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Abstract. Motivated by the search for new examples of “noncommutative
manifolds”, we study the noncommutative geometry of the group C∗-algebras
of various discrete groups. The examples we consider are the infinite dihedral
group Z×σZ2 and the semidirect product group Z×σZ. We present a unified
treatment of the K-homology and cyclic cohomology of these algebras.

Keywords: Noncommutative geometry, K-homology, group C∗-algebra.

MSC (2000): Primary 58B34; Secondary 19K33, 46L.

1. INTRODUCTION

Recently, there has been a great deal of interest in the notion of a “noncommutative
manifold”. This problem has been studied from several different viewpoints, and
a consensus on a final definition seems to be quite far off. However, the study
of examples that one would surely want such a definition to encompass has been
generating very interesting new mathematics.

In [7] Connes formulated the notion of a “noncommutative Riemannian spin
manifold”, within his functional-analytic framework of noncommutative geometry.
For a given C∗-algebra, this consists of a spectral triple ([6]) over the algebra (a ∗-
representation of the C∗-algebra as bounded operators on a Hilbert space, together
with an unbounded “Dirac” operator) with additional structures (such as a reality
operator) satisfying an appropriate list of axioms. In the situation where the
algebra is commutative, it is a nontrivial result ([10], [18]) that the algebra must
necessarily consist of differentiable functions on a Riemannian spin manifold, with
the manifold being recovered as the spectrum of the algebra. Until very recently
the list of examples of noncommutative algebras which could be equipped with
the structure of a noncommutative geometry was rather short. The most useful
example was given by the noncommutative tori ([19]).
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The approach via quantum groups has been much more examples-driven:
see for example Majid ([15]), Schmudgeon ([22]), Woronowicz ([25]). Rather than
taking as a starting point an axiomatic framework and then looking around for
examples that fit into it, they began with a case by case study of the many in-
teresting and provocative examples coming from quantum groups, and for each
one try to see which of the structures of ordinary commutative geometry can be
translated meaningfully into this picture. A particular focus of this approach is to
classify the possible differential calculi over a given algebra.

An instructive example illustrating the differences between the two approaches
is the algebra C(SUq(2)), “continuous functions on the quantum SU(2)”. This
algebra was thoroughly investigated using the tools of Connes’ noncommutative
geometry by Masuda, Nakagame and Watanabe in [16]. In particular the K-theory
and K-homology were calculated, and the generators exhibited: all four groups are
in fact isomorphic to Z. So from this viewpoint the algebra appeared to be quite
simple.

Woronowicz’s original work ([25]) classified the covariant differential calculi
over C(SUq(2)). Subsequently, Schmudgeon ([22]) showed that there are no rep-
resentations of these calculi by bounded commutators, a result which seems to be
in direct opposition to Connes’ approach.

In the last year there has been a flurry of interest in producing more ex-
amples of noncommutative spectral triples (see [9] and many others). This work
culminated in Varilly’s paper ([23]), in which Rieffel’s deformation quantization
techniques ([20]) were used to show that the noncommutative spheres of Connes
and Landi are quantum homogeneous spaces for certain compact quantum groups,
and also the work of Connes and Dubois-Violette ([8]), which gives a complete de-
scription from K-theoretic considerations of three-dimensional noncommutative
spherical manifolds.

The approach we take in this paper is as follows. We are motivated by
the search for further examples of “noncommutative manifolds”, in the sense of
Connes. Rather than beginning with well-known geometries over commutative
C∗-algebras, and then deforming the product to give noncommutative algebras
as in [9], we instead take as our starting point the group C∗-algebras of various
discrete groups and investigate the extent to which they can be furnished with the
structures of noncommutative geometries. In general there need not be a unique
way to do this.

The examples we shall consider in this paper are the group C∗-algebras of
the infinite dihedral group Z×σZ2 and the semidirect product group Z×σZ. Since
a noncommutative geometry over a C∗-algebra A consists of a spectral triple over
A (together with additional structure), and the bounded formulation of spectral
triples are Fredholm modules, which make up the Kasparov K-homology groups
KKi(A,C), i = 0, 1, we start by calculating the K-homology groups of the alge-
bras under investigation and look for the generating Fredholm modules. Having
exhibited the Fredholm modules, we demonstrate their nontriviality and linear
independence from one to another by calculating the pairings of their Chern char-
acters with the generators of K-theory. For the infinite dihedral group, we apply
Burghelea’s results ([4]) to calculate the cyclic cohomology of the group ring, and
then via a separate direct calculation exhibit the 0-cocycles that generate the pe-
riodic even cyclic cohomology. Related to this work is our previous paper ([11]),
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in which we carried out this programme for the group C∗-algebra of the discrete
Heisenberg group.

We note that although it is well-known ([6]) that corresponding to every
(theta summable) Fredholm module there is a corresponding spectral triple, it is
not clear that every spectral triple can be equipped with the additional structure
of a noncommutative geometry. Furthermore, several of the Fredholm modules we
exhibit are built from non-faithful representations and would thus correspond to
noncommutative geometries of dimension smaller than that of the algebra. The
problem of constructing the corresponding spectral triples and furnishing them
with the additional structures of noncommutative geometries will be the subject
of a later paper.

2. FREDHOLM MODULES AS K-HOMOLOGY

We begin with some general preliminaries about K-homology and Fredholm mod-
ules. Recall that a Fredholm module over a ∗-algebra A is a triple (H, π, F ), where
π is a ∗-representation of A as bounded operators on the Hilbert space H. The
operator F is a selfadjoint element of B(H), satisfying F 2 = 1, such that the com-
mutators [F, π(a)] are compact operators for all a ∈ A. Such a Fredholm module
is called odd.

An even Fredholm module is the above data, together with a Z2-grading of
the Hilbert space H, given by a grading operator γ ∈ B(H) with γ = γ∗, γ2 = 1,
[γ, π(a)] = 0 for all a ∈ A, and Fγ = −γF . In general the ∗-algebra A will be a
dense subalgebra of a C∗-algebra, closed under holomorphic functional calculus.
Fredholm modules should be thought of as abstract elliptic operators, since they
are motivated by axiomatizing the important properties of elliptic pseudodifferen-
tial operators on closed manifolds.

