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Abstract. We introduce ϕ-Gateaux derivative, and use it to give the neces-
sary and sufficient conditions for the operator Y to be orthogonal (in the sense
of James) to the operator X, in both spaces S1 and S∞ (nuclear and com-
pact operators on a Hilbert space). Further, we apply these results to prove
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0. INTRODUCTION

Let H denote a separable Hilbert space, and let Sp denote the Schatten ideal of

those compact operators X acting on H such that ‖X‖p =
( +∞∑
j=1

sj(X)p
)1/p

<

+∞, where sj(X) = λj(X∗X)1/2. Also, let S∞ denote the ideal of all compact
operators equipped with the usual norm. Let us recall that these (Schatten) norms
are special cases of so called unitarily invariant norms, associated with some two-
sided ideal of compact operators. For further details the reader is referred to [6].
It is well known that S2 has a Hilbert space structure, with the inner product
〈X,Y 〉 = tr (XY ∗), and that this is not true in other Sp. Nevertheless, in all
Banach spaces we can define the orthogonality in the following way (orthogonality
in the sense of R.C. James).
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Definition 0.1. Let X be a Banach space. We say that y ∈ X is orthogonal
to x ∈ X if for all complex numbers λ there holds

(0.1) ‖x+ λy‖ > ‖x‖.

Remark 0.2. If X is a Hilbert space, then from (0.1) we can easily derive
〈x, y〉 = 0.

Remark 0.3. In Banach spaces, orthogonality from the previous definition
is not symmetrical, i.e. y orthogonal to x does not imply x orthogonal to y.

Remark 0.4. Definition 0.1 has a natural geometric interpretation. Namely,
y ⊥ x if and only if the complex line {x + λy : λ ∈ C} is disjoint with the open
ball K(0, ‖x‖), i.e. if and only if this complex line is a tangent one.

Such an orthogonality relation is closely related with Gateaux derivative of
the norm and the smoothness of the sphere of radius ‖x‖.

Definition 0.5. The vector x is a smooth point of the sphere S(0, ‖x‖) if
there exists a unique support functional Fx ∈ X∗, such that Fx(x) = ‖x‖ and
‖Fx‖ = 1.

Proposition 0.6. If there exists the Gateaux derivative of the norm at the
point x, i.e. if there exists the limit lim

R3t→0

‖x+ty‖−‖x‖
t = 0, then it is equal to

ReFx(y), where Fx is the functional from the previous definition. Moreover, in
this case y is orthogonal to x if and only if Fx(y) = 0.

It is also well known that if Banach space X has a strictly convex dual space
then every nonzero point is a smooth point of the corresponding sphere. For details
see [1] and references therein.

Orthogonality in the sense of James were used in investigation of so called
elementary operators, introduced by Lumer and Rosenblum ([11]).

Definition 0.7. Let (A1, A2, . . . , An) and (B1, B2, . . . , Bn) be the n-tuples

of bounded Hilbert space operators. The mapping X 7→
n∑
j=1

AjXBj from B(H)

to B(H) is called the elementary operator or elementary mapping.

Remark 0.8. The same name “elementary operators” is used for operators
of the same form, which maps J to J, where J is some two sided ideal equipped
with a unitarily invariant norm.

The first result concerning the orthogonality in the sense of James and ele-
mentary operators was given by Anderson ([2]).
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Proposition 0.9. If A is a normal operator on a separable Hilbert space

H, then AS = SA implies that for all bounded X there holds

‖AX −XA+ S‖ > ‖S‖.

In view of Definition 0.1, it means that the range of the mappings ∆A :

B(H) → B(H), ∆A(X) = AX −XA is orthogonal to its kernel. This result has

been generalized in two directions, by extending the class of elementary mappings,

and by extending this inequality to the other unitarily invariant norms; see for

instance [4], [5], [8], [9].
In [2], Anderson also proved that equality ran ∆A⊕ker∆A = B(H) is true in

very special cases, for example if and only if the spectrum of the normal operator

A in Proposition 0.9 is finite. In [8] there was conjectured that it might be J =
ran ∆A|J ⊕ ker∆A|J if the ideal J is separable. In Section 3, we shall give the

negative answer to this hypothesis.

The Gateaux derivative technique was used in [3], [10] and [12], in order

to characterize those operators to which the range of a derivation is orthogonal.

In these papers, the attention was directed to Sp ideals for some p > 1, and to
smooth points in S1 and S∞, like in the following proposition, taken from [10].

Proposition 0.10. Let A be a bounded Hilbert space operator. The range
of a derivation ∆A is orthogonal to an operator S in Sp if and only if AS̃ = S̃A,
where S̃ = U |S|p−1, and S = U |S|.

Smooth points in S1 and S∞, were characterized by Holub ([7]).

Proposition 0.11. The operator X is a smooth point of the corresponding

sphere in S1 if and only if either X is injective or X∗ is injective. The operator

X is a smooth point of the corresponding sphere in S∞ if and only if it attains its

norm at the unique vector (up to a complex scalar).

