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Abstract. We study invariants for continuous semigroups of ∗-endomor-
phisms of type II1-factors. An index is defined, based on R. Powers’s notion
of the boundary representation, and computed for all known examples on the
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1. INTRODUCTION

An E0-semigroup of a von Neumann algebra A is a w∗-continuous one parameter
semigroup α = {αt : t > 0} of unit preserving ∗-endomorphisms of A. Their
study was initiated by R. Powers in [20] as a first step towards the development of
an index theory for unbounded derivations. There is by now a highly developed
theory for E0-semigroups of factors of type I∞, though the situation is quite
complicated and many questions remain unanswered (see [3]–[6], [21], [26]–[27],
[2] and references therein). The study of E0-semigroups of factors of type II1 is
still at a nascent state; the same is true, we should remark, of the theory for
one-parameter groups of automorphisms (of the hyperfinite II1-factor), despite
significant progress due to the work of Y. Kawahigashi ([17], [18]).

Examples of E0-semigroups on the hyperfinite II1 factor R may be given
using second quantization and the trace representation of the CAR algebra, and
on L(F∞) using Voiculescu’s free analogue of the Gaussian functor. Using free
and tensor product constructions one may obtain more examples on other factors.
We are interested in the classification (up to cocycle conjugacy) of E0-semigroups
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of II1-factors, especially of R. In this paper we introduce an index for an E0-
semigroup α of a II1-factor M based on R. Powers’s notion of the boundary repre-
sentation, and another invariant, the product system of Hilbert modules associated
with α, which is the analogue of W. Arveson’s product system associated with an
E0-semigroup of B(H).

Given an E0-semigroup α on a II1-factor M acting standardly on L2(M),
its left boundary representation is a ∗-representation of the domain D(δα) of the
generator of α on the deficiency space M of the intertwining semigroup of isome-
tries defined by the trace vector. We use this to define the index of α as the
coupling constant dimM(Mnormal) where Mnormal is the submodule of M corre-
sponding to the w∗-continuous part of the boundary representation. This index
is invariant under bounded perturbations of the generator and subadditive under
tensoring (additive when the boundary representation is normal). It is apriori real
valued, though in all examples it is an integer. For the flow on R arising from
the second quantization of the translation semigroup of multiplicity n on the CAR
algebra via the trace representation, the index is 2n. All integer values may be
obtained using the Clifford algebra rather than the CAR algebra. We believe that
the index is invariant under cocycle conjugacy and that therefore CAR/Clifford
flows of different indices are not cocycle conjugate. This would be in contrast to
the case of reversible flows arising from second quantization of bilateral shifts and
which are all cocycle conjugate by a result of Kawahigashi ([17]). One can show
however, using R. Powers’s idea of the relative commutant index, that the tensor
powers of a CAR flow are pairwise non cocycle conjugate (again in contrast to the
corresponding case of automorphism groups).

In Section 3 we consider continuous tensor product systems of Hilbert mod-
ules associated with E0-semigroups of II1-factors as the main invariant. Given a
factor M of type II1 acting in the standard way on the Hilbert space L2(M) and
an E0-semigroup α = {αt : t > 0} of M, we consider, for t > 0, the intertwining
space Et for αt in the standard representation of M. Et is a bimodule over the
commutant M′ of M, with the M′ actions given by left and right multiplication.
Moreover the formula 〈S, T 〉 = S∗T defines an M′-valued inner product on Et

making it into a right Hilbert M′-module. We describe the structure of the family
{Et : t > 0} as follows:

(i) Et is a full, self-dual right Hilbert module over the II1 factor M′. The
w∗-algebra A(Et) of all bounded module maps (with adjoint) from Et into itself is
naturally isomorphic to αt(M)′. (In particular we get a ∗-isomorphism ϕt of M′
into A(Et)).

(ii) The map Es × Et 3 (S, T ) → ST ∈ Es+t induces an isometric isomor-
phism of Es ⊗ϕt Et onto a w∗-dense Hilbert submodule of Es+t.

Given an E0-semigroup of a II1 factor M, we associate with it the set Eα =
{(T, t) : T ∈ Et, t > 0}. The previous remarks imply that Eα has the structure of
what we call a continuous tensor product system of Hilbert modules over the type
II1 factor N = M′. We obtain the desirable stability property: if α and β are two
E0-semigroups of the II1 factor M, then they are cocycle conjugate if and only if
their product systems Eα and Eβ are isomorphic.

The objective is to look for isomorphism invariants for product systems of
Hilbert modules. For example one can consider the set of all semigroups of isome-
tries in Eα that have scalar inner product with the canonical semigroup defined
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by the trace vector. Those generate a product system of Hilbert spaces whose
Arveson index is computable and, we believe, an isomorphism invariant. The au-
tomorphism group of the product system is an isomorphism invariant and we have
evidence that its computation in the case of the CAR/Clifford flows will show that
flows with different indices are not cocycle conjugate. We mention that there is
also a notion of a covariant representation of a product system of Hilbert modules
over a II1-factor, and one may carry out, to some extent, a program similar to
Arveson’s representation theory of product systems of Hilbert spaces. In partic-
ular, given a product system E one may define a spectral C∗-algebra A(E) as,
roughly speaking, the C∗-algebra generated by the left regular representation of
E . We will take up these issues elsewhere.

We finally mention a few problems concerning dilations and extensions of E0-
semigroups. It is true that all known examples of E0-semigroups on a II1-factor
M have extensions to E0-semigroups of B(L2(M)) which are, in fact, in standard
form ([2]). It would be very interesting to know whether this is generally the case
and to what extend such extensions are cocycle conjugacy invariant. Dilations to
automorphism groups of II1-factors also exist for all examples; using the result
in [7] one can show that such dilations generally exist, but on type II∞ factors.
Finally, in relation to R. Bhat’s theorem ([9]), we note that there exist semigroups
of completely positive maps on II1 factors that have no dilations to E0-semigroups
of II1-factors. For example, the maps ϕt(λ(w)) = e−t|w|λ(w) where w ∈ Fn is
a word in the free group of n generators a1, . . . , an, | · | is the length function,
and λ is the left regular representation, extend to completely positive maps on
L(Fn), and {ϕt : t > 0} is a CP semigroup; (the crucial fact here, proven by U.
Haagerup in [15], is that the length function is conditionally negative definite).
But a dilation of {ϕt : t > 0} to an E0-semigroup of a II1-factor would have no
normal invariant states, whence such a dilation does not exist.

2. THE BOUNDARY REPRESENTATION AND THE INDEX

Definition 2.1. An E0-semigroup of a von Neumann algebra M is a one
parameter family α = {αt : t > 0}, such that:

(i) αt is a unit preserving, normal ∗-endomorphism of M ∀t > 0;
(ii) α0 = idM and αt+s = αt ◦ αs ∀t, s > 0;
(iii) the function t→ ρ(αt(x)) is continuous ∀x ∈M , ∀ρ ∈M∗;
(iv) αt(M)$M for some (hence, for all) t > 0.

