π(S∗l Sl)⊕

qB(H)q, where q = IH−
∑

l∈E1/∼
π(S∗l Sl) and where two edges l, k ∈ E1 are equiva-

lent, l ∼ k, if r(l) = r(k). Thus ϕπ has range in the subalgebra {π(S∗eSe) : e ∈ E1}′
of B(H).

As in [3] there is a maximal domain R ⊆ B(H), (or R ⊆ B(He)⊕
⊕
v∈I

B(Hv)

if we keep track of the isolated points I of E) for ϕπ so that ϕπ|R is a ∗-
homomorphism. The proof of the following proposition is the same as Propo-
sition 2.1 of [3].
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Proposition 3.1. The maximal domain R on which ϕπ is a ∗-homomor-
phism is the von Neumann algebra {π(S∗eSe) : e ∈ E1}′.

Thus ϕπ is a ∗-endomorphism of R. Since two projections in {π(S∗eSe) :
e ∈ E1} are either orthogonal or equal, R′ is abelian and R is a type I von
Neumann algebra with center countably generated by the orthogonal projections
{π(S∗eSe) : e ∈ E1/ ∼}∪ {q}. The subalgebra qB(H)q is evidently in the kernel of
ϕπ, in fact ϕπ is injective if and only if q = 0. Thus the endomorphism ϕπ has at
most one type I factor summand of the domain R in its kernel, and

qϕ(I) = q
( ∑

e∈E1

π(Se)π(Se)∗
)

= q
( ∑

e∈E1

{π(Se)π(Se)∗ : s(e) a source of E}
)
.

If we assume that π is a nondegenerate representation of G∗(E), we have that
IH =

∑
l∈E1/∼

π(S∗l Sl) +
∑

e∈E1
{π(Se)π(Se)∗ : s(e) a source of E}, so

q =
∑

e∈E1

{π(Se)π(Se)∗ : s(e) a source}.

Thus ϕ satisfies Conditions 2.2 and 2.3 of Section 2. We shall see later that ϕ
satisfies Condition 2.1 as well.

For π the given nondegenerate representation of G∗(E) there is a unique iso-
metric covariant representation (T, σ) of (X, 〈X,X〉) on H where X is the Hilbert
bimodule over A = C0(E0) associated with E and T (δe) = π(Se) for e ∈ E1. Note
that we are assuming here that E has no isolated points, which we may do by
previous comments.

To show that the endomorphism ϕπ depends only on the image T (X) of the
Hilbert bimodule we first show that the domain R is determined by T .

Proposition 3.2. The domain R of ϕπ is {T (f)∗T (f) : f ∈ X}′.
Proof. Clearly R ⊇ {T (f)∗T (f) : f ∈ X}′. If f =

∑
feδe ∈ Cc(E1) then

T (f)∗T (f) ∈ Span{π(S∗eSe) : e ∈ E1} since π(Se)∗π(Sl) = 0 unless e = l. Since T
is a continuous map of X to B(H), of norm 1, the result follows.

As in [1] and [3], set Lϕ = {M ∈ B(H) : ϕπ(x)M = Mx, x ∈ R} a σ-weakly
closed linear subspace of B(H) which is a right A-module, with A the abelian
algebra R′.

Lemma 3.3. With q = 1H −
∑

e∈E1/∼
π(S∗eSe), p = 1H −

∑
e∈E1

π(SeS
∗
e ), and

M ∈ Lϕ we have Mq = pM = 0.

Proof. We have ϕπ(q) = 0 since qB(H)q ⊆ kerϕπ, so for M ∈ Lϕ, 0 =
ϕπ(q)M = Mq. Since range ϕπ ⊆

⊕
e∈E1

π(SeS
∗
e )B(H)π(SeS

∗
e ) we have ϕπ(x)p =

pϕπ(x) = 0, so for M ∈ Lϕ, 0 = pϕπ(IH)M = pM .

Since M∗S ∈ R′ = A for M,S ∈ Lϕ, 〈M,S〉 = M∗S defines a Hilbert
A-module structure on Lϕ.
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Proposition 3.4. Lϕ = SpanAT (X) where the closure is in the σ-weak
topology and SpanAT (X) is the right A-module generated by T (X).