The main purpose of this note is to characterize the orthogonality in the sense

of James in S1 and S∞ at the points which are not smooth, and to apply these

characterizations to elementary operators. Namely, among other things, we prove
that for a normal derivation ∆A : Sp → Sp there holds ran ∆A ⊕ ker∆A = Sp

for 1 < p < +∞, and that such completeness result fails for p = 1. In the case

p = +∞ the situation is more complicated. Some results concerning more general

elementary operators are also given.
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1. ϕ-GATEAUX DERIVATIVES

In this section we introduce ϕ-Gateaux derivative and, in Theorem 1.4, we give the
necessary and sufficient condition for a vector y from an arbitrary Banach space
to be orthogonal (in the sense of James) to a vector x, in terms of introduced
ϕ-Gateaux derivative.

Definition 1.1. Let (X, ‖ · ‖) be an arbitrary Banach space. ϕ-Gateaux
derivative of the norm at the point x, and in y-direction is

Dϕ,x(y) = lim
t→0+

‖x+ teiϕy‖ − ‖x‖
t

.

Proposition 1.2. (i) The function αx,y(t) = ‖x+ teiϕy‖ is convex.
(ii) Dϕ,x(y) is the right derivative of the function αx,y at the point 0, and

taking into account (i) Dϕ,x(y) always exists.

Proof. Obvious.

Proposition 1.3. (i) Dϕ,x is subadditive, positively homogeneous functional
on X;

(ii) Dϕ,x(eiθy) = Dϕ+θ,x(y);
(iii) |Dϕ,x(y)| 6 ‖y‖.

Proof. (i) We have ‖x+ teiϕ(y1 + y2)‖ 6
∥∥∥x2 + teiϕy1

∥∥∥ +
∥∥∥x2 + teiϕy2

∥∥∥, and,
by taking a limit we obtain

Dϕ,x(y1 + y2) = lim
t→0+

‖x+ teiϕ(y1 + y2)‖ − ‖x‖
t

6 lim
t→0+

‖x+ 2teiϕy1‖+ ‖x+ 2teiϕy2‖ − 2‖x‖
2t

= Dϕ,x(y1) +Dϕ,x(y2),

which proves the subadditivity. Positive homogeneity is obvious.
(ii) Obvious.
(iii) It is enough to see that

∣∣ ‖x+ teiϕy‖−‖x‖
∣∣ 6 ‖x+ teiϕy−x‖ = t‖y‖.

The previous simple construction allows us to characterize the orthogonality
in the sense of James, in all Banach spaces (without care of smoothness) via ϕ-
Gateaux derivative.

Theorem 1.4. The vector y is orthogonal to x in the sense of James if and
only if inf

ϕ
Dϕ,x(y) > 0.

Proof. Let us first prove the only if part of the statement. Indeed, let y be
orthogonal to x in the sense of James, i.e. let for all λ ∈ C there holds ‖x+ λy‖ >
‖x‖. Then ‖x+teiϕy‖−‖x‖

t > 0 for all t > 0, and passing to the limit we get
Dϕ,x(y) > 0 for an arbitrary ϕ.
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Let us, now, prove the other, if, part of the statement. We have

Dϕ,x(ei(π−ϕ)x) = lim
t→0+

‖x+ teiϕei(π−ϕ)x‖ − ‖x‖
t

= ‖x‖ lim
t→0+

|1− t| − 1
t

= −‖x‖.

From this, and from subadditivity we get

‖x‖ = −Dϕ,x(ei(π−ϕ)x) 6 Dϕ,x(µy)−Dϕ,x(ei(π−ϕ)x) 6 Dϕ,x(µy − ei(π−ϕ)x)

6 ‖µy − ei(π−ϕ)x‖ = ‖x+ µ(−ei(ϕ−π))y‖ = ‖x+ λy‖,
if we take µ = −ei(π−ϕ)λ.

Remark 1.5. We can see that the previous theorem is reasonable if we look
at it from an other aspect. Namely, y is orthogonal to x if and only if the convex
function αx,y(t) attains its minimum at the origin.

We conclude this section with two examples concerning two classical Banach
spaces.

Example 1.6. In the space L1(X,µ) the function g is orthogonal to f , in
the sense of James if and only if

∣∣∣
∫

{f 6=0}

e−iθ(t)g(t) dµ(t)
∣∣∣ 6

∫

{f=0}

|g(t)| dµ(t),

where f(t) = |f(t)|eiθ(t).
Indeed, in the L1 space there holds

Dϕ,f (g) = Re
{ ∫

{f 6=0}

eiϕe−iθ(t)g(t) dµ(t)
}

+
∫

{f=0}

|g(t)| dµ(t),

since

lim
ρ→0+

|f(t) + ρeiϕg(t)| − |f(t)|
ρ

=
{

cos(ϕ− θ(t) + ψ(t))|g(t)|, f(t) 6= 0,
|g(t)|, f(t) = 0.

(here g(t) = |g(t)|eiψ(t)), and also
∣∣ |f(t)+ρeiϕg(t)|−|f(t)|

ρ

∣∣ 6 |g(t)|. Thus, we get
g ⊥ f if and only if

inf
ϕ

Re
{ ∫

{f 6=0}

eiϕe−iθ(t)g(t) dµ(t)
}

+
∫

{f=0}

|g(t)| dµ(t) > 0.

