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Abstract. For a large class of operators on Banach spaces, a natural growth
condition is shown to guarantee Bishop’s property (β). For weighted shifts,
this result leads to a sufficient condition in terms of the underlying weight se-
quence. In the opposite direction, it is shown that every unilateral weighted
shift with property (β) has fat local spectra and approximate point spec-
trum a circle, while bilateral weighted shifts with property (β) have either
fat local spectra or spectrum a circle. A useful new tool is the inner local
spectral radius, a counterpart of the standard (outer) local spectral radius.
For weighted shifts with Dunford’s property (C), both the inner and outer
spectral radii turn out to be constant.
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A bounded linear operator T ∈ L(X) on a complex Banach space X is decompos-
able provided that, for any open cover {U1, . . . , Un} of the complex plane C, there
exist closed, T -invariant subspaces Xj , 1 6 j 6 n, such that X = X1 + · · · + Xn

and that for each j the restriction of T to Xj has spectrum σ(T |Xj) ⊆ Uj . This
class, introduced by Foiaş in the early 1960s, is quite general, containing for ex-
ample all compact operators, normal Hilbert space operators, Dunford’s spectral
operators and generalized scalar operators. For an excellent account of the theory
of decomposable operators, see the monographs by Colojoară and Foiaş ([5]) and
by Vasilescu ([23]). While decomposable operators do not generally possess a func-
tional calculus beyond the analytic Riesz functional calculus, many of the spectral
properties of normal operators hold for this more general class. Moreover, several
results initially proven for subnormal operators have been extended to the setting
of subdecomposable operators ([8], [16], [18], [25]). Albrecht and Eschmeier ([3])
showed that a property first studied by Bishop in the late 1950’s gives an intrinsic
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characterization of restrictions of decomposable operators. They also showed that
an operator has this property, Bishop’s property (β), if and only if its adjoint
has a decomposition property (δ), introduced in [2], where it was shown that an
operator T is decomposable if and only if it enjoys both properties (β) and (δ);
equivalently, if and only if both T and T ∗ have Bishop’s property (β).

In this note, we obtain a growth condition that suffices for property (β)
and apply it to weighted shifts on `p(N0) and `p(Z). We also obtain a necessary
condition for property (β) in this setting. The question of determining the lo-
cal spectral properties of weighted shifts is a natural one and has been addressed
by several authors over the last quarter century. Shields’s survey article may be
used to settle the question of which weighted shifts have the single-valued exten-
sion property (see Proposition 2.5 below). The bilateral weighted shifts that are
spectral were characterized by Sun, who also obtained results on decomposibility
([22]). E(T)-subscalar weighted shifts were recently characterized by Didas in [7].
Weighted shifts provided the first examples of operators with Dunford’s property
(C), but without Bishop’s property (β) ([15] and [12], 1.6.16) and a co-hyponormal
bilateral weighted shift served as an important example in the theory of the local-
ized single-valued extension property ([1]). Additional references for local spectral
theory and weighted shifts include [9], [10], [11], [14], and [21].

1. INNER AND OUTER LOCAL SPECTRAL RADII

Let T be a bounded linear operator on a non-zero complex Banach space X. We
denote the spectrum and approximate point spectrum of T by σ(T ) and σap(T ),
respectively. The surjectivity spectrum of T is the set σsu(T ) of all λ ∈ C such
that T −λI is not surjective. Notice that σsu(T ) = σap(T ∗) and σsu(T ∗) = σap(T )
([12], 1.3.1). T has spectral radius r(T ) := lim

n→∞
‖Tn‖1/n and lower bound κ(T ) :=

inf{‖Tx‖ : ‖x‖ = 1}. By 1.6.1, [12], the sequence (κ(Tn)1/n)n>0 converges to its
supremum, which we denote by ι(T ). Clearly, κ(T ) = ‖T−1‖−1 and therefore
ι(T ) = r(T−1)−1 = min{|λ| : λ ∈ σ(T )} if T is invertible. More generally, as
shown in [13], ι(T ) is always the minimum modulus of σap(T ).

For an open subset U of the complex plane, let H(U,X) denote the Fréchet
space of all X-valued analytic functions on U . For T ∈ L(X), define TU on
H(U,X) by TUf(λ) := (T−λ)f(λ). The operator T has the single-valued extension
property (SVEP) if TU is injective for every open subset U of C, and T is said to
have Bishop’s property (β) in the case that TU is injective and has closed range
for every open set U ⊆ C ([12], 1.2.6). Dunford’s property (C) is intermediate to
SVEP and (β): T ∈ L(X) has property (C) provided that the analytic subspaces
XT (F ) := {x : x ∈ ranTC\F } are closed in X for every closed set F ⊆ C ([12],
3.3.4). Since XT (F ) is the kernel of the quotient map x 7→ x + ran TC\F , property
(β) clearly implies (C); property (C) in turn implies SVEP by 1.2.19 and 3.3.4,
[12].

For T ∈ L(X) and x ∈ X, the local spectrum σT (x) is defined to be the
complement in C of the open set ρT (x) of all λ ∈ C for which there exists an open
neighborhood U of λ such that x ∈ ran TU . By 1.2.16, [12], T has SVEP if and only
if σT (x) 6= ∅ for every non-zero x ∈ X, and, in this case, XT (F ) = {x : σT (x) ⊆ F}
for every closed subset F of C. We say that T has fat local spectra if σT (x) = σ(T )
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for every non-zero x ∈ X. Examples of such operators relevant to weighted shifts
include certain multiplication operators on spaces of analytic functions ([16] or
[12], 1.6.9) and certain non-surjective isometries ([12], 1.6.8). A typical example
is the unilateral right shift on `2(N), unitarily equivalent to multiplication by z
on the Hardy space H2. Clearly, operators with fat local spectra have property
(C), and Bourhim and Zerouali ([4]) conjectured that every weighted shift with
Dunford’s property (C) either has fat local spectra or has spectrum equal to a
circle. In Theorem 2.7 below, we show this to be true for shifts with Bishop’s
property (β).

Let V (a, δ) and ∇(a, δ) denote, respectively, the open and closed discs of
radius δ centered at a ∈ C. For arbitrary T ∈ L(X), the (outer) local spectral
radius of a vector x ∈ X is defined to be rT (x) := lim sup

n→∞
‖Tnx‖1/n. The formula

for the radius of convergence of a power series implies that x ∈ XT (∇(0, r)) if and
only if rT (x) 6 r ([12], 3.3.13). Thus

rT (x) = inf
{
r > 0 : x ∈ XT

(∇(0, r)
)}

for all x ∈ X. Moreover, by [12], 3.3.14, rT (x) = r(T ) for all x in a set of second
category in X.

The following counterpart of the outer local spectral radius will play a deci-
sive role in this paper. For every x ∈ X, we define the inner spectral radius of T
at x to be

ιT (x) := sup
{
r > 0 : x ∈ XT

(
C \ V (0, r)

)}
.

