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Abstract. Let L2
a be the Bergman space of the unit disk and T(L2

a) be the
Banach algebra generated by Toeplitz operators Tf , with f ∈ L∞. We prove
that the closed bilateral ideal of T(L2

a) generated by operators of the form
TfTg − TgTf coincides with T(L2

a).
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1. INTRODUCTION

If 0 < p 6 ∞ let Lp = Lp(D,dA), where D is the open unit disk and dA(z) =
(1/π)dxdy, with z = x + iy, is the normalized area measure on D. The Bergman
space Lp

a is formed by the analytic functions in Lp. If 1 < p < ∞ then

(Pf)(z) =
∫

D

f(ω)
(1− ωz)2

dA(ω)

is a bounded projection from Lp onto Lp
a. This is the usual Bergman projection.

For a ∈ L∞ let Ma : Lp → Lp be the operator of multiplication by a and Pa =
PMa. Then ‖Pa‖ 6 Cp‖a‖∞, where Cp is the norm of P acting on Lp. The
Toeplitz operator Ta : Lp

a → Lp
a is the restriction of Pa to the space Lp

a. If B is a
Banach space, we will write L(B) for the algebra of all bounded operators on B
and T(Lp

a) for the closed subalgebra of L(Lp
a) generated by {Ta : a ∈ L∞}.

If A is a Banach algebra, its commutator ideal CA is the closed bilateral ideal
generated by elements of the form [x, y] def= xy− yx, with x, y ∈ A. It is clear that
CA is the smallest closed ideal of A such that A/CA is a commutative Banach
algebra. There is an extensive literature on commutator ideals and abelianiza-
tions of Toeplitz algebras acting on the Hardy space H2. The book of Nikoslki
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([5]) contains plentiful information and further references. In contrast with this
situation, we only have a handful of results for Toeplitz algebras of operators on
L2

a. Probably the most relevant papers on the subject are [2], [4] and [1].
If H is a Hilbert space of dimension greater than one then CL(H) = L(H).

Although this situation is very unusual for Toeplitz algebras, the purpose of this
paper is to prove the following

Theorem 1.1. The Toeplitz algebra on L2
a coincides with its commutator

ideal.

In [3] it is shown that if φ(z) = exp(i log log |z|−2) then the semicommutator
Tφφ − TφTφ is a nontrivial scalar multiple of the identity. Analogously, it could
happen that there are two simple functions a, b ∈ L∞ such that TaTb − TbTa is
easily seen to be invertible. This would immediately prove Theorem 1.1. Since I
was unable to find such functions or even prove their existence, the proof here is
considerably more complicated.

2. SEGMENTATION

For z ∈ D let ϕz(ω) = (z − ω)/(1 − zω), the special automorphism of D that
interchanges 0 and z. The pseudo-hyperbolic metric is defined by ρ(z, ω) = |ϕz(ω)|
for z, ω ∈ D. It is well known that ρ is invariant under the action of Aut(D). We
will also use that

ρ(z, ω) > ρ(z, u)− ρ(u, ω)
1− ρ(z, u)ρ(u, ω)

for all z, ω, u ∈ D.

If 0 < r < 1 write K(z, r) def= {ω ∈ D : ρ(ω, z) 6 r} for the closed ball of center z
and radius r with respect to ρ. A sequence S = {zn} in D will be called separated
if inf

i 6=j
ρ(zi, zj) > 0. Although I have not found the next result in its present form

in the literature, it is a well known feature of separated sequences. We sketch here
a proof.

Lemma 2.1. Let S be a separated sequence and 0 < σ < 1. Then there is a
finite decomposition S = S1 ∪ · · · ∪ SN such that for every 1 6 i 6 N : ρ(z, ω) > σ
for all z 6= ω in Si.

Proof. Since S is separated, there is some positive integer N depending only
on σ and the degree of separation of S, such that K(z, σ)∩S has no more than N
points for every z ∈ D. Let S1 ⊂ S be a maximal sequence such that ρ(z, ω) > σ
for every z, ω ∈ S1 with z 6= ω. The maximality implies that S ⊂ ⋃

z∈S1

K(z, σ).