The generator δ, defined by δ(x) = w∗- lim
t→0+

αt(x)−x
t , is a w∗-closed, w∗-

densely defined ∗-derivation, whose domain (a weakly dense ∗-subalgebra of M)
we denote by D(δ). Bounded perturbations of δ give rise to E0-semigroups on M
which are cocycle perturbations of α in the following sense: if δ′ = δ + δ0, where
δ0 is a bounded derivation on M, then δ′ is the generator of an E0-semigroup β =
{βt : t > 0} and there is a norm-continuous unitary α-cocycle {Ut : t > 0} in M,
such that βt = AdUt◦αt. The cocycle {Ut : t > 0} is obtained (using, for example,
Dyson’s expansion theorem) as a solution to the equation dUt

dt = ıUtαt(h), where h
is a self-adjoint element in M such that δ0(·) = ı[h, · ] (see [10], Proposition 3.1.6,
Corollary 3.2.47, Proposition 5.4.1.)
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In keeping with A. Connes’ definition for automorphism groups (and with
the theory of E0-semigroups of B(H)), we consider more general perturbations by
relaxing the continuity condition on the cocycle.

Definition 2.2. (i) Two E0-semigroups α and β acting on the von Neu-
mann algebras M and N respectively, are conjugate, if there is a ∗-isomorphism
θ : M→N such that θ ◦ αt = βt ◦ θ, ∀t > 0.

(ii) If α is an E0-semigroup of M, then an E0-semigroup β of M is a
cocycle perturbation of α, if there is a strongly continuous family of unitaries
{Ut : t > 0} ⊂ M, such that Ut+s = Utαt(Us) ∀t, s > 0 (cocycle condition), and
βt = AdUt ◦ αt.

(iii) Two E0-semigroups are cocycle conjugate if one is conjugate to a cocycle
perturbation of the other.

There is also a weaker equivalence relation, that of stable conjugacy: two
E0-semigroups α and β are stably conjugate, if α⊗ id∞ and β ⊗ id∞ are cocycle
conjugate, where id∞ denotes the trivial (semi)group on the type I∞ factor. It is
not hard to see that cocycle conjugacy and stable conjugacy coincide in the case
where M = B(H) but this is most likely not the case when M is a II1-factor (cf.
[18]).

In [20] R. Powers defined a certain birepresentation associated with an E0-
semigroup α of a II1-factor M. We briefly recall the definition below. Since the
trace is αt-invariant, the formula

Stxξ0 = αtxξ0, x ∈M
defines a strongly continuous semigroup of isometries of B(L2(M)) that intertwines
α in the sense that αt(x)St = Stx, ∀x ∈ M, ∀t > 0. The generator −d of
{St : t > 0} is a maximal skew-symmetric operator whose deficiency space can
be identified with the Hilbert space (D(d∗)/D(d), 〈 · , · 〉∗) with the inner product
given by

〈[ξ], [η]〉∗ =
1
2
〈d∗ξ, η〉+

1
2
〈ξ, d∗η〉, ξ, η ∈ D(d∗),

(and where, of course, [ξ] denotes the class of ξ ∈ D(d∗) in the quotient). It can
be shown that the operators x ∈ D(δα) (acting on the left) leave both D(d) and
D(d∗) invariant and that the map

πl
α : D(δα) → B(D(d∗)/D(d)), πl

α(x)([ξ]) = [xξ]
is a norm continuous ∗-representation of D(δα). We call this the left boundary rep-
resentation of α. Considering the right action of M, one obtains a right boundary
∗-antirepresentation

πr
α : D(δα) → B(D(d∗)/D(d)), πr

α(x)([ξ]) = [ξx].

The pair (πl
α, π

r
α) is the boundary birepresentation of α.

We use the left boundary representation to tentatively define an index for
E0-semigroups of II1-factors as follows: letting p be the largest projection in
πl

α(D(δα))′, such that the subrepresentation of πl
α corresponding to p is normal,

we obtain (by extension), a normal representation of M on pD(d∗)/D(d). We
define the index as the coupling constant

ind (α) = dimM(pD(d∗)/D(d)).
We record the main properties of this index in the following proposition.



E0-semigroups of II1 factors 165

Proposition 2.3. (i) The index is invariant under conjugacy and under
bounded perturbations of the generator.

(ii) ind(α⊗β) 6 ind (α)+ ind(β) with equality when πl
α and πl

β are normal.

Proof. (i) is straightforward while (ii) follows from the proof of Lemma 4.4
in [20].

We next turn to examples.

Example 2.4. Let K be a real Hilbert space and consider the Clifford al-
gebra UK over K; this is the C∗-algebra generated by 1l and self-adjoint operators
u(f), f ∈ K, satisfying the relations:

u(λf + g) = λu(f) + u(g), ∀λ ∈ R;
u(f)u(g) + u(g)u(f) = 〈f, g〉1l, ∀f, g ∈ K.

Then UK is isomorphic to the UHF-algebra of type 2∞. The GNS construction
with respect to its normalized trace τ gives rise to the hyperfinite II1 factor:
πτ (UK)′′ = R. Every strongly continuous semigroup of isometries {St : t > 0}
of K induces a semigroup of endomorphisms α = {αt : t > 0} of UK defined on
monomials by

αt(u(f1)u(f2) · · ·u(fk)) = u(Stf1)u(Stf2) · · ·u(Stfk)

and extended linearly and continuously. As each αt leaves the trace invariant, it
is an easy matter to show that it is extended to an endomorphism, also denoted
by αt, of R and that α = {αt : t > 0} is an E0-semigroup of R.

If K = L2(0,∞) ⊗M, where M is an n-dimensional real Hilbert space, and
{St : t > 0} is the unilateral shift on K, the resulting E0-semigroup on R is called
the Clifford flow of rank n ([20]).

Remark 2.5. One may use the algebra of the Canonical Anticommutation
Relations over a complex Hilbert space in the above construction. More specifi-
cally, let H be a complex Hilbert space and AH the CAR algebra over H, i.e. the
C∗-algebra generated by 1l and operators a(f) satisfying the relations

a(λf + g) = λa(f) + a(g), ∀λ ∈ C,
a(f)a(g) + a(g)a(f) = 0, ∀f, g ∈ H,
a(f)a(g)∗ + a(g)∗a(f) = 〈f, g〉1l.