However, the infimum will be attained for that ϕ, for which

eiϕ

∫

{f 6=0}

e−iθ(t)g(t) dµ(t) = −
∣∣∣

∫

{f 6=0}

e−iθ(t)g(t) dµ(t)
∣∣∣,

and the result follows.

Example 1.7. In the c0 space, y is orthogonal to x if and only if there does
not exist the open angle D = {z : α < arg z < β}, with β − α < π, such that
ξνην ∈ D for all those ν for which |ξν | = ‖x‖ holds.
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Let k1, k2, . . . , kn be all of indices, for which |ξkj
| = ‖x‖ holds, and let δ > 0

be a real number such that sup
ν 6=kj

|ξν | = ‖x‖ − δ, and let ξν = |ξν |eiθν . Now, for

t < δ
2‖y‖ we have:

{ |ξν + teiϕην | > ‖x‖ − δ
2 for ν = kj

|ξν + teiϕην | 6 ‖x‖ − δ
2 for ν 6= kj .

Thus ‖x+ teiϕy‖ = max
16j6n

|ξkj
+ teiϕηkj

|, implying

Dϕ,x(y) = lim
t→0+

‖x+ teiϕy‖ − ‖x‖
t

= ‖x‖ lim
t→0+

max
16j6n

∣∣∣1 +
teiϕηkj

ξkj

∣∣∣− 1

t

= max
16j6n

Re {eiϕe−iθkj ηkj},

taking into account that for all n-tuples of complex numbers there holds

lim
t→0+

max{|1 + tz1|, |1 + tz2|, . . . , |1 + tzn|} − 1
t

= max{Re z1,Re z2, . . . ,Re zn}.

So, we have: y is orthogonal to x if and only if inf
ϕ

max
ν=kj

Re eiϕe−iθνην > 0.

2. ORTHOGONALITY IN S1 AND S∞

Theorem 2.1. Let X,Y ∈ S1. Then, there holds

lim
t→0+

‖X + tY ‖S1 − ‖X‖S1

t
= Re {tr (U∗Y )}+ ‖QY P‖S1 ,

where X = U |X| is the polar decomposition of the operator X, P = PkerX , Q =
PkerX∗ .

For the proof of this theorem we need three technical lemmas.

Lemma 2.2. Let X = U |X| and X + tY = Vt|X + tY | be the polar decom-
positions of the operators X and X + tY , let Q(P ) be the projector to the kernel
of X∗(X), and let {χj} be some complete orthonormal system in kerX. Then:

(i) Vtnx→ Ux, strongly, for all x ∈ ran X∗, and for some sequence tn → 0+.
Also, V ∗tnx → U∗x, strongly, for all x ∈ ran X, and for some (or same) sequence
tn → 0+.

(ii) lim
n→+∞

∑
j

〈V ∗tn(I −Q)Y χj , χj〉 = 0, provided that Y is nuclear.

Proof. (i) Let ej be some complete orthonormal system in H. For each j,
the family {Vtej : t > 0} is a bounded family, and hence there exists a sequence
tn → 0, such that Vtnej converges weakly. Moreover, using Cantor’s diagonal
process, we conclude that there exists a sequence tn → 0 such that Vtnej converges
weakly for all j, and therefore Vtn converges weakly. Let V0 denote the weak
limit of the sequence Vtn . Now, for all y, z ∈ H we have 〈Vtn |X + tnY |z, y〉 =
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〈(X + tnY )z, y〉. However, X + tnY converges strongly (even uniformly) to X,
as well as |X + tnY | converges strongly to |X|, and passing to the limit we get
〈V0|X|z, y〉 = 〈Xz, y〉 = 〈U |X|z, y〉 for all z, y ∈ H. Thus V0x = Ux for all
x ∈ ran |X|. Since ran |X| is dense in ran X∗, we obtain that Vtn converges weakly
to Ux for all x ∈ ran X∗. However, this convergence is moreover strong. Indeed, let
x be an arbitrary vector from ran X∗. Then there exists z ∈ H such that x = |X|z.
We have that Vtn |X+tnY |z tends weakly to Ux. But, Vtn |X+tnY |z = (X+tnY )z
which tends strongly to Xz = Ux. Thus Vtn |X+tnY |z tends strongly to Ux. Now
we have ‖Vtnx−Ux‖ 6 ‖Vtn(|X|z− |X + tnY |z)‖+ ‖Vtn |X + tnY |z−Xz‖, which
tends to zero as n tends to infinity.

In a similar way, we can obtain that V ∗tnx tends to U∗x for all x ∈ ran X
and for some (same) sequence tn.

(ii) By part (i) we have that PV ∗tn(I −Q)Y P converges strongly to PU∗(I −
Q)Y P , and by Theorem III.6.3. from [6] PV ∗tn(I−Q)Y P tends to PU∗(I−Q)Y P
in nuclear norm, since Y is nuclear operator. However,

∑
j

〈V ∗tn(I − Q)Y χj , χj〉 is

precisely the trace of the nuclear operator PV ∗tn(I −Q)Y P and therefore it tends
to the trace of the operator PU∗(I − Q)Y P . But PU∗ = 0 and the proof is
complete.