If S = S1 we are done. Otherwise suppose that n > 2, S1, . . . ,Sn−1 are chosen
and S \ (S1 ∪ · · · ∪ Sn−1) 6= ∅. Let Sn ⊂ S \ (S1 ∪ · · · ∪ Sn−1) be a maximal
sequence such that ρ(z, ω) > σ for every z, ω ∈ Sn with z 6= ω. By the maximality
at the previous steps, if z ∈ Sn there is some zi ∈ Si such that z ∈ K(zi, σ) for
every 1 6 i 6 n− 1. Therefore {z, z1, . . . , zn−1} ⊂ K(z, σ) ∩ S, and consequently
n 6 N .
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Lemma 2.2. For 1 6 k 6 m let {ak
j }j>1 be sequences in the unit ball of L∞

such that supp ak
j ⊂ K(αj , r), where K(αj , r)∩K(αi, r) = ∅ if i 6= j. Suppose that

1 < p < ∞ and {Rj}j>1 is a bounded sequence in L(Lp). If f ∈ Lp is such that∑
j>1

Mam
j

Rjf ∈ Lp then

∥∥∥
∑

j>1

Pa1
j
· · ·Pam

j
Rjf

∥∥∥
p

6 Cm
p

∥∥∥
∑

j>1

Mam
j

Rjf
∥∥∥

p
,

where Cp is the norm of the projection P acting on Lp.

Proof. Write Qj = Pa2
j
· · ·Pam−1

j
P for all j > 1 and S =

∑
j>1

Ma1
j
QjMam

j
Rj .

Then ‖Qj‖ 6 Cm−1
p and for f ∈ Lp we have

(2.1)

‖Sf‖p
p =

∥∥∥
∑

j>1

Ma1
j
QjMam

j
Rjf

∥∥∥
p

p
=

∑

j>1

‖Ma1
j
QjMam

j
Rjf‖p

p

6 C(m−1)p
p

∑

j>1

‖Mam
j

Rjf‖p
p = C(m−1)p

p

∥∥∥
∑

j>1

(Mam
j

Rj)f
∥∥∥

p

p
.

If the last quantity is finite then Sf ∈ Lp and the sums Snf =
n∑

j=1

Ma1
j
QjMam

j
Rjf

converge to Sf in Lp-norm when n → ∞. Therefore
∥∥∥

∑

j>1

Pa1
j
· · ·Pam

j
Rjf

∥∥∥
p

p
= lim

n

∥∥∥
n∑

j=1

Pa1
j
· · ·Pam

j
Rjf

∥∥∥
p

p
= lim

n
‖PSnf‖p

p 6 Cp‖Sf‖p
p .

The lemma follows combining this inequality with (2.1).

Corollary 2.3. Taking Rj = I for every j in Lemma 2.2 we obtain
∥∥∥

∑

j>1

Pa1
j
· · ·Pam

j

∥∥∥
L(Lp)

6 Cm
p .

Proof. By the lemma,
∥∥∥

∑

j>1

Pa1
j
· · ·Pam

j
f
∥∥∥

p
6 Cm

p

∥∥∥
∑

j>1

Mam
j

f
∥∥∥

p
6 Cm

p ‖M( ∑
j>1

am
j

)f‖p 6 Cm
p ‖f‖p

for every f ∈ Lp.

The next result is a particular case of Lemma 4.2.2 in [6].

Lemma 2.4. If t > −1, c is real and

Fc,t(z) =
∫

D

(1− |ω|2)t

|1− zω|2+t+c
dA(ω) z ∈ D,

then Fc,t is bounded when c < 0 and |Fc,t(z)| 6 C(1− |z|2)−c when c > 0.
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Lemma 2.5. Let 0 < r < 1 and {αj}j>1 ⊂ D such that K(αj , r)∩K(αi, r) =
∅ if i 6= j. If r < R < 1 and 0 < β < 1 then

(2.2)
∫

D

∑

j

[χK(αj ,r)(z)χD\K(αj ,R)(ω)]
(1− |ω|2)−β

|1− zω|2 dA(ω) 6 cβ(R)(1− |z|2)−β ,

where cβ(R) → 0 when R → 1.

Proof. If z ∈ K(αj , r) and ω ∈ D \K(αj , R) then

ρ(ω, z) > ρ(ω, αj)− ρ(αj , z)
1− ρ(αj , z)ρ(ω, αj)

>
R− r

1−Rr
= δ,

where δ = δ(R) → 1 when R → 1. Therefore D \K(αj , R) ⊂ D \K(z, δ) and
∑

j

χK(αj ,r)(z)χD\K(αj ,R)(ω) 6
∑

j

χK(αj ,r)(z) χD\K(z,δ)(ω).