The GNS representation of AH with respect to its trace gives again rise to the hy-
perfinite II1 factor: R = πτ (AH)′′. As before, strongly continuous semigroups
{St : t > 0} of isometries of H give rise to E0-semigroups of R, defined by
βt(a(f)) = a(Stf). These are however conjugate to Clifford flows. More specifi-
cally we have the following:
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Proposition 2.6. Let H = L2(0,∞) ⊗ N where N is an n-dimensional
complex Hilbert space and let {St : t > 0} be the unilateral shift (of multiplicity n)
on H. If β is the E0-semigroup of R constructed from {St : t > 0} using the CAR
algebra AH as in the previous paragraph, then β is conjugate to the Clifford flow
of rank 2n.

Proof. Let M be a 2n-dimensional real Hilbert space and J a linear operator
on M such that 〈Jξ, η〉 = −〈ξ, Jη〉 and J2 = −1. M, with the obvious complex
structure and inner product defined by 〈ξ, η〉C = 〈ξ, η〉+ı〈ξ, Jη〉 is an n-dimensional
complex Hilbert space N. J gives rise to an operator on the real Hilbert space
K = L2(0,∞)⊗M, denoted again by J , with the properties: 〈Jf, g〉 = −〈f, Jg〉,
J2 = −1 which induces on K a complex structure with which it becomes identical
to H = L2(0,∞) ⊗ N. The unilateral shift (of multiplicity 2n) on K commutes
with J , so it is identified with the shift {St : t > 0} on H.

Now, the Clifford algebra UK is identical to the CAR algebra AH since the
operators

a(f) =
u(f)− ıu(Jf)√

2
, a(f)∗ =

u(f) + ıu(Jf)√
2

, f ∈ H,

satisfy the canonical anticommutation relations and the operators u(f) may be
recovered from the a(f)’s via u(f) = a(f)+a(f)∗√

2
. Finally, since St commutes with

J , the Clifford flow α = {αt : t > 0} of rank 2n, acts on AH in the expected way:
αt(a(f)) = a(Stf).

Proposition 2.7. If α is the Clifford flow of rank n on R, then ind(α) = n.

Proof. We show that the Clifford flow of rank n on R admits an extension
to a completely spatial E0-semigroup of B(L2(R)) of index n. Indeed, let M be
an n-dimensional real Hilbert space, MC its complexification, H = L2(0,∞)⊗MC
and {St : t > 0} the translation semigroup on H. Let AH be the CAR algebra
over H in its Fock representation on B(F−(H)), with Fock state ω( · ) = 〈 · ξ0, ξ0〉.
The map a(f) → a(Stf) extends to an E0-semigroup α̃ of B(F−(H)), the CAR-
flow of rank n. Letting u(f) = a(f)+a(f)∗

2 for f ∈ K = L2(0,∞) ⊗ M, it is
straightforward to show that the operators u(f) generate the Clifford algebra over
K in its trace representation, with cyclic trace vector ξ0. So the von Neumann
algebra {u(f) : f ∈ K}′′ is equal to R acting standardly, and the restriction
of α̃ on R is the Clifford flow of rank n. Since the boundary representation of
the CAR flow of rank n is equivalent to a direct sum of n copies of the identity
representation, the same is true of πl

α, its restriction to the domain D(δα) of the
generator of the Clifford flow.

We believe that both the left boundary representation and the index are co-
cycle conjugacy invariants but we do not have a proof of that at the moment. For
the case of the Clifford flows, it would be enough to show that the boundary rep-
resentation does not depend on the choice of intertwining semigroup of isometries
i.e. the analogue of the result in [1]. The difficulty here is that one does not know
how two intertwining semigroups of isometries of an E0-semigroup of a II1 factor
are related to each other.

We next exhibit, using R.T. Powers’s idea of the “relative commutant index”,
a countably infinite family of cocycle conjugacy classes of E0-semigroups of R. If
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α is an E0-semigroup of a type II1 factor M, we consider for every t > 0 the von
Neumann algebra (αt(M)′ ∩ M) ∨ αt(M) generated by αt(M) and its relative
commutant in M. If this is a subfactor of M we let

cα(t) = [M : (αt(M)′ ∩M) ∨ αt(M)].

We denote by Iα the set of all t > 0 for which (αt(M)′∩M)∨αt(M) is a subfactor.

Proposition 2.8. (i) The family (cα(t))t∈Iα
is a stable conjugacy invariant.

(ii) If α (respectively β) is an E0-semigroup of the II1 factor M (respectively
N ) then, for t ∈ Iα ∩ Iβ,

cα⊗β(t) = cα(t) · cβ(t).

Proof. (i) It is plain that cα(t) is invariant under conjugacy. If {Ut : t > 0} is
a strongly continuous α cocycle inM and βt = Ad Ut◦αt then it is straightforward
that

(βt(M)′ ∩M) ∨ βt(M) = Ut ((αt(M)′ ∩M) ∨ αt(M))U∗t
from which cα(t) = cβ(t) follows. Invariance under stable conjugacy follows from
the proof of part (ii) below.

(ii) We have, for all t > 0,

[(αt ⊗ βt)(M⊗N )′ ∩M⊗N ] ∨ (αt ⊗ βt)(M⊗N )

= [(αt(M)⊗βt(N ))′ ∩M⊗N ] ∨ (αt(M)⊗βt(N ))

= [(αt(M)′⊗βt(N )′) ∩M⊗N ] ∨ (αt(M)⊗βt(N ))

= [(αt(M)′ ∩M)⊗(βt(N )′ ∩N )] ∨ (αt(M)⊗βt(N ))

= [(αt(M)′ ∩M) ∨ αt(M)]⊗[(βt(N )′ ∩N ) ∨ βt(N )],

where we used the equality (A⊗B) ∨ (P⊗Q) = (A ∨ P )⊗(B ∨ Q) (and its dual),
which holds for any von Neumann algebras A,B, P and Q. The multiplicativity
of the Jones index completes the proof.

We use this to show that the tensor powers of a Clifford flow are pairwise
not cocycle conjugate (in fact, not stably conjugate).

Proposition 2.9. Let α be the Clifford flow of rank n on the hyperfinite II1
factor R. Then, for every t > 0 we have cα(t) = 2.

Proof. If we choose orthonormal bases (fi)i∈I of L2((0, t),M) and (gj)j∈J of
L2((t,∞),M) (with I and J ordered), so that (fi)i∈I ∪ (gj)j∈J is an orthonormal
basis for L2((0,∞),M), we see that every element w of R has a unique represen-
tation as a sum (in the ‖ · ‖2 norm)

w =
∑

λI,JQ(I)Q(J), λI,J ∈ C,
where I = {i1 < i2 < · · · < il} ⊆ I, J = {j1 < j2 < · · · < jk} ⊆ J , and
Q(I) = u(fi1) · · ·u(fik

), Q(J) = u(gj1) · · ·u(gjl
), Q(∅) = 1l. Note that for J ′ ⊆ J

we have

Q(J ′)∗
( ∑

λI,JQ(I)Q(J)
)
Q(J ′) =

∑
µJ′

I,JλI,JQ(I)Q(J),
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where µJ ′
I,J = (−1)σI,J (J′) with σI,J(J ′) = |I| |J ′| + |J | |J ′| − |J ′ ∩ J |. Now, if

w ∈ αt(R)′ ∩ R, w commutes with Q(J ′); we must therefore have that σI,J(J ′)
is even for all J ′ ⊆ J . It follows that J = ∅ and |I| is even. The conclusion is
that αt(R)′∩R is the von Neumann algebra generated by even polynomials in the
u(f), with supp f ⊆ (0, t).

