
J. OPERATOR THEORY
51(2004), 237–244

c© Copyright by Theta, 2004

ON UNBOUNDED OPERATORS AFFILIATED

WITH C∗-ALGEBRAS

CORRAN WEBSTER

Communicated by William B. Arveson

Abstract. We show that the multipliers of Pedersen’s ideal of a C∗-algebra
A correspond to the densely defined operators on A which are affiliated with
A, in the sense defined by Woronowicz, and whose domains contain Peder-
sen’s ideal. We also extend the theory of q-continuity developed by Akemann
to unbounded operators and show that these operators correspond to self-
adjoint operators affiliated with A.
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1. INTRODUCTION

One of the principal philosophies in the the study of C∗-algebras is that they are
the non-commutative analogues of C0(X), the algebra of continuous functions on
a topological space X which vanish at infinity. The multiplier algebra M(A) of
a C∗-algebra A, from this point of view, corresponds to the algebra Cb(X) of
bounded functions on the same topological space.

This point of view is perhaps most clearly revealed in the works of Ake-
mann([1], [2], [3]) and Giles and Kummer ([6]) on q-topologies, in which certain
projections in the enveloping von Neumann algebra play a role analogous to that
of open sets in a topology. Akemann, Pedersen and Tomiyama ([5]) showed that
the analogue of real-valued continuous functions in this setting are precisely the
self-adjoint elements of M(A), and the ones which “vanish at infinity” correspond
to the self-adjoint elements of A.

An obvious question, then, is what is the non-commutative analogue of
the algebra C(X) of continuous functions on a topological space? The corre-
sponding question for von Neumann algebras is fairly well understood. The non-
commutative analogue of unbounded measurable functions are the closed, un-
bounded operators affiliated with a von Neumann algebra.
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If A is unital then this corresponds to the situation where X is compact,
and so we would expect that the analogue of C(X) would be A itself, so the real
interest lies in non-unital C∗-algebras.

In the non-unital case, the problem can be approached by looking at ap-
propriate spaces of multipliers. In the classical setting, C(X) is the multiplier
algebra of Cc(X), the continuous functions of compact support on X. Cc(X) is
the minimal dense ideal of C(X), and in the C∗-algebra setting this minimal dense
ideal is called Pedersen’s ideal of A. One can then study the multiplier algebra of
this ideal as an analogue of C(X), as was done by Lazar and Taylor ([8]). Phillips
([11]) showed that this multiplier algebra was an example of a pro-C∗-algebra, and
was able to use that more general theory to obtain many results.

A second approach developed by Woronowicz ([13]) uses a particular trans-
form which maps certain unbounded operators to bounded ones, where those which
are mapped to the analogues of the bounded continuous functions must be the ana-
logues of continuous functions. This method has been applied with some success
to the study of quantum groups. Lance ([7]) showed that Woronowicz’ approach
has a natural expression in terms of unbounded operators on Hilbert C∗-modules.

A third approach, which we introduce in this paper, is to generalize the
ideas of Akemann to unbounded operators. We define q-continuity for self-adjoint
operators affiliated with an enveloping von Neumann algebra in a way that is
precisely analogous to the definition given by Akemann for elements of the von
Neumann algebra itself.

We will show that all three approaches are closely related. In particular,
the multiplier algebra of the Pedersen ideal is exactly the set of operators from
Woronowicz’ approach whose domain includes the Pedersen ideal; and the opera-
tors from Woronowicz approach and the third approach are essentially the same.

2. C∗-ALGEBRAIC AFFILIATION

In [13] and [14] Woronowicz with Napiórkowiski considered a class of operators on
a C∗-algebra A, defined as follows:

Definition 2.1. Let T be a densely defined linear operator on a C∗-algebra
A with domain D(T ), and let M(A) be the multiplier algebra of A. T is (C∗-
algebraically) affiliated with A, written T ∈A, if there exists a zT ∈ M(A) with
‖zT ‖ 6 1 and

x ∈ D(T ) ⇐⇒ ∃ a ∈ A such that x = (1− z∗T zT )1/2a and Tx = zT a.

zT is called the z-transform of T .