So ιT (x) = 0 means precisely that 0 ∈ σT (x). Moreover, ιT (x) = ∞ only when
x = 0. Proposition 1.2 (e) below shows that, for operators with SVEP, ιT (x) is
the minimum modulus of σT (x).

The next lemma provides a characterization of the analytic subspaces XT

(
C\

V (0, r)
)

and thus a formula for ιT (x) that can be applied in many cases.

Lemma 1.1. For every T ∈ L(X) and r > 0, the set XT

(
C\V (0, r)

)
consists

of all vectors x ∈ X for which there exists a sequence (an)n>0 in X such that:
(i) Ta0 = x;
(ii) an = Tan+1 for every n > 0; and
(iii) lim inf

n→∞
‖an‖−1/n > r.

Moreover, if T is injective or has SVEP, then, for each x ∈ XT

(
C \ V (0, r)

)
,

there exists a unique sequence (an)n>0 with properties (i), (ii), and (iii), and this
sequence satisfies lim inf

n→∞
‖an‖−1/n = ιT (x). More generally, if T ∈ L(X) is arbi-

trary, and if x ∈ X is such that there exists a sequence (an)n>0 satisfying (i) and
(ii), and also, for some constant c > 0,

(iii′) ‖an‖ 6 c inf{y : Tn+1y = x} for every n > 0,
then lim inf

n→∞
‖an‖−1/n = ιT (x).

Proof. Clearly, x ∈ XT

(
C \ V (0, r)

)
if and only if there is a power series

f(λ) =
∞∑

n=0
anλn such that (T − λ)f(λ) = x for all |λ| < r. The series has

radius of convergence lim inf
n→∞

‖an‖−1/n, and, by the uniqueness of power series
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representations, the equation (T − λ)f(λ) = x is satisfied on a neighborhood of
0 if and only if (i) and (ii) hold. This establishes the first assertion, and the
second claim is a straightforward consequence of this characterization. In fact, the
uniqueness assertion for (an)n>0 holds whenever T has SVEP at 0 in the sense
of [1], but this level of generality will not be needed here. Finally, if x ∈ X and
(an)n>0 satisfy (i), (ii) and (iii)′ for some c > 0, then, for any sequence (bn)n>0

satisfying (i) and (ii), we see that ‖an‖ 6 c‖bn‖ for every n > 0. Thus

lim inf
n→∞

‖bn‖−1/n 6 lim inf
n→∞

c1/n‖an‖−1/n = lim inf
n→∞

‖an‖−1/n 6 ιT (x).

It follows that lim inf
n→∞

‖an‖−1/n = ιT (x).

For convenience, we define the generalized range of T ∈ L(X) to be T∞X :=⋂
n>0

TnX.

Proposition 1.2. For every T ∈ L(X) and x ∈ X, the following assertions
hold:

(i) ιT (x) = 0 whenever x 6∈ T∞X;
(ii) if T is injective, then ιT (x) = lim inf

n→∞
‖T−nx‖−1/n whenever x ∈ T∞X;

(iii) rT (Tx) 6 rT (x) and ιT (Tx) > ιT (x);
(iv) if T is injective, then ιT (Tx) = ιT (x);
(v) if σT (x) 6= ∅, then ιT (x) 6 min{|λ| : λ ∈ σT (x)} and rT (x) > max{|λ| :

λ ∈ σT (x)}; if T has SVEP, then equalities obtain for all non-zero x ∈ X;
(vi) if T is injective or has SVEP, then x ∈ XT

(
C \ V

(
0, ιT (x)

))
;

(vii) if T is injective or has SVEP, then either ιT (x) = 0 or ιT (x) > ι(T ).

Proof. If ιT (x) > 0, then x ∈ T∞X by the preceding lemma, and so (i)
holds. (ii) is clear from the last part of Lemma 1.1, while (iii) follows from the
fact that, for any closed subset F of the plane, XT (F ) is T -invariant. Moreover,
for every r > 0, TXT

(
C \ V (0, r)

)
= XT

(
C \ V (0, r)

)
by 3.3.1, [12]. Thus, if T is

injective, then x ∈ XT

(
C \ V (0, r)

)
if and only if Tx ∈ XT

(
C \ V (0, r)

)
. (iv) is

now immediate.
The definition of ιT (x) and the fact that x ∈ XT

(∇(
0, rT (x)

))
imply that

σT (x) ⊆ {λ : ιT (x) 6 |λ| 6 rT (x)} for all x ∈ X. Thus ιT (x) 6 min{|λ| : λ ∈
σT (x)} and rT (x) > max{|λ| : λ ∈ σT (x)} if σT (x) 6= ∅. It is well known and
easy to see that rT (x) = max{|λ| : λ ∈ σT (x)} if T has SVEP ([12], 3.3.13).
Similarly, if T has SVEP and min{|λ| : λ ∈ σT (x)} > 0, then, by definition,
ιT (x) > min{|λ| : λ ∈ σT (x)}. Thus (v) is established. Moreover, if T has SVEP,
then XT

( ⋂
k

Fk

)
=

⋂
k

XT (Fk) for any collection of closed sets Fk ⊆ C by 3.3.2,

[12], and so, for every vector x ∈ X, x ∈ XT

(
C \ V

(
0, ιT (x)

))
in this case. If T is

injective, then x ∈ XT

(
C \ V

(
0, ιT (x)

))
by Lemma 1.1 (vi) is proved.

If T is injective and 0 < ιT (x) < ∞, then x ∈ T∞X and ‖x‖
‖T−nx‖ > κ(Tn)

for each n > 0. Therefore ιT (x) = lim inf
n→∞

(
‖x‖

‖T−nx‖
)1/n

> lim
n→∞

κ(Tn)1/n = ι(T ),

by part (ii) above. If T has SVEP and 0 < ιT (x) < ∞, then σT (x) 6= ∅ and,
by (v), ιT (x) = min{|λ| : λ ∈ σT (x)} = min{|λ| : λ ∈ ∂σT (x)} > ι(T ), since
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∂σT (x) ⊆ σap(T ) ([12], 3.1.12) and |λ| > ι(T ) for all λ ∈ σap(T ) ([12], 1.6.2). This
completes the proof of (vii).

For any operator T ∈ L(X), the set {x : σT (x) = σsu(T )} is of second
category in X by 1.3.2, [12], and since ∂σ(T ) ⊆ σsu(T ), it follows that rT (x) = r(T )
for all x in a set of second category ([12], 3.3.14). One would expect some symmetry
between the inner and outer local spectral radii, and the following corollary shows
this to be the case up to a point.