Lemma 2.3. Let A be a bounded operator, whose (usual) norm is at most
one, and let {ϕj} be an arbitrary orthonormal system. Then, we have ‖X‖1 >∣∣∣ ∑
j

〈AXϕj , ϕj〉
∣∣∣.

Proof. Indeed
∣∣∣ ∑
j

〈AXϕj , ϕj〉
∣∣∣ 6 | tr (AX)| 6 ‖A‖∞‖X‖1 6 ‖X‖1.

Lemma 2.4. Let ϕj be some orthonormal system (not necessarily complete)
in H.

(i) for any vector f ∈ H, and for all ε > 0, there exists a vector f ′, such
that ‖f − f ′‖ < ε and

∑
j

|〈f ′, ϕj〉| < +∞.

(ii) the set F =
{
A ∈ S1 :

∑
j

‖Aϕj‖ < +∞
}

is dense in S1.

Proof. (i) Let f = f1 + f2, f1 ∈ L{ϕj}, f2 ⊥ L{ϕj}. Since there holds
‖f1‖2 =

∑
j

|〈f1, ϕj〉|2, there exists n0, such that
∑
j>n0

|〈f1, ϕj〉|2 < ε2. We define

f ′ as f ′ =
∑
j6n0

〈f1, ϕj〉ϕj + f2. We have
∑
j

|〈f ′, ϕj〉| =
∑
j6n0

|〈f1, ϕj〉| < +∞, and

also ‖f − f ′‖2 =
∥∥∥ ∑
j>n0

〈f1, ϕj〉ϕj
∥∥∥

2

=
∑
j>n0

|〈f1, ϕj〉|2 < ε2.

(ii) Let Y ∈ S1, and let Z =
N∑
k=1

σk〈 · , fk〉gk (0 < σk+1 6 σk, fk, gk orthonor-

mal systems) be a finite rank operator such that ‖Y − Z‖1 < ε
2 . By the previous

part of the statement, there exist vectors f ′k, such that
∑
j

|〈f ′k, ϕj〉| < +∞, and

‖fk − f ′k‖ < ε
2kσk

. Let A =
N∑
k=1

σk〈 · , f ′k〉gk. We have ‖A− Z‖1 =
∥∥∥

N∑
k=1

σk〈 · , fk −
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f ′k〉gk
∥∥∥

1
6

N∑
k=1

σk‖fk − f ′k‖ 6 ε
2 , and hence ‖A − Y ‖1 < ε. On the other hand

∑
j

‖Aϕj‖ 6
N∑
k=1

∑
j

‖σk〈ϕj , f ′k〉gk‖ =
N∑
k=1

σk
∑
j

|〈ϕj , f ′k〉| < +∞.

Now, we are in a position to prove Theorem 2.1.

Proof of Theorem 2.1. Let X =
∑
j

sj〈 · , ϕj〉ψj be the Schmidt expansion of

the operator X, and let χj be a complete orthonormal system in kerX. Then,
taking into account Lemma 2.3, we have:

1
t
{‖X + tY ‖1 − ‖X‖1}

=
1
t

{
‖X + tY ‖1 −

∑

j

sj

}

> 1
t

(∣∣∣
∑

j

〈U∗(X + tY )ϕj , ϕj〉+
∑

j

〈V ∗(X + tY )χj , χj〉
∣∣∣−

∑

j

sj

)
,

where V : kerX → kerX∗ is given by QY P = V |QY P |. Further

1
t
{‖X + tY ‖1 − ‖X‖1}

> 1
t

{∣∣∣
∑

j

〈|X|ϕj , ϕj〉+ t
∑

j

〈U∗Y ϕj , ϕj〉+
∑

j

〈V ∗(X + tY )χj , χj〉
∣∣∣−

∑

j

sj

}

=
1
t

{∣∣∣
∑

j

sj + t
( ∑

j

〈U∗Y ϕj , ϕj〉+
∑

j

〈V ∗Y χj , χj〉
)∣∣∣−

∑

j

sj

}
.

But, since V ∗Q = V ∗ and Pχj = χj the last expression is equal to

1
t
{‖X + tY ‖1 − ‖X‖1}

=
1
t

{∣∣∣
∑

j

sj + t
( ∑

j

〈U∗Y ϕj , ϕj〉+
∑

j

〈V ∗QY Pχj , χj〉
)∣∣∣−

∑

j

sj

}

=

∣∣∣ ∑
j

sj + t(tr (U∗Y ) + ‖QY P‖1)
∣∣∣−∑

j

sj

t
→ Re (tr (U∗Y ) + ‖QY P‖1),

and thus lim
t→0+

‖X+tY ‖1−‖X‖1
t > Re (tr (U∗Y )) + ‖QY P‖1.

