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Abstract. We develop a new notion of action of inverse semigroups on C∗-
algebras. The full and the reduced crossed product of a C∗-algebra by an
inverse semigroup are developed. This construction unifies several notions of
crossed product by inverse semigroups. Moreover, the relation between the
crossed product by an inverse semigroup S and by its associated groupoid is
investigated.
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1. INTRODUCTION

This paper is, in some way, a continuation of our previous work ([9]), where we
studied the regular representation of groupoids and used it for applications to
inverse semigroups.

In the present paper, we include actions into our setting. We develop a new
notion of action of an inverse semigroup on a C∗-algebra and construct associated
full and reduced crossed products. This includes various forms of crossed products
by inverse semigroups as special cases. We also investigate the relation between the
crossed product of a C∗-algebra by an inverse semigroup, and the crossed product
by the groupoid associated by A. Paterson (cf. [15]) with the inverse semigroup.

Actions of inverse semigroups on a C∗-algebra A and associated construc-
tions of crossed products appear in the literature in several forms, including the
work of Nica in terms of localizations ([14]), partial actions of discrete groups of
McClanahan ([13]) and the construction of Sieben ([19]). The later two are based
on the notion of partial automorphisms (i.e. isomorphisms between ideals of A)
due to Exel ([6]).
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If one wants to include the semi-direct product of inverse semigroups, a
notion of crossed product starting with a homomorphism S → End(A) needs to
be developed. In that case, isomorphisms of quotients of A rather than ideals are
involved. We define a notion of action of inverse semigroups on C∗-algebras for
which both notions of partial automorphisms and endomorphisms are included
as special cases. Our construction is based on subquotients. We introduce a set
EQ(A), consisting of quotients J/I, where I ⊂ J are ideals of A. The triples
(B,α,C), where A,B ∈ EQ(A), and α : C → B is a ∗-isomorphism, are then
shown to form an inverse semigroup SQ(A). An action of an inverse semigroup S
on A is now defined to be a semigroup homomorphism S → SQ(A). Since ideals
are subquotients, an action by partial automorphisms is a particular case of our
definition.

We define the full crossed product in our case as being the enveloping C∗-
algebra AoS of a natural convolution algebra. We then compute the representa-
tions of this crossed product: we establish a one to one correspondence between
the representations of AoS and naturally defined covariant representations of
the pair (S,A). In particular, we introduce a family (Le, λe)e∈E of covariant rep-
resentations and define the reduced crossed product Aor S to be the quotient of
AoS under this family of representations. To the best of our knowledege, such a
reduced crossed product by an inverse semigroup was not defined before.

In the case of an action by partial automorphisms, our construction differs
from the one of McClanahan or Sieben ([13], [19]). However, our construction
is related to Sieben’s in a more intricate way: It turns out that if an inverse
semigroup S with idempotent set E acts on a C∗-algebra A, then the crossed
product AoE is endowed with a new action of S by partial automorphisms. We
establish a ∗-isomorphism between the crossed product in the sense of Sieben of
AoE by this new action, and the full crossed product AoS (in our sense).

A natural correspondence between groupoids and inverse semigroups was
constructed by J. Renault ([17]), who associated to each r-discrete groupoid G
the inverse semigroup of open G-sets, and compared the representations of these
objects. In [16], J. Quigg and N. Sieben establish a correspondence between actions
of an r-discrete groupoid G on a C∗-algebra and actions by partial automorphisms
of the associated inverse semigroup; they prove that the resulting (full) crossed
products by the inverse semigroup (in the sense of [19]) and by the groupoid G
are naturally isomorphic.

In the reverse direction, A. Paterson associates to each inverse semigroup S
a locally compact r-discrete groupoid GS , such that the corresponding groupoid
and inverse semigroup C∗-algebras (both full and reduced) are ∗-isomorphic (cf.
[15]; see also [9]). We investigate here the connection between crossed products
by S and GS : if the action of S is by isomorphisms of quotients, then GS acts on
AoE (where E ⊂ S is the set of idempotents of S). Thus, using the results of
[16], we deduce an isomorphism (AoE)oGS

∼= AoS. Moreover, we establish a
natural isomorphism (AoE)orGS

∼= Aor S.
Here is a summary of the paper.
In Section 2, we collect basic facts and notation about groupoids, inverse

semigroups and associated C∗-algebras.
In Section 3, we review groupoid actions and crossed products of C∗-algebras

by actions of groupoids. In particular, we introduce the regular covariant repre-
sentation (in a suitable Hilbert module) and reduced crossed products.
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In Section 4, we study the inverse semigroup SQ(A) of subquotients of a
C∗-algebra A.

The action of an inverse semigroup S is defined to be a semigroup homomor-
phism α from S into SQ(A). The corresponding full and reduced crossed products
of A by the action α of S are defined in Section 5, where we also compute the
representations of the full crossed product. We end this section by computing
these crossed products in the case that S(= E) consists of idempotents.

In Section 6 we establish the above mentionned connection between crossed
products in our sense and the construction of Sieben; in the case of quotients, using
this connection together with the work of Quigg and Sieben, we relate the crossed
product by an inverse semigroup S with a crossed product with the groupoid GS .

2. PRELIMINARIES

In this section we collect definitions, results, facts, and conventions to be used in
subsequent sections.

2.1. Throughout the paper the word “ideal” will mean “closed two sided ideal”,
unless otherwise indicated. We denote by M(A) the multiplier algebra of a C∗-
algebra A.

2.2. Inverse Semigroups. We refer to [7], [5], [15], [11] for the basic definitions
and properties of inverse semigroups and associated C∗-algebras.

A semigroup S is said to be an inverse semigroup if for each u ∈ S there
exists a unique element u∗ ∈ S such that uu∗u = u and u∗uu∗ = u∗. The set
of idempotens of S, to be denoted by ES (or simply E) is a commutative sub-
semigroup of S. It is a partially ordered set and a semilattice under the relation:
e 6 f if ef = e, and e ∧ f = ef . The partial ordering on S is given by u 6 v if
u = ve for some e ∈ E.

The normed space `1(S) endowed with the operations

(f ? g)(w) =
∑

uv=w

f(u)g(v), f∗(u) = f(u∗)

is a Banach ∗-algebra. The full C∗-algebra of S is the enveloping C∗-algebra of
`1(S). It is denoted by C∗(S).

The reduced C∗-algebra of S, denoted by C∗r (S), is the image of C∗(S) under
the left regular representation u 7→ λu of S on `2(S) defined by

(λuξ)(v) =
{
ξ(u∗v) if vv∗ 6 uu∗,
0 otherwise.

2.3. Groupoids. We refer to [17], [2], [3], [4], [12], [1] and [9] for definitions
and main properties of groupoids and associated C∗-algebras. Here we recall some
notation. Let G be a groupoid, then:

– G(0) will denote its space of units;
– s : G → G(0) and r : G → G(0) denote respectively the source and range

maps;
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– G(2) denotes the set {(γ, γ′) ∈ G × G : s(γ) = r(γ′)} of composable
elements;

– given x ⊂ G(0), we set Gx = {γ ∈ G : s(γ) = x} and Gx = {γ ∈ G : r(γ) =
x}.

A locally compact groupoid is a groupoid G endowed with a topology such
that:

(a) the groupoid operations (composition, inversion, source and range maps)
are continuous;

(b) the space of units G(0) is Hausdorff;
(c) each point of G has a compact (Hausdorff) neighborhood;
(d) the range and source maps are open (cf. [9], Definition 1.1).

2.4. Groupoid C*-algebras. Let G be a locally compact groupoid. The full
C∗-algebra of G is the enveloping C∗-algebra of (the completion of) a normed
∗-algebra A. If G is Hausdorff, A is Cc(G) the space of continuous complex valued
functions with compact support on G.

If G is not Hausdorff the above definition must be modified. Following
Connes (cf. [3], [4]), A is defined to be the space of complex valued functions
on G spanned by functions which are continuous with compact support on an
open Hausdorff set of G extended by 0 elsewhere. Note that such a function is
generally not continuous on G.

In order to turn A into a normed algebra, we need a Haar system on G
(cf. [17]), i.e. a collection ν = {νx}x∈G(0) of positive regular Borel measures on G
satisfying the following conditions:

(a) Support: for every x ∈ G(0), the support of νx is contained in Gx;
(b) Invariance: for all γ1 ∈ G and f ∈ A,

∫
f(γγ1) dνx(γ) =

∫
f(γ) dνy(γ),

where x = s(γ1) and y = r(γ1);
(c) Continuity: for each f ∈ A the map x 7→ ∫

Gx

f(γ) dνx(γ) is continuous.

For x ∈ X, we also note νx the measure on G defined by νx(f) = νx(f̃),
where f̃ is the function γ 7→ f(γ−1).

For f, g ∈ A, put

f∗(γ) = f(γ−1) and (f ? g)(γ) =
∫

Gx

f(γγ−1
1 )g(γ1) dνx(γ1),

where x = s(γ). The norm on A is defined by

‖f‖1 = sup
x∈G(0)

{
max

( ∫

Gx

|f(γ)| dνx(γ),
∫

Gx

|f(γ−1)|dνx(γ)
)}

.

The full groupoid C∗-algebra C∗(G, ν) (or C∗(G) when there is no ambiguity
on the Haar system) is defined to be the enveloping C∗-algebra of the Banach
∗-algebra obtained by completion of A with respect to the norm ‖ · ‖1.