Woronowicz showed that T is uniquely determined by the z-transform and,
conversely, given any z ∈M(A), with ‖z‖ 6 1 and (1− z∗z)1/2A dense in A, there
is an unbounded operator T on A with z = zT .

The motivation behind this definition is that if we have a map z : C → D
which is a homeomorphism onto its image, then C(X) can be embedded (albeit,
not ∗-homomorphically) into Cb(X) by composing a function in C(X) with z.
Woronowicz chose the function

z(ξ) = ξ(1 + ξξ)−1/2
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which has inverse
f(ξ) = ξ(1− ξξ)−1/2.

The definition above essentially says that Tx = f(zT )x, allowing for possible
difficulties with the functional calculus.

Woronowicz was then able to prove the following facts:

Theorem 2.2. Let T ∈A. Then:
(i) T is a closed operator;
(ii) D(T ) is a right ideal;
(iii) there is an adjoint T ∗ defined by zT∗ = z∗T ;
(iv) if B is another C∗-algebra and Φ : A → M(B) is an essential ∗-

homomorphism (i.e. Φ is a C∗-algebra morphism), then there is a Φ(T )∈B where
zΦ(T ) = Φ(zT );

(v) if T = T ∗, let sp T be defined to be f(sp zT ) and ζ(ξ) = ξ for ξ ∈ sp T .
Then there is an essential ∗-homomorphism Φ from C0(sp T ) to M(A), such that
Φ(ζ) = T .

The functional calculus given above completely justifies the motivation: zT

is precisely equal to z(T ), and T = f(zT ).
Woronowicz was able to apply this theory to discover unbounded operators

which corresponded to generating elements for certain purely algebraic quantum
groups.

It should be noted, however, that the set of operators which are affiliated
with a non-commutative C∗-algebra have no algebraic structure, in the same way
that the collection of closed densely-defined operators on a Hilbert space have no
algebraic structure.

3. THE MULTIPLIER ALGEBRA OF PEDERSEN’S IDEAL

Pedersen’s ideal KA of a C∗-algebra A is the minimal dense (two-sided) ideal of A
(see [9] and [10]). Lazar and Taylor ([8]) investigated the multiplier algebra Γ(KA)
of this ideal, and proved a number of significant theorems about it. Phillips ([11])
was able to simplify their work by observing that this algebra is in fact a pro-
C∗-algebra — an inverse limit of C∗-algebras — and then using general theorems
from that theory (see [12]) to reach many of the same results as Lazar and Taylor.

Phillips showed that Γ(KA) was the inverse limit

Γ(KA) = lim
x∈(
←
KA)+

Mx

where (KA)+ is ordered by the C∗-algebra order, and Mx is the C∗-algebra of
multipliers (S, T ) where S : Ax → Ax and T : xA → xA are linear and aT (b) =
S(a)b for all a ∈ xA and b ∈ Ax. Thus any element a of Γ(KA) can be represented
by a coherent sequence (ax)x∈(KA)+ where ax ∈Mx.
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Theorem 3.1. Let A be a C∗-algebra, KA its Pedersen’s ideal and Γ(KA)
the multiplier algebra of KA. For any a ∈ Γ(KA) there is some Ta ∈A with KA ⊆
D(Ta) and Tx = ax for all x ∈ D(Ta).

Conversely, if T ∈A and KA ⊆ D(T ), then there is an element a ∈ Γ(KA)
such that Tx = ax for all x ∈ D(T ).

Proof. Given any a ∈ Γ(KA), the functional calculus on Γ(KA) tells us that
there is some z ∈ Γ(KA) with

z = a(1 + a∗a)−1/2.

In fact, zx = ax(1 + a∗xax)−1/2 for all x ∈ (KA)+, and since ‖zx‖ 6 1 for all
x ∈ (KA)+, we have ‖z‖ = sup

x∈(KA)+

‖zx‖ 6 1. Hence z ∈M(A).

Let x ∈ (I − z∗z)1/2A, so that there is some b ∈ A with x = (I − z∗z)1/2b.
For such x we note that ax ∈ A, since

ax = a(I − z∗z)1/2b = a(I − a∗a(I + a∗a)−1)1/2b = a(I + a∗a)−1/2b = zb ∈ A.