Proof. We have

ϕ(x)π(Se)=
∑

π(Sl)xπ(Sl)∗π(Se)=π(Se)xπ(Se)∗π(Se)=π(SeS
∗
eSe)x=π(Se)x

for x ∈ R, so T (δe) = π(Se) ∈ Lϕ, for e ∈ E1 and Lϕ ⊇ SpanAT (X). The other
inclusion follows by noting that for M ∈ Lϕ,

M = (1− p)M =
∑

e∈E1

π(SeS
∗
e )M =

∑
π(Se)〈π(Se),M〉,

where the first sum converges in the strong topology on the unit ball of B(H) since
the projections π(SeS

∗
e ) are orthogonal.

We had remarked in the previous lemma that ϕπ(a)p = 0 for a ∈ R and
p = 1−∑

π(Se)π(Se)∗ = 1−∑
T (δe)T (δe)∗. Since T is a linear contraction

[T (X)H] =
[ ∑

e∈E1

T (δe)H
]

=
∑

T (δe)T (δe)∗H = (1− p)H,

so the kernel of ϕπ(a) contains [T (X)H]⊥ for each a ∈ R.

Proposition 3.5. Let E be a directed graph with no isolated points and
X the Hilbert bimodule associated with E generating the C∗-algebra G∗(E). Let
π be a nondegenerate representation of G∗(E) on H with (T, σ) the associated
isometric covariant representation of (X, 〈X,X〉), and ϕπ the ∗-endomorphism of
R = {T (f)∗T (f) : f ∈ X}′. If bM = Ma (M ∈ T (X)) for some a ∈ R, b ∈ B(H)
with b|[T (X)H]⊥ = 0 then b = ϕπ(a).

Proof. Since T (X) ⊆ Lϕ we have ϕπ(a)M = Ma for M ∈ T (X), so (b −
ϕπ(a))T (f) = 0 for f ∈ X and (b− ϕπ(a))|T (X)H = 0. Since (b− ϕπ(a))|[T (X)H]⊥

= 0 it follows that b = ϕπ(a).

These results show that although the endomorphism was initially defined
using specific generators of X, it only depends on X and the representation π.
If U is a unitary of the Hilbert A-bimodule X, and (T, σ) an isometric covariant
representation of (X, 〈X,X〉), then so is (T ◦ U, σ). The endomorphism ϕπ◦U is
given by ϕπ◦U (x) =

∑
T (Uδe)xT (Uδe)∗ with domain {T (Uf)∗T (Uf) : f ∈ X}′

which is the same as R, the domain of ϕπ, since

T (Uf)∗T (Uf) = σ(〈Uf,Uf〉) = σ(〈f, f〉) = T (f)∗T (f)

for f ∈ X. Also, for a ∈ R, kerϕπ◦U (a) contains [T (UX)H]⊥ = [T (X)H]⊥.
Proposition 3.4 implies Lϕπ◦U

= Lϕπ so ϕπ◦U (a)M = Ma for M ∈ Lϕ and a ∈ R.
Proposition 3.5 applies to show ϕπ◦U = ϕπ.

The fixed point algebra of the endomorphism ϕπ is determined by the rep-
resentation π of the bimodule X.
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Theorem 3.6. Let E be a directed graph with no isolated points, π a non-
degenerate representation of G∗(E) and T the corresponding representation of the
bimodule X associated with the directed graph E. If ϕπ is the endomorphism of
R = {T ∗(f)T (f) : f ∈ X}′ associated with π then the fixed point subalgebra of
ϕπ = {T (X) ∪ T ∗(X)}′ ∩ (1− p)R(1− p) where 1− p =

∑
e∈E1

π(SeS
∗
e ).

Proof. If a ∈ (1− p)R(1− p) commutes with T (X) then

ϕπ(a) =
∑

e∈E1

T (δe)aT (δe)∗ = a
∑

T (δe)T (δe)∗ = a(1− p) = a,

so the set is contained in the fixed point subalgebra. For the other inclusion first
recall that we have already noted, in Lemma 3.3, that range ϕπ ⊆ (1−p)R(1−p),
and that ϕπ is a ∗-homomorphism. It is therefore enough to show that the fixed
point algebra is contained in T (X)′. This follows from Proposition 3.4 since the
fixed point algebra of ϕπ is contained in L′ϕ.

Although (1 − p)R(1 − p) may not be zero, the fixed point algebra of the
endomorphism ϕπ may certainly be zero, as the example with the directed graph
containing exactly one edge e with r(e) 6= s(e) shows.

Given a directed graph E, with no isolated points, we may coalesce all sources
of E into one single source to obtain a directed graph Ẽ. Since the defining
relations for G∗(E) only involve the edge set E1, and do not involve sources, and
since E1 = Ẽ1, it is clear that G∗(E) = G∗(Ẽ).

