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ABSTRACT. We consider the eigenvalue problem
Rimg,moh = Ah, heC(T), |\ =1,

where Ry, m, is the wavelet Galerkin operator associated to a wavelet filter

mo. The solution involves the construction of representations of the algebra

An — the C*-algebra generated by two unitaries U,V satisfying UVU ! =

V¥ introduced in [13].

KEYWORDS: Wawvelets, Hilbert space, unitary operators, operator algebras,
transfer operator, Ruelle operator, spectrum.

MSC (2000): 37A55, 37C30, 42A16, 42A65, 42C40, 46160, 47A10, 47A20,
ATATS, 47TB65

1. INTRODUCTION

The wavelet Galerkin operator appears in several different contexts such as
wavelets (see for example [15], [10], [6], [17], [7]), ergodic theory and g-measures
([14]) or quantum statistical mechanics ([19]). For some of the applications of the
Ruelle operator we refer the reader to the book by V. Baladi ([1]). It also bears
many different names in the literature: the Ruelle operator, the Perron-Frobenius-
Ruelle operator, the Ruelle-Araki operator, the Sinai-Bowen-Ruelle operator, the
transfer operator and several others. We used the name wavelet Galerkin opera-
tor as suggested in [15], because of its close connection to wavelets that we will
be using in the sequel. We will also use the name Ruelle operator and transfer

operator.
The Ruelle operator considered in this paper is defined by
1
Rono.mi £(2) = > mo(w)ymp(w)f(w), z€T,

wN=z
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where mg, my € L°°(T) are nonsingular (i.e. they do not vanish on a set of positive
measure), T is the unit circle {z € C : |z| = 1}, N > 2is an integer. A large amount
of information about this operator is contained in [3]. One of the main objectives
of this paper is to do a peripheral spectral analysis for the Ruelle operator, that
is to solve the equation

Ry moh = Ah, [N =1, heC(T).

The restrictions that we will impose on mq are:

mo € Lip;(T), where Lip;(T) ={f:T — C: f is Lipschitz};

mg has a finite number of zeros;

Roymel = 1;

mo(1) = VN.
In ergodic theory the Ruelle operators are used in the derivation of correlation
inequalities (see [20] and [11]) and in understanding the Gibbs measures. The role
played by the Ruelle operator in wavelet theory is somewhat similar. It can be
used to make a direct connection to the cascade approximation and orthogonality
relations.

In the applications to wavelets, the function mg is a wavelet filter, i.e., its
Fourier expansion

(1.5) mo(z) = Zakzk

kEZ

AA,_\A
— = = =
B~ W N =
NG AN AN

yield the masking coefficients of the scaling function ¢ on R, i.e. the function which
results from the the fixed-point problem

(1.6) plx) = \/NZakgo(Nx — k).

kez
Then the solution ¢ is used in building a multiresolution for the wavelet analysis.
If, for example, conditions can be placed on (1.5) which yield L?(IR)-solutions to
(1.6), then the closed subspace Vj spanned by the translates {o(x — k) : k € Z} is
invariant under the scaling operator

(17) Ui = —7(

ie. U(Vp) C V. Setting V; := U’ (V) for j € Z we get the resolution
VoWV Vo Vg

from which wavelets can be constructed as in [9].
The cascade operator is defined on L?(R) from the masking coefficients by:

Moy =VN Y antp(N - —n).
nez

The scaling function ¢ is then a fixed point for the cascade operator, it satisfies
the scaling equation M,p = .
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Now set

plin v = Yo [Tiahiale —n)do, wr, v € L)
R

nez
The relation between the Ruelle operator R,,, m, and the cascade operator M, is

ng,mo <p<’(/}13 ¢2)) = p(Ma’(/)h Maw2);

and this makes the transfer operator an adequate tool in the analysis of the or-
thogonality relations.

One of the fundamental problems in wavelet theory is to give necessary and
sufficient conditions on mg such that the translates of the scaling function {p(- —
n) : n € Z} form an orthonormal set. There are two well known results that
answer this question: one due to Lawton ([16]), which says that one such condition
is that Ry, m, as an operator on continuous function has 1 as a simple eigenvalue,
the other, due to A. Cohen ([4]), which says that the orthogonality is equivalent
to the fact that m( has no nontrivial cycles (a cycle is a set {z1,...,2,} with
2 =z, 28 = 2,2) = 2 and |mo(z)| = VN for all i € {1,...,p}; the
trivial cycle is {1}).

The peripheral spectral analysis in this paper will elucidate, among other
things, why these two conditions are equivalent.

The wavelet theory gives a representation of the algebra Ay (i.e. the C*-
algebra generated by two unitary operators U and V subject to the relation
UVU~! = V¥) on L2(R). U is the scaling operator in (1.7) and V is the trans-
lation by 1 V' : ¢ — ¢(- — 1). In fact we also have a representation of L>°(T) on
L2(R) given by n(f)¢Y = > cpt0(- —n), for f = > ¢ 2™ € L(T).

neEZ nez
The scaling equation (1.6) can be rewritten as

Up = m(mo)ep.

This representation of Ay together with the scaling function ¢ is called the wavelet
representation.

In [13] it is proved that there is a one-to-one correspondence between positive
solutions to Ry,,,m,h = h and representations of . These representations are
in fact given by the unitary U : H — H, a representation 7 : L>°(T) — B(H)
satisfying

Un(f) =n(f(zN)U, feL>(T)

and ¢ € H with Up = m(mg)ep.
We reproduce here the theorem:

THEOREM 1.1. (i) Let mg € L*°(T), and suppose mg does not vanish on a
subset of T of positive measure. Let

(1) (RNE) = 3 Imo(w)f(w), € LX(D).