This definition is due to Connes ([6], p. 288). In Kasparov’s framework the K-
homology groups are given by specialising the second variable in the KK-functor
to be the complex numbers C. Equivalence classes of even Fredholm modules
make up the even K-homology group KK0(A,C). Odd Fredholm modules make
up the odd K-homology KK1(A,C). A Fredholm module is said to be degenerate
if [F, π(a)] = 0 for all a ∈ A. Degenerate Fredholm modules represent the identity
element of the corresponding K-homology group.

Two simple examples of an even and an odd Fredholm module, that we will
use extensively in the sequel, are as follows:

Example 2.1. Given a C∗-algebra A, with a ∗-homomorphism ϕ : A → C,
we construct a canonical even Fredholm module z0 ∈ KK0(A,C):

(2.1) z0 = (H0 = C2, π0 = ϕ⊕ 0, F0 =
(

0 1
1 0

)
, γ =

(
1 0
0 −1

)
).

In general z0 may well represent a trivial element of the even K-homology of A
(for example, if ϕ is the zero homomorphism.) However, if A is unital, and ϕ
is a nonzero ∗-homomorphism, the Chern character of z0 pairs nontrivially with
[1] ∈ K0(A), showing that z0 is a nontrivial element of K-homology, and also that
[1] 6= 0 ∈ K0(A). More precisely:
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Lemma 2.2. If A is unital, and ϕ nonzero, then 〈ch∗(z0), [1]〉 = 1.

Proof. Here, ch∗ : KK0(A,C)→ HC even(A), is the even Chern character as
defined in [6], p. 295, mapping the even K-homology of A into even periodic cyclic
cohomology, and 〈 · , · 〉 denotes the pairing between K-theory and periodic cyclic
cohomology defined in [6], p. 224. We have

(2.2) 〈ch∗(z0), [1]〉 = lim
n→∞

(n!)−1
ψ2n(1, . . . , 1),

where (for each n) ψ2n is the cyclic 2n-cocycle defined by

(2.3)
ψ2n(a0, a1, . . . , a2n)

= (−1)n(2n−1)Γ(n+ 1)Tr(γπ0(a0)[F0, π0(a1)] · · · [F0, π0(a2n)]).

Since Γ(n+ 1) = n! it follows that

(2.4) 〈ch∗(z0), [1]〉 = lim
n→∞

(−1)nTr(γπ0(1)[F0, π0(1)]2n).

Now, [F0, π0(1)] =
(

0 −1
1 0

)
, hence γπ0(1)[F0, π0(1)]2n = (−1)n

(
1 0
0 0

)
. There-

fore

(2.5) 〈ch∗(z0), [1]〉 = lim
n→∞

(−1)nTr((−1)n

(
1 0
0 0

)
) = 1

as claimed.

Example 2.3. Let A be a C∗-algebra, together with a ∗-homomorphism
ϕ : A → C and an automorphism α implementing an action of Z. We describe a
canonical odd Fredholm module z1 ∈ KK1(A×α Z,C):

(2.6) z1 = (H1 = l2(Z), π1, F1).

Take π1 : A×α Z→ B(l2(Z)) to be defined by

(2.7) (π1(a)ξ)(n) = ϕ(α−n(a))ξ(n), (π1(V )ξ)(n) = ξ(n− 1),

for ξ ∈ l2(Z), a ∈ A, and V the unitary implementing the action of Z on A (via
V aV ∗ = α(a)). Then π1 is the usual representation of A ×α Z induced from the
representation ϕ of A. We take

(2.8) F1ξ(n) = sign(n)ξ(n) =
{
ξ(n), n > 0,
−ξ(n), n < 0.

It is immediate that [F1, π1(a)] = 0 for all a ∈ A, and that [F1, π1(V )] is a
rank-one operator and hence compact. Nontriviality of z1 (even if ϕ is the zero
homomorphism) follows from:
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Lemma 2.4. 〈ch∗(z1), [V ]〉 = 1.

Proof. Again, ch∗ : KK1(A,C)→ HC odd(A), is the odd Chern character as
defined in [6], p. 296, mapping the odd K-homology of A into odd periodic cyclic
cohomology, and 〈 · , · 〉 denotes the pairing between K-theory and periodic cyclic
cohomology ([6], p. 224). It is straightforward to calculate this pairing directly, as
in the previous example, but it is quicker to appeal to Connes’ index theorem ([6],
p. 296), which states that

(2.9) 〈ch∗(z1), [V ]〉 = Index(EV E)

where E = 1
2 (1 + F ) is the natural orthogonal projection l2(Z)→ l2(N). We have

(2.10) Index(EV E) = dim ker(EV E)− dimker(EV ∗E) = 1− 0 = 1,

hence the result. This shows that z1 is a nontrivial Fredholm module, and also
that [V ] 6= 0 ∈ K1(A×α Z).

These Fredholm modules z0 and z1 can both be defined more generally (for
example by taking instead ϕ : A → B(H), where H is a finite dimensional Hilbert
space) but the above formulation will be sufficient for our purposes.

A useful tool for calculating the K-homology groups of C∗-algebras is the
following corollary of the universal coefficient theorem of Rosenberg and Schochet
(see Blackadar [3], p. 234).

Proposition 2.5. ([21]) Let A be a separable C∗-algebra, belonging to the
“bootstrap class”. If the K-groups Ki(A), i = 0, 1, are free abelian, then so are the
K-homology groups. In fact KKi(A,C) ∼= Ki(A) (as abelian groups).

We now consider the six term cyclic exact sequence for K-homology of crossed
products by Z, dual to the Pimsner-Voiculescu sequence for K-theory, as described
in [3], p. 199.

Recall ([17]) that associated to any crossed product algebra A ×α Z is the
following semisplit short exact sequence of C∗-algebras, the Pimsner-Voiculescu
“Toeplitz extension”

(2.11) 0→ A⊗K→ Tα → A×α Z→ 0.