Remark 3.7. The graph Ẽ is a partial in-amalgamation of the graph E in
the terminology of [4]. Also, if B and B̃ are the vertex matrices for E and Ẽ

respectively, then the complete in-split matrices Bw and B̃w are equal, so once
again calOB

∼= O
B̃
. Note that the complete in-amalgamations of Bw and B̃w are

both equal to B̃.

Theorem 4.7 of [3] holds in the current, more general, situation. That situa-
tion dealt with finite graphs, and unital injective endomorphisms; so in particular
no sources. To see that the former situation is a special case of Theorem 3.8 below
recall that the Cuntz-Krieger algebras OB are defined using the complete in-split
matrix Bw of B ([4]).

Theorem 3.8. If E is a directed graph with no isolated points and π is a
nondegenerate representation of G∗(E) on a separable Hilbert space with ϕπ its
associated endomorphism, then the endomorphism satisfies Conditions 2.1, 2.2,
and 2.3, and the matrix (ϕπ)∗ = B̃, the vertex matrix of the graph Ẽ where all
sources of E are coalesced into one source. In particular, if E has no sources, or
only one source, then (ϕπ)∗ = B, the vertex matrix of E.

Proof. By the comments preceding Remark 3.7 we may assume that E = Ẽ,
so that E has at most one source. Setting two edges e, l to be equivalent, e ∼ l, if
and only if r(e) = r(l) we have that the projections p[e] = π(S∗eSe), [e] ∈ E1/ ∼,
are minimal central projections of the domain R of ϕπ, and R =

⊕
e∈E1/∼

p[e]R⊕qR
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with q = 1 −∑
p[e]. Note that q 6= 0 if and only if E has a source. In this case

set a ∈ E0 to be the source of E.
Now (ϕπ)∗ is a square matrix over the index set (E1/ ∼) ∪ {q} and B is a

square matrix over the index set E0, with B(v, w) = |{k ∈ E1 : s(k) = v, r(k) =
w}| for v, w ∈ E0. The map of (E1/ ∼) ∪ {q} → E0 defined by [e] → r(e) and, if
q 6= 0, q → a is a well defined set bijection.

Since the q-th column of (ϕπ)∗ describes the map ϕπ|qR we see that the q-th
column of (ϕπ)∗ is the same as the a column of B, namely both are zero. Now
choose w ∈ E0 and l ∈ E1 with r(l) = w. To identify the entries in the [l] column
of (ϕπ)∗, fix x ∈ p[l]R. Then

ϕπ(x) =
∑

k∈E1

π(Sk)xπ(Sk)∗ =
∑

π(Sk)xπ(S∗l SlS
∗
k) =

∑

k∼l

π(Sk)xπ(Sk)∗

since S∗l SlS
∗
kSk = 0 if r(k) 6= r(l), and S∗kSk otherwise. If v ∈ E0 and v 6= a then

there is an e ∈ E1 with r(e) = v. The element

p[e]ϕπ(x) =
∑

k∼l

π(S∗eSeSk)xπ(Sk)∗ =
∑

k∼l

π(S∗eSeSkS
∗
kSk)xπ(Sk)∗

=
∑

k

{π(Sk)xπ(Sk)∗ : k ∼ l, s(k) = r(e) = v}

by the relations for G∗(E), so (ϕπ)∗([e], [l]) = |{k ∈ E1 : r(k) = w, s(k) = v}| =
B(v, w). We also compute

qϕπ(x) =
∑

k∼l

(
I −

∑
g

π(S∗gSg)
)
π(Sk)xπ(Sk)∗

=
∑

{π(Sk)xπ(Sk)∗ : k ∼ l, s(k) = a}
since E has only one source a and π is nondegenerate. Thus (ϕπ)∗(q, [l]) = B(a,w),
and we have shown (ϕπ)∗ = B̃.

That ϕπ satisfies Conditions 2.2 and 2.3 was noted earlier. To show Con-
dition 2.1 is satisfied, it is enough to show, since ϕπ(q) = 0, that if for a fixed
e ∈ E1, p[e]ϕπ(I) 6= 0 and p[e]ϕπ(I)(ϕ(R)′ ∩ Rp[e]) is a finite von Neumann al-
gebra then p[e] = p[e]ϕπ(I). However the indicated algebra is finite if and only
if

∑
k∈(E1/∼)∪{q}

(ϕπ)∗([e], k) < ∞, so, since the q-column of (ϕπ)∗ is zero, exactly

when
∑

l∈E1/∼
(ϕπ)∗([e], [l]) <∞. The later sum is

∑

l∈E1/∼
|{k ∈ E1 : r(k)=r(l), s(k)=r(e)}|= |{k ∈ E1 : s(k)=r(e)}|= |s−1(r(e))|.