Since αt(R) is the von Neumann algebra generated by all polynomials in the
u(g), with supp g ⊆ (t,∞), choosing f0 ∈ L2((0, t),M), ‖f0‖ = 1, we see that
R is generated by (αt(R)′ ∩ R) ∨ αt(R) and the unitary u(f0). It follows that
[R : (αt(R)′ ∩R) ∨ αt(R)] = 2, i.e. cα(t) = 2 ∀t > 0.

Corollary 2.10. If α is the Clifford flow of rank n on R then, for k 6= l,
α⊗k and α⊗l are not stably conjugate. (Of course α⊗k denotes the k-fold tensor
power of α, an E0-semigroup of R.)

Proof. This follows immediately from the previous two propositions.

Remark 2.11. (i) By the previous two propositions, if α is the Clifford flow
of rank 1 and β the Clifford flow of rank 2, then α ⊗ α and β are not stably
conjugate (hence not cocycle conjugate), while they are both of index 2.

(ii) If α is the Clifford flow of rank 1 on R and β is its restriction to the
subfactor (isomorphic to R) generated by the even polynomials in the u(f), we
have that ind(α) = ind(β) = 1, and cα(t) = cβ(t) = 2, ∀t > 0. The boundary
birepresentation however distinguishes between the two. The boundary birepre-
sentation of α is equivalent to the birepresentation (x → Rx, x → Lθ(x)), x ∈ R,
of R on L2(R), where Rx and Lx denote the standard left and right actions,
respectively, of R on L2(R) and θ is the automorphism of period two satisfying
θ(u(f)) = −u(f) ([20]). For the restriction β however, the boundary birepresen-
tation is equivalent to the standard birepresentation on L2(R). We believe that
the boundary birepresentation is a cocycle conjugacy invariant and that therefore
α and β are not cocycle conjugate. We do not have a proof of this at the moment
however.

We next turn to examples of E0-semigroups on the free group factors.

Example 2.12. We describe a class of examples of E0-semigroups on L(F∞),
the von Neumann algebra of the free group on countably many generators. Sup-
pose thatH is an infinite dimensional real Hilbert space, HC is its complexification,
and T (HC) = C1⊕ ⊕

n>1

H⊗n
C is the full Fock space of HC. For every h ∈ HC define

the left creation operator l(h) ∈ B(T (HC)) by

l(h)ζ =
{
h if ζ = 1,
h⊗ ζ if ζ ∈ T (HC)ª C1.

For h ∈ H let s(h) = l(h)+l(h)∗

2 , and let Φ(H) be the von Neumann algebra
generated by {s(h) : h ∈ H}. By a theorem of Voiculescu, (cf. [28]), Φ(H) is
isomorphic to L(F∞) acting standardly on T (HC) with the vacuum vector 1 as a
cyclic trace vector.
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Proposition 2.13. Suppose that U = {Ut : t > 0} is a strongly continuous
semigroup of isometries on the real Hilbert space H. Then:

(i) there is an E0-semigroup αU of L(F∞) such that

αUt (s(h)) = s(Uth) ∀t > 0,∀h ∈ H;

(ii) αU is a shift, i.e.
⋂

t>0

αUt (L(F∞)) = C1l, if
⋂

t>0

UtH = 0;

(iii) there is a free product decomposition αU = α ∗ β where α is a
(semi)group of automorphisms on L(Fn) for some n ∈ N ∪ {∞}, and β is a shift
on L(F∞);

(iv) ind(αU ) = +∞.

Proof. (i) Letting {Vt : t ∈ R} be a unitary dilation of U on a larger Hilbert
space K = H ⊕H1 we see that the formula α̃t(s(k)) = s(Vtk), k ∈ K, defines an
automorphism α̃t = Ad Ṽt of Φ(K) where Ṽt is the second quantization of Vt, so
that α̃ = {α̃t : t ∈ R} is a one parameter group of automorphisms. Using the free
product decomposition Φ(K) ' Φ(H) ∗ Φ(H1) ([29], Lemma 2.6.6), it is easy to
see that α̃t leaves Φ(H) invariant for t > 0, whence, by restriction, we obtain a
continuous one-parameter semigroup of endomorphisms of Φ(H).

(ii) Without loss of generality we can assume that H is the Hilbert space
L2

r((0,∞), C) of all square integrable functions form (0,∞) into an n-dimensional
real Hilbert space C, and that U is the translation semigroup. Suppose that x ∈
∞⋂

n=1
αntL(F∞)). Since for every n, there is yn ∈ L(F∞) such that x = αnt(yn), x is

the strong limit of polynomials in s(h), with h ∈ L2
r((nt,∞), C). Since the spaces

L2
r((nt,∞), C) and L2

r((0, nt), C) are orthogonal, the families of random variables
{s(h) : h ∈ L2

r((nt,∞), C)} and {s(h) : h ∈ L2
r((0, nt), C)} are free, (cf. [29],

Theorem 2.6.2), and therefore, τ(xp) = τ(x)τ(p) for every polynomial in the s(h)
with h ∈ L2

r((0, nt), C). Since n is arbitrary, we get that τ(xy) = τ(x)τ(y) for all
y ∈ L(F∞). This implies that x = τ(x)1.

(iii) This is straightforward, using the Wold decomposition of U .
(iv) There is an obvious extension of αU to an E0-semigroup of B(T (HC))

given by αt(l(h)) = l(Uth), where h ∈ HC (and Ut is extended to the complex-
ification of H). This E0-semigroup is completely spatial, of infinite index ([13]).
Therefore, its boundary representation is normal, of infinite multiplicity; and its
restriction to the domain of the generator of αU is the left boundary representation
of αU .

Remark 2.14. One may obtain a plethora of examples of E0-semigroups
on other factors using tensor and free product constructions. In particular, if
for i = 1, 2, Mi is a II1-factor acting standardly on Hi = L2(Mi), and that
αi = {αi

t : t > 0} is an E0-semigroup of Mi. Then there is an E0-semigroup
α = {αt : t > 0} of the von Neumann algebra free product M = M1 ∗M2 with
respect to the canonical traces, such that

αt (λi1(xi1) · · ·λin(xin)) = λi1(α
i1
t (xi1)) · · ·λin(αin

t (xin)),

where xij ∈Mij , ij = 1, 2, t > 0, and λi is the representation of Mi on l2(M1) ∗
L2(M2) constructed in [28] (see [29] for definitions and notation concerning the
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free product of von Neumann algebras). Using the result, proven in [12], that
R ∗ R ' L(F2) and also that R ∗ L(Fn) ' L(Fn+1) we then obtain examples of
E0-semigroups on all free group factors. An interesting question is whether every
type II1 factor admits an E0-semigroup.