Then there is a one-to-one correspondence between the data (a) and (b) below,
where (b) is understood as equivalence classes under unitary equivalence:
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(a) h € LY(T), h > 0, and

(1.9) R(h) = h.
(b) ™ € Rep(n, H), v € H, and the unitary U from T satisfying
(1.10) Up = m(mo)ep.
(ii) From (a) = (b), the correspondence is given by
(111) (iD= [ fh
T

where 1 denotes the normalized Haar measure on T.
From (b) = (a), the correspondence is given by

(1.12) B(2) = ho(2) = 3 2" (n(en) : o
ne”z
(iii) When (a) is given to hold for some h, and T € Rep(™UAn,H) is the
corresponding cyclic representation with Up = m(mo)p, then the representation is
unique from h and (1.11) up to unitary equivalence: that is, if ©" € Rep(™An, H'),
¢ € H also cyclic and satisfying

@ m (D) = [ fhdp and U’y = (mo)s
T

then there is a unitary isomorphism W of H onto H' such that Wr(A) = n'(A)W,
AeUy, and Wp = .

DEFINITION 1.2. Given h as in Theorem 1.1 call (7, H, ) the cyclic repre-
sentation of ™A associated to h.

In the case of the orthogonality of the translates of the scaling function ¢,
the wavelet representation is in fact the cyclic representation corresponding to the
unique fixed point of the Ruelle operator R, m,, which is the constant function 1.

We will also need the results from [12] which show the connection between
solutions to RmO,m&h = h and operators that intertwine these representations.
Here are those results:

THEOREM 1.3. Let mg,m{, € L*(T) be non-singular and h,h’ € L*(T),
hyh' 20, Rygmo(h) = hy Ryt (') = R Let (7, H, ), (7', H', ") be the cyclic
representations corresponding to h and h' respectively.

If hg € LY(T), ng,mé(h’()) = hg and |ho|? < chh’ for some ¢ > 0 then there
exists a unique operator S : H' — H such that

SU'=US, St(f)=n(f)S, (p:m(f)S¢) = / fhodu,  f e L¥(T).
T

Moreover ||S|| < /c.

THEOREM 1.4. Let mg, m{, h, b, (m, H, ), (7', H', ") be as in Theorem 1.3.
Suppose S : H' — H is a bounded operator that satisfies

SU'=US, Sx'(f)=n=(f)S, feL®T).
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Then there exists a unique ho € L'(T) such that

Rmo,m"jho =ho and (p:S7'(f)¢) = /fho dp, f € L*>®(T).
T

Moreover, |ho|> < ||S||?hh almost everywhere on T.

These theorems indicate the correspondence between intertwining opera-
tors and the fixed points of the Ruelle operator. This correspondence projects
a C*-algebra structure on the eigenspace corresponding to the eigenvalue 1 (The-
orem 2.7, Corollary 2.8), and this algebra is in fact abelian (Theorem 2.3).

To find the solutions R,,, m,h = h we construct the representation associated
to the function hyax = 1. Then, if we can compute the commutant, the solutions
will follow from Theorems 1.3 and 1.4.

We will see how each cycle of mg gives rise to a representation of 2, hence
to a positive solution for Ry, m,h = h (Proposition 2.13). The representation
we are looking for (the one associated to hpax = 1) will be a direct sum of the
representations constructed for the cycles of mg (Theorem 2.16).

The solution of the eigenvalue problem mentioned in the abstract is given in
Theorem 2.5 and Corollary 2.18.

2. PERIPHERAL SPECTRAL ANALYSIS

We begin this section by analysing the intertwining operators a little bit further.
We will see that the commutator of the cyclic representation associated to a pos-
itive h with Ry,,,m,h = h is abelian and we will find the eigenfunction h that
corresponds to the composition of two intertwining opertors that correspond to hq
and hs respectively.

In Corrolary 3.9 of [13] it is proved that the cyclic representation (Hy, 7, ©r)
corresponding to some h > 0 with R,,, m,h = h is given by:

Hy, = {(50, N E sup/R%O’mO(KnPh) dp < 00, Ring,mo (§ns1h) = fnh}7
T

mh(f) (o, - -&ny o) = (f(@)o, ..., fF(zN)n,...),  f€LX(T),
Un(&os- - iny-..) = (mo(2)1, ... ,mo(zN Vg, .. ),

<(§07 N T ) : (7707 s Mny - )> = lim R%O,mo (annh) dp

n—oo

T

and
on=(1,1,...,1,...).
Also, we have the subspaces H} ¢ H} C --- C H" C --- C Hj, whose union is
dense in H;, where H := {(&,...,&n,...) € Hp : Enin(2) = §n(sz), for k > 0}.
The set VI = {U, "mn(f)en : f € L=(T)} is dense in H for all n > 0 and
UrH! = H}.

SOME NOTATIONS. If mg and h are as in Theorem 1.1, then, we denote by
(Hp, 7h, @n) the cyclic representation associated to h.
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If mg,mg, h,h' and ho are as in Theorem 1.3 then denote by Sp p/pn, the
intertwining operator from Hjs to Hj, given by the aforementioned theorem.
Sometime we will omit the subscripts.

LEMMA 2.1. Let PHg be the projection onto the subspace Hg. Then PHZ)L Sh,h' ho PH(;]L’
is multiplication by % on Hé‘/ i.e.
PHgSh,h',hOPHg’(f(z)@(zN)’ L HEEYT), )
_ ho(2) ., nyho(2V) NONCICAE! )
- (5(2) h(Z) ,E(Z ) h(ZN) 7"'35(2 ) h(ZNTL) e N
Proof. Denote Spp = (5,...,¢5,...). Then for all f € L>(T)

/fhodu:«l,l,...,l,...):Wh(f)(cpos,...,gps,...»

T

n—oo

= Jim [ R (et du= i [ FGefhdn= [ feShd
T e T T
thus ¢f = % Consider again an f € L*(T) arbitrary.
PSPy (F)on = Prp St (F)on = Prpmn(f)Sen
= Py (f(2)5, - FGEN el )
= (P68 PGS, ).
This calculation shows that PH(;]L SPHOh’ is multiplication by h—h“ on V('}l, so, by
density, on HSL/. ]
LEMMA 2.2, PynShn ho Pyn converges to Shp n, in the strong operator
topology.
Proof. Let & € Hps. Then
1Py SPygus € — SEI| < | Pray SPygus € — Prn SEN + || Pry S — S¢]|
<Pl 111y € — €Il + | Prry SE — SE| — 0 as n — oo
because the subspaces H" form an increasing sequence whose union is dense in
H;, (and similarly for H"). 1
THEOREM 2.3. The commutant mp(2A,)" is abelian.