We compute

p[e]ϕπ(I) = π(S∗eSe)
∑

l∈E1

π(SlS
∗
l ) =

∑

l∈s−1(r(e))

π(SlS
∗
l ),

which is nonzero precisely when 0 < |s−1(r(e))|. To show Condition 2.1 we are thus
reduced to showing that if 0 < |s−1(r(e))| <∞ then π(S∗eSe) =

∑
l∈s−1(r(e))

π(SlS
∗
l ).

This is however π applied to a defining relation for G∗(E).
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Theorem 3.9. Let R =
⊕
l∈J

Rl be a countable direct sum of countably decom-

posable type I factors Rl, l ∈ J . Assume that each Rl is represented irreducibly

on a Hilbert space Hl and that R is thus represented on H =
⊕Hl. If ϕ is a

∗-endomorphism of R satisfying Conditions 2.1, 2.2 and 2.3 then there is a nonde-

generate representation π : OB → B(H) of the generalized Cuntz-Krieger algebra

OB with B = ϕ∗ so that ϕπ, the ∗-endomorphism associated with π, is equal to ϕ.

Proof. Let Rl = Rpl
where pl is the unit of Rl, a minimal central projection

of R. Condition 2.3 implies that there is at most one projection q with qϕ(I) 6= 0

and ϕ(q) = 0, so in other words where the q-column of ϕ∗ is zero and the q-row

of ϕ∗ is nonzero. If I is the subset of J with l ∈ I if and only if both the l-column

and l-row of ϕ∗ are zero, then set He to be the subspace
( ⊕

v∈I

Hv

)⊥
of H. We

will define a representation π of G∗(E) on H, where E is a directed graph with
vertex set E0 = J , so that the isolated vertices of E consist of the set I, and q
is the one possible vertex of E0 emitting edges but not receiving edges. By the

definition of ϕπ it now suffices to construct a representation π of G∗(Eess) on He

where Eess = E \ I , Eess is a directed graph with no isolated vertices. Thus,

without loss of generality, we may suppose that I = φ.

As in the proof of Theorem 3.9 of [3] there are, for ϕ∗(l, k) 6= 0, partial

isometries {Tlik : 1 6 i 6 ϕ∗(l, k), l, k ∈ J} with orthogonal final spaces, where

Tlik has initial space Hk, final space a subspace of Hl and

ϕ(x) =
∑

l,k

plϕ(pkx) =
∑

l,k∈J

ϕ∗(l,k)∑

i=1

Tlik(pkx)T ∗lik =
∑

l,k∈J

ϕ∗(l,k)∑

i=1

TlikxT
∗
lik.

Define a directed graph E with E0 = J , and for each Tlik 6= 0 there is an
edge e ∈ E1 with r(e) = k, s(e) = l. Clearly the vertex matrix B for E is the

matrix ϕ∗. Set Te = Tlik. Note that the condition
∑
k

ϕ∗(l, k) <∞ is equivalent to

|s−1(l)| <∞, ϕ(pk) 6= 0 is equivalent to r−1(k) 6= φ, plϕ(I) 6= 0 means s−1(l) 6= φ,
and plϕ(I) = pl is equivalent to S∗eSe =

∑{SgS
∗
g : g ∈ s−1(l)} if r(e) = l. Thus

the Te, e ∈ E1, are partial isometries satisfying the defining relations for G∗(E)

if ϕ satisfies Condition 2.1. This defines a representation π of G∗(E) on H with

ϕπ = ϕ. The representation π is nondegenerate since ϕ satisfies Condition 2.2.
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4. ENDOMORPHISMS OF SUMS OF I∞ FACTORS

Let ϕ be an endomorphism of R where R is a countable sum of type I factors,
and ϕ satisfies Conditions 2.1, 2.2, and 2.3 of Section 2. If E is the directed graph
with vertex matrix B = ϕ∗ we give sufficient conditions on E that ensure that R
must be a sum of type I∞ factors. By Theorem 3.9 we know that ϕ = ϕπ where
π is a nondegenerate representation of G∗(E).

For n ∈ N let En be the paths in E of length n, so En = {(α1, . . . , αn) :
s(αi+1) = r(αi) for 1 6 i 6 n− 1 and αi ∈ E1 for 1 6 i 6 n}, and E∗ =

⋃
n>1

En.