Hence, the integral in (2.2) is bounded by

(2.3)

∑

j

χK(αj ,r)(z)
∫

D

χD\K(z,δ)(ω)
(1− |ω|2)−β

|1− zω|2 dA(ω)

=
∑

j

χK(αj ,r)(z)
∫

|v|>δ

(1− |ϕz(v)|2)−β

|1− zv|2 dA(v)

6
∫

|v|>δ

(1− |v|2)−β

|1− zv|2−2β
(1− |z|2)−β dA(v),

where the equality comes from the change of variables v = ϕz(ω) and the inequal-
ity because K(αj , r) are pairwise disjoint. Pick some p = p(β) > 1 satisfying
simultaneously the conditions pβ < 1 and p(2−β) < 2. If p−1 + q−1 = 1, Holder’s
inequality gives

∫

|v|>δ

(1− |v|2)−β

|1− zv|2−2β
dA(v) 6

( ∫

D

(1− |v|2)−pβ

|1− zv|2p(1−β)
dA(v)

)1/p

(1− δ2)1/q.

Since 2p(1− β) = 2− pβ + [p(2− β)− 2] < 2− pβ, then Lemma 2.4 says that the
last expression is bounded by Cβ(1− δ2)1/q, where Cβ depends only on β. Going
back to (2.3) we see that the integral in (2.2) is bounded by

Cβ(1− δ(R)2)1/q(β)(1− |z|2)−β ,

proving the lemma.

Lemma 2.6. Let 0 < r < 1 and αj ∈ D, j > 1, such that K(αj , r) are
pairwise disjoint. Suppose that R ∈ (r, 1) and aj , Aj ∈ L∞ are functions of norm
6 1 such that

supp aj ⊂ K(αj , r) and supp Aj ⊂ D \K(αj , R).
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Then
∑
j>1

Maj PMAj is bounded on Lp for every 1 < p < ∞, with norm bounded

by some constant kp(R) → 0 when R → 1.

Proof. Write

Φ(z, ω) =
∑

j>1

χK(αj ,r)(z)χD\K(αj ,R)(ω)
1

|1− ωz|2 .

Let f ∈ Lp. Since ‖aj‖∞, ‖Aj‖∞ 6 1 for all j, then
∣∣∣
( ∑

j>1

Maj PMAj f
)
(z)

∣∣∣ =
∣∣∣∣
∑

j>1

aj(z)
∫

D

Aj(ω)f(ω)
dA(ω)

(1− ωz)2

∣∣∣∣

6
∫

D

Φ(z, ω)|f(ω)| dA(ω).

Taking h(z) = (1− |z|2)−1/pq, where p−1 + q−1 = 1, Lemma 2.5 asserts that
∫

D

Φ(z, ω)h(ω)q dA(ω) 6 cp−1(R)h(z)q

and Lemma 2.4 implies that there is some C > 0 such that
∫

D

Φ(z, ω)h(z)p dA(z) 6 Ch(ω)p.

By Schur’s theorem ([6], p. 42) the integral operator with kernel Φ(z, ω) is bounded
on Lp and its norm is bounded by (cp−1(R))1/qC1/p → 0 as R → 1.

Let ai
j , bj ∈ L∞, j > 1 and 1 6 i 6 m, be functions of norm at most 1

supported on K(αj , r), where the pseudo-hyperbolic disks are pairwise disjoint.
By Lemma 2.1 for any σ ∈ (r, 1) there is some n = n(σ) > 1 and a partition of
the positive integers N = N1 ∪ · · · ∪Nn such that

ρ(αi, αj) > σ for i 6= j, i, j ∈ Nk, 1 6 k 6 n.

Lemma 2.7. If 1 < p < ∞ then

(2.4)
∑

16k6n

[( ∑

j∈Nk

Pa1
j
· · ·Pam

j

)
P( ∑

i∈Nk

bi

)]
→

∑

j>1

Pa1
j
· · ·Pam

j
Pbj

in operator norm when σ → 1.

Proof. Write Bj =
∑

i∈Nk
i 6=j

bi when j ∈ Nk for some 1 6 k 6 n. Since

P(
∑

i∈Nk

bi)
= Pbj + PBj , the first term in (2.4) can be decomposed as

n∑

k=1

[ ∑

j∈Nk

Pa1
j
· · ·Pam

j
Pbj +

∑

j∈Nk

Pa1
j
· · ·Pam

j
PBj

]
= S1 + S2,
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where

S1 =
n∑

k=1

∑

j∈Nk

Pa1
j
· · ·Pam

j
Pbj =

∑

j>1

Pa1
j
· · ·Pam

j
Pbj

and

S2 =
n∑

k=1

∑

j∈Nk

Pa1
j
· · ·Pam

j
PBj =

∑

j>1

Pa1
j
· · ·Pam

j
PBj .