2.5. Regular represenation of groupoids. Recall some constructions
from [9].
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If G is a Hausdorff groupoid, then define a C0(X)-valued scalar product on
A = Cc(G) by letting 〈ξ, η〉 denote the restriction to X of ξ∗ ? η ∈ A; let the
right action of C0(X) on A be given by ξf(γ) = ξ(γ)f(s(γ)) (for f ∈ C0(X) and
ξ ∈ A). With these operations A is a pre-Hilbert C0(X)-module. Let L2(G, ν)
be its Hilbert module completion. The formula λ(f)ξ = f ? ξ, where f, ξ ∈ A,
extends to a representation λ of C∗(G) on L2(G, ν) whose image is (∗-isomorphic
to) the reduced C∗-algebra of G, denoted by C∗r (G) (cf. [9], Theorem 2.3).

If G is not Hausdorff, this construction needs to be modified. One replaces
X by the spectrum Y of the C∗-algebra B of Borel functions on X generated by
restrictions to X of elements of A. Since B contains the continuous functions on
X vanishing at ∞, there exists a continuous map p : Y → X which is proper and
onto (cf. [9], Proposition 2.6). The analogue of L2(G, ν) is constructed as follows.

Given ξ, η ∈ A, let 〈ξ, η〉 = (ξ∗ ? η)|X ∈ C0(Y ). The linear space A⊗C0(Y )
is turned into a pre-Hilbert C0(Y )-module and its (Hausdorff-)completion E is a
Hilbert C0(Y )-module (see 2.7 in [9]). The algebra C∗(G) acts on E by λ(f)(ξ ⊗
g) = (f ? ξ)⊗ g for all f, ξ ∈ A and g ∈ C0(Y ). The image is again ∗-isomorphic
to C∗r (G) (cf. [9], Theorem 2.10).

2.6. The Groupoid associated with an inverse semigroup. To each inverse
semigroup S is associated a locally compact groupoid GS (cf. [15]; see also [9]). To
construct this groupoid, one first considers the spectrum X of the commutative
C∗-algebra C∗(E). An element e of ES is then a 0, 1-valued continuous function
on X, i.e. the characteristic function of a compact open subset Fe of X. Then GS

is the quotient of {(u, x) ∈ S × X : x ∈ Fu∗u} by the equivalence relation given
by (u, x) ∼ (v, y) whenever x = y and there exists e ∈ E such that x ∈ Fe and
ue = ve.

Here are some important facts about GS (cf. [15]; see [9], Proposition 3.2).
(a) The clopen sets Fe generate the topology of X.
(b) For u ∈ S, we denote by Ou the set of classes in GS of {(u, x) : x ∈

Fu∗u}. The space GS itself is covered by the compact open subsets Ou. The
restrictions of the source (respectively range) map is a homeomorphism s : Ou →
Fu∗u (respectively r : Ou → Fuu∗).

(c) An element e ∈ E defines a character on C∗(E), whence an element
εe ∈ X, by the formula

f(εe) =
{

1 if e 6 f ,
0 otherwise

(for f ∈ E). Moreover, for u ∈ S, we let εu be the class of (u, εu∗u). We thus have
an injection of S into GS , which maps E into a dense subset of X = G

(0)
S .

Theorem. For any inverse semigroup S, we have the natural isomorphisms
C∗(S) ∼= C∗(GS) and C∗r (S) ∼= C∗r (GS).

2.7. C(X)-algebras. (cf. [8]) (a) Let X be a locally compact (Hausdorff) space.
A C0(X)-algebra is a C∗-algebra B together with a morphism ρ from C0(X) into
the center Z(M(B)) of the multiplier algebra of B such that ρ(C0(X))B = B. In
what follows, the letter ρ will be often omitted: we will consider B as a C0(X)-
module, and write fb instead of ρ(f)b.

(b) Let B be a C0(X)-algebra.
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– If Ω is an open subset of X, one puts BΩ = C0(Ω)B. It is an ideal in B,
and a C0(Ω) algebra.

– If F is a closed subset of X, one puts BF = B/BX\F .
– In particular, if x ∈ X, one writes Bx instead of B{x}. The evaluation

morphisms px : B → Bx define a morphism B → ∏
x∈X

Bx which is injective.

– If Y = F ∩ Ω is a locally closed subset of X, one easily see that BY =
(BF )Ω = (BΩ)F only depends on Y (up to a canonical isomorphism). The C∗-
algebra BY is a C0(Y ) algebra. For Z locally closed in Y , we have (BY )Z = BZ .

(c) The elements b ∈ Cc(X)B ⊂ B are said to have compact support relative
to the C0(X)-structure on B. One may actually define the support of an element
b ∈ X to be the closure in X of the set of x such that bx 6= 0.

(d) Let X,Y be locally compact spaces and f : X → Y a continuous map. To
any C0(Y )-algebra B is associated a C0(X)-algebra f∗(B): the graph Gf ⊂ X×Y
of f is naturally homeomorphic to X. We consider the C0(X×Y )-algebra C0(X)⊗
B and put f∗(B) = (C0(X)⊗B)Gf

. We sometimes write f∗(B) = C0(X)⊗C0(Y )B.
For x ∈ X, we have (f∗(B))x = Bf(x).

(e) A morphism ϕ : A → B of C0(X)-algebras is a C0(X)-linear morphism.
It then defines a map ϕx : Ax → Bx for each x ∈ X. On the other hand, the
family (ϕx) determines the morphism ϕ.

3. CROSSED PRODUCTS BY GROUPOIDS

In [18], Jean Renault defines actions of groupoids on C∗-algebras and associated
crossed products. In [12], Section 3, Pierre-Yves Le Gall defines an action of a
groupoid on a C∗-algebra D in a less restrictive sense than that of [18], in that the
algebra D does not need to be a continuous field over the space of units X, but a
C0(X)-algebra in the sense of Kasparov ([8]) recalled above. An equivalent setting
was also studied by Quigg and Sieben ([16], Section 3), who further constructed
the full crossed product. We define here the full and reduced crossed product in
the setting of [12] and [16].

We fix a locally compact groupoid G with a Haar system ν and denote by X
its space G(0) of objects. We keep the notation recalled in 2.3 and 2.4 above.

Let us first recall Le Gall’s definition of an action of a groupoid:

3.1. An action of G on a C∗-algebra D is given by a structure of C0(X)-algebra
on D and an isomorphism of C0(G)-algebras α : s∗D → r∗D, such that, for each
(γ1, γ2) ∈ G(2) we have αγ1γ2 = αγ1 ◦ αγ2 .

Note that for γ ∈ G, the map αγ is by definition (cf. 2.7 (d) and (e)) a
∗-isomorphism Ds(γ) → Dr(γ).

3.2. If G is not Hausdorff, this definition has to be slightly modified by working
with Hausdorff open subsets of G: An action of G on a C∗-algebra D is given by:

(a) a structure of C0(X)-algebra on D with X and
(b) an isomorphism of C0(U)-algebras αU : s|∗UD → r|∗UD, for every open

Hausdorff subset U of G,
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such that
(i) if U ⊂ V are Hausdorff open subsets of G, then αU is the restriction

of αV ;
(ii) for each (γ1, γ2) ∈ G(2) we have αγ1γ2 = αγ1 ◦ αγ2 .

Condition (i) tells us that αγ depends only on γ and not on the Hausdorff
neighborhood U containing it. Thus (ii) makes sense.

3.3. Function algebra associated with a groupoid action. Given a C∗-
algebra D endowed with an action of a groupoid G, let A(D) be the function space
defined as follows:

– The Hausdorff case. If G is Hausdorff, let s∗D be the C0(G)-algebra
corresponding to the source map s : G→ X (cf. 2.7(d)). Let A(D) = Cc(s∗D) =
Cc(G) · s∗D, i.e. continuous sections with compact support (cf. 2.7 (c)).

– The non-Hausdorff case. In this case the function space A(D) ⊂ ∏
γ∈G

Ds(γ)

is the set of linear combinations of elements with compact support in s∗|UD for
some open Hausdorff subset U of G, where s|U : U → X is the restriction to U of
the source map.

– The product and convolution are defined in the following way.
Given f, g ∈ A(D), let

(f ? g)(γ) =
∫
α−1

γ1
(f(γγ−1

1 ))g(γ1) dνs(γ)(γ1) and f∗(γ) = α−1
γ (f(γ−1)∗).

It is easily seen, like in the case where D = C0(X), that these are well defined
operations turning A(D) into a ∗-algebra (cf. [9], Section 1).

3.4. The norm ‖ · ‖1. The norm on A(D) is defined by

(3.1) ‖f‖1 = sup
x∈X

{
max

{ ∫
‖f(γ)‖dνx(γ),

∫
‖f(γ)‖dνx(γ)

}}
.

Let (Ui)i∈I be a covering of G by open Hausdorff subsets and set Ω =
∐
i∈I

Ui =

{(γ, i) ∈ G× I : γ ∈ Ui}. It is a locally compact Hausdorff space. Let sΩ : Ω → X
be the (continuous) map (γ, i) 7→ s(γ). For g ∈ Cc(Ω)s∗Ω(D), we put

(3.2) ‖g‖1 = sup
x∈X

{
max

{ ∑

i∈I

∫
‖g(γ, i)‖dνx(γ) :

∑

i∈I

∫
‖g(γ, i)‖dνx(γ)

}}
.

Moreover, we let ϕ(g) ∈ A(D) be the function γ 7→ ∑
i

g(γ, i) (these are finite

sums).
As in the case when D = C(X) (cf. [9], Lemmas 1.3 and 1.4), the map ϕ is

onto and, for f ∈ A(D), we have

(3.3) ‖f‖1 = inf{‖g‖1 : g ∈ Cc(Ω)s∗Ω(D), ϕ(g) = f}.