We shall derive the opposite inequality for those Y which belong to F ={
A ∈ S1 :

∑
j

‖Aϕj‖ < +∞
}

. It will be enough, since we will get two sublinear

bounded functionals Y 7→ lim
t→0+

‖X+tY ‖1−‖X‖1
t and Y 7→ Re tr (U∗Y ) + ‖QY P‖1,

that coincide on the set F which is dense by Lemma 2.4. Also, in the following,
wherever Vt as t→ 0+, is written, it means Vtn as n→ +∞, where tn is a sequence
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from Lemma 2.2. (We do not need to care about it, since by Proposition 1.2 (ii)
always exists the limit that we consider.) At the first we have

(2.1)

1
t

{
‖X + tY ‖1 − ‖X‖1

}

=
1
t

{ ∑

j

〈|X + tY |ϕj , ϕj〉+
∑

j

〈|X + tY |χj , χj〉 −
∑

j

sj

}
.

However,
1
t

∑

j

〈|X + tY |χj , χj〉 =
1
t

∑

j

〈V ∗t (X + tQY )χj , χj〉+
∑

j

〈V ∗t (I −Q)Y χj , χj〉,

and also,

‖QY P‖1 >
∣∣∣
∑

j

〈V ∗t QY Pχj , χj〉
∣∣∣ =

∣∣∣
∑

j

〈V ∗t QY χj , χj〉
∣∣∣

=
1
t

∣∣∣
∑

j

〈V ∗t (X + tQY )χj , χj〉
∣∣∣,

so that a real number 1
t

∑
j

〈|X+ tY |χj , χj〉 is equal to a sum of a complex number

whose modulus is less or equal to ‖QY P‖1, and an other complex number, whose
modulus is, for t small enough, less or equal to ε (Lemma 2.2). Thus, for t small
enough, we get 1

t

∑
j

〈|X + tY |χj , χj〉 6 ‖QY P‖1 + ε. On the other hand, by

Jensen’s inequality applied to the integration with respect to the spectral measure
we have: ∑

j

〈|X + tY |ϕj , ϕj〉 6
∑

j

√
〈|X + tY |2ϕj , ϕj〉 =

=
∑

j

√
s2j + 2tRe 〈Y ϕj , sjψj〉+ t2‖Y ϕj‖2

and, applying (2.1)
1
t
{‖X + tY ‖1 − ‖X‖1}

6

∑
j

√
s2j + 2tRe 〈Y ϕj , sjψj〉+ t2‖Y ϕj‖2 −

∑
j

sj

t
+ ‖QY P‖1 + ε

=
∑

j

√
s2j + 2tRe 〈Y ϕj , sjψj〉+ t2‖Y ϕj‖2 − sj

t
+ ‖QY P‖1 + ε

=
∑

j

t2Re 〈Y ϕj , sjψj〉+ t2‖Y ϕj‖2
t
(√

s2j + 2tRe 〈Y ϕj , sjψj〉+ t2‖Y ϕj‖2 + sj

) + ‖QY P‖1 + ε

→
∑

j

Re 〈Y ϕj , ψj〉+ ‖QY P‖1 + ε =
∑

j

Re 〈Y ϕj , Uϕj〉+ ‖QY P‖1 + ε

= Re (tr U∗Y ) + ‖QY P‖1 + ε.
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The inequality
∣∣∣∣

t2Re 〈Y ϕj , sjψj〉+ t2‖Y ϕj‖2
t
(√

s2j + 2tRe 〈Y ϕj , sjψj〉+ t2‖Y ϕj‖2 + sj

)
∣∣∣∣ 6 |2Re 〈Y ϕj , ψj〉|+ ‖Y ϕj‖

allows us to take a limit as t → 0+ under the sum. The result now follows, since
ε can be arbitrarily small.

The following corollary characterizes orthogonality in the sense of James in
the space S1.

Corollary 2.5. The operator Y is orthogonal to the operator X in the
space S1 if and only if | tr (U∗Y )| 6 ‖QY P‖S1 , where X = U |X|, P = PkerX,
and Q = PkerX∗.

Proof. By Theorem 1.4, Y is orthogonal to X if and only if inf
ϕ
Dϕ,X(Y ) >

0. However, by Theorem 2.1, there holds inf
ϕ
Dϕ,X(Y ) = inf

ϕ
Re (eiϕ tr (U∗Y )) +

‖QY P‖1, and we get the result, by choosing the most suitable ϕ.

Theorem 2.6. Let X, Y be in S∞. Then we have

lim
t→0+

‖X + tY ‖∞ − ‖X‖∞
t

= max
f∈Φ
‖f‖=1

Re 〈U∗Y f, f〉,

where X = U |X|, and Φ is the characteristic subspace of the operator |X| with
respect to its eigenvalue s1.

For the proof of this theorem we need a technical lemma, as well.

Lemma 2.7. Let A be a positive compact operator, let Φ be the subspace
where A attains its norm, let Φγ be the set of those vectors from the Hilbert space
H which forms with Φ an angle less or equal to γ. Let, further, B be a selfad-
joint compact operator, such that ‖B‖ 6 δ, where δ is a real number such that

2δ
s1(A)−s2(A)−2δ 6 tan γ. Then we have

‖A+B‖ = max
f∈Φγ ,‖f‖=1

〈(A+B)f, f〉.