Here Tα is the C∗-subalgebra of (A×αZ)⊗T generated by a⊗1, a ∈ A and V ⊗f ,
where V is the unitary implementing the action of α on A, and f is the non-unitary
isometry generating the ordinary Toeplitz algebra T , that is f ∈ B(l2(N)), fen =
en+1. Finally, K = K(l2(N)) is the algebra of compact operators on the Hilbert
space l2(N). This extension defines the Toeplitz element x ∈ KK1(A×α Z,A).

Applying the K-functor gives the Pimsner-Voiculescu six term cyclic sequence
for K-theory. The corresponding six term cyclic sequence for K-homology is:

KK0(A,C) id−α∗←− KK0(A,C) i∗←− KK0(A×αZ,C)y∂0

x∂1

KK1(A×αZ,C) i∗−→ KK1(A,C) id−α∗−→ KK1(A,C)

.
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Here i denotes the canonical inclusion map i : A ↪→ A ×α Z. The vertical
maps ∂0 and ∂1 are given by taking the Kasparov product with the Toeplitz
element:

(2.12) ∂i : KKi(A,C)→ KKi+1(A×α Z,C), z 7→ x ⊗̂A z.

These morphisms are studied in detail in [11]. This sequence formulated in terms
of Ext appears in the original paper of Pimsner and Voiculescu ([17]). However,
the relationship between Ext and the Fredholm module picture of K-homology is
not transparent.

Let A be a unital C∗-algebra, and ϕ : A → C a nonzero ∗-homomorphism.
Then the Fredholm modules z0 and z1 described above (Examples 2.1 and 2.3)
are related via the morphism ∂0 as follows.

Proposition 2.6. ([11]) Under the map ∂0 we have ∂0(z0) = z1.

3. THE INFINITE DIHEDRAL GROUP

We give a unified treatment of the noncommutative geometry of the group C∗-
algebras of the infinite dihedral group Γ = Z ×σ Z2 and the semidirect product
group G = Z ×σ Z, where in each case the action σ on Z is by inversion. The
infinite dihedral group Γ is also a free product Z2 ∗Z2. We consider G to have Z2

as its underlying set, with multiplication

(3.1) (m,n) ∗ (p, q) = (m+ (−1)np, n+ q).

These two groups are related as follows. We have a short exact sequence of groups

0 → Z i→ Z×σ Z
q→ Z×σ Z2 → 0 .

The maps i and q are given by i(n) = (0, 2n), and q(m,n) = (m, (−1)n). The left
hand group is the centre Z(G) of G,

(3.2) Z(G) = {(0, 2n) : n ∈ Z} ∼= Z
whereas the righthand term is the infinite dihedral group. Note that G is torsion-
free.

We first consider the group C∗-algebra of the infinite dihedral group Γ. The
K-theory of this algebra is well-known. We calculate the K-homology, exhibit the
generating Fredholm modules and calculate their pairings with the generators of
K-theory. We calculate the automorphism group Aut(Γ) of the group Γ, and its
action on the K-theory and K-homology of the group C∗-algebra. Finally, we
calculate the cyclic cohomology of the group ring CΓ, and of an appropriate dense
“smooth” subalgebra.
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4. K-THEORY AND K-HOMOLOGY

Since Γ is a semidirect product Z×σZ2 (and hence amenable), the group C∗-
algebra A = C∗(Γ) ∼= C∗r (Γ) is isomorphic to C(T)×σZ2, where the Z2-action σ
is given by (σf)(z) = f(z̄), for z ∈ T, f ∈ C(T). The algebra A is generated by
unitaries e and S satisfying

(4.1) e = e∗, e2 = 1, eSe = S∗ = S−1.

The K-theory of A is well-known.

Proposition 4.1. ([3], [13], [14]) We have K0(A) ∼= Z3, K1(A) = 0 with
the generators of K0(A) being given by the equivalence classes of the projections
1, 1

2 (1 + e) and 1
2 (1 + eS) in A.

Theorem 4.2. The K-homology of A is given by KK0(A,C) ∼= Z3 and
KK1(A,C) ∼= 0. A basis for the even K-homology is given by Fredholm modules
w0,w1 and w2 which we describe below.

Proof. We use the universal coefficient theorem to calculate the K-homology.
Since the K-groups are free abelian, it follows from Proposition 2.5 that KK0(A,C)
∼= Z3, KK1(A,C) ∼= 0, as claimed. We will exhibit the generating even Fredholm
modules. Since A ∼= C(T)×σ Z2, we start by noting the K-homology of C(T).

Lemma 4.3. Both the even and odd K-homology of C(T) are isomorphic to
Z. We exhibit the generating Fredholm modules.

Proof. This follows from Proposition 2.5, since the K-groups of C(T) are
both isomorphic to Z.

The generator of KK0(C(T),C) is the even canonical Fredholm module z0

(Example 2.1) corresponding to the ∗-homomorphism ϕ : C(T) → C, U 7→ 1.
Explicitly,

(4.2) z0 = (C2, ϕ⊕ 0, F =
(

0 1
1 0

)
, γ =

(
1 0
0 −1

)
).

Since C(T) is a crossed product C ×id Z (via the trivial action) the generator of
KK1(C(T),C) is the odd Fredholm module z1 = (H1 = l2(Z), π1, F1), (Exam-
ple 2.3) where π1(U)en = en+1, and F1en = sign(n)en.

We note that under the Baum-Connes assembly map ([2])

(4.3) µ : KKi(C0(BZ),C) ∼= KKi(C(T),C)→ Ki(C(T))

we have z0 7→ ±[1], z1 7→ ±[U ].

We modify these Fredholm modules to give an even Fredholm module w0 over
A, modelled on the corresponding z0 for C(T), and two even Fredholm modules
w1 and w2 over A induced from the odd Fredholm module z1 over C(T).