3.5. The full crossed product. With the product, involution, and norm
‖ · ‖1 defined above, A(D) is a normed ∗-algebra exactly as in the case of a trivial
action D = C0(X). The enveloping C∗-algebra of the Banach ∗-algebra obtained
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by completion of A(D) with respect to the norm ‖ · ‖1 is called the full crossed
product of D by G and is denoted by DoαG.

3.6. Regular representations and the reduced crossed product. Let
x ∈ X. Consider the Hilbert Dx-module L2(Gx, νx) ⊗ Dx; it is the completion
of the space Cc(Gx;Dx) of continuous compactly supported functions on Gx with
values in Dx with respect to the Dx valued inner product defined by 〈g, h〉 = (g∗ ?
h)(x) =

∫
g(γ)∗h(γ) dνx(γ). For f ∈ A(D) and g ∈ Cc(Gx;Dx), put Λx(f)g = f?g.

For f ∈ A(D) and g, h ∈ Cc(Gx;Dx) we have

(3.4) 〈g,Λx(f)h〉 = (g∗ ? f ? h)(x) = 〈Λx(f∗)g, h〉.
Also,

〈g,Λx(f)h〉 =
∫
g(γ)∗(f ? h)(γ) dνx(γ)

=
∫∫

g(γ)∗α−1
γ1

(f(γγ−1
1 ))h(γ1) dνx(γ1) dνx(γ).

Let Ω be as in 3.4. Write f = ϕ(f0) and f0(γ, i) = f1(γ, i)f2(γ, i), where f0, f1, f2 ∈
Cc(Ω)s∗(D) are such that, for all (γ, i) ∈ Ω, we have ‖f0(γ, i)‖ = ‖f1(γ, i)‖2 =
‖f2(γ, i)‖2. We find:

〈g,Λx(f)h〉 =
∑

i∈I

∫∫
g(γ)∗α−1

γ1

(
f1(γγ−1

1 , i)f2(γγ−1
1 , i)

)
h(γ1) dνx(γ1) dνx(γ)

=
∑

i∈I

∫∫
k1(γ, γ1, i)∗k2(γ, γ1, i) dνx(γ1) dνx(γ)

where, for i ∈ I, γ, γ1 ∈ Gx, we have put k1(γ, γ1, i) = α−1
γ1

(
f1(γγ−1

1 , i)
)∗
g(γ) and

k2(γ, γ1, i) = α−1
γ1

(
f2(γγ−1

1 , i)
)
h(γ1). Using the Cauchy-Schwarz inequality in the

Hilbert Dx-module L2(Gx ×Gx × I;Dx), we find

‖〈g,Λx(f)h〉‖ 6 ‖k1‖2‖k2‖2
where, for j = 1, 2, we put

‖kj‖22 =
∥∥∥∥

∑

i∈I

∫∫
kj(γ, γ1, i)∗kj(γ, γ1, i) dνx(γ1) dνx(γ)

∥∥∥∥.

Now

‖k1‖22 =
∥∥∥∥

∑

i∈I

∫∫
g(γ)∗α−1

γ1

(
f1(γγ−1

1 , i)f1(γγ−1
1 , i)∗

)
g(γ) dνx(γ1) dνx(γ)

∥∥∥∥

6
∥∥∥∥

∑

i∈I

∫∫
g(γ)∗‖f1(γγ−1

1 , i)f1(γγ−1
1 , i)∗‖g(γ) dνx(γ1) dνx(γ)

∥∥∥∥

=
∥∥∥∥

∫
g(γ)∗

( ∑

i∈I

∫
‖f0(γγ−1

1 , i)‖dνx(γ1)
)
g(γ) dνx(γ)

∥∥∥∥.
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Moreover,
∑
i∈I

∫ ‖f0(γγ−1
1 , i)‖dνx(γ1) =

∑
i∈I

∫ ‖f0(γ2, i)‖dνr(γ)(γ2) 6 ‖f0‖1 (where

‖f0‖1 is given by formula (3.2)). It follows that ‖k1‖2 6 ‖g‖22‖f0‖1. In the same
way, ‖k2‖2 6 ‖h‖22‖f0‖1. We deduce that

(3.5) ‖〈g,Λx(f)h〉‖ 6 ‖f0‖1 ‖g‖2 ‖h‖2.
This is true for all f0 such that ϕ(f0) = f . Taking the infimum of the right hand
side in formula (3.5), we find (using formula (3.3))

(3.6) ‖〈g,Λx(f)h〉‖ 6 ‖f‖1 ‖g‖2 ‖h‖2.
From formulas (3.4) and (3.6) we deduce that Λx(f) extends to an element denoted
by Λx(f) ∈ L(L2(Gx, νx) ⊗ Dx) with adjoint Λx(f)∗. Finally, Λx yields a ∗-
representation of DoαG.

Definition. The reduced crossed product Doα,rG ofD by G is the quotient
of the full crossed product with respect to the family (Λx)x∈X of representations
defined above.

3.7. Here is an equivalent construction of the reduced crossed product, analogous
to the one of [9], Theorem 2.10 (outlined here in 2.5).

Let D be the set of bounded sections of
∏
x
Dx. An element f ∈ A(D) defines

by restriction to X ⊂ G an element f|X ∈ D. Denote by D′ the C∗-subalgebra of
D generated by these elements. Note that, if G is Hausdorff, then D′ = D. For
ξ, η ∈ A(D) and f, g ∈ D′ we then put 〈(ξ ⊗ f), (η ⊗ g)〉 = f∗(ξ∗ ? η)|Xg ∈ D′.

In this way, the right D′ module A(D)⊗D′ is turned into a pre-Hilbert D′-
module. Its (Hausdorff-)completion is a Hilbert D′-module denoted L2(G, ν;D′).

Note that the crossed product DoαG acts on L2(G, ν;D′) by Λ(f)(ξ⊗g) =
(f ? ξ) ⊗ g for all f, ξ ∈ A(D) and g ∈ D′. The image is again ∗-isomorphic
to Doα,rG. Indeed, for x ∈ X, let px : D′ → Dx be the natural evalua-
tion map. Since D′ ⊂ D, the family (px)x is a faithful family. Whence, for
T ∈ L(L2(G, ν;D′)), we have ‖T‖ = sup

x
‖T ⊗px 1‖. For x ∈ X, we have

L2(G, ν;D′) ⊗px Dx
∼= L2(Gx, νx) ⊗ Dx and, under this identification, for ev-

ery f ∈ A(D) we have Λ(f) ⊗px 1 ∼= Λx(f). Whence ‖Λ(f)‖ = sup
x
‖Λx(f)‖ =

‖f‖Doα,r G.

Remark. Let Y be the locally compact Hausdorff space associated with G,
p : Y → X the continuous map and L2(G, ν) the Hilbert C0(Y )-module con-
structed in [9] Section 2 (see 2.5 above). Then, p∗D is a C0(Y )-algebra. Consider
the Hilbert C0(Y )-module L2(G, ν) defined in Section 2. Let

L2(G, ν; p∗(D)) = L2(G, ν)⊗C0(Y ) p
∗D.

One may also construct a representation of DoαG on the Hilbert p∗(D)-module
L2(G, ν; p∗(D)) and thus give a third definition of the reduced crossed product.

To relate these constructions, one notes that there is a natural injection
j : D′ → p∗(D): one just needs to define j(f ⊗ b) where f ∈ A, b ∈ D, since by
definition of A(D) such elements generate a dense subspace; put then j(f ⊗ b) =
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f |X ⊗C(X) b ∈ C0(Y ) ⊗C(X) D = p∗(D), where f |X is, by definition of Y , an
element of C0(Y ).

In this way, L2(G, ν; p∗(D)) = L2(G, ν;D′) ⊗D′ p∗(D). We thus get an
isomorphism x 7→ x⊗ 1 between these reduced crossed products.

Note that, in general, D′ 6= p∗(D): let, for instance, Γ be a non trivial
discrete group and put, G = Γ × [0, 1]/ ∼, where (g, s) ∼ (h, t) iff s = t = 0 or
(g, s) ∼ (h, t). Put D = C, and let X = [0, 1] act by f · b = f(0)b. In other words,
D0 = C and Dt = {0} for t 6= 0. Obviously D′ = D. On the other hand, there are
two points of Y which map to 0 (cf. [9], Example 1.2), whence p∗(D) = C⊕ C.

4. THE INVERSE SEMIGROUP SQ(A)

In this section we construct an inverse semigroup of automorphisms between quo-
tients of ideals of a C∗-algebra. Let us begin by recalling a few easy facts about
quotients of ideals.

4.1. Let A be a C∗-algebra. We denote by EQ(A) the set of quotients of ideals of A.
Such “ideal quotients” will be sometimes called subquotients somewhat unproperly.
In other words, B ∈ EQ(A) if there exist closed two-sided ideals I, J in A such that
I ⊂ J and B = J/I. Note that we have a natural morphism qB : A→M(B) whose
image contains B and that B = JB/IB where IB = ker(qB) and JB = q−1

B (B).
Note however that this writing is far from being unique in general: one can write
B = J/I where J is any ideal J ⊂ JB such that J + IB = JB and I = J ∩ IB .