Corollary 1.3. Let T ∈ L(X).
(i) if T is surjective, but not injective, then ι(T ) = 0 < ιT (x) for every

x ∈ X;
(ii) if T is bounded below, but not surjective, then ι(T ) > 0, but {x : ιT (x) =

0} is of second category in X;
(iii) otherwise, {x : ιT (x) = ι(T )} is a set of second category in X.
In particular, if both T and T ∗ have SVEP, then {x : ιT (x) = ι(T )} is a set

of second category.

Proof. If T is not injective, then ι(T ) = 0, and, since σT (x) ⊆ σsu(T ), it
follows that ιT (x) > 0 for every x whenever T is surjective. If T is bounded
below, but not surjective, then ι(T ) > 0 by [13], and the generalized range T∞X
is a proper closed subspace of X and therefore of first category in X. (ii) now
follows from Proposition 1.2 (i). If neither (i) nor (ii) holds, then T is invertible
or 0 ∈ σap(T ) ∩ σsu(T ). In the first case, it follows by Proposition 1.2 (ii) that

ιT (x) = rT−1(x)−1 = min{|z| : z ∈ σ(T )} = ι(T )

for every x such that σT−1(x) = σsu(T−1). In the case that 0 ∈ σap(T ) ∩ σsu(T ),
we have ι(T ) = 0 and so again ι(T ) = ιT (x) for every x such that σT (x) = σsu(T ).
By 1.3.2, [12], this completes the proof of (iii). If T and T ∗ both have SVEP, then
σ(T ) = σap(T ) = σsu(T ) by 1.3.2, [12], and the last statement follows.

The final conclusion of the preceding corollary applies, in particular, to all
decomposable operators, but, in general, the result may fail to hold quite dramat-
ically. For instance, if T ∈ L(X) is such that 0 ∈ σ(T )\σap(T ) and T has fat local
spectra, then, by Proposition 1.2 (v) and [13], ιT (x) = 0 < ι(T ) for every x 6= 0.
The unweighted unilateral right shift, T , on `2(N), provides a simple example.
Since T is an isometry with trivial generalized range, ι(T ) = 1, while ιT (x) = 0
for every non-zero x ∈ `2(N). See Section 2 below for further details.

The preceding example may also be used to illustrate that, in remarkable
contrast to the outer local spectral radius, its inner counterpart need not be in-
variant under extensions of the given operator to a larger Banach space. Indeed,
the unweighted bilateral right shift, S, on `2(Z) may be canonically viewed as an
extension of the unilateral right shift, T , on `2(N). The operator S is unitary,
hence decomposable, and satisfies ιS(x) = 1 for all non-zero x ∈ `2(Z) by Propo-
sition 1.2 (v), while ιT (x) = 0 for all non-zero x ∈ `2(N). On the other hand, if
the operator T ∈ L(X) is injective or has SVEP, and if x ∈ X satisfies ιT (x) > 0,
then Lemma 1.1 ensures that ιS(x) = ιT (x) for every bounded linear extension S
of T .
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Corollary 1.4. Suppose that T ∈ L(X) has Dunford’s property (C) and
that x is a cyclic vector for T . Then rT (x) = r(T ) and either ιT (x) = 0 or
ιT (x) = ι(T ). Moreover, ιT (x) > 0 if and only if T is invertible.

Proof. If F = {λ : ιT (x) 6 |λ| 6 rT (x)}, then the closed space XT (F )
contains {Tnx : n > 0} by Proposition 1.2 (iii) and (v). Since the linear span
of the latter set is dense in X, it follows that XT (F ) = X and therefore that
σ(T ) = σsu(T ) ⊆ F by 1.3.2, [12]. In particular, r(T ) 6 rT (x). Since rT (u) 6 r(T )
for all u ∈ X, we conclude that rT (x) = r(T ). Moreover, if ιT (x) > 0, then T
is invertible, ι(T ) = min{|λ| : λ ∈ σ(T )} > ιT (x), and so ιT (x) = ι(T ) by
Proposition 1.2 (vii). Conversely, if T is invertible, then clearly 0 ∈ ρT (x) and
therefore ιT (x) > 0.

Unlike (‖Tn‖1/n)n>1 and (κ(Tn)1/n)n>1, the sequences (‖Tnx‖1/n)n>1 and
(‖T−nx‖−1/n)n>1 are generally not convergent. We provide an elementary ex-
ample in the next section. On the other hand, the following result establishes
convergence for a large class of operators.

Proposition 1.5. If T ∈ L(X) has property Bishop’s (β), then, for every
x ∈ X, rT (x) = lim

n→∞
‖Tnx‖1/n, and either ιT (x) = 0 or there is a unique sequence

(an)n>0 in X satisfying
(i) Ta0 = x;
(ii) an = Tan+1 for every n > 0; and
(iii) lim inf

n→∞
‖an‖−1/n > 0.

In the latter case, the sequence (‖an‖−1/n)n>1 is convergent with limit ιT (x).
Moreover, if T is injective, then ιT (x) = lim

n→∞
‖T−nx‖−1/n for every x ∈ T∞X.

Proof. The first statement is due to Atzmon (see [12], 3.3.17). If ιT (x) >
0, then, since T has SVEP, Lemma 1.1 implies that there is a unique sequence
(an)n>0 in X satisfying (i), (ii) and (iii) above, and lim inf

n→∞
‖an‖−1/n = ιT (x). It

remains to show that lim sup
n→∞

‖an‖−1/n 6 ιT (x). Since conditions (i), (ii) and (iii)

are preserved under similarity and hold for any decomposable extension of T , we
may, without loss of generality, assume that T is decomposable by 2.4.4, [12]. Let
s > ιT (x), define Q to be the quotient mapping, Q : X → X/XT (C \ V (0, s)), and
let S be the continuous linear map on X/XT (C \ V (0, s)) defined by SQ = QT .
Then Qx 6= 0 and, by the decomposability of T and 1.2.22, [12], σ(S) ⊆ ∇(0, s).
Since

‖Qx‖ = ‖QTn+1an‖ = ‖Sn+1Qan‖ 6 ‖Sn+1‖ ‖an‖
for every n, we have ‖an‖−1/n 6 ‖Sn+1‖1/n ‖Qx‖−1/n, and therefore

lim sup
n→∞

‖an‖−1/n 6 s

by the spectral radius formula for S. Since s > ιT (x) is arbitrary, the main result
follows. This, along with Proposition 1.2 (ii), implies the last assertion of the
proposition if ιT (x) > 0.

If T has property (β) and is also injective, then T is similar to the restriction
of an injective decomposable operator, R ∈ L(Y ), on some Banach space Y ([12],
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2.4.3 and 2.4.4). Suppose that J ∈ L(X, Y ) is bounded below and satisfies JT =
RJ . If x ∈ T∞X has inner local spectral radius ιT (x) = 0, then ιR(Jx) = 0
as well. Indeed, {y ∈ Y : Rn+1y = Jx} = {JT−(n+1)x} for every n > 0, and
therefore, by Lemma 1.1,

ιR(Jx) = lim inf
n→∞

‖JT−(n+1)x‖−1/n = lim inf
n→∞

‖T−nx‖−1/n = ιT (x) = 0.