3. PRODUCT SYSTEMS

Let M be a type II1-factor acting standardly on L2(M) with cyclic trace vector
ξ0, and α = {αt : t > 0} an E0-semigroup of M. For every t > 0 consider the set
of all intertwining operators for αt:

Et =
{
T ∈ B(L2(M)) : αt(x)T = Tx, ∀x ∈M}

.

The next three propositions describe the structure of Et.

Proposition 3.1. (i) For every T ∈ Et and A ∈M′, TA ∈ Et.
(ii) For every T ∈ Et and A ∈ αt(M)′, AT ∈ Et.
(iii) M′ = {S∗T : S, T ∈ Et}.
(iv) The linear span of the set {TS∗ : S, T ∈ Et} is a (σ-weakly dense) two

sided ideal of αt(M)′.

Proof. For T ∈ Et, A ∈ M′ and x ∈ M we have αt(x)TA = TxA = TAx

and thus TA ∈ Et. This proves (i) and (ii) is proven similarly. To prove (iii),
notice first that if S, T are elements in Et and x ∈ M then S∗Tx = S∗αt(x)T =
(αt(x∗)S)∗T = (Sx∗)∗T = xS∗T , i.e. S∗T ∈ M′. Therefore {S∗T : S, T ∈
Et} ⊆ M′. Next, observe that, since the endomorphism αt is unital, it is trace
preserving, and therefore the map xξ0 → αt(x)ξ0, defined on the dense subspace
Mξ0 of L2(M), extends to an isometry Ut. Moreover, for x, y ∈M, we have:

αt(x)Ut(yξ0) = αt(x)αt(y)ξ0 = αt(xy)ξ0 = Ut(xyξ0) = Utx(yξ0)

and therefore αt(x)Ut = Utx. This means that Ut ∈ Et. Now if A is an element in
M′, then A = U∗t UtA with Ut ∈ Et and UtA ∈ Et by (i). Thus A ∈ {S∗T : S, T ∈
Et}, and the proof of (iii) is complete. Finally, if T, S are elements of Et, x ∈M′
and A,B ∈ αt(M)′ then,

TS∗αt(x) = T (αt(x∗)S)∗ = T (Sx∗)∗ = TxS∗ = αt(x)TS∗

i.e. TS∗ ∈ αt(M)′ and moreover, A(TS∗)B = (AT )(B∗S)∗, with AT,B∗S ∈ Et

by (ii). This proves that the linear span of the set {TS∗ : T, S ∈ Et} is a two sided
ideal in αt(M)′.

It follows easily from (iv) of the previous proposition that every positive

element of the linear span of {TS∗ : S, T ∈ Et} is of the form
n∑

i=1

TiT
∗
i , Ti ∈ Et,

and therefore that there is a family (Ti) ⊂ Et such that
∑
TiT

∗
i = 1 in the σ-weak

topology of αt(M)′. In fact the Ti’s can be chosen to be isometries:
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Proposition 3.2. For every t > 0 there is a family {Un(t) : n ∈ N} of
isometries in Et such that:

(i)
∞∑

n=1
Un(t)Un(t)∗ = 1, where the convergence is understood with respect to

the σ-weak topology of αt(M)′;

(ii) αt(x) =
∞∑

n=1
Un(t)xUn(t)∗ (σ-weakly), ∀x ∈M.

Proof. We note that for 0 6 s < t, the inclusion αt(M) ⊂ αs(M) has infinite
Jones index. Indeed, for every n ∈ N one can choose real numbers t = t0 > t1 >
t2 > · · · > tn = s, and obtain the corresponding (proper) inclusions of II1-factors,
αt0(M) ⊂ αt1(M) ⊂ · · · ⊂ αtn

(M) each of index at least 2. The multiplicativity of
the Jones index ([16], Proposition 2.1.8.), implies that [αs(M) : αt(M)] = +∞ In
particular αt is a representation of infinite coupling constant and hence equivalent
to an infinite direct sum of copies of the standard representation. To each such
copy corresponds an isometry Un(t) in Et and the family {Un(t) : n ∈ N} evidently
has the required properties.

We will show later on that the isometries may be chosen in a measurable
way.

Proposition 3.1 (i), implies that Et is a rightM′-module, and (iii) of the same
proposition shows that the map (S, T ) → ST ∗ is an M′-valued inner product on
Et, which we will denote by 〈S, T 〉, conjugate linear in the first variable, with
respect to which Et is a Hilbert M′-module (we refer to [8], [14], [19], [24] and [25]
for definitions and facts regarding Hilbert modules over von Neumann algebras).
The following theorem shows that Et belongs to the best behaved class of Hilbert
w∗-modules.

Theorem 3.3. Et is a full, self-dual Hilbert M′-module. Its natural w∗-
topology coincides with the relative σ-weak topology.

Proof. The norm on Et defined by the M′-valued inner product, coincides
with the operator norm, with respect to which, Et is complete. Also, (iii) of
Proposition 3.1 shows that M′ = {〈S, T 〉 : S, T ∈ Et}, i.e. Et is full. In order
to prove that Et is self-dual, we need to show that if ϕ : Et →M′ is a bounded
module map (where of course M′ is considered as a Hilbert M′-module with inner
product 〈A,B〉 = A∗B), then ϕ is induced by an element in Et, i.e. that there is
an element S in Et, such that

ϕ(T ) = 〈S, T 〉 ∀T ∈ Et.

Without loss of generality we may assume that ‖ϕ‖ 6 1. Then, by [19], Theo-
rem 2.8, 〈ϕ(T ), ϕ(T )〉 6 〈T, T 〉, ∀T ∈ Et. We define an operator R on the linear
span of vectors of the form Tξ, T ∈ Et, ξ ∈ L2(M), by the formula

R
( n∑

i=1

Tiξi

)
=

n∑

i=1

ϕ(Ti)ξi, Ti ∈ Et, ξi ∈ L2(M), i = 1, 2, . . . , n, n ∈ N.