Proof. If the unit vector x is represented as x = f + g, where f ∈ Φ, g ∈ Φ⊥,
then x ∈ Φγ if and only if ‖g‖

‖f‖ 6 tan γ. Also, s2(A) = max
f∈Φ⊥

‖f‖=1

〈Af, f〉. Since

the operator A + B is compact and selfadjoint, there exists a unit vector x such
that 〈(A + B)x, x〉 = ‖A + B‖. If we represent this vector as x = f + g, then it
will be 〈(A + B)x, x〉 = 〈(A + B)f, f〉 + 2Re 〈Bf, g〉 + 〈(A + B)g, g〉. But, since
|〈(A+B)f, f〉| 6 ‖A+B‖ ‖f‖2, |〈Bf, g〉| 6 δ‖f‖ ‖g‖, |〈(A+B)g, g〉| 6 (s2+δ)‖g‖2,
we have ‖A + B‖ 6 ‖A + B‖ ‖f‖2 + 2δ‖f‖ ‖g‖ + (s2 + δ)‖g‖2, i.e. (s1 − δ)‖g‖ 6
‖A + B‖ ‖g‖ 6 2δ‖f‖ + (s2 + δ)‖g‖, taking into account ‖A + B‖ > s1 − δ,
respectively (s1 − s2 − 2δ)‖g‖ 6 2δ‖f‖, from which we conclude x ∈ Φγ .
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Proof of Theorem 2.6. At first, we have

lim
t→0+

‖X + tY ‖∞ − ‖X‖∞
t

= lim
t→0+

‖(X∗ + tY ∗)(X + tY )‖1/2 − ‖X‖
t

= lim
t→0+

‖X∗X + t(X∗Y + Y ∗X) + t2Y ∗Y ‖ − ‖X‖2
t(‖X∗X + t(X∗Y + Y ∗X) + t2Y ∗Y ‖1/2 + ‖X‖) .

It is obvious that the denominator ‖X∗X + t(X∗Y + Y ∗X) + t2Y ∗Y ‖1/2 + ‖X‖
tends to 2‖X‖. Let us consider the limit of the numerator. The operators X∗X
and t(X∗Y +Y ∗X)+t2Y ∗Y satisfy the assumptions of Lemma 2.7, for an arbitrary
γ > 0 and for the corresponding small enough t, and we get

lim
t→0+

‖X∗X + t(X∗Y + Y ∗X) + t2Y ∗Y ‖ − s21
t

= lim
t→0+

max
f∈Φγ

‖f‖=1

〈(X∗X + t(X∗Y + Y ∗X) + t2Y ∗Y )f, f〉 − s21

t

6 lim
t→0+

max
f∈Φγ

‖f‖=1

[〈(X∗Y + Y ∗X)f, f〉+ t〈Y ∗Y f, f〉] = max
f∈Φγ

‖f‖=1

2Re 〈Y f,Xf〉.

On the other hand

lim
t→0+

‖X∗X + t(X∗Y + Y ∗X) + t2Y ∗Y ‖ − s21
t

> lim
t→0+

max
f∈Φ
‖f‖=1

〈(X∗X + t(X∗Y + Y ∗X) + t2Y ∗Y )f, f〉 − s21

t

= lim
t→0+

max
f∈Φ
‖f‖=1

[〈(X∗Y + Y ∗X)f, f〉+ t〈Y ∗Y f, f〉] = max
f∈Φ
‖f‖=1

2Re 〈Y f,Xf〉,

so that for all γ > 0 we have

1
‖X‖ max

f∈Φγ

‖f‖=1

Re 〈Y f,Xf〉 6 lim
t→0+

‖X + tY ‖∞ − ‖X‖∞
t

6 1
‖X‖ max

f∈Φγ

‖f‖=1

Re 〈Y f,Xf〉.

Note that
inf
γ>0

max
f∈Φγ

‖f‖=1

Re 〈Y f,Xf〉 = max
f∈Φ
‖f‖=1

Re 〈Y f,Xf〉,

since Y and X are continuous in the sphere metric. So, we can get the result, by
taking an infimum over all γ, since for f ∈ Φ there holds Xf = ‖X‖Uf .

Corollary 2.8. In the space S∞ the following three conditions are mutu-
ally equivalent:

(i) Y is orthogonal to X in the sense of James.
(ii) inf

06ϕ<2π
max
f∈Φ
‖f‖=1

Re eiϕ〈U∗Y f, f〉 > 0, where X = U |X| and Φ is the sub-

space where the operator X attains its norm.
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(iii) There exists the vector f ∈ Φ such that Y f ⊥ Xf .

Proof. The equivalence between (i) and (ii) follows from Theorems 1.4 and
2.6. However, the condition (ii) tells us that the numerical range of the operator
U∗Y (on the subspace Φ) has in the complex plane, such a position that it contains
at least one value with positive real part, under all rotations around the zero,
i.e. that is not contained in an open half-plane, whose boundary contains the
origin. But by Toeplitz-Haussdorf Theorem the numerical range is a closed convex
set, so the last condition is equivalent to the condition that the numerical range of
the operator U∗Y contains the origin. Since the vectors Uf and Xf always have
the same direction, we conclude that (iii) is equivalent to (ii).