This shows that, also in the case where ιT (x) = 0, one may assume that T is
decomposable. A repetition of the argument in the preceding paragraph now leads
to lim sup

n→∞
‖T−nx‖−1/n 6 s for every s > 0, and the last assertion is established.

If T is injective, then ιT (Tmx) = ιT (x) for every x ∈ X and m > 0 by
Proposition 1.2 (iv). Under the assumption of (β), we obtain the analogous result
for outer spectral radii.

Corollary 1.6. If T ∈ L(X) has Bishop’s property (β), then rT (Tmx) =
rT (x) for every x ∈ X and m > 0.

Proof. For all x ∈ X and for all natural numbers m and n, we have that

‖Tn(Tmx)‖1/n =
(‖Tn+mx‖1/(n+m)

)(n+m)/n
.

By Proposition 1.5, ‖Tn+mx‖1/(n+m) → rT (x) as n →∞, and therefore rT (Tmx)
= rT (x).

2. LOCAL SPECTRA OF WEIGHTED SHIFTS

We refer the reader to Shields’s article ([20]) for a survey of the theory of weighted
shifts on Hilbert spaces; for unilateral weighted shifts on `p(N), p 6= 2, see [12],
1.6 as well. Below, we collect some of the basic facts essentially from [20]. Let
K stand for either the set of integers Z or the set N0 = {0, 1, 2, . . .}. Given a
bounded sequence (ωn)n∈K of strictly positive weights, we define the corresponding
weighted right shift on `p(K), 1 6 p 6 ∞, by T (xn)n∈K = (ωn−1 xn−1)n∈K, where
x−1 = ω−1 = 0 if K = N0. T is injective since ωn > 0 for all n ∈ K, and
‖T‖ = sup

n∈K
ωn < ∞ since (ωn)n∈K is bounded. Weighted shifts acting on `p(N0)

and `p(Z) are referred to as unilateral and bilateral, respectively. If p < ∞, then
the weighted shift T is characterized by its action on the canonical basis for `p(K):
Ten = ωnen+1 for all n ∈ K. For every n ∈ K, define

αn =

{
ω0 · · ·ωn−1 if n > 0;
1 if n = 0;
(ωn · · ·ω−1)−1 if n < 0 and K = Z.

So Tnek = αn+k/αk en+k for all n > 0 and k ∈ K. Notice that, for every n > 0,

‖Tn‖ = sup
k∈K

αn+k

αk
and κ(Tn) = inf

k∈K
αn+k

αk
.

If T is unilateral, then σap(T ) = {λ : ι(T ) 6 |λ| 6 r(T )} and σ(T ) = {λ :
|λ| 6 r(T )}. To describe the spectrum in the bilateral case, we first observe that
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the adjoint of a bilateral right shift may be viewed as a bilateral left shift and
hence is always injective. Consequently, every bilateral shift T with ι(T ) > 0 is
invertible, since this condition ensures that T is bounded below and hence that
T ∗ is surjective. As in Theorem 5 of [20] for the case p = 2, it then follows that
the spectrum of an arbitrary bilateral shift T on lp(K) is given by σ(T ) = {λ :
ι(T ) 6 |λ| 6 r(T )}. The approximate point spectrum is described in terms of the
quantities

ι−(T ) = lim
n→∞

(
inf
k<0

αk

αk−n

)1/n

, ι+(T ) = lim
n→∞

(
inf
k>0

αn+k

αk

)1/n

,

r−(T ) = lim
n→∞

(
sup
k<0

αk

αk−n

)1/n

, r+(T ) = lim
n→∞

(
sup
k>0

αn+k

αk

)1/n

.

If r−(T ) < ι+(T ), then σap(T ) = {λ : ι−(T ) 6 |λ| 6 r−(T )} ∪ {λ : ι+(T ) 6
|λ| 6 r+(T )}; otherwise, σap(T ) = σ(T ). Moreover, T has spectral radius r(T ) =
max{r−(T ), r+(T )}, and ι(T ) = min{ι−(T ), ι+(T )}. The proofs of these facts for
shifts on `p(K), 1 6 p < ∞, follow just as in the case p = 2; see [19] and 1.6.15,
[12].

We now identify the inner and outer local spectral radii of weighted shifts
in terms of the underlying weight sequence. In the unilateral case, T∞`p(N0) =
{0}, and so ιT (x) = 0 for every x 6= 0 in `p(N0) by Proposition 1.2 (i). Since
T ∗(n+1)en = 0, rT∗(en) = 0 for all n > 0, and α−1

n+1 = min{‖x‖ : e0 = T ∗(n+1)x}.
Thus, by Lemma 1.1,

ιT∗(e0) = lim inf
n→∞

α1/n
n(2.1)

and
rT (e0) = lim sup

n→∞
α1/n

n .(2.2)

If T is a bilateral shift on `p(Z), 1 6 p < ∞, then, by the canonical iden-
tification of right and left bilateral shifts, T ∗ is a bilateral shift on `q(Z), where
q = p

p−1 . Indeed, if Ten = ωnen+1 for all n ∈ Z, then T ∗fn = ω∗nfn+1, where

fn = e−n and ω∗n = ω−n−1. Also, T ∗nfk = α∗n+k

α∗
k

fn+k where α∗n = α−1
−n for all n.

Therefore, by Proposition 1.2 (ii),

ιT∗(e0) = lim inf
n→∞

α1/n
n(2.3)

and
rT (e0) = lim sup

n→∞
α1/n

n ;(2.4)

ιT (e0) = lim inf
n→∞

α
−1/n
−n(2.5)

and
rT∗(e0) = lim sup

n→∞
α
−1/n
−n .(2.6)

Notice that the inferior and superior limits that occur in (2.1)–(2.6) are
precisely the parameters used by Shields in his analysis of the point spectra of a
weighted shift and its adjoint ([20]).
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Now it is a simple matter to construct an example of an injective operator
T ∈ L(X) and a vector x ∈ T∞X for which (‖Tnx‖1/n)n>1 and (‖T−nx‖−1/n)n>1

are both divergent.

Example 2.1. Define a sequence (αk)k∈Z by

αk =

{
exp(−2n) if 2n 6 k < 2n+1;
1 if k = 0;
exp(2n) if −2n+1 < k 6 −2n.

The corresponding bilateral shift T on `2(Z) is bounded, and, by (2.3)–(2.6), it
satisfies

ιT∗(e0) = lim inf
n→∞

α1/n
n = e−1 < e−1/2 = lim sup

n→∞
α1/n

n = rT (e0),

and
ιT (e0) = lim inf

n→∞
α
−1/n
−n = e−1 < e−1/2 = lim sup

n→∞
α
−1/n
−n = rT∗(e0).