Let f ∈ Lp. By Lemmas 2.2 and 2.6

(2.5) ‖S2f‖p 6 Cm
p

∥∥∥
∑

j≥1

Mam
j

PBj
f
∥∥∥

p
.

If ω ∈ supp Bj for j ∈ Nk with 1 6 k 6 n, then there is i 6= j in Nk such that
ω ∈ K(αi, r). Then

ρ(ω, αj) > ρ(αj , αi)− ρ(ω, αi)
1− ρ(αj , αi)ρ(ω, αi)

>
σ − r

1− σr
= R(σ),

meaning that supp Bj ⊂ D \K(αj , R(σ)). Since R(σ) → 1 when σ → 1, (2.5) and
Lemma 2.6 prove (2.4).

Corollary 2.8. Under the conditions of Lemma 2.7,
∑

16k6n

[( ∑

j∈Nk

Ta1
j
· · ·Tam

j

)
T( ∑

i∈Nk

bi

)]
→

∑

j>1

Ta1
j
· · ·Tam

j
Tbj(2.6)

and ∑

16k6n

[
T( ∑

i∈Nk

bi

)( ∑

j∈Nk

Ta1
j
· · ·Tam

j

)]
→

∑

j>1

Tbj Ta1
j
· · ·Tam

j
(2.7)

in operator norm when σ → 1.

Proof. We obtain (2.6) by restricting the operators of (2.4) to Lp
a. To prove

(2.7) use (2.6) with
∑

16k6n

[( ∑

j∈Nk

Tam
j
· · ·Ta1

j

)
T( ∑

i∈Nk

bi

)]

acting on Lq
a and then take adjoints.

Proposition 2.9. Let 1 < p < ∞ and c1
j , . . . , c

l
j , aj , bj , d

1
j , . . . , d

m
j ∈ L∞ be

functions of norm 6 1 supported on K(αj , r) for j > 1, where K(αj , r)∩K(αi, r)
= ∅ if i 6= j. Then

∑

j>1

Tc1
j
· · ·Tcl

j
(Taj Tbj − Tbj Taj )Td1

j
· · ·Tdm

j
∈ CT(Lp

a).

Proof. For r < σ < 1 decompose N = N1 ∪ · · · ∪Nn as in the paragraph that
precedes Lemma 2.7. By Corollary 2.8,

∑

16k6n

[
T( ∑

j∈Nk

aj

)T( ∑
i∈Nk

bi

) − T( ∑
i∈Nk

bi

)T( ∑
j∈Nk

aj

)] →
∑

j>1

(Taj Tbj − Tbj Taj )
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in operator norm when σ → 1. Since the first operators belong to the commutator
ideal, so does their limit. Thus,

∑

j∈F

(Taj
Tbj

− Tbj
Taj

) ∈ CT(Lp
a)

for any subset F ⊂ N. In particular, this hold for F = Nk, 1 6 k 6 n. Then
∑

16k6n

[( ∑

j∈Nk

(Taj
Tbj

− Tbj
Taj

)
)
T( ∑

i∈Nk

d1
i

)]
∈ CT(Lp

a),

and since (2.6) says that the above operators converge to
∑

j>1

(Taj Tbj − Tbj Taj )Td1
j

when σ → 1, this operator is also in CT(Lp
a). Clearly, the same holds if the sum

is over any set F ⊂ N. We can repeat this process m − 1 more times using (2.6)
and then l times using (2.7) to obtain the desired result.

3. AN INVERTIBLE OPERATOR IN CT(L2
a)

Let a ∈ L∞ be a real-valued function such that a(ω) > δ > 0 for every ω ∈ D.
Then Ta is self-adjoint and

〈Taf, f〉 =
∫

D

a|f |2 dA > δ

∫

D

|f |2 dA = δ‖f‖22

for every f ∈ L2
a. Therefore Ta is invertible. Theorem 1.1 will be proved by

constructing a function a as above such that Ta ∈ CT(L2
a).