We show below that R is well defined and that it extends to a bounded operator on
L2(M). Notice first that the n× n matrix [T ∗i Tj − ϕ(Ti)∗ϕ(Tj)]

n
i,j=1 is a positive

element of the von Neumann algebra Mn(M′) of all n×n matrices with entries in
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M′. Indeed this is equivalent to the statement that for any elements A1, . . . , An

of M′, the operator
n∑

i,j=1

A∗i (T
∗
i Tj − ϕ(Ti)∗ϕ(Tj))Aj is positive in M′. And this

latter statement is immediate, since
n∑

i,j=1

A∗i (T
∗
i Tj − ϕ(T ∗i )ϕ(Tj))Aj

=
〈 n∑

i=1

TiAi,

n∑

i=1

TiAi

〉
−

〈 n∑

i=1

ϕ(Ti)Ai,

n∑

i=1

ϕ(Ti)Ai

〉

=
〈 n∑

i=1

TiAi,

n∑

i=1

TiAi

〉
−

〈
ϕ
( n∑

i=1

TiAi

)
, ϕ

( n∑

i=1

TiAi

)〉
> 0.

Now if T1, . . . , Tn ∈ Et, ξ1, . . . , ξn ∈ L2(M) we have
∥∥∥

n∑

i=1

ϕ(Ti)ξi
∥∥∥

2

=
n∑

i,j=1

〈ϕ(Ti)∗ϕ(Tj)ξj , ξi〉 6
n∑

i,j=1

〈T ∗i Tjξj , ξi〉 =
∥∥∥

n∑

i=1

Tiξi

∥∥∥
2

.

Thus R is well defined and bounded and therefore extends to a bounded operator
from the closure of {Tξ : T ∈ Et, ξ ∈ L2(M)} to L2(M). By Proposition 3.2
this closure is L2(M) and thus R ∈ B(L2(M)). We claim that R = S∗ for some
S ∈ Et. To see this, notice that R satisfies the relation RAξ = ϕ(A)ξ, ∀A ∈ Et,
∀ξ ∈ L2(M), i.e. RA = ϕ(A), for A ∈ Et. In particular R · Et ⊂M′. If (Un(t)) is

a sequence of isometries in Et such that
∞∑

n=1
Un(t)Un(t)∗ = 1 (cf. Proposition 3.2),

then R =
∞∑

n=1
RUn(t)Un(t)∗ and since RUn(t) ∈ M′, R belongs to the σ-weak

closure of the set {AT ∗ : A ∈ M′, T ∈ Et}. It follows from Proposition 3.1 that
this set is E∗t = {T ∗ : t ∈ Et}, which is a σ-weakly closed subspace of B(L2(M)).
Thus R ∈ E∗t , and S = R∗ ∈ Et. Moreover for T ∈ Et,

ϕ(T ) = RT = S∗T = 〈S, T 〉
and this proves that Et is self dual.

Recall that a self dual Hilbert module over a von Neumann algebra is nat-
urally a dual Banach space and therefore equipped with a w∗-topology, (cf. [19]
Proposition 3.8). A bounded net (Tα) in Et converges with respect to the w∗-
topology to T ∈ Et, if and only if T ∗αS → T ∗S σ-weakly, for all S ∈ Et. Since
{Sξ : S ∈ Et, ξ ∈ L2(M)} is dense in L2(M), this happens if and only if T ∗α → T ∗

σ-weakly, if and only if Tα → T σ-weakly. This completes the proof of the theo-
rem.

Let B(Et) be the set of all bounded module maps (i.e respecting the right
action of M′) from Et to itself. B(Et) is a C∗-algebra, and since Et is a self-dual
module over the von Neumann algebra M′, B(Et) is a dual Banach space and
therefore a von Neumann algebra, ([19], Proposition 3.10). Note that if A is an
operator in αt(M)′, then the map ϕA : Et → Et, ϕA(T ) = AT is an element of
B(Et). We prove below that every element of B(Et) arises in this way.
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Proposition 3.4. The map A → ϕA is a ∗-isomorphism between the von
Neumann algebras αt(M)′ and B(Et).

Proof. It is evident that A→ ϕA is a homomorphism, and since

〈ϕA(S), T 〉 = 〈AS, T 〉 = (AS)∗T = S∗A∗T = 〈S,A∗T 〉 = 〈S, ϕA∗(T )〉
for all S, T ∈ Et, we get that (ϕA)∗ = ϕA∗ . If ϕA = 0, then by consider-
ing a sequence (Un(t)) of isometries as in Proposition 3.2, we get that A =∑
AUn(t)Un(t)∗ = 0, since AUn(t) = ϕA(Un(t)) = 0 for all n. Thus A → ϕA

is injective. Suppose finally that ϕ ∈ B(Et), and assume without loss of general-
ity that ‖ϕ‖ 6 1. Then 〈ϕ(T ), ϕ(T )〉 6 〈T, T 〉, ∀T ∈ Et, and as in the proof of
Theorem 3.3, the formula

A
( n∑

i=1

Tiξi

)
=

n∑

i=1

ϕ(Ti)ξi, Ti ∈ Et, ξi ∈ L2(M), i = 1, . . . , n, n ∈ N

defines a bounded operator on L2(M), which satisfies AT = ϕ(T ), ∀T ∈ Et. This
means, in particular, that A ·Et ⊂ Et. If (Un(t)) is a sequence of isometries as in
the previous paragraph, we have that A =

∑
AUn(t)Un(t)∗ and since AUn(t) ∈ Et,

A belongs to the σ-weak closure of the linear span of the set {ST ∗ : S, T ∈ Et},
which is equal to αt(M)′ by Proposition 3.1. Hence ϕ = ϕA with A ∈ αt(M)′,
and the proof is complete.

Through Proposition 3.4 we obtain a faithful ∗-homomorphism of M′ into
B(Et) which we shall denote by ϕt. One can use this homomorphism to define the
tensor product Es ⊗ϕt Et for s, t > 0. This is the Hilbert M′-module obtained
by completing the algebraic tensor product Es ⊗M′ Et with respect to the M′-
valued positive semidefinite inner product which is linear in the second variable,
conjugate linear in the first, and satisfies

〈S1 ⊗ T1, S2 ⊗ T2〉 = 〈T1, ϕt (〈S1, S2〉) (T2)〉 = 〈T1, 〈S1, S2〉T2〉,
S1, S2 ∈ Es, T1, T2 ∈ Et, where the second equality follows from the fact that
the left action of M′ on Et induced by ϕt is simply left multiplication. For more
details about the definition of the tensor product we refer to [25]. The semigroup
property of α has as a consequence the following:

Theorem 3.5. The map m : Es × Et → Es+t defined by m(S, T ) = ST
induces an isometry of the Hilbert M′-module Es ⊗ϕt Et onto a w∗-dense Hilbert
submodule of Es+t.