Proof. Consider S1,Sy € 7,(2,)". Then, according to Theorem 1.4, S; =
Shy, So = Sh,, for some hq, he with Ry, mohi = hi, |hi] < ¢h, i € {1,2}. Let

¢ € Hj. It has a decomposition ¢ = & + n with & € HP and n € H('}J'. Using
Lemma 2.1
(PpnS1Pyn ) (P S2 Pyn )(§) = Py S1Ppn S280 = Prp S P S180
= (P S2Pyn) (Pyn S1Pyn )€
Since Pyn = U*"PH(;)L U™ it follows that PynS1Pyn and Py Sa Pyn also commute.
Lemma 2.2 can be used to get 152 as the strong limit of (Pgn St Pgn ) (PrnSaPyn).
Similarly for S5S57. And as the limit is unique we must have S1.55 = S357. 1
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Next, suppose we have two intertwining operators S : Hp — Hp/, Sz :
‘Hp, — Hp» which come from hy and ho respectively. Then S35 is also an
intertwining operator so it must come from some hz. We want to find the relation
between hq, hs and hs.

THEOREM 2.4. If S, : Hn — Hp and Sh, @ Hy — Hpr are intertwining
operators then, if Sy, = Sh,Sh,. We have for all f € L>°(T):

n hihy  hs
JUCRN
T

Proof. We begin with a calculation. For f € L*°(T):

2h” d 0
h/ h// h/l ) ILL - °
Pryy 1Py (U "7 (F)on) = Uy Pygye U S1U3 ™ Pagg U Uy (£

n —n h
— Uh/ PHél/ SlpH[I)z’iTh(f)QPh = Uh’ Th (fﬁ})@h/

For the second equality we used the fact that Sy is intertwining and for the last
one, Lemma 2.1.

(Pgnr Sa Py ) (P S1.Prp ) (Uy " mr (f)n)

(2.1) h hi h
— (PH»Z'” SzPHﬁ/)U};nﬂ'h/ (f;})gph/ = Uh_,,nﬂ'h// (fhfihilzl)goh//
Similarly
—-n —n h
(2.2) (Pgnrr S2.81 Prn ) (U, "m(f)n) = Uyt mn” (fhff’,)wh”.
gsing (2.1), (2.2) and the notation m(()n)(z) = mo(2)mo(zN) - ~-m0(zN"71), we
ave

| (P So Py )(Pene S1Prn )(mwn (f)on) — (Pyner S281Pyn ) (mn (f)n)l1 1,0
= [Py S2 Pyt ) (Pygye S1 Py ) Uy " (f (2N Ym§™ Yo
— (Pyyr S251 Py ) Uy "mn (F (N )m ) om o,
—n n n h/l h2
= HU 1 <7Th” (f(ZN )mé )(Z)ﬁﬁ»sé’h"

T ny o (my, P
= Ut (N ml ()5 ) on

n n hi ho  hs
= (1P @R[ -
T

= [ 1R Ry W) g
T

But, by Lemma 2.2, the first term in this chain of equalities converges to 0 for all
f € L*™(T) so we obtain the desired conclusion. &

Hpm
2
11

hihy  hs

h/ h/l h//
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COROLLARY 2.5. [f Sh17Sh2 € ﬂh(i’lN)/, Sh3 = Sh15h2 and h € LOO(T)
then

hh o
/|g|]Rmom0 Mha) pglan 0, ge ().

Proof. We will need the following inequality

(2.3) | R o (EW° < Riyy 1y (IE12R) R
This can be proved using Schwartz’s inequality:

By mg €N = |t S ) ) P

wN™ =2

(32 X PP ) (3 X ) Phw)

= R:lno m0(|§| h) mo, moh RZLO m0(|£‘2h)h

Now, take g € L>(T) and f = gh'/? in Theorem 2.4 (h = h/ = h"). We
have:

(/gmeo,mO (ke —hgjdu>2</|g|2\thm,mo(h1hh2) |
- / 7 R (5152 = 22 / PRI (L

h h h
hh
/|f m07m0 172_7’ h>d/1’_>0 1

In the sequel, we consider intertwining operators that correspond to con-
tinuous eigenfunctions h. We will prove that if h; and ho are continuous and
Shs = ShySh, then hs must be also continuous. The fundamental result needed
here is from [3]:

THEOREM 2.6. Let mg be a function on T satisfying mo € Lip;(T), Rimgmel <
1 and consider the restriction of Ry, m, to Lip;(T) going into Lip,(T). It follows
that Ryy.m, has at most a finite number Ai,..., A, of eigenvalues of modulus 1,
|[Ai| =1, and R has a decomposition

P
(2.4) Ring.mg = > _ AT, + S,
i=1
where Ty, and S are bounded operators from Lip,(T) to Lip,(T), Ty, have finite-
dimensional range, and
(2.5) T3 =Ty, TaTx =0 fori#j, T\S=ST\ =0,
and there exist positive constants M, h such that
M
2. "lLip, (T)—Li S
( 6) HS HLlpl(’]l‘) Lip, (T) (1 + h)n
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forn=1,2,.... Furthermore || Ry, mllco—oo < 1, and there is a constant M such
that

(2.7) 15" loo—o00 < M

forn=1,2,....

Finally, the operators Ty, and S extend to bounded operators C(T) — C(T),
and the properties (2.4) and (2.5) still hold for this extension. Moreover

lim S"f =0, T,( _nlgrgoﬁZA PRE (), feEC(T).

n—oo

Proof. Everything is contained in [3], Theorem 3.4.4, Proposition 4.4.4 and
its proof. &

THEOREM 2.7. Assume myg is Lipschitz, Ry, mo1 < 1, h > 0 is continuous,
Rinymoh = he If Shy, Shy € mn(™An), with hy, ha continuous and Sy, = Sh,Sh,

then hs is also continuous and hy =T} (hlhhz) = lim ano mo (hlhhz), uniformly.

n—oo

Proof. By Corollary 2.5 we have:

hih
(2.8) /gR”( 1h2) dp — /ghg dp, g e L>(T).
T T

Also, observe that 22 is continuous because |h1| < c1h, |ha| < c2h for some
positive constants c1, ca, and if zp € T with h(zg) = 0 then hq(z¢) = 0, ha(zg) =0
and \h1h2| cohy Relation (2.8) implies that for all g € L>°(T)

[E5 (- [

T n= T

However, by Theorem 2.6, we have

% mz: (h1h2 ) — T (hlhh2 ) , uniformly.