The first generator of the even K-homology is given by the canonical even
Fredholm module w0 (Example 2.1) corresponding to the ∗-homomorphism ϕ :
A → C, defined on generators by ϕ : S, e 7→ 1. Then

(4.4) w0 = (H0 = C2, π0 = ϕ⊕ 0, F0 =
(

0 1
1 0

)
, γ =

(
1 0
0 −1

)
).
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Let P be any of the projections 1, 1
2 (1 + e), 1

2 (1 + eS). Then it is immediate that

π0(P ) =
(

1 0
0 0

)
, and

(4.5) γπ0(P )[F0, π0(P )]2k = (−1)k

(
1 0
0 0

)
.

Hence 〈ch∗(w0), [P ]〉 = 1, for each of P = 1, P1, P2.
Now we define the Fredholm module w1 ∈ KK0(A,C). First of all, consider

A acting on l2(Z), with orthonormal basis {en}n∈Z, via

(4.6) Sen = en+1, een = e−n.

Define the diagonal operator F by Fen = sign(n)en. Let H = l2(Z) ⊕ l2(Z). We
define a ∗-homomorphism π1 : A → B(H) by

(4.7) π1(S) =
(
S 0
0 S

)
, π1(e) =

(
e 0
0 −e

)
.

Define

(4.8) F1 =
(

0 iF
−iF 0

)
, γ =

(
1 0
0 −1

)
.

It is easy to verify that [F1, π1(S)] and [F1, π1(e)] are both rank-one opera-
tors. Hence [F1, π1(a)] is compact for all a in the dense subalgebra of elements of
the form

(4.9) a =
∑

n∈Z
(anS

n + bnS
ne)

where {an}, {bn} ∈ S(Z), the Schwartz functions on Z, and so for all a ∈ C∗(Γ).
Hence w1 = (H, π1, F1, γ) is an even Fredholm module over A.

We calculate the pairing of the Chern character of w1 in even periodic cyclic
cohomology with the elements of K0(A) represented by the projections 1, P1 =
1
2 (1 + e), P2 = 1

2 (1 + eS). We have

(4.10) π1(P1) =
1
2

(
1 + e 0

0 1− e
)
, π1(P2) =

1
2

(
1 + eS 0

0 1− eS
)
,

(4.11) [F1, π1(P1)] = −1
2
(F0e+ eF0)

(
0 1
1 0

)
= −iP0,0

(
0 1
1 0

)
,

where we denote by Pi,j the rank one operator Pi,jem = δj,mei.
Hence [F1, π1(P1)]

2k = (−1)k
P0,0I2, so

(4.12) Tr(γπ1(P1)[F, π1(P1)]
2k) = Tr((−1)k

P0,0

(
1 0
0 0

)
) = (−1)k.

Therefore 〈ch∗(w1), [P1]〉 = 1. It follows that w1 is a nontrivial element of
KK0(A,C). The same calculation for P2 gives us that

(4.13) [F1, π1(P2)] = −1
2
i(F0eS + eSF0)

(
0 1
1 0

)
= 0,
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since FeS+eSF = 0. Hence 〈ch∗(w1), [P2]〉 = 0. Since [F1, π1(1)] = 0 it is obvious
that 〈ch∗(w1), [1]〉 = 0.

We obtain the third Fredholm module w2 from w1 as follows. We pull back
w1 via the automorphism α−1 ∈ Aut(Γ), defined by

(4.14) α−1(S) = S, α−1(e) = S−1e.

Then w2 = α∗−1(w1) is as follows. We again have A acting on l2(Z), this time via

(4.15) Sen = en+1, een = e−(n+1).

Take H, F and γ as before, and define the ∗-homomorphism π2 : A → B(H) by

(4.16) π2(S) =
(
S 0
0 S

)
, π2(e) =

(
e 0
0 −e

)
,

i.e. the same as π1, except the representation on l2(Z) is different.
Then w2 = (H, π2, F2 = F1, γ) = (H, π1 ◦ α−1, F2, γ) is an even Fredholm

module over A, as can be verified exactly as before. To distinguish w2 from
our previous example, we calculate the pairing of its Chern character with the
projections 1, P1 and P2. We note that

α−1(1) = 1, α−1(P1) = α−1

(1
2
(1 + e)

)
=

1
2
(1 + S−1e) ∼ P2,(4.17)

α−1(P2) = α−1

(1
2
(1 + Se)

)
=

1
2
(1 + e) = P1.(4.18)

Hence

〈ch∗(w2), [1]〉 = 〈ch∗(w1), [α−1(1)]〉 = 〈ch∗(w1), [1]〉 = 1,(4.19)

〈ch∗(w2), [P1]〉 = 〈ch∗(w1), [α−1(P1)]〉 = 〈ch∗(w2), [P2]〉 = 0,(4.20)

〈ch∗(w2), [P2]〉 = 〈ch∗(w1), [α−1(P2)]〉 = 〈ch∗(w1), [P1]〉 = 1.(4.21)

We summarize the results of all these calculations in the following table.

Proposition 4.4. The pairings of the generating Fredholm modules with
K-theory are given by:

1 1
2 (1 + e) 1

2 (1 + Se)

w0 1 1 1
w1 0 1 0
w2 0 0 1

Since w0 pairs nontrivially with [1] ∈ K0(A), we can see that w0,w1 and w2

in fact generate KK0(A,C) as an abelian group — since their pairings with each
of the projections are either 0 or 1, by Connes’ index theorem [6], p. 296, they
are generators, rather than just generating a copy of Z3 inside KK0(A,C). This
completes the proof of Theorem 4.2.
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Note that under the inclusion map i : C(T) ↪→ A, we have i∗(w0) = z0 ∈
KK0(C(T),C), while

(4.22) i∗(w1) = i∗(w2) = 0 ∈ KK0(C(T),C).

It would be highly desirable to generalize the methods of this section to more
general crossed products by Z2. For a general algebra A, with an action σ of Z2,
it would be very useful to construct a map on K-homology

(4.23) KK∗(A,C)→ KK∗(A×σ Z2,C).

This can be done if A is the group C∗-algebra of a finitely generated abelian
group, however we have been unable to find any more general construction. This
contrasts sharply with the case of crossed products by Z.

