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ABSTRACT. We develop a new notion of action of inverse semigroups on C*-
algebras. The full and the reduced crossed product of a C*-algebra by an
inverse semigroup are developed. This construction unifies several notions of
crossed product by inverse semigroups. Moreover, the relation between the
crossed product by an inverse semigroup S and by its associated groupoid is
investigated.
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1. INTRODUCTION

This paper is, in some way, a continuation of our previous work ([9]), where we
studied the regular representation of groupoids and used it for applications to
inverse semigroups.

In the present paper, we include actions into our setting. We develop a new
notion of action of an inverse semigroup on a C*-algebra and construct associated
full and reduced crossed products. This includes various forms of crossed products
by inverse semigroups as special cases. We also investigate the relation between the
crossed product of a C*-algebra by an inverse semigroup, and the crossed product
by the groupoid associated by A. Paterson (cf. [15]) with the inverse semigroup.

Actions of inverse semigroups on a C*-algebra A and associated construc-
tions of crossed products appear in the literature in several forms, including the
work of Nica in terms of localizations ([14]), partial actions of discrete groups of
McClanahan ([13]) and the construction of Sieben ([19]). The later two are based
on the notion of partial automorphisms (i.e. isomorphisms between ideals of A)
due to Exel (]6]).
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If one wants to include the semi-direct product of inverse semigroups, a
notion of crossed product starting with a homomorphism S — End(A) needs to
be developed. In that case, isomorphisms of quotients of A rather than ideals are
involved. We define a notion of action of inverse semigroups on C'*-algebras for
which both notions of partial automorphisms and endomorphisms are included
as special cases. Our construction is based on subquotients. We introduce a set
EQ(A), consisting of quotients J/I, where I C J are ideals of A. The triples
(B,a,C), where A, B € EQ(A), and « : C — B is a #-isomorphism, are then
shown to form an inverse semigroup SQ(A). An action of an inverse semigroup S
on A is now defined to be a semigroup homomorphism S — SQ(A). Since ideals
are subquotients, an action by partial automorphisms is a particular case of our
definition.

We define the full crossed product in our case as being the enveloping C*-
algebra A xS of a natural convolution algebra. We then compute the representa-
tions of this crossed product: we establish a one to one correspondence between
the representations of A xS and naturally defined covariant representations of
the pair (5, A). In particular, we introduce a family (L¢, A\°).cp of covariant rep-
resentations and define the reduced crossed product A X, S to be the quotient of
A x S under this family of representations. To the best of our knowledege, such a
reduced crossed product by an inverse semigroup was not defined before.

In the case of an action by partial automorphisms, our construction differs
from the one of McClanahan or Sieben ([13], [19]). However, our construction
is related to Sieben’s in a more intricate way: It turns out that if an inverse
semigroup S with idempotent set E acts on a C*-algebra A, then the crossed
product A x F is endowed with a new action of S by partial automorphisms. We
establish a #-isomorphism between the crossed product in the sense of Sieben of
A x E by this new action, and the full crossed product A x S (in our sense).

A natural correspondence between groupoids and inverse semigroups was
constructed by J. Renault ([17]), who associated to each r-discrete groupoid G
the inverse semigroup of open G-sets, and compared the representations of these
objects. In [16], J. Quigg and N. Sieben establish a correspondence between actions
of an r-discrete groupoid G on a C*-algebra and actions by partial automorphisms
of the associated inverse semigroup; they prove that the resulting (full) crossed
products by the inverse semigroup (in the sense of [19]) and by the groupoid G
are naturally isomorphic.

In the reverse direction, A. Paterson associates to each inverse semigroup S
a locally compact r-discrete groupoid Gg, such that the corresponding groupoid
and inverse semigroup C*-algebras (both full and reduced) are *-isomorphic (cf.
[15]; see also [9]). We investigate here the connection between crossed products
by S and Gg: if the action of S is by isomorphisms of quotients, then Gg acts on
A X E (where E C S is the set of idempotents of S). Thus, using the results of
[16], we deduce an isomorphism (A x E) x Gs = A x S. Moreover, we establish a
natural isomorphism (A x E) 3, Gg = A %, S.

Here is a summary of the paper.

In Section 2, we collect basic facts and notation about groupoids, inverse
semigroups and associated C*-algebras.

In Section 3, we review groupoid actions and crossed products of C*-algebras
by actions of groupoids. In particular, we introduce the regular covariant repre-
sentation (in a suitable Hilbert module) and reduced crossed products.
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In Section 4, we study the inverse semigroup SQ(A) of subquotients of a
C*-algebra A.

The action of an inverse semigroup S is defined to be a semigroup homomor-
phism « from S into SQ(A). The corresponding full and reduced crossed products
of A by the action « of S are defined in Section 5, where we also compute the
representations of the full crossed product. We end this section by computing
these crossed products in the case that S(= E) consists of idempotents.

In Section 6 we establish the above mentionned connection between crossed
products in our sense and the construction of Sieben; in the case of quotients, using
this connection together with the work of Quigg and Sieben, we relate the crossed
product by an inverse semigroup S with a crossed product with the groupoid Gg.