Therefore hy =T} (hl—}f?)

Next we want to prove that R™ (%) — hgz uniformly. By Proposition 4.4.4,

[3], this is equivalent to T}, (hlhz) =0 for \; # 1.
From (2.8) it follows, using Theorem 2.6, that

(2.9) > A"/g:rA 1h2 1w—0

A1 #£1

for all g € L*°(T).

But Ty, (’“Th?) are eigenvectors corresponding to different eigenvalues so,

some are 0 and the rest are linearly independent. For all 7 with T}, (hlhz) # 0 we
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can find a g; € L°°(T) such that [ g;T}, (hlhhz) dp=1and [ gTy, (hlhhz) du=0
T T

for \; # \; (this can be obtain from the fact that L>°(T) is the dual of L'(T)
which contains the vectors T}, (hl—}i”)) Then, if we use (2.9) for g;, we get that

A7 — 0 whenever T}, (%) # 0, A\; # 1, which is clearly absurd unless all

Ty, (hlhh2> are 0, for A; # 1. Thus, as we have mentioned before, this implies that

R (f2) . o
COROLLARY 2.8. Ifh € C(T), h =0, Rumngmoh = h then the space
{ho € C<T) : R moho = ho, \h0| < Ch}

is a finite dimensional abelian C*-algebra under the pointwise addition and multi-

plication by scalars, complex conjugation and the product given by hi * hy defined
by Sh1*h2 = ShIShQ'

Proof. Everything follows from Theorem 2.7 and Theorem 2.3. For the finite
dimensionality see [3] or [7]. 1

REMARK 2.9. When h = 1 the C*-algebra structure given in Corollary 2.8
is the same as the one introduced in Theorem 5.5.1, [3].

Now we will show how each mg-cycle (see Definition 2.10 below) gives rise
to a continuous solution h > 0, Ry m,h = h. In the end we will see that any
eigenfunction R, m,h = h is a linear combination of eigenfunctions coming from
such cycles.

DEFINITION 2.10. Let mg € C(T). An mg-cycle is a set {z1,...,2,} con-
tained in T such that 2V = zj 4 fori € {1,...,p—1}, 2} = 21 and |mo(z;)| = VN
for i € {1,...,p}.

First, we consider the eigenfunction that corresponds to the cycle {1}. This

appears in many instances and it is the one that defines the scaling function in
the theory of multiresolution approximations (see [9], [3]).

PROPOSITION 2.11. Let mg € Lip,(T) with mo(1) = VN, Rpmgmol = 1.
Define
NE

Pmo1(z) = kl;[l m(i/(f\f)’ r € R.

(1) @mo.1 s a well defined, continuous function and it belongs to L*(R).
(ii) If hing1 = Per|@mq.1|? is Lipschitz (trigonometric polynomial if myq is
one), where

Per(f)(x) := Y  f(z+2kr), w027, f:R—C.
keZ

Also Ry mohme1 = Pmg1s Pme1(1) = 1, hmg1 is 0 on every mg-cycle
disjoint of {1}.
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(iii) If Uy : L*(R) — L*(R), (U1€)(2) = VNE(Nz) and mi(f) : L*(R) —
L3(R), m(f)(€) = f& for all f € L>(T), then (U1, 71, Pme.1) define the cyclic
representation corresponding to R 1.

(iv) The commutant of the representation from (iii) is {M; : f € L>®(R),
f(Nz) = f(z) a.e.}, where My is the operator of multiplication by f.

(V) hmg,1 is minimal, in the sense that if 0 < h' < chmoa, ¢ > 0, B
continuous and Ry, moh' = h' then there exists a X > 0 such that b’ = My, 1.

(vi) If h = 0 is continuous, Ry meh =h and h(1) =1 then h = Ay, 1.

Proof. (i) See [9] or [3].

(ii) See Theorem 5.1.1 and Lemma 5.5.6 in [3].

For (iv) see [12]. Also, in [12] it is proved that we are dealing with a represen-
tation of Ay (it is the Fourier transform of the wavelet representation mentioned
in the introduction). We only need to check that ¢,,, 1 is cyclic for this represen-
tation.

Consider P the projection onto the subspace generated by m1(UAN)Pmg.1-
We prove first that P commutes with the representation. Take A € 71 (2y), A
selfadjoint. If B € 71 (An) then A(Bpmg.1) € T1(UAN)Pmg,1 50 PA(Bpmy1) =
A(Bpmg,1). So PAP = AP. Then

AP = PAP = (PAP)* = (AP)* = PA,

so P commutes with A, and since any member of 71 (2y) is a linear combination
of selfadjoint operators from this set, it follows that P lies in the commutant of the
representation. Then, by (iv), P = My for some f € L*°(R) with f(Nz) = f(x)
a.e. As P is a projection f2 = f = f so f = x4 for some subset A of the real
line. But P, 1 = @mg.1 SO Pmg. XA = Pme,1 &-€. Since Y, 1(0) =1 and @, 1
is continuous, it follows that A contains a neighbourhood of 0. This, coupled with
the fact that xa(Nz) = xa(z) a.e., imply that x4 = 1 a.e. so P is the identity
and thus 71 (2N )@m,,1 is dense, which means exactly that ¢, 1 cyclic.