5. CYCLIC COHOMOLOGY

In this section we calculate the cyclic cohomology of the group ring CΓ of Γ, and
of a “smooth subalgebra” A∞ of the group C∗-algebra. We define

(5.1) A∞ =
{ ∑

m∈Z
(amS

m + bmS
me)

}

where {am} and {bm} are Schwartz functions on Z. We note that for the obvious
length function L on Γ defined by

(5.2) L(Sm) = |m|, L(Sme) = |m|+ 1

A∞ is the space of rapidly decreasing functions on Γ with repect to L. Since
A∞ is a ∗-subalgebra of C∗r (Γ), it follows that Γ has property (RD) of Jolissaint
([12]). Hence A∞ coincides with Jolissaint’s algebra H∞

L (Γ) and is therefore a
dense ∗-subalgebra of C∗r (Γ) closed under holomorphic functional calculus. We
have

(5.3) CΓ ⊂ A∞ ⊂ C∗(Γ)

with the inclusion of A∞ in C∗(Γ) inducing an isomorphism on K-theory. Since
A = C∗(Γ) is a nuclear C∗-algebra, its cyclic cohomology is given by

(5.4) HCn(A) ∼=
{
HC0(A) n even,
0 n odd;

withHC0(A) being generated by the traces on A. This remark is true for arbitrary
nuclear C∗-algebras ([5], p. 132). The dense ∗-subalgebras CΓ and A∞ are not
norm-closed and have much larger and more interesting cyclic cohomology.

We begin by calculating the cyclic cohomology of CΓ. We do this in two
different ways. First of all via homological algebra, using Burghelea’s theorem for
cyclic homology and cohomology of group rings. Second, by a direct calculation
of the cyclic 0-cocycles and 1-cocycles, and then a “bare hands” proof that every
1-cocycle is a 1-coboundary. This approach explicitly gives us the generating cyclic
cocycles. We then investigate which of the cyclic cocycles on the group ring CΓ
extend to A∞, giving the cyclic cohomology HCn(A∞), for n > 1.
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Cyclic homology of group rings was calculated by Burghelea [4] and stated
for cyclic cohomology by Connes ([6], p. 213). The result we use is as follows. Let
G be a countable discrete group. Given g ∈ G, let Cg = {h ∈ G : gh = hg} be
the centralizer of g. Let Ng = Cg/g

Z be the quotient of Cg by the central normal
subgroup generated by g. Now let 〈G〉 be the set of conjugacy classes of elements
of G, let 〈G〉′ be the set of conjugacy classes of elements of finite order, and let
〈G〉′′ be the set of conjugacy classes of elements of infinite order.

Theorem 5.1. ([6]) The cyclic cohomology of CG is given by

(5.5) HC∗(CG) =
∏

ĝ∈〈G〉′
(H∗(Ng;C)⊗HC∗(C))×

∏

ĝ∈〈G〉′′
H∗(Ng;C).

Here H∗(G;C) denotes the cohomology of the group G with coefficients in
C (as a trivial G-module).

We apply this to the situation G = Γ. As before we write the generators of
Γ as S and e with the relations

(5.6) e2 = 1, eSe = S−1.

Let 〈Γ〉 be the set of all conjugacy classes. Since e ∼ S2ne, Se ∼ S2n+1e for all
n, and Sn ∼ S−n, the conjugacy classes [1], [e] and [Se] correspond to elements
of finite order, and {[Sn]}n>1 correspond to elements of infinite order. We have
〈Γ〉′ = {[1], [e], [Se]}. Obviously N1 = Γ, while Ne = NSe = 1 (the trivial group),
and

(5.7) Hn(1;C) =
{
C n = 0,
0 n > 1.

We need the following:

Proposition 5.2. Hn(Γ;C) =
{
C n = 0,
0 n > 1.

Proof. We know ([24], p. 170) that for finite groups G and H, and any left
G ∗H-moduleM, that for n > 2 the group cohomology of the free product G ∗H
is given by

(5.8) Hn(G ∗H;M) = Hn(G;M)⊕Hn(H;M)

Since Γ = Z2 ∗ Z2, and

(5.9) Hn(Z2;C) =
{
C n = 0,
0 n > 1.

it follows that Hn(Γ;C) = 0 for all n > 2. By definition, H0(Γ;C) = CΓ = C since
C is a trivial Γ-module. To find H1(Γ;C) we use the Hochschild-Serre spectral
sequence. Recall that, for an exact sequence of groups

(5.10) 0→ H → G→ G/H → 0

and some G-moduleM, Hq(H;M) is a G/H-module, and Ep,q
2 defined by Ep,q

2 =
Hp(G/H;Hq(H;M)) converges to Hp+q(G;M). In our case we have an exact
sequence

(5.11) 0→ Z→ Γ→ Z2 → 0
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so

(5.12) Ep,q
2 = Hp(Z2;Hq(Z;C))

and

(5.13) Hq(Z;C) =
{
C q = 0, 1,
0 q > 2.

So Ep,q
2 = 0 for q > 1. Now, E1,1

2 = H1(Z2;H1(Z;C)) with the action of Z2 on
H1(Z;C) ∼= C being by inner automorphisms (inversion) so E1,1

2 = 0. Finally,
E0,0

2 = H0(Z2;C) = C is the only non-zero Ep,q
2 . So everything is over at the first

step of the spectral sequence.

We know ([6], p. 192), that the cyclic cohomology of the complex numbers
C is given by:

(5.14) HCn(C) =
{
C n = 0, 2, 4, . . .,
0 n = 1, 3, 5, . . ..

Hence

(5.15) Πĝ∈〈G〉′(H∗(Ng;C)⊗HC∗(C)) =
{
C3 n = 0, 2, 4, . . .,
0 n = 1, 3, 5, . . . .

We also have 〈G〉′′ = {[Sm]}m>1. Now, NSm ∼= Zm, m > 1, and

(5.16) Hn(Zm;C) =
{
C n = 0,
0 n > 1,

so

(5.17)
∏

ĝ∈〈G〉′′
H∗(Ng;C) =

{ ∏
m>1

C n = 0,

0 n > 1.

We have therefore proved the following:

Proposition 5.3. The cyclic cohomology of the group ring CΓ is given by

(5.18) HCn(CΓ) =





C3 × ∏
p>1

C n = 0,

0 n = 1, 3, 5, . . .,
C3 n = 2, 4, 6, . . ..