Furthermore the above calculation shows that the operator

Tax = ax

defined on D(Ta) = (I − z∗z)1/2A has z-transform z. So, if x ∈ KA, then

(I − z∗z)−1/2x = (I − a∗a(I + a∗a)−1)−1/2x = (I + a∗a)1/2x ∈ KA

since, using the functional calculus, (I + a∗a)1/2 ∈ Γ(KA). Hence KA ⊆ D(Ta)
and T is densely defined, and we conclude that Ta is C∗-affiliated with A.

If T ∈A and KA ⊆ D(T ), let zT ∈ M(A) be its z-transform. For each x,
y ∈ KA, y and x∗ ∈ D(T ), so y = (I − z∗T zT )1/2b for some b ∈ A and x∗ =
(I − z∗T zT )1/2c, and hence x = c(I − z∗T zT )1/2, for some c ∈ A. Define a multiplier
(S, T ) on KA using multiplication by (I − z∗T zT )−1/2:

T (y) = (I − z∗T zT )−1/2y = b

and
S(x) = x(I − z∗T zT )−1/2 = c

and thus
S(x)y = cy = c(I − z∗T zT )1/2b = xb = xT (y).

Hence (I−z∗T zT )−1/2 ∈ Γ(KA), and as a consequence, so is a = zT (I−z∗T zT )−1/2.
Now for any x ∈ D(T ), x = (I − z∗T zT )1/2b for some b ∈ A, and thus

ax = zT (I − z∗T zT )−1/2x = zT b = Tx,

and so we have found the required element a ∈ Γ(KA).

Although these operators from the multiplier algebra of Pedersen’s ideal do
not give all the operators affiliated with the C∗-algebra, they do have the advantage
over the more general setting in that they actually form a ∗-algebra.



Unbounded operators affiliated with C∗-algebras 241

4. q-TOPOLOGIES AND UNBOUNDED OPERATORS

Akemann ([1], [2], [3]) and, independently, Giles and Kummer ([6]) introduced the
idea of a q-topology.

Definition 4.1. Let A be a C∗-algebra and A∗∗ its enveloping von Neu-
mann algebra. We say that a projection p ∈ A∗∗ is q-open if A∗∗p ∩ A is a closed
left ideal of A. A projection p ∈ A∗∗ is q-closed if 1− p is q-open, and p ∈ A∗∗ is
q-compact if there is some a ∈ A with ap = p.

Equivalently, p ∈ A∗∗ is closed if the set of quasi-states supported on p,

F (p) = {ϕ ∈ Q(A) : ϕ(1− p) = 0},
is weak-∗ closed in the quasistates Q(A) of A.

Projections which are q-open behave like characteristic functions of open sets,
in that given a family of q-open projections pα indexed by α in I,

∨

α∈I

pα is also

q-open. Unlike characteristic functions, however, given two q-open projections, p1

and p2, p1 ∧ p2 may not be q-open. Despite this defect, q-open projections are
sufficiently analogous to a topology that Akemann and Eilers ([4]) constructed a
non-commutative end theory in this setting.

By analogy with the classical setting, we can make the following definitions:

Definition 4.2. Let A be a C∗-algebra. We say that a self-adjoint element
a ∈ A∗∗sa is q-continuous if spectral projections of relatively open sets in sp T are q-
open in A∗∗. We say that a q-continuous element vanishes at infinity if the spectral
projections of closed sets which do not contain the identity are q-compact.

This definition heavily relies on the spectral properties of self-adjoint ele-
ments, and so does not extend to a definition for general elements. Nevertheless,
these q-continuous elements are precisely what they should be, as shown by the
following result of Akemann, Pedersen and Tomiyama ([5], Theorem 2.2).

Theorem 4.3. Let A be a C∗-algebra. a ∈ A∗∗sa is q-continuous if and only
if a ∈M(A)sa ⊆ A∗∗.

Given the success of this approach in the bounded setting, and the well-
established nature of the unbounded theory for von Neumann algebras, we can
reasonably ask if this theory can be extended to unbounded operators.

Let M be a von Neumann algebra in B(H). Recall that a closed, self-adjoint,
densely defined operator T on H is affiliated with M if every spectral projection
of T lies in M . In this situation, we write T η M . Recall also that there is a Borel
functional calculus for self-adjoint operators affiliated with M .