We need to summarize several basic features of Toeplitz operators. If a, b ∈
L∞ then TaTb = Tab when a ∈ H∞ or b ∈ H∞. If z ∈ D then Uzf = (f ◦ ϕz)ϕ′z
defines a unitary self-adjoint operator on L2

a. Therefore, if a ∈ L∞ and f, g ∈ L2
a,

〈UzTaUzf, g〉 = 〈TaUzf, Uzg〉 = 〈a(f ◦ ϕz)ϕ′z, (g ◦ ϕz)ϕ′z〉 = 〈(a ◦ ϕz)f, g〉,
where the last equality comes from changing variables inside the integral. Thus

(3.1) UzTa1 · · ·TanUz = UzTa1Uz · · ·UzTanUz = Ta1◦ϕz · · ·Tan◦ϕz

for aj ∈ L∞, 1 6 j 6 n. By diagonal operator we always mean diagonal with
respect to the orthonormal basis {√n + 1zn}n>0.

A straightforward calculation with polar coordinates shows that if a ∈ L∞
is a radial function (i.e. a(z) = a(|z|)), then Ta is diagonal with n-entry

(3.2) λn(a) =

1∫

0

a(t1/2)(n + 1)tn dt.

If χr denotes the characteristic function of the ball {|ω| 6 r}, where 0 < r < 1,
then (3.2) yields Tχrω

n = r2(n+1)ωn.
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Lemma 3.1. Let a ∈ L∞ be a radial function and 0 < r < 1. Then

Tχr
Ta = Tχr(ω)a(ω/r).

Proof. The operator Tχr(ω)a(ω/r) is diagonal, and its n-entry is

1∫

0

χ[0,r](t1/2)a
( t1/2

r

)
(n + 1)tn dt =

r2∫

0

a
( t1/2

r

)
(n + 1)tn dt

= r2n+2

1∫

0

a(u1/2)(n + 1)un du,

where the last equality comes from the change of variables u = t/r2. By (3.2)
Tχr

Ta is also diagonal and has the same entries.

A simple calculation shows that if n > 1 then 〈Tωωn, ωk〉 = 〈ωn, ωk+1〉 =
〈(n/n + 1)ωn−1, ωk〉. A recursive argument then gives that for every nonnegative
integer k,

Tωkωn =
(n + 1− k

n + 1

)
ωn−k if n > k

and Tωkωn = 0 if n < k. Thus

TωkTχrω
n = r2(n+1)

(n + 1− k

n + 1

)
ωn−k if n > k,

and since TχrTωkωn = r2(n+k+1)ωn+k then

(3.3) (TωkTχr )(TχrTωk)ωn = r4(n+k+1)
( n + 1

n + k + 1

)
ωn = r4kTχr2 TωkTωkωn,

where the second equality comes from the limit case r = 1 in the first equality and
from Tχr2 ωn = r4(n+1)ωn. Since Tχr and TωkTωk are diagonal, they commute,
and since T 2

χr
= Tχr2 then

(3.4) TχrTωkTωkTχr = T 2
χr

TωkTωk = Tχr2 TωkTωk .

By (3.3), (3.4) and Lemma 3.1,

(3.5) Sk
def= [Tωkχr

, Tωkχr
]=Tχr2 (TωkTωk − r4kTωkTωk)=Tχr2 TωkTωk −Tχr2 |ω|2k .

Let P0 ∈ L(L2
a) be the operator P0f = f(0). Straightforward evaluations on the

basis {zn}n>0 give the following identities

(3.6) TωTω = T1+log |ω|2 , Tω2Tω2 = T1+2 log |ω|2 + P0 and Tχr2 P0 = r4P0.

Then

(3.7)
2S1 − S2

by (3.5)
= Tχr2 (2TωTω − Tω2Tω2) + Tχr2 (|ω|4−2|ω|2)

by (3.6)
= Tχr2 (1+|ω|4−2|ω|2) − r4P0 = Tχr2 (1−|ω|2)2 − r4P0.
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Since 2S1 − S2, Tχr
and P0 are diagonal operators, they commute. Consequently

P0TχrTω = TχrP0Tω = 0,

which together with Lemma 3.1 and (3.7) gives

(3.8) Tχrω(2S1 − S2)Tχrω = TωTχr
(2S1 − S2)Tχr

Tω = Tχr4 (1−|ω|2/r4)2|ω|2 .