(v) Consider h' as mentioned in the hypothesis. Then h’ induces a member
of the commutant Sy,. By (iv), Spr = My,, for some fir € L>®(R) with fp/(Nx) =
fre(z) a.e. We have

(ot S (F)pmon) = / fHdu,  f e L(T),
T

which implies that

2).

h' = Per(Brmg 15h Pmo,1) = Per(fuomo,1
We prove that fp,/ is continuous at 0.
(210) W (@)= furl@)lomo @) + Y S+ 26m) o 1+ 26r).
k#0
As

o1 () = 10mo1 (@) + > [@mo.1|*(x + 2km)
k0
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and Ry 1(0) = [Pme.112(0) = 1 and hpg 1, @me,1 are continuous, it follows that
Z |omo.1|?(z + 2kT) — 0 asz — 0.
k+£0
Then, as x — 0,
| 32 e+ 25m) oo P+ 26| < e 3 I
k+£0 k£0
Using this in (2.10) we obtain that lir% fr(x) = R'(0). But fr (Nz) = fr(x) ae

so fpr = h/(0) a.e. which implies that b’ = h'(0)hm, 1.
(vi) This is contained also in [3] but here is a different proof. Consider
f € L*°(T), arbitrary. Define

#a(@) = F@XNom 2 (o) T T2 m°

k=1

(x + 2km) — 0.

(17

Clearly ¢, (z) — f(2)Pmg,1, ¢ € R and

N"x

[len@Par= [ 1P (Nn)f[
R —Nnw h

/ R(y) >H imol2(N*z) dy

/Rzom0< ()If2(N"y) dy—/lfl () dy.

—T

Using Fatou’s lemma we obtain:

/ £ @) o2 dy = / lim inf [, dar < lim inf / |onla)? dz = / P du
R R T

R

/ PR di < / PR
T T

As f was arbitrary this shows that hp,, 1 <h. 11

and after periodization

Now we generalize a little bit, by considering a cycle {2z} where z¥ = z.

PROPOSITION 2.12. Let mgy € Lipy(T), 20 € T with 2 = 29, mo(z0) =
VNel% | R, m,1=1. Define

z € R,

Pmo,z0\ L) =

e} e—ié)oazo(mo)(%)
L

where a,(f)(2) = f(pz) for z,p € T and f € L>(T).
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(1) P,z s a well defined continuous function that belongs to L*(R).

(i) A,z = Oézo—l(PeI' |©mo .2 |?) is Lipschitz (trigonometric polynomial if
mo 18 one), Ry .moPme.zo = Pmo.zos Pmo.zo (70) = 1, Bung.zo 15 0 0on every mo-cycle
disjoint of {zo}. _

(i) 1f Uy - L(R) — L2(R), Uwyf = €U and ey (£)(€) = m1 (020 () (€)
for f € L(T), then (Usy, Tz, Pmo.z0) define the cyclic representation correspond-
ing to R,z -

(iv) The commutant of this representation is {M; : f € L*(R), f(Nz) =
f(z) a.e.}.

(V) Pumg.zo s minimal (see Proposition 2.11 (v)).

(vi) If h = 0 is continuous, Ry meh = h and h(zp) =1 then h = hpy 2 -

Proof. Consider mj, := e"%q_ (mg). We check that m{ satisfies the hy-
potheses of Proposition 2.11. Clearly mj, is Lipschitz, mj(1) = VN,

1 1
ng,m(’]l(’z> = N Z |a20(m0)|2(w) = N Z |m0\2(20w)
wN =z wN =z
1
= N Z |m0|2(y) Rmo,mo(zoz) =1
yN =20z

Thus we can apply Proposition 2.11 to m.
(1) Ymo,20 = Pmy,1 and everything follows.

(i1) Pmg,zo = O‘zgl(hm{),l)

1
ng,mohmo,zo(z) = N Z ‘m0|2(w)az0*1(hm6,l)(w>

wN =z
1 _
= > fmol?(w)hany 1 (w25 )
wN=z
1 2
=N D> mol*(yz0)hy 1 (v)
yN:zzg1

= Rm(),mghm(),l(zzal) = hmmzo (Z)

AlS0 Ry, 2 (20) = hmeyl(zalzo) =1 and, if C' is an mg-cycle disjoint of {2z} then
2y 1C is an mj-cycle disjoint of {1} and again Proposition 2.11 applies.
(iii) and (iv) can also be deduced from Proposition 2.11. The relation

Uso Tz () = Tz (f(ZN))Uzo
follows from the identity a.,(f(2V)) = as, (f)(zN).

(v) If b’ is as given, then a,,(h') satisfies: 0 < ay,(R') < cozy(Mimg.ze) =
chimy 1 and Ry s @z (D) = g (Rimg,moh') = o (R'). Then, by Proposition 2.11,
o (h') = Ay 1 for some A > 0 50 h' = Mgz

(vi) The argument is similar to the one used in (v). 1

Using Proposition 2.12 we are now able to prove that each mg-cycle gives
rise to a continuous solution for R, m.h = h.
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PROPOSITION 2.13. Let mg € Lip;(T), Ry mol =1 and let C = {z1, 22 =
2= zév_l}, zI])V = 21, be an mo-cycle, mo(zx) = VNel% fork e {1,...,p}.
Denote by 0c =61 +--- + 0,. Define

(Pk:,mo,C(x) = H

/e , ke{l,...,p}

(1) @k,mo.c is a well defined continuous function that belongs to L*(R).
(ii) Define gimo,c = a -1(Per|@pme.cl?) for all k € {1,...,p}. Then
k
Gk,mo,C 15 Lipschitz (trigonometric polynomial if mo is one). Also

Ry, mo Ikmo,C = Gkmo,c ANd  Ring moGk,mo,C = Gh+1,mo,C

(we will use the notation modp that is zp+1 = 21, Gp+2,m.C = 92,mo,C €LC.),

Gkeymo,C(25) = Okj, Gkemo,c 15 0 on every mo-cycle disjoint of C.

P
(iii) Define hmg.c = Y. Gkimo.c- Then hp, o is Lipschitz (trigonometric
k=1

polynomial if mg is one). Also Ry moPme,¢ = Pmg.cs Pme.c(2k) = 1 for all
ke{l,....p} and hp,.c is 0 on every mo-cycle disjoint of C.

(iv) Ay, s minimal.