Remark. One may make things a little more formal and precise, by saying
that EQ(A) is the quotient of the set of pairs (I, J) of ideals of A such that I ⊂ J
by the equivalence relation

(I, J) ∼ (I ′, J ′) ⇐⇒ I ∩ J ′ = I ′ ∩ J and I + J ′ = I ′ + J.

4.2. The set EQ(A) has a natural order: if B,C ∈ EQ(A), we write B ≺ C if B is
a subquotient of C, i.e. the morphism qB : A→M(B) is written as a composition
qB,C ◦ qC where qB,C is the extension to the multiplier algebra of a morphism
qB,C : C → M(B) such that B ⊂ qB,C(C). This is equivalent to saying that B
and C are written as quotients J/I and J ′/I ′ with I ′ ∩ J ⊂ I and J ⊂ I + J ′.
Another equivalent condition is IC ⊂ IB and JB ⊂ JC + IB . In that case, B and
C can be written as quotients J/I and J ′/I ′ with I ′ ⊂ I ⊂ J ⊂ J ′.

Moreover, if B is a subquotient of A, any subquotient of B is naturally a
subquotient of A. In other words, we may identify EQ(B) with {C ∈ EQ(A) :
C ≺ B}.

4.3. With this order, EQ(A) is a semi-lattice: for B,C ∈ EQ(A) we have

B ∧C =
(
(JB ∩ JC) + (IB + IC)

)
/(IB + IC) = (JB ∩ JC)/

(
JB ∩ JC ∩ (IB + IC)

)
.

Indeed, it is obvious that B ∧ C ≺ B and B ∧ C ≺ C; if D ∈ EQ(A) satisfies
D ≺ B and D ≺ C, then ID ⊃ IB +IC and JD ⊂ (JB +ID)∩ (JC +ID). It follows
that D ≺ B ∧ C.
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4.4. In the commutative case, elements of EQ(C0(X)) are C0(Y ) (seen as an ideal
in the quotient C0(Y ) of C0(X)) where Y runs over locally closed subsets of X.
We have C0(Y ) ≺ C0(Z) if and only if Y ⊂ Z and C0(Y ) ∧ C0(Z) = C0(Y ∩ Z).

4.5. We denote by SQ(A) the set of triples (B,α,C) where B,C ∈ EQ(A) and
α : C → B is a ∗-isomorphism.

If α : C → B is a ∗-isomorphism, to any subquotient D of C there corre-
sponds a subquotient α(D) and an isomorphism α:D : D → α(D) with extension
α:D to the multipliers, such that the diagram

C
α−→ B

↓ ↓
M(D) α:D−→ M(α(D))

commutes.

4.6. The composition of two elements (B,α,C) and (B′, α′, C ′) of SQ(A) is the
triple

(B,α,C) · (B′, α′, C ′) = (α(B′ ∧ C), β, (α′)−1(B′ ∧ C))

where β is the composition α:B′∧C ◦ α′:(α′)−1(B′∧C).
Note that if D,D′ ∈ EQ(A) are such that (B′ ∧C) ≺ D ≺ C and (B′ ∧C) ≺

D′ ≺ B′, then

(4.1) (B,α,C) · (B′, α′, C ′) = (α(D), α:D, D) · (D′, α′:(α′)−1(D′), (α
′)−1(D′)).

Indeed, one checks immediately that D ∧D′ = B′ ∧ C; also
(
α:D

)
:B′∧C

= α:B′∧C

and
(
α′:(α′)−1(D′)

)
:(α′)−1(B′∧C)

= α′:(α′)−1(B′∧C).
Also write (B,α,C) · (B′, α′, C ′) = (B1, α1, C1) and let D ∈ EQ(A). We

easily see that

(4.2) (α1(C1∧D), (α1):C1∧D, C1∧D) = (B,α,C) ·(α′(C ′∧D), (α′):C′∧D, C
′∧D).

In the same way, setting D1 = α−1
1 (B1 ∧D), we find

(4.3) (B1 ∧D, (α1):D1 , D1) = (B ∧D,α:α−1(B∧D), α
−1(B ∧D)) · (B′, α′, C ′).

We have:

4.7. Proposition. With the above operations, SQ(A) is an inverse semi-
group.

Proof. The inverse of (B,α,C) is (C,α−1, B). The only thing which has
to be proved is associativity of the composition. Let (B,α,C), (B′, α′, C ′) and
(B′′, α′′, C ′′) be elements of SQ(A).

Write (B,α,C) · (B′, α′, C ′) = (B1, α1, C1). We have (using formula (4.2)),

(B1, α1, C1) · (B′′, α′′, C ′′) = (α1(B′′ ∧ C1), (α1):B′′∧C1 , B
′′ ∧ C1) · (B′′, α′′, C ′′).

It follows from formula (4.2) that both ((B,α,C) · (B′, α′, C ′)) · (B′′, α′′, C ′′) and
(B,α,C) · ((B′, α′, C ′) · (B′′, α′′, C ′′)) remain unchanged if we replace (B′, α′, C ′)
by

(α′(C ′ ∧B′′), (α′):C′∧B′′ , C
′ ∧B′′).
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We may therefore assume that C ′ ≺ B′′. In the same way, using formula (4.3), we
may also assume that B′ ≺ C. But in this case, both products are equal to

(α(B′), α:B′ ◦ α′ ◦ α′′:(α′′)−1(C′), (α
′′)−1(C ′)).

To B ∈ EQ(A) corresponds the idempotent (B, idB , B) in SQ(A). In this
way, the set of idempotents of SQ(A) identifies with EQ(A).

5. ACTIONS OF INVERSE SEMIGROUPS AND CROSSED PRODUCTS

The main purpose of this section is to describe a general construction of a crossed
product by an action of an inverse semigroup. In the next section, we will inves-
tigate the connection between this crossed product, the one defined by Sieben in
[19], and the crossed product by the associated groupoid.

Actions.

5.1. Definition. Let S be an inverse semigroup. An action of S on a
C∗-algebra A is a semigroup homomorphism α : S → SQ(A).

In other words, an action of an inverse semigroup S with set of idempotents
E is given by a pair (B,α) where B = (Be)e∈E is a collection of elements of EQ(A)
such that Bef = Be ∧Bf , and for each u ∈ S, αu is an isomorphism αu : Bu∗u →
Buu∗ satisfying (Buvv∗u∗ , αuv, Bv∗u∗uv) = (Buu∗ , αu, Bu∗u) · (Bvv∗ , αv, Bv∗v) for
all u, v ∈ S.

5.2. Examples. Actions by partial automorphisms, or by endomorphisms
of an inverse semigroup are easily seen to be special cases of the above definition.
They actually form two extreme cases of our definition.

(a) Recall that a partial automorphism of A is a triple (I, α, J), where I
and J are closed ideals of A and α : J → I is a ∗-isomorphism (cf. [6]). Partial
automorphisms of A form an inverse semigroup PAut(A). Sieben (cf. [19]) defines
an action of a unital inverse semigroup S on A to be a semigroup homomorphism
β : S → PAut(A). Note that PAut(A) is a sub-semigroup of SQ(A), therefore an
action in Sieben’s sense is a particular case of an action in the sense of Definition 5.1
when the Be’s are ideals.

(b) At the other end, we may also consider the case where all the Be’s are
quotients.

A particular case is obtained by a semigroup homomorphism β : S →
End(A). Given such a morphism for each e ∈ E let Be = A/ kerβe. If e, f ∈ E,
we have βef = βe ◦ βf = βf ◦ βe, thus kerβef ⊃ kerβe + kerβf ; if x ∈ kerβef ,
then βe(βe(x)) = βe(x). Hence, x − βe(x) ∈ kerβe and βf (βe(x)) = 0, whence
βe(x) ∈ kerβf ; thus x ∈ kerβe + kerβf . Whence Bef = Be ∧Bf .

Note that for each u ∈ S, since βu∗u = βu∗ ◦ βu and βu = βu ◦ βu∗u we
have kerβu = kerβu∗u, and βu defines an isomorphism αu : Bu∗u → Buu∗ given
by αu ◦ qu∗u = quu∗ ◦ βu, where qu∗u : A → Bu∗u and quu∗ : A → Buu∗ are the
quotient maps.

For instance, consider the group Γ = Z(N) with the basis (en)n∈N. The endo-

morphisms βs and βs∗ of Γ given by βs(en) = en+1 and βs∗(en) =
{
en−1 if n 6= 0,
0 if n = 0,
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yield an action β of the bicyclic semigroup T (i.e. the semigroup generated by s, s∗

with the property s∗s = 1) on Z(N). Corresponding to this action is a morphism
T → End(C∗(Γ)).

(c) Here is a simple example where not all of the Be’s are ideals or quotients.
The sub-semigroup S = {0, 1, e = e11, u = e12, u

∗ = e21, f = e22} of M2(C)
(for the matrix product) is an inverse semigroup.

Let A be an extension of K by K (i.e. A = K̃ ⊗ K). Let J ' K be its
non-trivial ideal and B = A/J ' K its nontrivial quotient.

Set B1 = A, Be = J , Bf = B and B0 = {0} and let αu be an isomorphism
from J onto B. In this way, the semigroup S acts on A.

Construction of the crossed product. We now define the crossed product
constructions for actions in the sense of Definition 5.1. Let B,C,D ∈ EQ(A). If
D ≺ B, we have a natural morphism qD,B : C →M(D). Moreover, if D = B ∧C,
for every x ∈ B and y ∈ C, qD,B(x)qD,C(y) ∈ D. In this way, we get a bilinear
map (x, y) 7→ x ¦ y = qD,B(x)qD,C(y) from B × C → B ∧ C.