Proof. It is clear that ST ∈ Es+t when S ∈ Es and T ∈ Et, thatm is bilinear,
and that m(SA, T ) = m(S,AT ) for S ∈ Es, T ∈ Et and A ∈M′. Thus m induces
a map, denoted again by m, from the algebraic tensor product Es ⊗M′ Et into
Es+t, which respects the right actions of M′. Moreover

〈S1 ⊗ T1, S2 ⊗ T2〉 = 〈T1, 〈S1, S2〉T2〉 = 〈T1, S
∗
1S2T2〉 = T ∗1 S

∗
1S2T2

= 〈S1T1, S2T2〉 = 〈m(S1 ⊗ T1),m(S2 ⊗ T2)〉.
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Thus m extends to an isometry from Es ⊗ϕt
Et into Es+t. The range of this

isometry is a Hilbert submodule of Es+t. To prove that it is w∗-dense consider
sequences (Un(t)) ⊂ Et, (Un(s)) ⊂ Es as in Proposition 3.2. If A ∈ Es+t then

A =
∑
n,m

Un(s)Um(t)Um(t)∗Un(s)∗A

and because Um(t)Um(t)∗Un(s)∗A ∈ Et · E∗t+s · Et+s = Et · M′ = Et by Proposi-
tion 3.1, we see that A is the σ-weak limit of linear combinations of elements of
the form ST , S ∈ Es, T ∈ Et. This concludes the proof.

Using Theorems 3.3 and 3.5 we will now show that the set Eα = {(T, t) : T ∈
Et, t > 0} has a structure which is analogous to Arveson’s product systems ([3])
and which characterizes the E0-semigroup α, up to cocycle conjugacy.

Definition 3.6. Let N be a factor of type II1 with separable predual. A
product system of Hilbert modules over N is a standard Borel space E, together
with a measurable map p : E → (0,∞), satisfying the following properties:

(i) For every t > 0, Et = p−1({t}) is a full self-dual (right) Hilbert N -
module. In addition, Et has the structure of a left N -module, so that

〈ax, y〉t = 〈x, a∗y〉t, ∀x, y ∈ Et, ∀a ∈ N
where by 〈 · , · 〉t we denote the N -valued inner product in Et.

(ii) There is a measurable map (x, y) → xy from E × E into E, called
multiplication, with the following properties:

(a) p(xy) = p(x) + p(y)
(b) 〈x1y1, x2y2〉s+t = 〈y1, 〈x1, x2〉sy2〉t

whenever x1, x2 ∈ Es, y1, y2 ∈ Et, s, t > 0. Moreover the linear span of elements
of the form xy, x ∈ Es, y ∈ Et, is w∗-dense in Es+t.

(iii) There is a full self-dual Hilbert N -module ∆, which is weakly countably
generated (in the sense that there is a sequence (δn) ⊂ ∆ such that 〈δn, δm〉 = δnm1

and the set
{ k∑

n=0
δnxn : xn ∈ N , k ∈ N

}
is w∗-dense in ∆), and a measurable map

θ : E → ∆ × (0,∞) such that θ restricted to each fibre Et = p−1({t}) is an
isomorphism of Hilbert modules between Et and ∆× {t}.

Remark 3.7. (i) The condition that 〈ax, y〉t = 〈x, a∗y〉t implies that the left
action of N on Et gives rise to a ∗-homomorphism of N into the von Neumann
algebra B(Et) of all bounded module maps from Et into itself, namely

ϕt : N → B(Et), ϕt(a)(x) = ax, x ∈ Et, a ∈ N .
(ii) Condition (ii) implies that there is an isometric module map from the

Hilbert N -module Es ⊗ϕt Et onto a w∗-dense Hilbert submodule of Es+t.

Given an E0-semigroup α of a II1-factor M acting standardly on L2(M), we
associate with it the set

Eα = {(T, t) : T ∈ Et, t > 0}
where Et = {T ∈ B(L2(M)) : αt(x)T = Tx, ∀x ∈ M}. We will show that Eα

together with the map p : Eα → (0,∞), p(T, t) = t, and with multiplication
given by (T, t)(S, s) = (TS, t+ s) is a product system of Hilbert modules over the
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commutant M′ of M in B(L2(M)). Theorem 3.3 and Proposition 3.4, show that
condition (i) of Definition 3.1 is satisfied and Theorem 3.3 shows that condition
(ii) is satisfied. We need to show that Eα is a standard Borel space, and that Eα

is locally trivial, in the sense that it satisfies condition (iii) of the definition.
To show that Eα is a standard Borel space, it is enough to show that it is

a Borel subset of B(L2(M)) × (0,∞), where B(L2(M)) has the Borel structure
generated by the weak operator topology. Setting Bn = {(T, t) ∈ Eα : ‖T‖ 6 n}
we obviously have Eα =

∞⋃
n=1

Bn, and it is not hard to show that each Bn is closed

in B(L2(M))× (0,∞) (cf. [3], Proposition 2.2). This shows that Eα is Borel.
In order to prove the local triviality condition, we will need the following

lemma:

Lemma 3.8. Suppose N is a II1-factor with separable predual, K,H are sep-
arable Hilbert spaces, π0 is a representation of N on K, and for t > 0, (πt) is a
family of representations of N on H with the following properties:

(i) for every ξ, η in H and every x in N , the map t→ 〈πt(x)ξ, η〉 is contin-
uous;

(ii) for each t > 0 there is a unitary operator Vt : H → K such that
Vtπt(x)V ∗t = π0(x), ∀x ∈ N .
Then there is a family (Ut)t>0 of unitary operators from H to K such that Utπt(x)U∗t
= π0(x), ∀x ∈ N and for every ξ, η ∈ H, the map t→ 〈Utξ, η〉 is Borel measurable.

Proof. Let U(H,K) be the set of all unitary operators from H to K, equipped
with the strong operator toplology. The separability condition implies that U(H,K)
is a Polish space. There is a continuous map, U → AdU∗ ◦ π0 from U(H,K) into
the set RepH(N ) of all representations of N on H, with the topology of pointwise
strong convergence. The range of this map is the set X of all representations of
N on H which are unitarily equivalent to π0.

On U(H,K) there is an action of the unitary group of π0(N )′ by homeomor-
phisms (namely the action by left multiplication). It is clear that the orbits of that
action are closed and therefore by a theorem of Dixmier, ([11]), if U(H,K)/ ∼ is
the quotient Borel space by the equivalence relation defined by the action, then
the canonical map q : U(H,K) → U(H,K)/ ∼ has a Borel cross section. Note
that two elements U, V of U(H,K) are mapped on the same element of X if and
only if U = WV for some unitary W in π0(N )′ and, consequently, there is a 1− 1
Borel map from X to U(H,K)/ ∼. It follows that the map U → AdU∗ ◦ π0 from
U(H,K) to X, has a Borel cross section. Since the map t→ πt is continuous and
hence measurable, there is a measurable map t→ Ut from (0,∞) to U(H,K) , so
that AdUt ◦ πt = π0. This completes the proof.

Corollary 3.9. Let α be an E0-semigroup of the II1-factor M acting stan-
dardly on H = L2(M), and fix t0 > 0. There is a measurable family (Ut)t>0 of
unitary elements in B(H) such that

αt(x) = Utαt0(x)U
∗
t , ∀t > 0, ∀x ∈M.