The reason for the above notation for HC0(CΓ) is that we distinguish three
0-cocycles ψ0, ψ1 and ψ2 that we exhibit below. These cocycles generate the even
periodic cyclic cohomology (as a C-module.) The other generating 0-cocycles do
not contribute to periodic cyclic cohomology (Proposition 5.6, Lemma 5.7).
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Corollary 5.4. The periodic cyclic cohomology of CΓ is given by

(5.19) HC even(CΓ) ∼= C3, HC odd(CΓ) ∼= 0.

We now give a “bare hands” proof of Proposition 5.3. This direct calculation
explicitly gives the 0-cocycles generating the even periodic cyclic cohomology.

Let ψ be a 0-cocycle on CΓ. Then ψ(xy) = ψ(yx) for all x and y, hence
ψ is constant on conjugacy classes of Γ. Taking x = e and y = Sne, we see
that ψ(Sn) = ψ(S−n) for all n. Define ψ(Sn) = an, for some numbers {an} with
a−n = an. Taking x = Sm, y = Sne we see that ψ(Sm+ne) = ψ(Sn−me) for all
m,n. Hence ψ(Sm+2ne) = ψ(Sme) for all n. So take ψ(e) = b0, ψ(Se) = b1. The
pairings of ψ with the projections P0 = 1, P1 = 1

2 (1+ e), P2 = 1
2 (1+Se) are given

by ψ(1) = a0, ψ( 1
2 (1+e)) = 1

2 (a0 +b0), and ψ( 1
2 (1+Se)) = 1

2 (a0 +b1). We denote
by ψ0, ψ1 and ψ2 the cyclic 0-cocycles corresponding to a0 = 1, b0 = 2 and b1 = 2
respectively (in each case all the other an and bn are taken to be zero). Then
ψi(Pj) = δi,j . We will see later that these distinguished cyclic 0-cocycles generate
the even periodic cyclic cohomology. We have therefore shown directly that

(5.20) HC0(CΓ) ∼= C3 ×
∏

p>1

C.

Now we calculate the 1-coboundaries. Let ψ be a linear functional (not
assumed to be a cocycle) ψ : CΓ → C. Then ψ is completely determined by two
(not necessarily bounded) sequences {am}, {bm}, m ∈ Z, with

(5.21) ψ(Sm) = am, ψ(Sme) = bm.

Now bψ is the 1-coboundary given by bψ(x, y) = ψ(xy)−ψ(yx), hence we see that

bψ(Sm, Sn) = ψ(Sm+n)− ψ(Sm+n) = 0,(5.22)
bψ(Sm, Sne) = ψ(Sm+ne)− ψ(Sn−me) = bm+n − bn−m,(5.23)
bψ(Sme, Sne) = ψ(Sm−n)− ψ(Sn−m) = am−n − an−m.(5.24)

Now let ϕ be a 1-cocycle. By definition

(5.25) ϕ(x, y) = −ϕ(y, x), ϕ(xy, z)− ϕ(x, yz) + ϕ(zx, y) = 0.

Case 0. x = Sp, y = Sq, z = Sr. We need ϕ to restrict to a cyclic 1-cocycle
on the copy of CZ generated by S. Hence ϕ(Sm, Sn) = knδm+n,0 for some k ∈ C.

Case 1. For x = Sp, y = Sq, z = Sre, we have

(5.26) ϕ(Sp+q, Sre)− ϕ(Sp, Sq+re) + ϕ(Sr−pe, Sq) = 0.

Writing f(m,n) = ϕ(Sm, Sne), and using the cyclic property, we find that

(5.27) f(p+ q, r)− f(p, q + r)− f(q, r − p) = 0.

Setting q = 0 gives f(p, r) − f(p, r) = 0 = f(0, r − p) for all r, p, i.e. f(0,m) = 0
for all m. Setting q = 1 gives f(p + 1, r) − f(p, r + 1) = f(1, r − p), and we can
solve this relation to get

(5.28) f(p+ 1, r) =
p∑

j=0

f(1, r − p+ 2j).
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Writing ϕ(S, Sme) = cm = f(1,m), we have

(5.29) ϕ(Sm, Sne) = cn+m−1 + cn+m−3 + cn+m−5 + · · ·+ cn−m+1.

Case 2. x = Sp, y = Sqe, z = Sre. This gives

(5.30) ϕ(Sp+qe, Sre)− ϕ(Sp, Sq−r) + ϕ(Sr−pe, Sqe) = 0.

For p+ q − r = 0, this gives

(5.31) ϕ(Sre, Sre)− ϕ(Sp, Sp) + ϕ(Sqe, Sqe) = −ϕ(Sp, Sp) = −kp = 0,

hence we must have k = 0, i.e. ϕ(Sm, Sn) = 0 for all m,n.
For p+q−r 6= 0, we have ϕ(Sp+qe, Sre) = ϕ(Sqe, Sr−pe). Writing g(m,n) =

ϕ(Sme, Sne) gives

(5.32) g(m,n) = −g(n,m), g(q + p, r) = g(q, r − p),
so

(5.33) g(q + 1, r) = g(q, r − 1) = · · · = g(0, r − q − 1).

Taking g(0, n) = dn, with d−n = −dn, we have

(5.34) ϕ(Sme, Sne) = dn−m.

Since d0 = 0 this is true for all m,n.
Case 3. x = Spe, y = Sqe, z = Sre. This reduces to Case 1.
Hence any cyclic 1-cocycle ϕ is uniquely determined by two sequences {cn},

{dn} with d−n = −dn and is given by

(5.35) ϕ(Sm, Sn) = 0, ϕ(Sm, Sne) =
m−1∑

k=0

cn+m−1−2k, ϕ(Sme, Sne) = dn−m.

Proposition 5.5. Every 1-cocycle is a coboundary, so HC1(CΓ) = 0.