The conditions on E are most concisely stated in terms of the infinite path space
E∞ =

{
α ∈ ∏

N
E1 : s(αi+1) = r(αi) for i ∈ N

}
with the subspace topology from

∏
N
E1, although Theorem 4.2 below could be stated and proved using only E∗,

without reference to E∞.

Proposition 4.1. If E has no sinks and (α1, . . . , αn) ∈ En then there is an
α ∈ E∞ with (α)i = αi for i = 1, . . . , n.

Proof. First note that since E has no sinks, if f ∈ En then there is g ∈ En+1

which extends f , in the sense that the domain of f is contained in that of g, and g
agrees with f on the domain of f . We write f 6 g. This defines a partial order on
P = {h ∈ E∗ : (α1, . . . , αn) 6 h}, and the Hausdorff maximality principle yields
a maximal chain C in P. Since E has no sinks, the principle of induction shows⋃{domain f : f ∈ C} = N. Define α ∈ E∞ by α(n) = f(n) for n ∈ domain f,
f ∈ C.

The principle condition on E, other than E having no sinks, is: given δ ∈ En

there is an m > n, and distinct α, β ∈ Em with δ 6 α, δ 6 β. By the last
Proposition we may choose α, β ∈ E∞, and the condition may be restated in
terms of E∞ by saying that E∞ has no isolated points. The main tool used in the
proof of the following theorem is the compatibility condition of Section 2, namely∑
ϕ∗(i, k)nk 6 ni for ϕ any endomorphism of R =

⊕Rk, with Rk a type Ink

factor.

Theorem 4.2. If the directed graph E has no sinks and E∞ has no iso-
lated points then the domain R of the endomorphism ϕ = ϕπ associated with a
nondegenerate representation π of G∗(E) is a direct sum of type I∞ factors.

Proof. As in Theorem 3.8, R =
⊕

e∈E1/∼
p[e]R⊕ qR where p[e] = π(S∗eSe) and

q = 1−∑
p[e]. We first show that p[e]R, a type In[e] factor, is a type I∞ factor for

each e ∈ E1. Fix an arbitrary e ∈ E1 and note that since E has no sinks, there
is an l ∈ E1 with r(e) = s(l). Let α ∈ E∞ with α1 = e and α2 = l. Note that if
r(e) = s(e) then it is entirely possible that l = e. We have

n[αm+1] 6 ϕ∗([αm], [αm+1])n[αm+1] 6 n[αm ]
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for all m so n[αm] is a decreasing sequence of natural numbers (or infinity) bounded
above by n[e]. Since α ∈ E∞ is not isolated, for each m ∈ N there is an rm > m
and an edge km 6= αrm+1 with s(km) = r(αrm

). We have

n[αrm+1]�ϕ∗([αrm ], [αrm+1])n[αrm+1] + ϕ∗([αrm ], [km])n[km] 6 n[αrm ]

if n[αrm+1] is finite. Thus, if n[e] is finite we have that it must bound the strictly
decreasing sequence n[αrm ] of positive natural numbers, which is not possible.

We have shown that p[e]R is a type I∞ factor for all e ∈ E1, so it only
remains to show that qR is also for q 6= 0. If q 6= 0, then E has a source a and if
e ∈ E1 with s(e) = a then

n[e] 6 ϕ∗(a, [e])n[e] 6
∑

ϕ∗(a, j)nj 6 na,

so na must also be infinite.

We show that if E has no isolated points and a sink p, and has at most one
source then we may always find an endomorphism ϕ of a sum of type I factors
with ϕ∗ the vertex matrix of E and R containing finite type I factor summands.
If π is a nondegenerate representation of G∗(E) on H and ϕ = ϕπ its associated
endomorphism, then ϕ∗ is the vertex matrix of E and ϕ is an endomorphism of
R =

⊕
e∈E1/∼

p[e]R ⊕ qR. If l ∈ E1 is an edge with r(l) = p then by the defining

relations for G∗(E) the projection p[l] = π(S∗l Sl) is orthogonal to each projection
π(SeS

∗
e ), e ∈ E1, so p[l]ϕ(R) = 0 and p[l]R ∩ ϕ(R) = 0. If ψ is the restriction of

ϕ to M =
⊕

e∈E1/∼
e6=l

p[e]R ⊕ Cp[l] ⊕ qR then ψ∗ = ϕ∗, the vertex matrix of E and

ψ is an endomorphism of a sum of type I factors that includes at least one finite
factor. Note also that ψ satisfies Conditions 2.1, 2.2, and 2.3 since the first two
conditions do not apply to p[l] as p[l]ψ(I) = p[l]ϕ(I) = 0.
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