5.3. Proposition. Let S be an inverse semigroup and (B,α) an action of
S on a C∗-algebra A. For ϕ ∈ ∏

u∈S

Bu∗u, set ‖ϕ‖1 =
∑
u
‖ϕ(u)‖ (∈ R+ ∪ {+∞}).

Put `1(S,B) =
{
ϕ ∈ ∏

u∈S

Bu∗u : ‖ϕ‖1 < +∞
}
. For ϕ,ψ ∈ `1(S,B), set

(ϕ ? ψ)(w) =
∑

uv=w

αv∗u∗u(ϕ(u) ¦ αv(ψ(v))), ϕ∗(u) = αu∗(ϕ(u∗)∗).

With these operations `1(S,B) is a Banach ∗-algebra.
An element ϕ ∈ `1(S,B) is formally written as a sum

ϕ =
∑

u∈S

δuϕ(u) =
∑

u∈S

αu(ϕ(u))δu.

Proof. Let u, v ∈ S, x ∈ Bu∗u and y ∈ Bv∗v. Then x ¦ αv(y) ∈ Bu∗uvv∗ ,
whence αv∗u∗u(x ¦ αv(y)) ∈ Bv∗u∗uv. Moreover ‖αv∗u∗u(x ¦ αv(y))‖ 6 ‖x‖‖y‖. It
follows that ϕ ? ψ ∈ `1(S,B).

It is also easy to see that ‖ϕ∗‖1 = ‖ϕ‖1 and (ϕ ? ψ)∗ = ψ∗ ? ϕ∗, and hence
the only thing that remains to be proved is the associativity of ?.

If u ∈ S, we denote by αu : M(Bu∗u) → M(Buu∗) the extension of αu to
the multipliers. Let e ∈ E; we denote by the same symbol qe, for every f ∈ E
such that e 6 f the natural map qe : Bf → M(Be) and by qe its extension to
multipliers. If e 6 f 6 g we have an equality qe ◦ qf = qe : Bg →M(Be).

Note that if u ∈ S and e ∈ E, we have queu∗ ◦αu = αue ◦ qeu∗u (by definition
of the inverse semigroup SQ(A)). Extending this equality to multipliers, we find

queu∗ ◦ αu = αue ◦ qeu∗u : M(Bu∗u) →M(Bueu∗).

Let u, v, w ∈ S, x ∈ Bu∗u, y ∈ Bv∗v and z ∈ Bww∗ . We want to show that
(
(δux)(δvy)

)
(δwz) = (δux)

(
(δvy)(δwz)

)
.
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We have
(δux)(δvy) = δuvαv∗u∗u

(
qu∗uvv∗(x)qu∗uvv∗(αv(y))

)

= δuv(αv∗u∗u ◦ qu∗uvv∗)(x)qv∗u∗uv(y),
whence ((δux)(δvy))(δwz) = δuvwx1y1z1, where

x1 = αw∗v∗u∗uv ◦ qww∗v∗u∗uv ◦ αv∗u∗u ◦ qe(x),
y1 = αw∗v∗u∗uv ◦ qww∗v∗u∗uv ◦ qv∗u∗uv(y) = αw∗v∗u∗uv ◦ qww∗v∗u∗uv(y), and
z1 = qw∗v∗u∗uvw(z). Note that qww∗v∗u∗uv◦αv∗u∗u = αww∗v∗u∗u◦qvww∗v∗u∗u,

and hence
x1 = αw∗v∗u∗u◦qvww∗v∗u∗u(x). On the other hand, (δvy)(zδw) = δvwαw∗v∗v◦

qww∗v∗v(y)qw∗v∗vw(z)). Thus,
(δux)((δvy)(zδw)) = δuvwx2y2z2,

where
x2 = αw∗v∗u∗u ◦ qu∗uvww∗v∗(x) = x1,
y2 = qw∗v∗u∗uvw ◦ αw∗v∗v ◦ qww∗v∗v(y) = y1, and
z2 = qw∗v∗u∗uvw ◦ qw∗v∗vw(z) = z1.

5.4. Definition. The full crossed product of A by the action α of S is by
definition the enveloping C∗-algebra of this Banach ∗-algebra, and is denoted by
Aoα S.

5.5. Remarks. (a) Let S̃ be the inverse semigroup obtained by adjoining a
unit to S, i.e. S̃ = S ∪ {1}, with operations 1∗ = 1 and u1 = 1u = u for all u ∈ S̃.

An action (B,α) of S on a C∗-algebra A can be extended to an action (still
denoted by (B,α)) of S̃ on A by setting B1 = A and α1 = idA. Then `1(S,B) is
a closed two sided ideal in `1(S̃, B).

Recall that if J is a closed, two sided, self-adjoint ideal in a Banach ∗-algebra
D, then its enveloping C∗-algebra identifies with the closure of J in the enveloping
C∗-algebra D. In other words, the homomorphism C∗(J) → C∗(D) is injective.
Also see Lemma 2.3, [16].

Indeed, we just have to construct a homomorphism D →M(C∗(J)) extend-
ing the natural map iJ : J → C∗(J). Adjoining a unit to D, we may assume that
D is unital. Let then a ∈ D with ‖a‖ < 1. Put b =

√
1− a∗a (using holomorphic

functionnal calculus). We have b = b∗ and a∗a + b2 = 1. It follows that, for all
x ∈ J , we have (ax)∗(ax) + (bx)∗(bx) = x∗x. Whence ‖iJ(ax)‖ 6 ‖iJ(x)‖. In this
way, we associate to a a left multiplier of C∗(J). Using a similar construction, we
get a right multiplier of C∗(J), whence the result.

It follows that Aoα S is identified to a closed two-sided ideal of Aoα S̃.
Furthermore, the map a 7→ δ1a is a ∗-homomorphism from A into Aoα S̃.

It defines a homomorphism A→M(Aoα S).
(b) Let A′ be a subquotient of A such that for all e ∈ E, Be ≺ A′. The

algebra `1(S,B) is the same when considering the Be as being in EQ(A) or in
EQ(A′). If S is unital, then we may take A′ = B1 (where 1 is the unit element of
S).

Covariant representations. Until the end of the section, we fix an inverse
semigroup S with the set of idempotents E and an action (B,α) of S on a C∗-
algebra A, and examine the representations of the crossed product Aoα S. For
e ∈ E, we denote by qe : A→M(Be) the natural map.
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5.6. Definition. A covariant representation of (A,S, α) on a Hilbert mod-
ule H (over some C∗-algebra C) is a pair (π, σ), where π : A → L(H) and
σ : S → L(H) are ∗-representations such that, for all u ∈ S, a, b ∈ A satisfy-
ing qu∗u(a) ∈ Bu∗u and αu(qu∗u(a)) = quu∗(b) we have

(5.1) π(b)σ(u) = σ(u)π(a).

5.7. Theorem. (a) Let (π, σ) be a covariant representation of (A,S, α) on a
Hilbert module H. There is a unique representation Π : Aoα S → L(H) satisfying
Π(δuqu∗u(a)) = σ(u)π(a), for all u ∈ S, a ∈ A such that qu∗u(a) ∈ Bu∗u.

(b) Conversely, every representation Π of Aoα S on a Hilbert space H is of
the above form.

Proof. (a) Let u, v ∈ S, x ∈ Bu∗u, and y ∈ Bv∗v. Take a, b, b′ ∈ A such
that qu∗u(a) = x, qv∗v(b′) = y, and qvv∗(b) = αv(y). Note that, by property (5.1),
Π(δvy) = π(b)σ(v).

In particular, Π
(
(δvy)∗

)
= σ(v∗)π(b∗) = Π(δvy)∗.

Put e = v∗u∗uv. We have x ¦ αv(y) = qu∗uvv∗(ab); let also c ∈ A be such
that qv∗u∗uv(c) = αv∗u∗u(x ¦ αv(y)). We have

Π
(
(δux)(δvy)

)
= Π

(
δuvqv∗u∗uv(c)

)

= σ(uv)π(c)

= σ(u)σ(u∗uv)π(c) writing uv = u(u∗uv)

= σ(u)π(ab)σ(u∗uv) by property (5.1)

= σ(u)π(ab)σ(u∗u)σ(v)

= σ(u)σ(u∗u)π(ab)σ(v) by property (5.1)

= (σ(u)σ(u∗u)π(a))(π(b)σ(v))

= Π(δux)Π(δvy).

(b) Let now H be a Hilbert space and Π : Aoα S → L(H) be a representa-
tion. Up to replacing H by Π(Aoα S)H we may assume that Π is nondegenerate.
It uniquely extends to a representation, denoted by Π̃, of Aoα S̃, in which Aoα S

is an ideal (Remark 5.5 (a)). Now x 7→ δ1x is an embedding of A in Aoα S̃. Put
π(a) = Π(δ1a). In this way, we get a representation of A.

The construction of σ is a consequence of the following lemma:

5.8. Lemma. Let u ∈ S. For any approximate identity (aλ) of Bu∗u, the
net Π(δuaλ) converges ∗-strongly in L(H) to a partial isometry.

Proof. Let (ei,j)16i,j62 denote the matrix unit of M2(C). The map ju :
Bu∗u ⊗M2(C) → A ⊗M2(C) given by the formulae ju(x ⊗ e1,1) = δu∗ux ⊗ e1,1,
ju(x⊗e2,1) = δux⊗e2,1, ju(x⊗e1,2) = xδu∗⊗e1,2, and ju(x⊗e2,2) = αu(x)δuu∗⊗e2,2

is a ∗-homomorphism. We deduce a ∗-representation Π′u =
(
Π ⊗ idM2(C)

) ◦ ju :
Bu∗u ⊗M2(C) → L(H)⊗M2(C) = L(H ⊕H).