If α ∈ D then (3.1), (3.5) and (3.8) yield

(3.9)
T(χr◦ϕα)ϕα

(2[T(χr◦ϕα)ϕα
, T(χr◦ϕα)ϕα

]−[T(χr◦ϕα)ϕ2
α
, T(χr◦ϕα)ϕ2

α
])T(χr◦ϕα)ϕα

= UαTχrω(2S1 − S2)TχrωUα = T(χr4◦ϕα)(1−|ϕα|2/r4)2|ϕα|2 .

Suppose that 0 < r < 1 and {αj} ⊂ D is a sequence such that K(αi, r)∩K(αj , r)
= ∅ for i 6= j. Since (χr4 ◦ ϕα)(ω) = χK(α,r4)(ω), the characteristic function of
K(α, r4), then

A(ω) def=
∑

j>1

χr4(ϕαj
(ω))

(
1− |ϕαj (ω)|2

r4

)2

|ϕαj
(ω)|2

is in L∞ with ‖A‖∞ 6 1. In conjunction with (3.9), Proposition 2.9 tells us that

(3.10) TA =
∑

j>1

T(χr4◦ϕαj
)(1−|ϕαj

|2/r4)2|ϕαj
|2 ∈ CT(L2

a).

When ω ∈ D satisfies r4/4 < ρ(ω, αj) 6 (3/4)r4 for some αj we have
(
1− |ϕαj (ω)|2

r4

)2

|ϕαj (ω)|2 >
(
1− 32r8

42r4

)2 r8

42
> r8

28
,

meaning that

(3.11) A(ω) >
(r

2

)8

when ω ∈ K
(
αj ,

(3
4

)
r4

)
\K

(
αj ,

r4

4

)
for some αj .

Lemma 3.2. Given 0 < σ < 1 there is a separated sequence {αj} in D such
that every z ∈ D is in K(αj , 3σ/4) \K(αj , σ/4) for some αj.

Proof. Take a sequence {αj} ⊂ D such that ρ(αi, αj) > σ/100 if i 6= j and

(3.12) ρ({αj}j>1, ω) 6 σ

8
for every ω ∈ D.

For an arbitrary z ∈ D write βj = ϕz(αj). The conformal invariance of ρ implies
that {βj}j>1 satisfies (3.12). We claim that there is some βj such that σ/4 <
|βj | 6 (3/4)σ. Otherwise

ρ
(σ

2
, {βj}j>1

)
> ρ

(σ

2
,D\

{σ

4
< |ω| 6 3

4
σ
})

= ρ
(σ

2
,
{σ

4
,
3σ

4

})
>

σ
4

1− σ
4 · σ

2

>
σ

4
.

This contradicts (3.12) with respect to {βj}j>1 for ω = σ/2. If σ/4 < |βj0 | 6
(3/4)σ then

ρ(αj0 , z) = ρ(ϕz(αj0), ϕz(z)) = ρ(βj0 , 0) = |βj0 | ∈
(σ

4
,

3σ

4

]
,

and since z ∈ D is arbitrary, the lemma follows.



114 Daniel Suárez

Returning to our construction, fix 0 < r < 1 and suppose that S = {αj}j>1 is
a sequence satisfying Lemma 3.2 for σ = r4. Since S is separated, by Lemma 2.1 we
can decompose S = S1∪· · ·∪SN , where for each 1 6 k 6 N , K(αi, r)∩K(αj , r) = ∅
if αi, αj ∈ Sk with i 6= j. For 1 6 k 6 N write

Ak(ω) =
∑

αj∈Sk

χr4(ϕαj
(ω))

(
1− |ϕαj (ω)|2

r4

)2

|ϕαj (ω)|2.

Then ‖Ak‖∞ 6 1 and (3.10) says that TAk
∈ CT(L2

a). Consequently
N∑

k=1

TAk
= T( N∑

k=1

Ak

) ∈ CT(L2
a).

In addition, (3.11) says that for every 1 6 k 6 N ,

Ak(ω) >
(r

2

)8

when ω ∈ K
(
αj ,

(3
4

)
r4

)
\K

(
αj ,

r4

4

)
for some αj ∈ Sk,

and since Lemma 3.2 asserts that

D =
⋃

16k6N

⋃

αj∈Sk

K
(
αj ,

(3
4

)
r4

)
\K

(
αj ,

r4

4

)

then
N∑

k=1

Ak(ω) > (r/2)8 for every ω ∈ D. This completes the construction and

proves Theorem 1.1.

Acknowledgements. I am grateful to the referee for pointing out a mistake in the
proof of Lemma 2.6.
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