It follows from Proposition 1.5 that T does not have property (β). Evidently, the
same phenomenon occurs for every decreasing null sequence (αk)k∈N for which the
sequence (α1/k

k )k∈N fails to be convergent.

We refer to a sequence x = (xn)n∈K as finitely supported provided that
xn = 0 for all but finitely many n ∈ K.

Proposition 2.2. For every weighted shift T on `p(K), 1 6 p < ∞, the
following assertions hold for all non-zero x ∈ `p(K):

(i) rT (e0) 6 rT (x) 6 r(T ) and ιT (x) 6 ιT (e0); moreover, if K = Z, then
ι(T ) 6 ιT (x);

(ii) rT (x) = rT (e0), and ιT (x) = ιT (e0) whenever x is finitely supported.
If T is bilateral, then the following also obtain:

(iii) ιT (x) 6 rT∗(e0) and ιT∗(e0) 6 rT (x), and
(iv) ιT∗(x∗) 6 rT (e0) and ιT (e0) 6 rT∗(x∗) for all non-zero x∗ ∈ `q(K),

where q = p/(p− 1).

Proof. First we show that rT (en) = rT (e0) and ιT (en) = ιT (e0) for every
n ∈ K, and therefore, if X = `p(K), then span{en}n∈K ⊆ XT

(
C \ V (0, ιT (e0))

) ∩
XT

(∇(0, rT (e0))
)

by Proposition 1.2 (vi). This, together with (i), will prove
(ii). The sequence (ιT (en))n∈K is constant by Proposition 1.2 (i) and (iv), and
(rT (en))n∈K is decreasing by Proposition 1.2 (iii). To see that the latter sequence
is actually constant, fix m ∈ K, let ε > 0, and choose N so that ‖Tnem+1‖1/n 6
rT (em+1) + ε for all n > N . For n > N , it follows that

‖Tn+1em‖1/(n+1) =
(αm+1

αm

)1/(n+1)

(‖Tnem+1‖1/n)n/(n+1)

6
(αm+1

αm

)1/(n+1)

(rT (em+1) + ε)n/(n+1),

and so rT (em) = lim sup
n→∞

‖Tn+1em‖1/(n+1) 6 rT (em+1) + ε. Since ε > 0 is arbi-

trary, this implies that rT (em) 6 rT (em+1), and so the sequence (rT (em))m∈K is
constant.
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Now, let Pm denote the canonical projection onto span(em) for each m ∈ K.
Then, for arbitrary x ∈ `p(K),

‖Tnx‖1/n =
( ∑

k∈K
‖TnPkx‖p

)1/(np)

> ‖TnPmx‖1/n

for all m,n ∈ N. Thus, for any m such that Pmx 6= 0, it follows that rT (x) >
rT (em) = rT (e0). By Proposition 1.2 (ii), the estimate ιT (x) 6 ιT (e0) follows
similarly if T is bilateral and x ∈ T∞X; otherwise, ιT (x) = 0. For T bilateral,
σ(T ) = {λ : ι(T ) 6 |λ| 6 r(T )}. Hence, if ι(T ) > 0, then T is invertible, and
therefore, by Proposition 1.2 (ii), ιT (x) = rT−1(x)−1 > r(T−1)−1 = ι(T ) for all
non-zero x ∈ lp(Z). (i) is established.

If T is bilateral, then T ∗ is also a bilateral shift, and so the argument above
gives rT∗(en) = rT∗(e0) and ιT∗(en) = ιT∗(e0) for every n ∈ Z. If rT∗(e0) < ιT (x)
or if rT (x) < ιT∗(e0), then 〈x, en〉 = 0 for all n ∈ K by 2.5.1, [12], thus x = 0, the
desired contradiction. This proves (iii), and the last statement follows similarly.

For weighted shifts with property (C), we obtain the following improvement
of Corollary 1.4.

Corollary 2.3. Let T be a weighted shift on `p(K), 1 6 p < ∞. If T has
property (C), then rT (x) = r(T ) for all x 6= 0, and either ιT (x) = 0 for every
x 6= 0 or ιT (x) = ι(T ) for every x 6= 0.

Proof. If F = {λ : ιT (e0) 6 |λ| 6 rT (e0)} and X = `p(K), then the dense set
span{en}n∈K is contained in XT (F ) by Propositions 1.2 (v) and 2.2 (ii). Therefore,
if T has property (C), then X = XT (F ). Thus, by Proposition 2.2 (i), rT (x) = r(T )
and ιT (x) = ιT (e0) for all x 6= 0. If ιT (e0) > 0, then it follows from σ(T ) ⊆ F that
T is invertible with ι(T ) = min{|λ| : λ ∈ σ(T )} > ιT (e0) > 0. Thus ιT (e0) = ι(T )
by Propositions 1.2 (vii) or 2.2 (i).

As a consequence of Corollary 2.3, we obtain an elementary proof of a result
due to Sun ([22]).

Corollary 2.4. Let T be a weighted shift on `p(K), 1 6 p < ∞. If T is
decomposable, then σ(T ) = {λ : |λ| = r(T )}.

Proof. Without loss of generality, we may assume that r(T ) > 0. For any r1

and r2 such that 0 < r1 < r2 < r(T ), we have C = V (0, r2) ∪ (C \ ∇(0, r1)), and
so, letting X = `p(K), we have

X = XT (∇(0, r2)) + XT (C \ V (0, r1)) = XT (C \ V (0, r1))

by the previous corollary. It follows that σ(T ) ⊆ C \ V (0, r1), and, since r1 was
arbitrary, 0 < r1 < r(T ), we must have σ(T ) ⊆ {λ : |λ| = r(T )}. Because the
spectrum of T is circularly symmetric, the claim is established.
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Since the spectrum of a unilateral shift is a disc centered at the origin, the
preceding corollary implies that a unilateral shift is decomposable if and only if it
is quasinilpotent, a fact already observed in 1.6.14, [12].

If T is a weighted shift on `p(K) for 1 6 p < ∞, then, as in the Hilbert
space case in Theorems 8 and 9, [20], a simple computation shows that every
eigenvector for an eigenvalue λ of the adjoint T ∗ is a multiple of the sequence
kλ := (λn/αn)n∈K. In particular, it follows that kλ ∈ `q(K) where q = p/(p − 1),
and thus, by the root test and formulas (2.1), (2.3), and (2.6), rT∗(e0) 6 |λ| 6
ιT∗(e0). Conversely, if rT∗(e0) < ιT∗(e0), then kλ ∈ `q(K) and (T ∗ − λ)kλ = 0 for
all λ ∈ C for which rT∗(e0) < |λ| < ιT∗(e0). Moreover, the function λ 7→ kλ is
analytic on the open annulus {λ : rT∗(e0) < |λ| < ιT∗(e0)}. These observations
are central to the following results.