3. THE SUM OF THE RANGE AND THE KERNEL OF THE ELEMENTARY OPERATORS

Let us, first, recall some facts concerning ideals of compact operators.

Proposition 3.1. If J is a separable ideal of compact operators, associated
with some unitarily invariant norm, then its dual is isometrically isomorphic with
another ideal of compact operators (not necessarily separable) and it admits the
representation: ϕY (X) = tr (XY ).

Proof. This is, in fact, Theorem III.12.2. from [6].

Proposition 3.2. Let J be some separable ideal of compact operators, and

let E : J → J be some elementary operator given by E(X) =
n∑
j=1

AjXBj. Then its

conjugate operator E∗ : J∗ → J∗ has the form E∗(Y ) =
n∑
j=1

BjY Aj.

Proof. We have

ϕY (E(X)) = tr (E(X)Y ) = tr
( n∑

j=1

AjXBjY
)

= tr
(
X

n∑

j=1

BjY Aj

)
= tr (XE∗(Y )) = ϕE∗(Y )(X).

Consider an arbitrary separable ideal of compact operators J, such that J∗ is
strictly convex. According to Proposition 0.9, for all X ∈ J there exists a unique
operator X̃ ∈ J∗ such that X̃(X) = ‖X‖ and ‖X̃‖ = 1. If, moreover, J is reflexive
then the mapping X → X̃, X̃ = ω(X) is a bijection (and also involution) of the
unit spheres of the spaces J and J∗. Moreover, Y is orthogonal to X in the space
J if and only if X̃(Y ) = 0.
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Theorem 3.3. Let J be a reflexive ideal in B(H) such that J∗ is strictly

convex, and let E : J → J be an elementary operator given by E(X) =
n∑
j=1

AjXBj.

Then ran E is orthogonal (in the sense of James) to the operator S if and only if
ω(S) = S̃ ∈ kerE∗.

Proof. Taking into account Propositions 0.6 and 3.2, we have that ran E ⊥ S

implies that for all X ∈ J, S̃(E(X)) = 0 or (E∗(S̃))(X) = 0, for all X, and
consequently E∗(S̃) = 0.

Remark 3.4. Theorem 3.3 is the general result and it holds on an arbitrary
Banach space.

Lema 3.5. Let X be a reflexive Banach space and let V be a closed subspace
of X. If V⊥ = {x ∈ X : ∀v ∈ V ‖v + x‖ > ‖x‖} = {0} then V = X.

Proof. This is Lemma 3.6. from [14].

Theorem 3.6. Let J satisfy the assumptions of the previous theorem, and
let E : J → J be an elementary operator given by E(X) = AXB + CXD, where
A,B,C and D are normal operator such that AC = CA, BD = DB and A∗A +
C∗C > 0, B∗B +D∗D > 0. Then J = ran E ⊕ kerE.

Proof. In [8], it is proved that for such elementary operators its range is
orthogonal to its kernel, and by this and by previous Theorem we have the following
implications:

E(S) = 0 ⇒ ∀X ∈ J, |||E(X) + S||| > |||S||| ⇒ E∗(S̃) = 0 ⇒
⇒ ∀X ∈ J∗, |||E∗(X) + S̃||| > |||S̃||| ⇒ E∗∗(˜̃S) = 0 ⇔ E(S) = 0.

Thus we have E(S) = 0 if and only if E(X) ⊥ S for all X ∈ J.
From the orthogonality of the range and the kernel it follows that the sum

ran E + kerE is closed. Indeed, if xn + yn for xn ∈ ran E, yn ∈ kerE tends to
z, then, by inequality ‖yn − ym‖ 6 ‖xn + yn − xm − ym‖ we conclude that yn is
a Cauchy sequence, and therefore yn → y ∈ kerE. Further xn → z − y ∈ ran E,
and thus z ∈ ran E + kerE. Suppose that ‖E(X) + Y + Z‖J > ‖Z‖J, for all X,
and for all Y ∈ kerE. By choosing Y = 0 we see that Z ∈ kerE. Now, we can
put Y = −Z and X = 0, implying Z = 0. Hence (ran E + kerE)⊥ = {0}. This,
by Lemma 3.5, finishes the proof.

Corollary 3.7. Let p > 1, and let E : Sp → Sp, E(X) = AXB + CXD,
where A,B,C and D are as in the previous theorem. Then Sp = ran E ⊕ kerE.
Moreover, for any elementary operator on Sp it is valid that ran E is orthogonal
to S if and only if E∗(|S|p−1U∗) = 0.

Proof. It is well known that S∗
p
∼= Sq, q > 1, and that Sq is strictly convex

(Clarckson-McCarthy inequalities; see [13]). Further, we can easily check that in
the case of Sp, S̃ = 1

‖S‖p/q
p

|S|p−1U∗, which concludes the proof.
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Remark 3.8. The special case of this theorem is Proposition 3 from [10].

Theorem 3.9. There exists a normal derivation ∆A : S1 → S1, ∆A(X) =
AX −XA, with AA∗ = A∗A such that S1 6= ran ∆A ⊕ ker∆A.