It is now obvious that the net Π′u(aλ⊗ e2,1) converges ∗-strongly to a partial
isometry, and the lemma follows.



270 Mahmood Khoshkam and Georges Skandalis

For u ∈ S, we let σ(u) be the strong-∗-limit of Π(δuaλ), where (aλ) is an
approximate unit for Bu∗u.

For u, v ∈ S, let (aλ) and (bλ) be bounded approximate identities of Bu∗u and
Bvv∗ respectively. Put e = u∗uvv∗. Consider the natural maps q : Bu∗u →M(Be),
and q′ : Bvv∗ →M(Be). For x ∈ Be, the net

(
q(aλ)q′(bλ)x

)
converges to x (since

Be = Bvv∗ ∧Bu∗u and (aλ) is bounded). In the same way, the net (xq(aλ)q′(bλ))
converges to x i.e. q(aλ)q′(bλ) = aλ ¦ bλ is an approximate identity of Be; finally(
αv∗u∗u

(
aλ ¦ bλ)

)
is an approximate identity of Bv∗u∗uv, and Π

(
(δuaλ)(bλδv)

)
converges to σ(uv) by Lemma 5.8. Using again Lemma 5.8 and the boundedness
of the nets (aλ) and (bλ), we see that Π

(
(δuaλ)(bλδv)

)
converges to σ(u)σ(v), so

that σ(uv) = σ(u)σ(v), and σ is a representation of S. As the σ(u)’s are partial
isometries, σ is a ∗-representation of S.

Let u ∈ S and a, b ∈ A with qu∗u(a) ∈ Bu∗u and quu∗(b) = αu ◦ qu∗u(a).
We have δuaλδ1a = δua

λqu∗u(a), hence the net (δuaλδ1a) converges in norm to
δuqu∗u(a) (in Aoα S). Therefore,

(5.2) Π(δuqu∗u(a)) = limΠ(δuaλδ1a) = σ(u)π(a).

Also, δ1bδuaλ = δuαu∗quu∗(b)aλ = δuqu∗u(a)aλ, and hence the net (δ1bδuaλ) con-
verges in norm to δuqu∗u(a) (in Aoα S), whence

(5.3) Π(δuqu∗u(a)) = limΠ(δ1bδuaλ) = π(b)σ(u).

From formulas (5.2) and (5.3) it follows that (π, σ) is a covariant representation
of (A,S, α). Moreover, the corresponding representation of Aoα S will be Π by
formula (5.2).

Remark. Note that (b) needs not be true if H is a Hilbert module and not
a Hilbert space: the δu’s need not be multipliers of Aoα S (e.g. if A and S are
unital and Be is not unital), whence the representation of Aoα S on itself by left
multiplication does not give rise to a representation of S.

Let (π, σ) be a covariant representation of (A,S, α) on a Hilbert module H.
Note that, for all e ∈ A and a ∈ A such that qe(a) ∈ Be, we have σ(e)π(a) =
π(a)σ(e) (by formula (5.1)). If moreover qe(a) = 0, we find π(a)σ(e) = 0. It
follows that there is a representation πe : Be → L(σ(e)H) satisfying πe ◦ qe(a) =
π(a) :σ(e)H for each a ∈ A such that qe(a) ∈ Be.

5.9. Proposition. Let (π, σ) be a covariant representation of (A,S, α) on
a Hilbert module H and let Π : Aoα S → L(H) be the associated representation.

(a) If Π is non degenerate, the representations π and σ are nondegenerate
and π is uniquely determined by Π.

(b) Assume that the following two conditions are satisfied:
(i) the representation σ : C∗(S) → L(H) is nondegenerate;
(ii) for each e ∈ E, the representation πe : Be → L(σ(e)H) given by

πe ◦ qe(a) = π(a) :σ(e)H for each a ∈ A such that qe(a) ∈ Be is nondegenerate;
then Π is nondegenerate.

(c) If H is a Hilbert space and Π is nondegenerate, one may choose uniquely
σ in such a way that condition (ii) is satisfied.

Proof. (a) The span of Π(δuqu∗u(a))ξ with u ∈ S, a ∈ A such that qu∗u(a) ∈
Bu∗u and ξ ∈ H is dense in H. Since Π(δuqu∗u(a))ξ = σ(u)π(a)ξ, it follows
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immediately that σ is nondegenerate. Also Π(δuqu∗u(a))ξ = π(b)σ(u)ξ, where
b ∈ A is such that quu∗(b) = αu(qu∗u(a)), so that π is nondegenerate.

Let (π′, σ′) be another covariant representation associated with Π. Extend
σ′ to S̃ by setting σ′(1) = 1. The corresponding representation Π̃ of Aoα S̃ is the
unique extension of the non degenerate representation Π, since Aoα S is an ideal
in Aoα S̃ (Remark 5.5 (a)). For a ∈ A, we have π′(a) = σ′(1)π′(a) = Π̃(δ1a).
Therefore, Π determines π.

(b) If conditions (i) and (ii) are satisfied then for all e ∈ E, Π(δeBe)H =
σ(e)H (by condition (ii)), whence Π(A)H contains σ(e)H; as the representation
σ is non degenerate, the Hilbert space spanned by the σ(e)H is dense in H. It
follows that the representation Π is non degenerate.

(c) One may choose σ to be given as in Lemma 5.8. Then for every e ∈ E,
and every approximate identity (aλ) of Be, σ(e) is the strong-∗-limit of πe(aλ)σ(e),
i.e. the representation πe is nondegenerate.

On the other hand, let u ∈ S, choose an approximate identity (bλ) of {x ∈
A; qu∗u(x) ∈ Bu∗u}. Then aλ = qu∗u(bλ) is an approximate identity of Bu∗u.
If the representation πu∗u is nondegenerate, then σ(u∗u) is the strong-∗-limit of
πu∗u(aλ)σ(u∗u) = Π(aλδu∗u) = Π(δu∗ua

λ). Therefore σ(u) is the strong-∗-limit of
σ(u)Π(δu∗ua

λ) = σ(u)σ(u∗u)π(bλ) = Π(δuaλ). In other words, σ(u) is given by
Lemma 5.8.

Remark. Note that, in general, the representation σ is not determined by
Π: take for instance S = E = {1, e}, B1 = A and Be = {0}. Then σ(e) can be
taken to be any projection in L(H)!

Regular representations and the reduced crossed product. Let e ∈ E,
and Se = {u ∈ S : u∗u = e}. Consider the Hilbert Be-module `2(Se;Be) =
Be ⊗ `2(Se). For x ∈ A, u ∈ S and ξ ∈ `2(Se;Be), we put

Le(a)ξ(u) = αu∗(quu∗(a))ξ(u) and (λe(u)ξ)(v) =
{
ξ(u∗v) if vv∗ 6 uu∗,
0 otherwise.

5.10. Proposition. For every e ∈ E, the pair (Le, λe) is a nondegenerate
covariant representation of (A,S, α) on the Hilbert A-module `2(Se;Be).

Proof. Let u ∈ S and a, b ∈ A be such that qu∗u(a) ∈ Bu∗u and quu∗(b) =
αu(qu∗u(a)). Let ξ ∈ `2(Se;Be) and v ∈ Se.

If vv∗ 6 uu∗, we have

(λe(u)Le(a)ξ)(v) = (Le(a)ξ)(u∗v) = αv∗u(qu∗vv∗u(a))ξ(u∗v)
and

(Le(b)λe(u)ξ)(v) = αv∗(qv∗v(b))(λe(u)ξ)(v) = αv∗(qvv∗(b))ξ(u∗v).

With the notations qf , qf and αw that we already used in the proof of Proposi-
tion 5.3, we have

αv∗u(qvv∗(a)) = αv∗ ◦ αvv∗u ◦ qu∗vv∗u ◦ qu∗u(a) = αv∗ ◦ qvv∗(αu(qu∗u(a)))

= αv∗ ◦ qvv∗(quu∗(b)) = αv∗(qvv∗(b)).

If vv∗ 66 uu∗, then (λe(u)Le(a)ξ)(v) = (Le(b)λe(u)ξ)(v) = 0.
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5.11. Definition. The reduced crossed product of the action α, denoted by

Aoα,r S, is defined to be the quotient of Aoα S under the family of representations
associated with the nondegenerate covariant representations (Le, λe) for e ∈ E.

The crossed product AoE. Let us consider the case where S = E consists

only of idempotents.

5.12. Proposition. For any e ∈ E, the closed linear span Je in AoαE of

{δfx : f ∈ E, f 6 e, x ∈ Bf} is a closed two sided ideal of AoαE. For e, f ∈ E,

we have Jef = Je ∩ Jf .

Proof. By definition Je is the closed linear span of {δfx : f ∈ E, f 6 e, x ∈
Bf}. For f, g ∈ E and x ∈ Bf , y ∈ Bg, we have (δfx)(δgy) = δfg(x ¦ y). It follows
that if f 6 e or g 6 e, then (δfx)(δgy) ∈ Je, whence Je is an ideal.

Let e, f, e′, f ′ ∈ E such that e′ 6 e and f ′ 6 f , x ∈ Be′ and y ∈ Bf ′ . One has
e′f ′ 6 ef , whence (δe′x)(δf ′y) = δe′f ′(x ¦ y) ∈ Jef . It follows that Je ∩ Jf ⊂ Jef .