Proposition 2.5. Let T be a weighted shift on `p(K), 1 6 p < ∞.
(i) If T is a unilateral shift, then T has SVEP and σT (x) = σT (e0) =

{λ : |λ| 6 rT (e0)} for all finitely supported x 6= 0. T ∗ has SVEP if and only if
ιT∗(e0) = 0.

(ii) If T is a bilateral shift, then T has SVEP if and only if ιT (e0) 6 rT (e0).
Equivalently, T fails to have SVEP if and only if σT (x) = ∅ for every finitely
supported x. If T has SVEP, then σT (x) = σT (e0) = {λ : ιT (e0) 6 |λ| 6 rT (e0)}
for all finitely supported x 6= 0.

(iii) If T is a bilateral shift, then T ∗ has SVEP if and only if ιT∗(e0) 6
rT∗(e0). Finally, either T or T ∗ has SVEP.

Proof. Clearly, every unilateral weighted shift has empty point spectrum
and therefore SVEP. The stipulated characterizations of SVEP for T ∗ in both
the unilateral and bilateral case are immediate from the discussion preceding this
proposition, and a similar argument shows that a bilateral shift T fails to have
SVEP if and only if ιT (e0) > rT (e0). By Propositions 1.2 (v) and 2.2 (ii), this
happens precisely when σT (x) = ∅ for all finitely supported x ∈ `p(Z). The fact
that at least one of the shifts T and T ∗ has SVEP is now clear from the formulas
(2.3)–(2.6).

We establish the formula for the local spectrum only in the bilateral case,
since the proof in the unilateral case is similar and, in fact, easier. So suppose
that T is a bilateral shift for which ιT (e0) 6 rT (e0), and let x ∈ `p(Z) be non-
zero and finitely supported. Since T has SVEP, Propositions 1.2 (v) and 2.2 (ii)
ensure that σT (x) ⊆ {λ : ιT (e0) 6 |λ| 6 rT (e0)}. Evidently, equality holds when
ιT (e0) = rT (e0) = 0. Hence it remains to be seen that the two sets ρT (x) and
{λ : ιT (e0) 6 |λ| 6 rT (e0)} are disjoint provided that either ιT (e0) < rT (e0) or
ιT (e0) = rT (e0) > 0. Our proof of this fact is inspired by an argument given in [4].

Let x =
M∑

n=N

xnen where xN , xM 6= 0, and let f be the unique analytic function

on ρT (x) such that (T − λ)f(λ) = x for every λ ∈ ρT (x). If Fn(λ) = 〈f(λ), en〉,
then each Fn is analytic on ρT (x), f(λ) =

∞∑
n=−∞

Fn(λ)en and

λFn(λ) + xn = ωn−1Fn−1(λ)
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for all integers n. Since ωnαn = αn+1 for every n ∈ Z, it follows by induction
that, for every k > 1,

FN−k(λ) =
(
FN (λ) +

xN

λ

)αN−k

αN
λk;

FN+k(λ) = −αN+kλ−k
( k∑

ν=1

xN+ν

αN+ν
λν−1 − 1

αN
FN (λ)

)
;

FM+k(λ) = FM (λ)
αM+k

αM
λ−k.

Define f−(λ) =
∞∑

k=1

αN−k

αN
λk eN−k and f+(λ) =

∞∑
k=0

αM+k

αM
λ−k eM+k. Then, for

every λ ∈ ρT (x), we obtain

‖f(λ)‖p >
∞∑

k=1

|FN−k(λ)|p +
∞∑

k=0

|FM+k(λ)|p

=
∣∣∣FN (λ) +

xN

λ

∣∣∣
p ∞∑

k=1

∣∣∣αN−k

αN
λk

∣∣∣
p

+ |FM (λ)|p
∞∑

k=0

∣∣∣αM+k

αM
λ−k

∣∣∣
p

=
∣∣∣FN (λ) +

xN

λ

∣∣∣
p

‖f−(λ)‖p + |FM (λ)|p‖f+(λ)‖p.

But ‖f−(λ)‖p < ∞ only if |λ| 6
(

lim sup
k→∞

(
αN−k

αN

)1/k)−1

= ιT (eN ) = ιT (e0), and

‖f+(λ)‖p < ∞ only if |λ| > lim sup
k→∞

(
αM+k

αM

)1/k

= rT (eM ) = rT (e0) by Propo-

sition 2.2 (ii). Thus FN (λ) + xN

λ = 0 for every λ ∈ ρT (x) with |λ| > ιT (e0),
and FM (λ) = 0 for every λ ∈ ρT (x) such that |λ| < rT (e0). But FM (λ) = 0

implies that either M = N or FN (λ) = αN

M−N∑
ν=1

xN+ν

αN+ν
λν−1, and so we must

have ρT (x) ∩ {λ : ιT (e0) 6 |λ| 6 rT (e0)} = ∅ in the case that ιT (e0) < rT (e0).
In the remaining case that ιT (e0) = rT (e0) > 0 we obtain, by continuity, that
FN (λ)+ xN

λ = 0 and FM (λ) = 0 for all λ ∈ ρT (x) for which |λ| = ιT (e0) = rT (e0).
As before, this implies that the sets ρT (x) and {λ : ιT (e0) = |λ| = rT (e0)} are
disjoint.

The following elementary observation was made in [4]. For completeness, we
provide a proof.

Proposition 2.6. Let T be a weighted shift on `p(K), 1 6 p < ∞. If
T ∗ fails to have SVEP, then the annulus A = {λ : rT∗(e0) < |λ| < ιT∗(e0)} is
contained in σT (x) for all non-zero vectors x ∈ `p(K).

Proof. Suppose that x ∈ `p(K) satisfies A ∩ ρT (x) 6= ∅. Since, by Proposi-
tion 2.5, T has SVEP, there exists an analytic function f : ρT (x) → `p(K) such
that (T − λ)f(λ) = x for all λ ∈ ρT (x). For each λ ∈ A ∩ ρT (x), it follows from
the observation preceding Proposition 2.5 that

〈kλ, x〉 = 〈kλ, (T − λ)f(λ)〉 = 〈(T ∗ − λ)kλ, f(λ)〉 = 〈0, f(λ)〉 = 0.

Thus, by analyticity, 〈kλ, x〉 = 0 for all λ ∈ A, and therefore x = 0, as desired.
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The preceding results together with Proposition 1.5 lead to a condition nec-
essary for a weighted shift to have Bishop’s property (β). Notice that, by Corol-
lary 2.4, non-quasinilpotent, decomposable bilateral shifts have spectrum a circle,
but of course do not have fat local spectra. Thus both cases in the second assertion
below obtain.

Theorem 2.7. Suppose that T is a weighted shift with Bishop’s property
(β). Then,

(i) if T is unilateral, then ι(T ) = r(T ) and T has fat local spectra;
(ii) if T is bilateral, then either ι(T ) = r(T ) or T has fat local spectra.