Definition 4.4. Let A be a C∗-algebra and A∗∗ its enveloping von Neu-
mann algebra. We say that a self-adjoint operator T η A∗∗ is q-continuous if the
spectral projections of relatively open sets in sp T are q-open in A∗∗.

Given this definition, we see immediately that we have a functional calculus.
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Proposition 4.5. Let A be a C∗-algebra. If T η A∗∗ is q-continuous and
g : spT → R is continuous, then g(T ) η A∗∗ is q-continuous. Moreover, if g is
bounded, then g(T ) ∈M(A) with ‖g(T )‖ 6 ‖g‖.

Proof. First note that g(T ) is defined by the functional calculus for operators
affiliated with a von Neumann algebra, since g is Borel.

Let X be a relatively open subset of sp g(T ) = g(sp T ). Then g−1(X) is rela-
tively open in sp T . Therefore χg−1(X)(T ) is q-open, but χg−1(X)(T ) = χX(g(T )).
Hence g(T ) is q-continuous.

If g is bounded, then from the Borel functional calculus, ‖g(T )‖ 6 ‖g‖ and
g(T ) ∈ A∗∗sa . But then by Theorem 4.3, g(T ) ∈M(A).

And so we can now show:

Theorem 4.6. Let A be a C∗-algebra. Let T be a self-adjoint operator
T ∈A, then there is a unique q-continuous operator T ′ η A∗∗ with Tx = T ′x for
all x ∈ D(T ). Conversely, if T ′ η A∗∗ is q-continuous, then there is a unique
self-adjoint operator T ∈A with Tx = T ′x for all x ∈ D(T ).

Proof. We can represent A∗∗ in B(Hu) where πu : A→ B(Hu) is the univer-
sal representation of A.

Let T ∈A be self-adjoint, and let zT be its z-transform. zT ∈M(A), so zT is
q-continuous. Moreover zT is self-adjoint and 1 6∈ sp zT . Let

f(ξ) = ξ(1− ξξ)−1/2,

which is continuous for |ξ| < 1, so we have that T ′ = f(zT ) is q-continuous and
affiliated with A∗∗, and unique.

If x ∈ D(T ), then for any ξ ∈ Hu,

Txξ = zT aξ = zT (1− z∗T zT )−1/2xξ = T ′xξ,

so Tx = T ′x.
Conversely, let T ′ η A∗∗ be q-continuous. Let

z(ξ) = ξ(1 + ξξ)−1/2,

which is continuous on C. By Proposition 4.5, zT = z(T ) is q-continuous, ‖zT ‖ 6 1,
and zT ∈ M(A). Moreover, 1 6= sp zT = z(spT ), so by the functional calculus for
C∗-algebraically affiliated operators, there is a unique T = f(zT )∈A.

Once again, if x ∈ D(T ), then for any ξ ∈ H,

Txξ = zT aξ = zT (1− z∗T zT )−1/2xξ = T ′xξ,

so Tx = T ′x.
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This analysis has so far dealt only with self-adjoint operators. If T ∈A,
then zT has the polar decomposition in A∗∗, namely zT = v|zT |, where |zT | =
(z∗T zT )1/2 ∈ M(A)sa and v is a partial isometry in A∗∗. Then for any x ∈ D(T ),
we have

Tx = v|zT |(1− |zT |2)1/2x.

In other words, there is an operator |T | = f(|zT |)∈A, with z|T | = |zT |, D(|T |) =
D(T ), and T = v|T |. Theorem 4.6 then tells us that we can find a self-adjoint,
q-continuous operator |T |′ η A∗∗ which agrees with |T | on D(T ), and so for all
x ∈ D(T ),

Tx = v|T |′x.

The operator T ′ = v|T |′ is affiliated with A∗∗.
We can also recover T from T ′, since the uniqueness of polar decomposition

of operators affiliated with A∗∗ tells us that given T ′, |T |′ = |T ′| = ((T ′)∗T )1/2

and v is the unique partial isometry such that T ′ = v|T ′|. Theorem 4.6 then tells
us how to find |T | from |T |′, from which we have T = v|T |.

Thus, even in the non-selfadjoint case, q-continuity and C∗-algebraic affilia-
tion are closely linked.
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