The opposite inclusion is obvious.

Note that, if (aλ) is an approximate identity of Be, then for all f ∈ E such
that f 6 e and x ∈ Bf , the nets (qf (aλ)x) and (xqf (aλ)) converge to x, whence
(δeaλ) is an approximate identity of Je.

In the case when the Be’s are quotients, we can give a rather explicit descrip-

tion of AoαE. Recall that C∗(E) is a commutative C∗-algebra that we identify
with a C0(X), where X = G

(0)
S . Under this identification, the elements of E are

{0, 1}-valued functions on X.

5.13. Proposition. We write C∗(E) = C0(X). For x ∈ X, let Ix be the

ideal in A generated by ker qe for e ∈ E with e(x) = 1. Put I = {ϕ ∈ C0(X;A) :

∀x ∈ X, ϕ(x) ∈ Ix}. There is a natural embedding

Ψ : AoαE → C0(X;A)/I.

If the Be’s are quotients, i.e. if for all e ∈ E, qe(A) = Be, then Ψ is an isomor-

phism.

Proof. For e ∈ E and x ∈ X such that e(x) = 1, let qx,e : Be → A/Ix be the
composition Be ↪→ A/ ker qe → A/Ix (since ker qe ⊂ Ix).
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Let e ∈ E and a ∈ A be such that b = qe(a) ∈ B. Define Ψ(δeb) to be the

image in C0(X;A)/I of δe ⊗ a ∈ C∗(E) ⊗ A = C0(X;A). In other words, for

x ∈ X, we have:
(
Ψ(δeb)

)
(x) =

{
0 if e(x) = 0,
qx,e(b) if e(x) = 1.

This writing shows that Ψ(δeb) only depends on b (and not on a). It follows also
easily that Ψ extends to a ∗-homomorphism from `1(E,B) to C0(X;A)/I, and

thus defines a ∗-homomorphism Ψ : AoαE → C0(X;A)/I.

Let now Π be an irreducible representation of AoαE on a Hilbert space H,

and let (π, σ) be the corresponding covariant representation of (A,E, α) satisfying

condition (b)(ii) of Proposition 5.9. For any a ∈ A and e ∈ E, we have π(a)σ(e) =

σ(e)π(a). One deduces immediately that σ(e) commutes with Π(AoαE), whence

it is a scalar. Therefore, it is a character of C∗(E): there exists x ∈ X such that

σ(e) = e(x). Let then e ∈ E be such that e(x) = 1. By condition (b)(ii) of

Proposition 5.9, there is a non degenerate representation πe of Be on σ(e)H = H

such that, for every a ∈ A satisfying qe(a) ∈ Be, we have π(a) = πe(qe(a)). It
follows that π(a) = 0 for all a ∈ Ix, whence there is a representation π′ of A/Ix
such that Π = π′ ◦ hx ◦Ψ, where hx : C0(X;A)/I → A/Ix is the evaluation map.

It follows that Ψ is one to one.

Assume now that the Be’s are quotients. Let t be the trivial action of E

on A given by t(e) = (A, id, A) for all e ∈ E. We obviously have AotE =

A⊗ C∗(E) = C0(X,A). Moreover we have a natural surjective ∗-homomorphism

p : C0(X,A) = AotE → AoαE which maps δea into δeqe(a). Now Ψ ◦ p is the

quotient map C0(X,A) → C0(X,A)/I (as checked on generators), whence Ψ is

onto.

Let x ∈ X. Denote by hx : C0(X,A)/I → A/Ix the evaluation map. It is

easily seen that, for e ∈ E, the map hεe ◦Ψ : AoαE → A/ ker qe ⊂M(Be) is the

regular representation associated with e. For x ∈ X and f ∈ C0(X;A)/I, hx(f)

is the limit of hεe(f) along the net Fx. It follows that the regular representations

form a faithful family of AoαE. In other words,

AoαE = Aoα,rE.
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6. RELATION WITH CROSSED PRODUCTS IN THE SENSE OF SIEBEN
AND WITH GROUPOID CROSSED PRODUCTS

Let us briefly recall Sieben’s construction in [19]. As mentioned before, he de-
fines an action of an inverse semigroup S on a C∗-algebra A to be a semigroup
homomorphism β : S → PAut(A).

On L = {ψ ∈ `1(S,A) : ψ(u) ∈ Iuu∗}, where β(u) = (Iuu∗ , βu, Iu∗u), define
the convolution by:

(ϕ ? ψ)(w) =
∑

uv=w

βu[βu∗(ϕ(u))ψ(v)],

and the involution by
ϕ∗(u) = βu(ϕ(u∗)∗).

The crossed product of A by S is the closure of a quotient of L under the norm
induced by taking supremum over a family of representations (called covariant
representations — cf. [19], Definition 3.4) of the pair (S,A). This condition is
more restrictive than the one we used (Definition 5.6). In order not to mix these
definitions, a covariant representation in Sieben’s sense will be called hereafter
strictly covariant.

6.1. Definition. (cf. [19], Definition 3.4) A strictly covariant representa-
tion of (A,S, α) on a Hilbert space H is a pair (π, σ), where π : A → L(H) and
σ : S → L(H) are ∗-representations such that:

(a) for all u ∈ S and a ∈ Iu∗u we have π(βu(a))σ(u) = σ(u)π(a);
(b) for all e ∈ E, σ(e) is the projection onto π(Ie)H.

It is very easily seen that every strictly covariant representation is covariant
in the sense of 5.6. On the other direction, every representation of L satisfies
condition (a) in Definition 6.1, but not necessarily condition (b).

To see the exact relation between our notion of crossed product and the one
defined by Sieben, note that when B and C are ideals and D = B ∧ C = B ∩ C,
we have x ¦ y = qD,B(x)qD,C(y) = xy, for x ∈ B and y ∈ C. Since αv∗u∗u is the
restriction of αv∗ , our convolution formula in Proposition 5.3 reduces in this case
to

(ϕ ? ψ)(w) =
∑

uv=w

αv∗(ϕ(u)αv(ψ(v))).

It follows that the map ϕ 7→ ψ where ψ(u) = βu(ϕ(u)) is a ∗-isomorphism from
our `1(S,B) onto Sieben’s L. However, his crossed product is a quotient of the one
defined here. In particular, Sieben proves that: AoE ∼= A (cf. [19], Corrolary 4.6).

Here is a result which relates our construction to Sieben’s.

6.2. Theorem. Let α : S → SQ(A) be an action of S on a C∗-algebra
A. Associated to α is a natural action β of S on AoαE by partial automor-
phisms. The crossed product Aoα S is naturally isomorphic to the crossed product
in Sieben’s sense of AoαE by β.

The action β is defined in the following obvious lemma, where the Je’s are
those defined in Proposition 5.12.
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6.3. Lemma. (a) For u ∈ S, there is a ∗-isomorphism βu : Ju∗u → Juu∗

such that, for all f ∈ E satisfying f 6 u∗u and for all x ∈ Bf , we have βu(δfx) =
δufu∗αu:Bf

(x).
(b) For all u ∈ S and e ∈ E, such that e 6 u∗u, the morphism βue is the

restriction to Be of βu.
(c) If u, v ∈ S are such that u∗u = vv∗, we have βu ◦ βv = βuv.

From Lemma 6.3, it follows that the map β : u 7→ (Juu∗ , βu, Ju∗u) is an
action of S by partial automorphisms.

Let now Π be a nondegenerate faithful representation of Aoα S. Associated
to Π is a covariant representation (π, σ) of (A,S, α) satisfying the conditions (b)(i)
and (b)(ii) of Proposition 5.9. Let π be the restriction of Π to AoαE.

6.4. Lemma. The pair (π, σ) is a strictly covariant representation of the
triple (AoαE,S, β).

Proof. Let u ∈ S, f ∈ E and x ∈ Bf . Assume that f 6 u∗u. Let a, b ∈
A such that qf (a) = x and qufu∗(b) = αuf (x). We have π(δfx) = Π(δfx) =
σ(f)π(a). Moreover π(βu(δfx)) = Π(δufu∗αuf (x)) = σ(ufu∗)π(b) = π(b)σ(ufu∗).
Therefore

π(βu(δfx))σ(u) = π(b)σ(ufu∗)σ(u) = π(b)σ(uf) = σ(uf)π(a) = σ(u)π(δfx).

Moreover, by condition (b)(ii) of Proposition 5.9, the range of the projection σ(e)
is πe(Be)σ(e)H, which contains π(Je)H. The opposite inclusion holds for any
covariant pair.

Proof of Theorem 6.2. Let A denote the crossed product in the sense of
Sieben of AoαE by the action β. It follows from Lemma 6.4 that there is a
representation Π′ of A in H characterized by the formula Π′(δuz) = σ(u)π(z) for
u ∈ S and z ∈ Ju∗u. In particular, Π′(δu(δfx)) = σ(u)σ(f)x = Π(δufx) for f ∈ E
such that f 6 u∗u and x ∈ Bf . Hence Π′(A) ⊂ Π(Aoα S). Since Π is faithful,
there exists a unique ∗-homomorphism χ : A → Aoα S such that Π′ = Π ◦ χ.
Note that χ(δu(δfx)) = δufx for u ∈ S, f ∈ E such that f 6 u∗u and x ∈ Bf .
Taking f = u∗u we immediately see that χ is surjective.