Proof. In the unilateral case, 0 = rT∗(e0) and ιT∗(e0) = lim
n→∞

α
1/n
n = rT (e0) =

r(T ) by Proposition 1.5, formulas (2.1) and (2.2), and Corollary 2.3. Thus T has
fat local spectra by the last proposition, and ι(T ) = r(T ) by 1.6.16, [12], or [15].
If T is bilateral with ι(T ) < r(T ), then again ιT∗(e0) = lim

n→∞
α

1/n
n = rT (e0) =

r(T ). By Propositions 1.2 (v), 1.5, formulas (2.5) and (2.6), and Corollary 2.3,
ι(T ) = ιT (e0) = lim

n→∞
α
−1/n
−n = rT∗(e0). Thus, by Proposition 2.6, the annulus

A = {λ : ι(T ) < |λ| < r(T )} is contained in σT (x) for every non-zero x ∈ `p(Z).
Since A is dense in σ(T ), T has fat local spectra.

As an application of this last theorem, we obtain a result of Williams ([24]).

Corollary 2.8. Every non-normal, hyponormal weighted shift on `2(K)
has fat local spectra.

Proof. If T is hyponormal, then T is the restriction of a decomposable op-
erator ([17]) and consequently has property (β). Because T is non-normal, a well
known theorem of Putnam ([6], IV.3.2) gives us that σ(T ) has positive area; in
particular, σ(T ) does not lie in a circle. Theorem 2.7 therefore implies that T has
fat local spectra.

3. GROWTH CONDITIONS

We denote by E(C) the usual Fréchet algebra of all C∞-functions on C with the
topology of uniform convergence of all orders of derivatives on the compact subsets
of C. An operator T ∈ L(X) is called generalized scalar if there is a continuous
E(C)-functional calculus for T ([12], 1.5). If an operator T ∈ L(X) has spectrum
contained in the unit circle, T, and if there exist constants K, s > 0 so that
‖Tn‖ 6 K |n|s for every non-zero integer n, then Colojoară and Foiaş show that
T admits a continuous E(T)-functional calculus; in particular, the operator T is
generalized scalar. Moreover, a generalized scalar operator has spectrum σ(T ) ⊆ T
only if T satisfies the growth condition above ([5], 5.3.4 or [12], 1.5.12). Thus
T ∈ L(X) is E(T)-scalar if and only if T is invertible and there exist constants K
and s such that, for every natural number n,

(3.1)
1

K ns
6 κ(Tn) 6 ‖Tn‖ 6 K ns.
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A quasinilpotent generalized scalar operator is necessarily nilpotent ([5], 3.5,
and [12], 1.5.10). Thus, by Corollary 2.4, the only possible generalized scalar
weighted shifts must be bilateral with positive spectral radius. The growth condi-
tion of Colojoară and Foiaş may therefore be used to characterize all generalized
scalar weighted shifts. Obviously, we may normalize and restrict our attention to
the case r(T ) = 1.

Proposition 3.1. Let T be a weighted shift on `p(Z), 1 6 p < ∞, with
spectral radius 1. Then T is generalized scalar if and only if T is invertible and
there exist positive constants K and s such that, for every natural number n,

1
K ns

6 inf
k∈Z

αn+k

αk
6 sup

k∈Z

αn+k

αk
6 K ns.

Colojoară and Foiaş ([5], 5.3.2) show further that an invertible operator
T ∈ L(X) is (strongly) decomposable provided that

∞∑
n=−∞

log ‖Tn‖
1 + n2

< ∞.

Thus we easily obtain weighted shifts that are decomposable, but not generalized
scalar. For example, consider the weighted shift corresponding to αn = e

√
|n| for

all n ∈ Z.
An operator is said to be E(T)-subscalar operator if it is the restriction of

an E(T)-scalar operator to a closed invariant subspace. Recently, Didas ([7]) has
obtained characterizations of these operators. Specifically, he shows that, for a
certain class of not necessarily invertible Hilbert space operators, the growth con-
dition (3.1) of Colojoară and Foiaş gives a complete description of E(T)-subscalar
operators that, in particular, applies to weighted shifts on `2(K) ([7], 2.2.11 and
4.1.3). While stated only for unilateral shifts, Didas’s proof works in the bilateral
case as well.

Notice that the growth condition (3.1) applies to the Bergman shift, Ten :=√
n+1
n+2 en+1, on `2(N0). T is subnormal with minimal normal extension Mzf(z) :=

z f(z) on L2(D, π−1dA). Thus, while the spectrum of the minimal normal exten-
sion of T is the closed unit disc D, Didas’s theorem shows that T has a generalized
scalar extension with spectrum in the unit circle. It would be interesting to know
if there is a natural E(T)-scalar extension.

By Proposition 3.1, every generalized scalar weighted shift is E(rT)-scalar
for some r > 0, but, in contrast, not all subscalar weighted shifts must be E(rT)-
subscalar. Indeed, if T is a weighted shift on `2(K), then T is hyponormal if and
only if its weight sequence (ωn)n∈K is nondecreasing ([20]). Since hyponormal
operators are subscalar ([17]) it is therefore impossible to give a growth condition
necessary for a shift to be subscalar or subdecomposable.

Analogous to Didas’s theorem and the sufficient condition for decomposabil-
ity of Colojoară and Foiaş, we obtain a sufficient condition for property (β) for
arbitrary Banach space operators. Its proof is an application of Levinson’s log-log
integrability criterion through Theorems 1.7.1 and 1.7.4 of [12].
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Theorem 3.2. Let X be a complex Banach space, and suppose that T ∈
L(X) satisfies:

(a) There exist constants K > 0 and 0 < s < 1 such that

1
K ens 6 κ(Tn) 6 ‖Tn‖ 6 K ens

for all n ∈ N.
(b) There is a sequence of closed subspaces Yn of X such that

(i) X = TnX ⊕ Yn for every n > 0,
(ii) the projections with range TnX and kernel Yn are uniformly bounded,

and
(iii) TYn ⊆ Yn+1 for every n > 0.
Then T has property (β). If, in addition, T is invertible, then T is decom-

posable.

Remark 3.3. Clearly, condition (a) ensures that Tn has closed range for
every n ∈ N. On the other hand, if X is a Hilbert space, then condition (b) above
is satisfied provided that all powers of T have closed range and the condition
considered by Didas ([7], 2.2.11) holds:

(b′) T ∗Tn+1X ⊆ TnX for all n > 0.
Indeed, for Yn = ker(T ∗n), conditions (b) (i) and (ii) clearly hold. If x∗ ∈

ker(T ∗n) and x ∈ X is arbitrary, then

〈x, T ∗(n+1)Tx∗〉 = 〈T ∗T (n+1)x, x∗〉 = 〈Tnx′, x∗〉
for some x′ ∈ X, and therefore

〈x, T ∗(n+1)Tx∗〉 = 〈x′, T ∗nx∗〉 = 0.