Proof. Let H = l2(Z), and let A be the bilateral shift operator, i.e. for all
n ∈ Z let Aen = en−1.

Let us, first, perceive that the kernel of the derivation ∆A is trivial. In-
deed, let X ∈ ker∆A. Then AX = XA, implies 〈Xei, ej〉 = 〈Xei, A∗ej−1〉 =
〈AXei, ej−1〉 = 〈XAei, ej−1〉 = 〈Xei−1, ej−1〉. However, taking into account the
compactness of the operator X we get 0 = lim

n→+∞
〈Xei+n, ej+n〉 = 〈Xei, ej〉, for

all i, j ∈ Z, and therefore X = 0. Thus ran ∆A ⊕ ker∆A = ran ∆A.
Let us now construct the operator S ∈ S1 in the following way:{

Sej = 0 for j 6 0,
Sej = 1

2j ej−1 for j > 0 .

If S = U |S| then clearly U∗ej = 0 for j < 0, and U∗ej = ej+1 for j > 0.
We shall prove that ran ∆A is orthogonal to S. Indeed, this orthogonality is,
by Corollary 2.5, equivalent to | tr (U∗(AX −XA))| 6 ‖Q(AX −XA)P‖1, where
P = PkerS and Q = PkerS∗ . However | tr (U∗(AX−XA))| = | tr ((AU∗−U∗A)X)|,
whereas AU∗ − U∗A = 〈 · , e0〉e0, and, in fact | tr (U∗(AX −XA))| = |〈Xe0, e0〉|.
On the other hand it is easy to check that P = PL(...,e−2,e−1,e0)

, Q = PL(...,e−2,e−1)
,

and we get (taking in Lemma 2.3 the bounded operator A∗)

‖Q(AX −XB)P‖S1

>
∣∣∣

+∞∑

j=−∞
〈Q(AX −XA)Pej+1, ej〉

∣∣∣ =
∣∣∣

+∞∑

j=−∞
〈(AX −XA)Pej+1, Qej〉

∣∣∣

=
∣∣∣

−1∑

j=−∞
(〈AXej+1, ej〉 − 〈XAej+1, ej〉)

∣∣∣ =
∣∣∣

−1∑

j=−∞
(〈Xej+1, ej+1〉 − 〈Xej , ej〉)

∣∣∣

= |〈Xe0, e0〉|,
finishing the proof.

Remark 3.10. The trivial kernel of the derivation from the previous theo-
rem is a completely unessential detail. Indeed, considering Hilbert space H ⊕H
and the operator A⊕ I on it, we can construct a normal derivation which has the
same properties as that in Theorem 3.9, and whose kernel is nontrivial.

Theorem 3.11. There exists a normal derivation ∆B : S∞ → S∞, ∆B(X)
= BX − XB, with BB∗ = B∗B, and an operator S ∈ S∞ such that ran ∆B is
orthogonal to S, and S /∈ ker∆B.

Proof. Let A be the operator from the proof of Theorem 3.9, and let B =
A⊕ I acting on H = l2(Z)⊕C. Further, let S = S1⊕2I, where S1 : l2(Z) → l2(Z)
is any operator of norm at most one. The operator S attains its norm at the
unique (up to a scalar) vector ϕ = 0⊕ 1 ∈ l2(Z)⊕C. It is obvious that Sϕ = 2ϕ,
Bϕ = B∗ϕ = ϕ, and therefore

〈(BX −XB)ϕ, Sϕ〉 = 2〈Xϕ,B∗ϕ〉 − 2〈XBϕ,ϕ〉 = 2〈Xϕ,ϕ〉 − 2〈Xϕ,ϕ〉 = 0.
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Thus ran ∆B ⊥ S. On the other hand BS = SB implies AS1 = S1A, and S1 = 0.
So if we take S1 6= 0 we are done.

Remark 3.12. It is not possible to prove S∞ 6= ran ∆B ⊕ ker∆B . On the
contrary, the sum ran ∆B ⊕ ker∆B is always equal to S∞. Namely, let fY ∈ S∗

∞
be a functional of the form fY (X) = tr (XY ) for some Y ∈ S1

∼= S∗
∞ which

annihilates ran ∆B . It immediately follows BY ∗ − Y ∗B = 0, i.e. Y ∗ ∈ ker∆B .
Since fY (Y ∗) 6= 0, fY can not annihilate ker∆B . Thus ran ∆B +ker∆B is always
dense in S∞.

Remark 3.13. One can find that Remark 3.12 is in a confusion with Theo-
rem 3.11. However, this is a consequence of the fact that both V ⊥ = {X ∈ S∞ :
∀U ∈ V, ‖X + U‖ > ‖U‖} and V⊥ = {X ∈ S∞ : ∀U ∈ V, ‖X + U‖ > ‖X‖}, in
general, does not make a subspace, but a cone!

Acknowledgements. The author is deeply grateful to Professor V.S. Shulman for
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14. A. Turnšek, Orthogonality in Cp classes, Monatsh. Math. 132(2001), 349–354.

DRAGOLJUB J. KEČKIĆ
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