Proof. Given a 1-cocycle ϕ, we show that we always have ϕ = bψ, for some
linear map ψ : CΓ→ C, with ψ(Sm) = am, ψ(Sme) = bm. By our previous work
we have

ϕ(Sm, Sn) = 0 = bψ(Sm, Sn),(5.36)

ϕ(Sm, Sne) =
m−1∑

k=0

cn−m+1+2k,(5.37)

ϕ(Sme, Sne) = dn−m.(3.38)

Now define

am =
{−dm m > 0,

0 m 6 0;(5.39)

b2m =

{
c1 + c3 + · · ·+ c2m−1 m > 0,
0 m = 0,
−c−1 − c−3 − · · · − c2m+1 m < 0;

(5.40)

b2m+1 =
{
c0 + c2 + · · ·+ c2m m > 0,
−c−1 − c−3 − · · · − c2m+2 m 6 0.(5.41)

So we have shown that every 1-cocycle is in fact a coboundary, so HC1(CΓ) = 0.
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Proposition 5.6. The cyclic 0-cocycles ψ0, ψ1, ψ2 generate the even peri-
odic cyclic cohomology HC even(CΓ) ∼= C3.

Proof. From our previous work we see immediately that HC even(CΓ) ∼=
C3, while HC odd(CΓ) ∼= 0. The three distinguished 0-cocycles are “dual” to
the generators of K0(C∗r (Γ)), and Connes’ periodicity operator S : HCi(A) →
HCi+2(A) maps them to cohomologically nontrivial even cocycles of higher degree.
We see that for each n > 0 we have HC2n(CΓ) ∼= C3, with generators Snψ0, Snψ1

and Snψ2.

Recall that we found that the zeroth cyclic cohomology was infinite dimen-
sional. We now show directly that the generating 0-cocycles not in the span of the
three given above are mapped to 0 ∈ HC2(CΓ) by S. Denote by ψk the cyclic
0-cocycle corresponding to ak = 1, all others zero (we take k 6= 0). Explicitly,
(5.42) ψk(Sm) = δk,m + δk,−m, ψk(e) = 0 = ψk(Se).

Lemma 5.7. The 2-cocycle Sψk ∈ HC2(CΓ) is a coboundary, for k 6= 0.

Proof. By definition Sψk(x, y, z) = ψk(xyz). Let ϕ : CΓ × CΓ → C be a
linear functional, with ϕ(x, y) = −ϕ(y, x). Suppose that
(5.43) ϕ(Sm, Sn) = αm,n, ϕ(Sm, Sne) = βm,n, ϕ(Sme, Sne) = γm,n.

Obviously αn,m = −αm,n, and γn,m = −γm,n. We want to solve

(5.44) bϕ(x, y, z) = ϕ(xy, z)− ϕ(x, yz) + ϕ(zx, y) = Sψk(x, y, z) = ψk(xyz).
Case 0. x = Sp, y = Sq, z = Sr. This gives

(5.45) αp+q,r − αp,q+r + αp+r,q = ψk(Sp+q+r) =
{

1 p+ q + r = ±k,
0 otherwise,

which has the solution

(5.46) αm,n =
{

m−n
m+n m+ n = ±k,
0 otherwise.

Case 1. x = Sp, y = Sq, z = Sre. This gives

(5.47) βp+q,r − βp,q+r − βq,r−p = ψn(Sp+q+re) = 0,
which has the solution βm,n = 0, for all m,n.

Case 2. x = Sp, y = Sqe, z = Sre. This gives
(5.48) γp+q,r − αp,q−r − γq,r−p = ap+q−r.

Hence

(5.49) γp+q,r − γq,r−p =
{

2p
p+q−r p+ q − r = ±k,
0 otherwise.

This has the solution

(5.50) γm,n =





2n
k − ck m− n = k,
−2m

k + ck m− n = −k,
0 otherwise,

where ck is a scalar. Hence we have shown that for any of the 0-cocycles ψk, with
k 6= 0, the corresponding 2-cocycle Sψk is a coboundary. So for each such k, and
any n > 1, Snψk = 0 ∈ HC2n(CΓ).
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Now we consider the cyclic cohomology of the “smooth subalgebra” A∞ of

the group C∗-algebra we defined earlier (5.1). Obviously any cyclic cocycle on

A∞ restricts to a cyclic cocycle on CΓ, and the cyclic 0-cocycles ψ0, ψ1 and ψ2

we exhibited generating the periodic even cyclic cohomology of CΓ all extend to

0-cocycles on A∞, via

(5.51) ψ
( ∑

αpS
p + βpS

pe
)

=
∑

(αpψ(Sp) + βpψ(Spe)).

However, this is not necessarily enough to determine the cyclic cohomology of A∞.

A cyclic cocycle on A∞ is not necessarily uniquely determined by its restriction to

CΓ. There is the possibility of nonzero “ghost” cocycles that vanish identically on

the group ring. Since the three projections that generate K0(A) are all elements

of CΓ, such ghosts will not be detectible by means of pairing with K-theory.

Nevertheless, we conjecture that:

Conjecture 5.8. The cyclic cohomology of A∞ is given by

(5.52) HCn(A∞) =
{
C3 n even, n > 2,
0 n odd, n > 1.

It is clear that HC0(A∞) is very large. Any 0-cocycle ψ on CΓ is uniquely

determined by a (not necessarily bounded) sequence {an}, with a−n = −an, and

scalars b0, b1. If the an are of polynomial growth in n, it is clear that ψ extends

to a well-defined cyclic cocycle on A∞, otherwise not.

6. C∗(Z×σ Z), A NONCOMMUTATIVE ORBIFOLD

Following on from our work on the infinite dihedral group, in this section we study

the group G = Z×σ Z.

Since G is amenable, the full and reduced group C∗-algebras are isomorphic.

The group C∗-algebra B = C∗(G) is generated by unitaries U and V satisfying

V U = U∗V . Let A = C∗(Γ) be the group C∗-algebra of the infinite dihedral
group, generated by unitaries S and e with e = e∗, e2 = 1 and eSe = S∗. We have

a quotient ∗-homomorphism B → A given by U 7→ S, V 7→ e.
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7. K-THEORY

The group C∗-algebra B is a crossed product C(T) ×σ Z. Therefore we can use
the Pimsner-Voiculescu sequence to calculate the K-theory:

K0(C(T)) id−σ∗−→ K0(C(T)) i∗−→ K0(B)xδ1

yδ0

K1(B) i∗←− K1(C(T)) id−σ∗←− K1(C(T))

.