Proof. We can view the E0-semigroup α as a family (αt)t>0 of representations
of the II1-factorM on L2(M), continuous with respect to the topology of pointwise
strong convergence. Since all these representations have infinite coupling constant,
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each one of them is unitarily equivalent to the amplification of the standard action
of M, on the space L2(M)⊗K, where dimK = ∞. We denote this representation
by π0, and apply Lemma 3.8 to obtain a measurable family (Vt)t>0 of unitary
operators from L2(M) to L2(M)⊗K such that

αt(x) = V ∗t π0(x)Vt t > 0, x ∈M.

Letting Ut = V ∗t Vt0 we obtain a measurable family (Ut)t>0 of unitaries, such that

αt(x) = Utαt0(x)U
∗
t .

As a consequence of the previous corollary we can define a map θ : Eα →
Et0 × (0,∞) by θ(T, t) = (U∗t T, t). For x ∈M and T ∈ Et we have, αt0(x)U

∗
t T =

Utαt(x)T = UtTx and thus θ is well defined and a Borel isomorphism by the
measurability of (Ut)t>0. Moreover the restriction of θ on p−1({t}) is an isomet-
ric module map onto Et0 × {t}. This shows that Eα satisfies condition (iii) of
Definition 3.1 and therefore we have finally completed the proof of the following:

Theorem 3.10. If α is an E0-semigroup of the II1-factor M acting stan-
dardly on L2(M), then the set

Eα = {(T, t) ∈ B(L2(M))× (0,∞) : αt(x)T = Tx, ∀x ∈M}
is a product system of Hilbert modules over the commutant M′ of M.

We next prove that Eα is invariant under cocycle conjugacy. First, we make
a few comments concerning sequences of isometries (Un(t)) ⊂ Eα(t), with the

property
∞∑

n=1
Un(t)Un(t)∗ = 1. We call such a sequence, a weak orthonormal basis

for the Hilbert M′-module Eα(t). The existence of such a basis is the content of
Proposition 3.2. Moreover, one can choose for t > 0 orthonormal bases (Un(t)) in
Eα(t), in such a way that for each n ∈ N and for all ξ, η ∈ L2(M), the function
t → 〈Un(t)ξ, η〉 is measurable. This follows immediately from the local triviality
condition that Eα satisfies, since one can choose a weak orthonormal basis for
Eα(t0) (for some fixed t0 > 0), and use the isomorphism θ to obtain bases in
each Eα(t), in a measurable way (cf. the paragraph before Theorem 3.10). Note
finally that, if (Un(t)) is a weak orthonormal basis for Eα(t) and V is a unitary
element in M′ then the family (Wn(t)) where Wn(t) = V Un(t) is also a weak
orthonormal basis. Indeed, Wn(t) ∈ Et, Wn(t)∗Wn(t) = Un(t)∗V ∗V Un(t) = 1 and∑
Wn(t)Wn(t)∗ =

∑
V Un(t)Un(t)∗V ∗ = 1.

Definition 3.11. Two product systems E and F of Hilbert modules over
the II1 factors M and N are isomorphic, if there is a ∗-isomorphism θ : M→ N
and a measurable map ψ : E → F such that:

(i) ψ(xy) = ψ(x)ψ(y), for all x, y ∈ E;
(ii) the restriction of ψ to the fibre Et is an isometric bimodule map onto

the fibre Ft, i.e. it satisfies ψ(axb) = θ(a)ψ(x)θ(b) and 〈ψ(x), ψ(y)〉 = θ(〈x, y〉)
∀x, y ∈ Et.

Theorem 3.12. Let α, β be two E0-semigroups of the II1-factor M. Then
α and β are cocycle conjugate, if and only if the product systems of Hilbert modules
Eα and Eβ are isomorphic.
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Proof. That the isomorphism class of the product system of α is invariant
under conjugacy is straightforward and we can safely ommit the details.

If β is a cocycle perturbation of α and (Ut)t>0 is a continuous unitary family
in M such that Ut+s = Utαt(Us) and βt(x) = Utαt(x)U∗t , ∀x ∈M, then we define
ψ : Eα → Eβ by

ψ(T, t) = (UtT, t), T ∈ Eα(t).
It is straightforward that ψ is an isomorphism.

Conversely, suppose that ψ : Eα → Eβ is an isomorphism. We follow the proof
of [5], Theorem 3.18. Because Eα satisfies the local triviality condition (iii) of Def-
inition 3.6, we can choose families of weak orthonormal bases for the fibres Eα(t),

t > 0, i.e. families (Vn(t))n∈N of isometries in Eα(t) such that
∞∑

n=1
Vn(t)Vn(t)∗ = 1,

so that for each n ∈ N and each ξ, η ∈ L2(M) the map t→ 〈Vn(t)ξ, η〉 is measur-
able. We define Ut by the formula

Ut =
∞∑

n=1

ψ(Vn(t))Vn(t)∗.

As in [5], one shows that {Ut : t > 0} is a strongly continuous unitary cocycle and
that βt = AdUt ◦ αt.

It only remains to show that Ut belongs to M for t > 0. Let U be a unitary
element in M′ and define for n ∈ N, t > 0,

Wn(t) = UVn(t).

By the remarks preceding Definition 3.11, it follows that for each t > 0 the family
(Wn(t))n∈N is a weak orthonormal basis for Eα(t). Moreover we have, just as in
the case of (Vn(t))n∈N, that

ψ(T ) =
( ∞∑

n=1

ψ(Wn(t))Wn(t)∗
)
T.

For m ∈ N we then have
( ∞∑

n=1

ψ(Vn(t))Vn(t)∗
)
Vm(t) = ψ(Vm(t)) =

( ∞∑
n=1

ψ(Wn(t))Wn(t)∗
)
Vm(t).

Multiplying on the right by Vm(t)∗ and summing over all m we obtain

Ut =
∞∑

n=1

ψ(Vn(t))Vn(t)∗ =
∞∑

n=1

ψ(Wn(t))Wn(t)∗.

Using this we show below that Ut commutes with U :

UUt = U
( ∞∑

n=1

ψ(Vn(t))Vn(t)∗
)

=
∞∑

n=1

ψ(UVn(t))Vn(t)∗

=
∞∑

n=1

ψ(UVn(t))(UVn(t))∗U =
∞∑

n=1

ψ(Wn(t))Wn(t)∗U = UtU.

Since U was an arbitrary unitary element of M′, we conclude that Ut ∈M. This
completes the proof of the theorem.
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Among isomorphism invariants of product systems, we specifically mention
the automorphism group which we believe can be computed in specific cases. For
the case of the Clifford flow of index n we know that the automorphism group
is a certain subgroup of the automorphism group GH of the exponential product
system EH considered in [3], but we have been, so far, unable to compute it
explicitly.
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