(V) Ifh >0 125 continuogus, Ry moh =h and h is 1 on C then h = hyy.c-
(vi) If Uc : L2(R)? — L2(R)P,

Uclr,... &) = (1016, ..., e 1U,E,, e U &)
and for f € L*(T), mc(f) : L3(R)? — L?(R)?,

mo ()&, - &) = (mlaz, () (&), - - miles, ()(Ep));

then (Uc, e, (01,mo,C» - - - » Pp,mo,c)) 1S the cyclic representation corresponding to

Rmg,C-
(vii) The commutant of this representation is

{My, @ ---®© My, : fr € L(R), fri1(Nx) = fe(x) a.e., for ke {l,...,p}}.

Proof. Let m{, := m(()p ). Observe that

mg(zl):mép)(zz) = mO(«Zz)mO(ZZN) - mO(Zle_l)

= mo(z1)mo(z2) - - - mo(zy) = VNPelfe,

(i) Note that R o o =R soR @, wml=1 Thus (i) follows from
0 My o Mo

mo,mo
Proposition 2.12 (i) (replace N by NP when working with mép)).

(i) If g1, =y, ...,y = yév_l,yl = yév is an mg-cycle, then {y;} is an

mép )—cycle. Therefore, all assertions in (ii), except the one that relates gy m,.c and

Gk+1,mo,C, follow from Proposition 2.12 (ii).
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We check now (vi). Ug is unitary as a composition of unitary operators. For
f € L>™(T) we have:

Ucmc ()& -, &) = (@7 mi(az ()(z)) Uik, ..
el im0, (f) (V) U1, €% mi (s, () (7)) Urn)
= (e (as, (F(=M))Uika,
et (o, (f(2M)) Uiy, ermi(as, (f(27Y)))Ur&a)
= nc(f(zV)Uc (&, .. &)

Here we used that a., , (f)(2") = a., (f(zV)).
We must check also that

UC(@l,mo,Ca ceey Sop,mo,C) = Wc(mo)(ﬂpl,mg,c, IR CPp,mo,C)-
To do this observe that

0z, (M) (2) = o, (mo () vz, (mo (™) -+ sy (mo (=¥ 7))
= a, (mo)(2)az, (mo) () -+~ 1z, (mo) ()
Thus
O1me.c(T) = e"%q, (mo)(%) e_i9p*1azp71(m0)(iz) . e—i01 4, (m0)<%)
mo. 2 il i

SO

< 00ka, | (mo) ()
©1,m, )C(I) = H L .
' i1 VN
Similarly

A e_wiikazz‘—k(mo)(%)
@Z,mmc(w) = kl;{ \/N

Using this formula we obtain:

forie{1,...,p}.

o0 —i6; 41— T

. e Vitl=ka,  (mo) =T

Ul@i—&-l,mg,C: /Nsoi—&-l,mo,C(Nx):eileiazi(mo) H i+ k( 0)(Nk )
k=2 N

= e ia, (mo)pimo,c

which shows that Uc(©1,mg,Cs - - - » ©pmo.c) = T (M0) (P1.m0,C - - - Pp.mo,C)- Next
we compute the commutant. Consider A : L?(R)? — L?(R)? commuting with
the representation. Let P; be the projection onto the i-th component, and let
A;; = PiAP;. Note that U5(&1,...,&) = (79U, ... e70cUTE,).

Also, since zN" = z;, z = ]\2[271?1 for some integer k;. Take any %—
periodic essentially bounded function, g. Then a,,(g) = g so 7c(g)(&1,---,&p) =
(m1(g)&1, .., mp(g)&p)- Then P; commute with U and 7 (g) so A;; commute with
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U? and 7 (g) and, using the argument in [12] (proof of Theorem 4.1), (see also the
proof of Lemma 2.14 below), it follows that A;; = My, for some f;; € L°(R).
Since A and 7o (f) commute for all f € L°(T), we have for ¢ € {1,...,p}

> famiaz, ()& = mlaz () Y fiss:

Fix k and take §; = 0 for all j # k, then fipmi (o, ())& = mi(s, (f)) firék so
fi = 0 for i # k. Then, since A commutes with U we have

(€N foo(Nz)eo(Nx), ..., % VN f,,(Nx)é,(Nxz), % VN f11 (Nx))érn
= (@" f(@)VN&(N2), ..., e VN f, 1, 1(2)p(N2), e VN fop(Na)).

Therefore,

foo(Nz) = fii(z) ae., f3z3(Nzx) = faa(x) ae., ..., fi1(Nz) = fpp(z) ae.
and (vii) follows.
The cyclicity of (¥1,mg,cs- -5 Ppme,c) follows as in the proof of Proposi-
tion 2.11 (iii).
We check that Ry .meime,Cc = Jit1,me,c- Take f € L>(T). We have:

/fgz+1,m0,c dp = (Pit1,mo,0 Tz, (F)Pit1,mo.C)
T

= <U1(Pi+1,m0,C :Urm (azi+1 (f))@i+1,moyc>
= <e_igiﬂ-1 (azi (mO))Qpi,mo,C : e_wiﬂ-l (a2i+1 (f)(ZN))T(l(O‘Zi (mo))%,mo,d

= <4Pi7m0,C LT (az’i(f(ZN))aZi(|m0|2))50i,mo7c>

= /.f(ZN)|mO|2gi,mo,C dp = /f(Z)Rmo,mggi,m,O,C dpu.
T T

Hence ng,mogi,mo,c = Gi+1,mq,C-

(iii) follows from (ii).