We consider C(T) to be the C∗-subalgebra of B generated by the unitary U , and
i is the inclusion map i : C(T) ↪→ B given by U 7→ U . The action σ of Z on
C(T) is defined by σ(f)(z) = f(z), or alternatively σ(U) = U∗. We know that
K0(C(T)) ∼= Z, generated by [1], and K1(C(T)) ∼= Z, generated by [U ].

We have σ∗[1] = [σ(1)] = [1], hence the map (id − σ∗) : K0(C(T)) →
K0(C(T)) is the zero map. Further, we have σ∗[U ] = [σ(U)] = [U∗] = −[U ],
so the map (id−σ∗) : K1(C(T))→ K1(C(T)) is the map Z→ Z given by n 7→ 2n.
So δ0 : K0(B) → K1(C(T)) is the zero map, and hence K0(B) ∼= Z, generated by
[1]. We will later confirm that [1] is a nonzero generator of K0(B) by showing that
[1] pairs to 1 with an even Fredholm module over B.

Further, we see that i∗[U ] = [U ] is a nonzero torsion element of K1(B), with
[U ] + [U ] = 0 ∈ K1(B). Finally, the map δ1 : K1(B)→ K0(C(T)) is surjective. So
[V ] is a nontrivial nontorsion generator of K1(B), with δ1[V ] = ±[1] ∈ K0(C(T)).
We summarize these results in:

Proposition 7.1. K0(B) ∼= Z, generated by [1], and K1(B) ∼= Z⊕ Z2, gen-
erated by [V ] and [U ], with [U ] + [U ] = 0.

8. K-HOMOLOGY

Since the K-groups have torsion, the universal coefficient theorem (Proposition 2.5)
does not give us the K-homology for free. Instead, we consider the six term cyclic
sequence on K-homology dual to the Pimsner-Voiculescu sequence on K-theory:

KK0(C(T),C) id−σ∗←− KK0(C(T),C) i∗←− KK0(B,C)y∂0

x∂1

KK1(B,C) i∗−→ KK1(C(T),C) id−σ∗−→ KK1(C(T),C)

.

In Lemma 4.3, we saw that both the even and odd K-homology of C(T) are
isomorphic to Z, with generators z0 and z1 respectively.

We note straightaway the canonical even Fredholm module (Example 2.1)
w0 ∈ KK0(B,C) corresponding to the ∗-homomorphism ϕ : B → C defined by
U, V 7→ 1. We have

(8.1) w0 = (H = C2, π = ϕ⊕ 0, F =
(

0 1
1 0

)
, γ =

(
1 0
0 −1

)
).

Lemma 8.1. We have i∗(w0) = z0, and σ∗(z0) = z0.

Proof. Both these statements are immediate, the second because ϕ◦σ = ϕ.
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It follows that (id − σ∗) : KK0(C(T),C) → KK0(C(T),C) is the zero map.
As described in Proposition 2.6, under the map ∂0, we obtain a Fredholm module
w1 = ∂0(z0) ∈ KK1(B,C), given by w1 = (l2(Z), π′1, F ), where π′1(V )en = en+1,
π′1(U) = I, and Fen = sign(n)en, as before.

Lemma 8.2. i∗(w1) = 0 ∈ KK1(C(T),C).

Proof. We see that i∗(w1) = (l2(Z), π′1 ◦ i, F ) is a degenerate Fredholm mod-
ule, since π′1 ◦ i(U) = I, and hence is zero in KK1(C(T),C).

Lemma 8.3. We have 〈ch∗(w0), [1]〉 = 1, and 〈ch∗(w1), [V ]〉 = 1, so w0 and
w1 are nonzero nontorsion generators of K-homology, and [1] and [V ] are nonzero
nontorsion generators of K-theory.

Proof. This follows immediately from Examples 2.1 and 2.3.

This in fact completes the proof of Proposition 7.1.
Finally, ∂1(z1) is the Fredholm module

(8.2) ∂1(z1) = (H = l2(Z2)⊕ l2(Z2), π ⊕ π, F̃0 =
(

0 F0

F0
∗ 0

)
, γ =

(
1 0
0 −1

)
)

where π(V )ep,q = ep+1,q, π(U)ep,q = ep,q+(−1)p , and

(8.3) F0ep,q =

{
p+iq

(p2+q2)1/2 ep,q (p, q) 6= (0, 0),

e0,0 (p, q) = (0, 0).

Lemma 8.4. i∗(∂1(z1)) = 0 ∈ KK0(C(T),C).

Proof. We have

(8.4) i∗(∂1(z1))=(H= l2(Z2)⊕ l2(Z2), π ⊕ π, F̃0 =
(

0 F0

F0
∗ 0

)
, γ=

(
1 0
0 −1

)
)

where π(U)ep,q = ep,q+(−1)p , and F0 is as above. We construct a homotopy of
Fredholm modules from i∗(∂1(z1)) to a degenerate Fredholm module. For 0 6 t 6
1, we define

(8.5) yt = (H = l2(Z2)⊕ l2(Z2), π ⊕ π, F̃t =
(

0 Ft

Ft
∗ 0

)
, γ =

(
1 0
0 −1

)
)

where Ft is given by

(8.6) Ftep,q =

{
sign(p)ep,0 q = 0,

p+i(1−t)q
(p2+(1−t)2q2)1/2 ep,q q 6= 0.

Then y0 = i∗(∂1(z1)), and y1 is a degenerate Fredholm module, since [F1, π(U)] =
0. Hence i∗(∂1(z1)) is a trivial element of K-homology.
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Proposition 8.5. We have KK0(B,C) ∼= Z ⊕ Z2, generated by w0 and
∂1(z1), with ∂1(z1) + ∂1(z1) = 0, and KK1(B,C) ∼= Z, generated by w1.
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