Condition (b) (iii) follows.

Proof. By hypothesis (a) and 1.6.2, [12], T satisfies σap(T ) ⊆ ∂D. Thus, if T
is invertible, then σ(T ) ⊆ ∂D, and the result follows from 5.3.2, [5]. We therefore
assume that 0 ∈ σ(T ), equivalently, that σ(T ) = D.

Define

Y =
{

(x∗n)n>0 ∈
⊕

n>0

Y ⊥
n : T ∗x∗n+1 = x∗n and sup

n>0

e−ns‖x∗n‖ < ∞
}

with norm ‖(x∗n)n>0‖Y := sup
n>0

e−ns‖x∗n‖. By hypotheses (b) (i) and (ii), X∗ =

ker(T ∗n)⊕ Y ⊥
n , and there is a constant C, independent of n, so that

(3.2) ‖x∗‖ 6 C sup
x6=0

|〈Tnx, x∗〉|
‖Tnx‖

for all n ∈ N and x∗ ∈ Y ⊥
n .

We claim that the linear mapping given by P (x∗n)n>0 := x∗0 is invertible
from Y onto X∗. Clearly, P is continuous. If (0, x∗1, x

∗
2, . . .) ∈ Y , then x∗n ∈

ker(T ∗n) ∩ Y ⊥
n for all n > 1, and it follows that P is injective.
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Next, choose x∗ ∈ X∗. Since T ∗ is surjective, there exists a sequence
(x∗n)n>1 ∈

⊕
n>1

Y ⊥
n so that T ∗nx∗n = x∗ for each n. If x ∈ X, write x = Tnx′n + yn

for some x′n ∈ X and yn ∈ Yn. Then

〈Tnx′n, T ∗x∗n+1〉 = 〈x′n, T ∗(n+1)x∗n+1〉 = 〈x′n, x∗〉 = 〈Tnx′n, x∗n〉,
and, by hypothesis (b) (iii),

〈yn, T ∗x∗n+1〉 = 〈Tyn, x∗n+1〉 = 0 = 〈yn, x∗n〉.
Thus 〈x, T ∗x∗n+1〉 = 〈x, x∗n〉. Since x is arbitrary in X, it follows that T ∗x∗n+1 = x∗n
for all n > 1. Finally, if x ∈ X, then

|〈Tnx, x∗n〉| = |〈x, x∗〉| 6 ‖x‖ ‖x∗‖ 6 K ens‖Tnx‖ ‖x∗‖
by (a). Thus, by (3.2), ‖x∗n‖ 6 CKens‖x∗‖ for all n > 1, and so (x∗, x∗1, x

∗
2, . . .) ∈

Y ; P is surjective.
Writing P−1(x∗) = (qn(x∗))n>0, we have that

lim sup
n→∞

‖qn(x∗)‖1/n 6 lim sup
n→∞

(CKens‖x∗‖)1/n 6 1,

and so Rλ(x∗) :=
∞∑

n=1
qn(x∗)λn−1 is absolutely summable for all |λ| < 1. Since

P−1 is linear and continuous, Rλ is linear and continuous on X∗. A calculation
shows that Rλ is a right inverse of T ∗ − λ for |λ| < 1: if x∗ ∈ X∗, then

(T ∗ − λ)Rλ(x∗) = (T ∗ − λ)
∞∑

n=1

qn(x∗)λn−1 =
∞∑

n=1

T ∗qn(x∗)λn−1 −
∞∑

n=1

qn(x∗)λn

= x∗ +
∞∑

n=2

qn−1(x∗)λn−1 −
∞∑

n=1

qn(x∗)λn = x∗.

Clearly, the norms ‖Rλ‖ are uniformly bounded on each compact subset of D. To
estimate the growth of ‖Rλ‖ as |λ| → 1−, we introduce, for arbitrary non-zero

λ ∈ D, the quantity m(λ) :=
(

log 1+|λ|
2|λ|

)1/(s−1)

, and observe that

‖Rλ‖ 6 C K
( ∑

n6m(λ)

ens |λ|n−1 +
∑

n>m(λ)

ens |λ|n−1)
)

6 C K
( ∑

n6m(λ)

en +
1
|λ|

∑

n>m(λ)

(1 + |λ|
2

)n)

6 C K
(
3em(λ) +

2
|λ|(1− |λ|)

)
,

by the standard formula for the geometric series. Since, by l’Hôpitals rule,
m(λ)s−1

1−|λ| → 1
2 and m(λ)1−s

em(λ) → 0 as |λ| → 1−, there exist constants C1, δ > 0
such that ‖Rλ‖ 6 C1em(λ) for all λ ∈ C for which 1 − δ < |λ| < 1. Noting that
‖Rλ‖ is uniformly bounded for |λ| 6 1 − δ, we obtain with suitable constants
C2 > 0 and C3 > 1 the estimate

(3.3) ‖Rλ‖ 6 C2 exp
(
C3

∣∣1− |λ|
∣∣1/(s−1))
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for arbitrary λ ∈ D. For λ ∈ C with |λ| > 1, we define Rλ := (T ∗ − λ)−1 and note
that

‖Rλ‖ 6
∞∑

n=0

‖Tn‖ |λ|−n−1 6 K

∞∑
n=0

ens |λ|−n−1.

Hence, after increasing the constants C2 and C3 if necessary, we obtain the estimate
(3.3) for all λ in some open neighborhood V of the closed unit disc.

Now, let γ(t) := exp(−C3 t1/(s−1)) for all t > 0. Clearly, γ is increasing on
(0,∞) and satisfies

1∫

0

log
∣∣log γ(t)

∣∣ dt < ∞.

Moreover, for all λ ∈ V and x ∈ X, we have R∗λ(T − λ)x = x and therefore

γ
(∣∣1− |λ|∣∣)‖x‖ 6 γ

(∣∣1− |λ|∣∣)‖R∗λ‖ ‖(T − λ)x‖ 6 C2‖(T − λ)x‖
by (3.3). Consequently, Theorems 1.7.1 and 1.7.4 of [12] ensure that T has property
(β).

Notice that a weighted shift on `p(K) with closed range satisfies condition
(b) in the theorem above. Furthermore, every bilateral weighted shift with closed
range is invertible. Thus we obtain the following corollary.

Corollary 3.4. Suppose that T is a weighted shift on `p(K), 1 6 p < ∞.
If there exist constants K > 0 and 0 < s < 1 such that

1
K ens 6 inf

k∈K
αn+k

αk
6 sup

k∈K

αn+k

αk
6 K ens

for every n ∈ N, then T has Bishop’s property (β). Moreover, in the bilateral case,
T is decomposable.
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