Next we prove that A, c is minimal. Take a continuous h’ with 0 <
h < Rome,Cs Rmo,moh/ = h'. Then Rm((]p),m[()p)h, = ano,moh/ = h' and 0 <
B < c(91,me.c + -+ + Gpmo,c)- Now we use the fact that the space {g € C(T) :
Rm5p>7m(()p)g = g} is a C*-algebra isomorphic to C({1,...,d}) for some d (see Corol-

lary 2.8), and by Proposition 2.12 (iv), g; m,,c are minimal. It follows that k' can
be written uniquely as A’ = a191,mq,c + - + pGp,mo,c With a1,...,a, € C (the
uniqueness comes from the fact that g; ., ¢ are linearly independent, which, in
turn, is implied by (ii)). Then Ry meh = ®192,mg,ct* +Up—19p,mo,C+pG1,me,C
80, by uniqueness a1 = ag = -+ = ap = aq and b’ = @1(g1,me,c + -+ Gpmo.c) =
alhmo,C-

For (v) we use a similar argument: take h’ as given in the hypothesis. Then
Rm[()p>7mgp)h’ =Rp, k' =h' W (z) =1 for all i. Using Proposition 2.12 (v), we
get b = gim,.c for all 4.

Now we use again the fact that {g € C(T) : Rm(()p)7mgp)g = g} is a C*-algebra

isomorphic to C({1,...,d}) and ¢; m,,c are minimal, so ' > (g1,mg,c + -+ +
Ip,mo,¢) = hmg,c. 1
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LEMMA 2.14. Consider mg,m) satisfying (1.1)—~(1.4)y. Let C : 2N =

N _ I . N ) IN _ I !
22,...,2, = 21 be an mo-cycle and C" : 21" =z, ...,z z1 be an mg-cycle,

yCpl T
mo(z) = VN, mf(z) = VNel% for all k. Consider the cyclic representations
associated to this cycles as in Proposition 2.13, (Uc, ¢, vc), (Ucr,mer, per) and
let S : L2(R)? — L2(R)? be an intertwining operator. Then S = 0 if C # C'.
If C = C' and, after relabeling, z, = z, for all k, p = p’ then, there exist
fisooo, fp € L=®(R) such that

S(flw'wfp) = (f1§17"'7fp€p)
with ‘ ,

f1($) = el(alial)fg(NJ?), a.e.,

fp—1(z) = ei(epflf%—l)fp(Nx), a.e.,
fyl) = OO £ (N2), e
Proof. Note that
Ug‘ — eiQCU{? D @eichiD,

where ¢ = 61 + - - - + 6,,. Similarly for UP,. This shows that U¥ commutes with
the projections P; onto the i-th component.

We have SUgI/{ = ng/S 0 (PZ-SPJ-)UP?, = ngl(PiSPj), therefore
SijeipH&Ufp/ = eiplchfp,Sij, where Sij = PiSPj.

Also, since z,évp = 2k, 2z, has the form et for all k and similarly for
z.. If we take f € L*°(T) to be nf;;,—periodic, then a,, (f) = f, azgc(f) =

f for all k, so wc(&,....&) = (m(f)ér,...,m(f)E) and wer (..., &) =
(m1(f)1,. .., m(f)Ey ), and again
Sijm1(f) = m1(f)Si;-

Hence S;; commutes with m1(f) = M, whenever f € L>(R) is

But then also

(U PP m(F)UT? ) Sy = Sig (U PP i (F)UTY)

and U7 i (f)UPY = M, where g(N?"'z) = f(z) for z € R and g is 2% N#P'-
periodic. By induction, it follows that S;; commutes with My whenever f € L*°(R)
is %N“’p/—periodic, leN.

Now take f € L*°(R). Define fj(z) = f(z) on [—ﬁNli”pl, ﬁ]\ﬂm’/] and
extend it to R such that f; is %N”’p,—periodic.

We prove that My, converges to M in the strong operator topology. Take

¥ € L2(R).
1M — My ey = / = FIPI6P da = / i — FI2I6P da
R

| > =y N1Pv’

mm/

2

mm/

-periodic.

QU2 [ Xz e w2 — 0 a5 1= .

771771,/
R
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Consequently, the limit holds and My will commute also with S;;. As f was
arbitrary in L*°(R), using Theorem IX.6.6 in [8], we obtain that S;; = My, for
some f;; € L>=(R).

Having this, we rewrite the intertwining properties. First, we have for all
f e L>(T):

(2.11) D e (D& =ax(H)D fis&s i€ f{l....p}
j=1 j=1

Fix k € {1,...,p'} and take £ = 0 for j # k. Then

(2.12) firasr (f)&k = oz, (f) fine-

Since f € L*°(T) is arbitrary, it follows that f;; = 0 unless z}, = z;.

If 2, = z; then we get C' = C". If C # C’ then CNC" =0 so f;; =0 for all
i,7 and S = 0.

It remains to consider the case C'= C” and, relabeling z;, = zj, for all k, p =

p’. Equation (2.12) implies that f;; = 0 fori # jso S(&1,...,&p) = (fr&1,- .-, fpép)
(we used the notation f; = fi;).

The fact that SUs» = UeS can be rewritten:
f1(2)e1VNEy(Nz) = €' VN fo(Na)éa(Na)

fo1(2)e»1V/NE, (Nz) = &%= VN f,(N2)&,(Na)
fo(2)e%VNE (Nz) = e VN f (Nx)& (Na),

S0
fi(z) == fo(Nz), ae.,

fo_1(x) = ei(apfl_%*l)f Nz), a.e.,
p p
folz) = O =%) £ (Nz), ae.

THEOREM 2.15. Let mqo satisfy (1.1)-(1.4). Let Cy,...,C, be the mg-
cycles. Then, each h € C(T) with Ry meh = h can be written uniquely as

n
h=>" ihm,c,
i=1

n
with a; € C. Moreover a; = h|C;. In particular, 1 = > hung.c;-
i=1

Proof. Proposition 2.13 (iii) shows that h,, c, are linearly independent.
Since the dimension of {h € C(T : Ryy.moh = h} is n (see [3]), it follows that
P, c; form a basis for this space. So

n
h = E aihmovci
i=1

for some «; € C. An application of Proposition 2.13 (iii) shows that a; = h|C;. 1
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THEOREM 2.16. Suppose mg satisfies the conditions (1.1)—(1.4). Let
Cy,...,Cy, be the mg-cycles. For each i consider (Ug,,7c,, pc;) which give the
cyclic representation corresponding to hpy, ¢, (see Proposition 2.13). Define