Let now (π, σ) be a strictly covariant representation of (AoαE,S, β). Denote
by Π′ the corresponding representation of A. We may further assume that Π′ is
nondegenerate, whence π is nondegenerate. Corresponding to it is a covariant
representation (π, τ) of (A,E, α), satisfying condition (b)(ii) in Proposition 5.9.
Let e ∈ E and (aλ) an approximate identity of Be. It follows from the construction
of τ (cf. Lemma 5.8) that π(δeaλ) converges strongly to τ(e). On the other hand,
(δeaλ) is an approximate identity of Be; whence by condition (b) in Definition 6.1,(
π(δeaλ)

)
converges strongly to σ(e).

Let u ∈ S and a, b ∈ A such that qu∗u(a) ∈ Bu∗u and αu(qu∗u(a)) = quu∗(b).
Then δuu∗quu∗(b) = βu(δu∗uqu∗u(a)). Whence,

π(b)σ(u) = π(b)σ(uu∗)σ(u) = π(b)τ(uu∗)σ(u) = π(δuu∗quu∗(b))σ(u)

= σ(u)π(δu∗uqu∗u(a)) = σ(u)π(a).

In other words, (π, σ) is a covariant representation of (A,S, α). For u ∈ S,
f ∈ E such that f 6 u∗u and x ∈ Bf we have Π′(δu(δfx)) = σ(u)π(δfx) =
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σ(u)σ(f)π(a) = σ(uf)π(a), for every a ∈ A such that qf (a) = x. In other words,
we have Π′ = Π ◦ χ, where Π is the representation of Aoα S associated with the
covariant representation (π, σ).

This proves that every strictly covariant representation of (AoαE,S, β) fac-
tors through χ, whence χ is faithful.

The case of quotients.

6.5. Theorem. Let S be an inverse semigroup with the set of idempotents
E, and (B,α) an action of S on a C∗-algebra A. We assume the Be’s are quotients:
in other words, we assume that for all e ∈ E, qe(A) = Be.

(a) The crossed product AoαE is naturally endowed with an action of the
groupoid G associated with S.

(b) We have natural isomorphisms

Aoα S ∼= (AoαE)oG and Aoα,r S ∼= (AoαE)orG.

This result is a consequence of Theorem 6.2 together with [16]. Before pro-
ceeding with the proof, let us recall some facts from [16]. If G is a locally compact
r-discrete groupoid, to any action α of G on a C∗-algebra A there corresponds
naturally an action by partial automorphisms of the inverse semigroup SG of open
G-sets ([16], Section 5). We then have an isomorphism of AoαG with the crossed
product of A by the action of SG in the sense of [19] (cf. [16], Section 7). Moreover,
an action by partial automorphisms of the inverse semigroup SG on a C∗-algebra
A comes from an action of G if and only if the algebra A is, in a compatible way,
a C0(G(0))-algebra ([16], Section 6).

Note that all these are also true if one replaces SG by any of its full sub-
semigroups. In particular, this holds for any inverse semigroup S considered as a
full sub-semigroup of the groupoid GS . Indeed, the map u ∈ S 7→ Ou defines an
embedding of S into SGS as a full sub-semigroup (see 2.6 (b)).

Proof. The algebra C0(X) = C∗(E) is generated by projections δe, e ∈ E. It
acts on AoαE by multiplication (Proposition 5.13). It follows now from [16] that
there is an action of G on AoαE such that the crossed product (AoαE)oG is
isomorphic to the crossed product in the sense of [19] of AoαE by S; by Theorem
6.2, the latter is isomorphic to Aoα S.

In the light of Proposition 5.13, it is quite easy to give the isomorphism

Φ : Aoα S → (AoαE)oG
on the generators: let u ∈ S and b ∈ Bu∗u. Then Φ(δub) is the image in A ⊂
(AoαE)oG of the function χuϕ

s
b, where χu is the characteristic function of the

compact (Hausdorff) open set Ou (cf. 2.6 (b)) and ϕs
b is the function which to

γ ∈ Ou associates the class of b modulo Is(γ). Note that since s(γ) ∈ Fu∗u, we
have Is(γ) ⊃ ker qu∗u, whence the class of b modulo Is(γ) is well defined.

Let us now turn to the reduced crossed product. Consider the algebra D′
associated with the action of G = GS in D = AoαE introduced in 3.7. By
definition, D′ is a subalgebra of

∏
x∈X

Dx; let px : D′ → Dx be the natural eval-

uation map. The reduced crossed product (AoαE)orG is defined thanks to
a faithful representation Λ on the Hilbert D′-module L2(G, ν;D′). For x ∈ X,
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we also put Λx = Λ ⊗px 1. Let e ∈ E and εe the corresponding element of
X (2.6 (c)). Following the above identifications, one checks that Λεe ◦ Φ is
the regular representation of Aoα S associated with the covariant representation
(Le, λe) (Proposition 5.10). We have thus constructed a surjective homomorphism
Ψ : (AoαE)orG→ Aoα,r S.

We have to show that this homomorphism is an isomorphism, i.e. that the
family (Λεe

)e∈E is a faithful family of representations of (AoαE)orG.
Recall some facts from [9] (see also [15]). An element x ∈ X is determined

by the set Fx = {e ∈ E : e(x) = 1}. Moreover, Fx is a directed ordered set by
p¿ q if q 6 p, and the net (εe)e∈Fx converges to x.

By Proposition 5.13, Dx = A/
( ⋃

e∈Fx

ker qe
)
. In particular, for e ∈ E we have

Dεe
= Be. For x ∈ X and e ∈ Fx we denote by qx,e : Be → Dx the natural

quotient map.

6.6. Lemma. For every x ∈ X and b ∈ D′, we have px(b)= lim
e∈Fx

qx,e(pεe
(b)).

Proof. The proof is similar to Lemma 3.4 of [9].
It is enough to check this equality on generators, i.e. if b is the restriction to

X of some Φ(δua) for u ∈ S and a ∈ Bu∗u. In that case, for z ∈ X, we have

pz(b)(z) =





0 if z 6∈ Ou∗u,

0 if z ∈ Ou∗u, ˜(u, z) 6= z,
qz,u∗u(a) if z ∈ Ou∗u, ˜(u, z) = z,

where ˜(u, z) denotes the class of (u, z) in G.
If x 6∈ Ou∗u, then as u∗u 6∈ Fx. For every e ∈ Fx we have e 66 u∗u, whence

(u∗u)(εe) = 0, i.e. εe 6∈ Ou∗u; therefore 0 = qx,e(pεe(b)) converges to 0 = px(b).
Second, take x ∈ Ou∗u, but ˜(u, x) 6= x. Then, for all e ∈ Fx, we have

εp 6∈ Ou∗u, for otherwise we get that ˜(u, x) = ˜(e, x) which is in contradiction with
˜(u, x) 6= x; therefore 0 = qx,e(pεe(b)) converges to 0 = px(b).

Finally, assume ˜(u, x) = x. Then, by definition of G, there exists e0 ∈ Fx

such that ue0 = e0. For all e ∈ Fx with e0 ¿ e, we have ue = e whence
˜(u, εe) = εe. Therefore pεe(b) = qεe,u∗u(a) and px(b) = qx,u∗u(a). It follows that

for e ∈ Fx with e0 ¿ e, we have qx,e(pεe(b)) = px(b).

End of the proof of Theorem 6.5. By Lemma 6.6, the family of representations
(pεe)e∈E of D′ is faithful. It follows that the family of representations (T 7→
T ⊗pεe

1)e∈E of Λ((AoαE)oG) ⊂ L(L2(G, ν;D′)) is faithful (cf. Lemma 2.1,
[9]). In other words, the family (Λεe)e∈E is a faithful family of representations of
(AoαE)orG.

6.7. Example. We end by the computation of AoS in the case of Exam-
ple 5.2 (c). In this case, S is finite. By Property 2.3 (c), the points of GS are
closed: it follows that the injection with dense range from S into GS given by
2.6 (c) is onto, i.e. S ∼= GS and E ∼= S. It follows immediately that we have an
isomorphism

C∗(GS) = C∗r (GS) = C∗r (S) = C∗(S) ∼= M2(C)⊕ C⊕ C.
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Now consider the action of S on the C∗-algebra defined in Example 5.2 (c).
In order to better understand the algebra Aoα S, we will use the sub-semigroup
S1 = S \ {1} with set of idempotents E1 = {0, e, f}. First note that the map
(a, b) 7→ aδe + bδf defines an isomorphism J ⊕ A/J ∼= K ⊕ K ∼= AoαE1. It
follows that we have an isomorphism AoS1

∼= M2(K). Note now that S = S̃1

and E = Ẽ1. We thus get extensions

0 → K⊕K → AoαE → A→ 0 and 0 →M2(K) → Aoα S → A→ 0.

Put moreover E2 = {1, e}. An easy check shows that

AoE2 = {(x, y) ∈ A⊕A : x− y ∈ J} ∼= ( ˜K ⊕K)⊗K.
Using the exact sequence 0 → Ao{e} → AoE2 → A → 0, we find a commuting
diagram

0 → K → AoE2 → A → 0
↓ ↓ ‖

0 → M2(K) → Aoα S → A → 0.

It follows that in the Busby invariant A →M(M2(K))/M2(K) associated to this
exact sequence, the image of J is 0 and the image of any nonzero projection in
A/J is nonzero, therefore lifts to an infinite dimensional projection in M(M2(K)).
We deduce an isomorphism

Aoα S ∼= ( ˜K ⊕K)⊗K.
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and Statistics UFR de Mathématiques - UMR 7586
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