U:UCI@"'@UCna T=7c, - BTC,, PY=pc, DDy,

Then (U, 7, @) give the cyclic representation corresponding to the constant function
1. FEach element S in the commutant of this representation has the form S =
Se, ® -+ ® Sc,,, where S¢, is in the commutant of (Uc,,7c;, vc;)-

Proof. Since
n
1= Z hm07ci
i=1

for the first statement, it is enough to check that ¢ is cyclic. For this we will
need the commutant and then the reasoning is the same as the one in the proofs of
Proposition 2.11 (iii) or Proposition 2.13 (vi). But Lemma 2.14 makes it clear that
the elements of the commutant have the form mentioned in the hypotesis (see also
the proof of Theorem 2.17). We also need to prove that if S is in the commutant,
S =52 =5* and S¢ = ¢ then S is the identity. But,

S:SC&@"'EBSCM

so S¢, = Sgi =S¢, and S, pc, = pc,, and, as p¢, is cyclic in the corresponding
representation, it follows that S¢, is the identity so S =1. i

THEOREM 2.17. Suppose myg satisfies (1.1)-(1.4). Let Cy,...,C, be the
mo-cycles, C; : 214, 20; = 23, .. C Zpii = zgfli,zu = zgi, forie{l,...,n}. Let
Gk.mo.C; be as in Proposition 2.13, k € {1,...,p;}, i € {1,...,n}.

If h e C(T), h # 0 and Ry moh = Ah for some A € T, then there exists an
i€{1,...,n} such that \* =1, and there exist a; € C, i € {1,...,n} such that

h= i o ( i AikJrlgk,mo,Ci)
=1

i=1
and o; = 0 if A\PP £ 1.

Proof. First note that instead of mo we can take |mg| and the problem re-
mains the same. We have

¥ 2 Mm@ima(u)h(w) = h(z), €T,

wN=z

S0 Ramg,moh = h. Using Theorem 1.3, it follows that h induces an intertwining
operator S : Hyy — Himg, where (Mg, Tmg, ©m,) is the cyclic representation
corresponding to the constant function 1 and mg, and (Hamg, Tamgs Pame) 1S the
cyclic representation corresponding to 1 and Amy.

Using Theorem 2.16 and proposition 2.13, we see that Hyy = Hames Tmo () =
T Amo (f)a for f € LOO(T)a Pmo = PAmg and U)\mo = >\Um0-

The intertwining property of S implies that

SUpy = ANUmoS and S, (f) = mm, (f)S,  f € L™(T).
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If Pe, is the projection onto the components corresponding to the cycle C; then
we see that Pp, commutes with both U,,, and m,, (f) for f € L>(T). Therefore
(Pc,SPc;)Uc; = NUg,(Pc,SFc;),
(PCiSPCj)ﬂ—Cj(f):ﬂ-cz‘(f)(PCiSPCj)7 fELOO(T)

Using Lemma 2.14, we obtain, (Pc,SPc;) = 0 if i # j and for each i € {1,...,n}
there exist fi;,..., fp,i € L(R) such that

(PCiSPCj)(gl“"?gpi) = (f1i€17"'7fpii€pi)7
f1i(x) = Afoi(Nz) a.e.,

foi—1i(x) = Mfp,i(Nz) ace.,
fpii(®) = AMf1:(Nx) ae.
Also, as f Fhdp = (Omg : Tme (f)SOme), [ € L®(T), after periodization we get
T

n  Pi
h = Z Zazk_f (Per(fki\Wk,mo,Ci 2))
i=1 k=1
We want to prove that each fg; is continuous at 0. Take ¢ € {1,...,n}, k €

{1,...,p:}. We know from Proposition 2.13 that gi m,,c; is 1 at z; and 0 at every
other z;;. Then

1 (Per(fis|r.mo.c; DI < N fislloogtmo, 0

5o, this function has limit 0 at z; for (I, j) # (4, k). The argument used in the proof
of Proposition 2.11 (v) can be repeated here to obtain that lir% fri(x) = h(zk:).

On the other hand we have
(2.13) fei(NPiz) = A7P fi, (o)
so if we let © — 0, we obtain h(zg;) = A"Pih(z;). Consequently, h(zg;) = fri =0
or \Pi =1. Since h # 0, there exists an ¢ € {1,...,n} with A\Pi = 1.

For an ¢ with AP #£ 1 we have fi; =0 for all k € {1,...,p;}. Now take an 4
with AP* = 1. From (2.13) and the fact that fy; is continuous at 0, it follows that
fxi is constant. Let a; = f1;. Then fo; = Ay, ..., fp.s = A7PiTla; and the last
assertion of the theorem is proved. 1

COROLLARY 2.18. Let mg as in Theorem 2.17. For an eigenvalue A € T

pi
and 1 with \P* =1, define h;}lo’ci = > A"l mo.ci. Then for each eigenvalue
k=1

i -

A €T, the eigenfunctions h7>;1070i with A\P* = 1 are linearly independent. Moreover,
if we define the measures

1 Pi
v = ;ZA’“*&ZW ie{l,...,n},\eT,\Pi =1,
o
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where §, is the Dirac measure at z, then

n

() = Y v (N,
i=1
APi=1

Proof. First, we see that Theorem 2.17 implies that h 0,0; With APH =1
span the eigenspace corresponding to the eigenvalue . Then We also note that,
using Proposition 2.13 (ii) we have:

(2.14) V3 (hig.c;) = i

mo,C

This shows that h;\no,ci are linearly independent.
On the other hand we have for all f € C(T), using the fact that C; is an
mo-cycle:

Pi
V2 (Rong o () = pi S NG (R o ()

= LS LS o) (w)
b k=1

wN=zp;
S LS L (e )P+ Y o))
“h 3 Um0z )P f (21 Py mo(w)|? f (w
w;ﬁzk,’i:

1 Pi
= — > N (1) = W)
b k=1
Then, according to Theorem 2.6,

VATA(f)) = lim fZA B RN, () = Tim = 3TN (F) = n) (),

n—oo N

This, together with (2.14) and the fact that hﬁlo’ci form a basis for the eigenspace,
imply the last equality of the corollary. 1
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