2. PRELIMINARIES

In this section we collect definitions, results, facts, and conventions to be used in
subsequent sections.

2.1. Throughout the paper the word “ideal” will mean “closed two sided ideal”,
unless otherwise indicated. We denote by M(A) the multiplier algebra of a C*-
algebra A.

2.2. INVERSE SEMIGROUPS. We refer to [7], [5], [15], [11] for the basic definitions
and properties of inverse semigroups and associated C*-algebras.

A semigroup S is said to be an inverse semigroup if for each u € S there
exists a unique element u* € S such that vu*u = v and v*uu* = u*. The set
of idempotens of S, to be denoted by Eg (or simply F) is a commutative sub-
semigroup of S. It is a partially ordered set and a semilattice under the relation:
e fifef =e,and e A f = ef. The partial ordering on S is given by u < v if
u = ve for some e € F.

The normed space ¢!(S) endowed with the operations

(fxg)w) =D flwg(v), [f*(u)= f(u)
is a Banach x-algebra. The full C*-algebra of S is the enveloping C*-algebra of
1(S). Tt is denoted by C*(S).
The reduced C*-algebra of S, denoted by C}(S), is the image of C*(S) under
the left regular representation u +— ), of S on £2(S) defined by

(Aub)(v) = {g(U*U) if vo* < uu*,

0 otherwise.

2.3. GroupoIDs. We refer to [17], [2], [3], [4], [12], [1] and [9] for definitions
and main properties of groupoids and associated C*-algebras. Here we recall some
notation. Let G be a groupoid, then:

— GO will denote its space of units;
~5:G — GO and r : G — G denote respectively the source and range
maps;
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— G® denotes the set {(v,7) € G x G : s(y) = r(v)} of composable
elements;

~given z C GO weset G, ={y€G:5(y) =z} and G* = {y € G :r(y) =

A locally compact groupoid is a groupoid G endowed with a topology such
that:

(a) the groupoid operations (composition, inversion, source and range maps)
are continuous;

(b) the space of units G(9) is Hausdorff;

(c) each point of G has a compact (Hausdorff) neighborhood,;

(d) the range and source maps are open (cf. [9], Definition 1.1).

2.4. GROUPOID C*-ALGEBRAS. Let G be a locally compact groupoid. The full
C*-algebra of G is the enveloping C*-algebra of (the completion of) a normed
x-algebra A. If G is Hausdorff, A is C.(G) the space of continuous complex valued
functions with compact support on G.

If G is not Hausdorff the above definition must be modified. Following
Connes (cf. [3], [4]), A is defined to be the space of complex valued functions
on G spanned by functions which are continuous with compact support on an
open Hausdorff set of G extended by 0 elsewhere. Note that such a function is
generally not continuous on G.

In order to turn A into a normed algebra, we need a Haar system on G
(cf. [17]), i.e. a collection v = {v; },cqo of positive regular Borel measures on G
satisfying the following conditions:

(a) Support: for every x € G(¥), the support of v, is contained in Gy;
(b) Invariance: for all vy € G and f € A, [f(yy)dvz(y) = [f(v)dry(v),
where z = s(v1) and y = r(y1);

(c) Continuity: for each f € A the map z — [ f(v)dw,(y) is continuous.
(e

For z € X, we also note v* the measure on G defined by v*(f) = v,(f),

where f is the function v — f(y~1).
For f,g € A, put

) =T and (f*g)(y) = / Fr gl dva (),
Gy

where z = s(7y). The norm on A is defined by

11 = sup {mox ([ 10lav. [ 1767 am0) |
G G

z€G(0)

The full groupoid C*-algebra C*(G,v) (or C*(G) when there is no ambiguity
on the Haar system) is defined to be the enveloping C*-algebra of the Banach
x-algebra obtained by completion of A with respect to the norm || - ||;.

2.5. REGULAR REPRESENATION OF GROUPOIDS. Recall some constructions
from [9)].
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If G is a Hausdorff groupoid, then define a Cy(X)-valued scalar product on
A = C.(G) by letting (£,n) denote the restriction to X of £* xn € A; let the
right action of Cy(X) on A be given by £f(v) = &(7)f(s(7y)) (for f € Co(X) and
¢ € A). With these operations A is a pre-Hilbert Cy(X)-module. Let L?(G,v)
be its Hilbert module completion. The formula A\(f)§ = f x &, where f,£ € A,
extends to a representation A of C*(G) on L?(G,v) whose image is (*-isomorphic
to) the reduced C*-algebra of G, denoted by C;(G) (cf. [9], Theorem 2.3).

If G is not Hausdorff, this construction needs to be modified. One replaces
X by the spectrum Y of the C*-algebra B of Borel functions on X generated by
restrictions to X of elements of A. Since B contains the continuous functions on
X vanishing at oo, there exists a continuous map p : Y — X which is proper and
onto (cf. [9], Proposition 2.6). The analogue of L?(G,v) is constructed as follows.

Given &,n € A, let (&, n) = (£*xn)|x € Co(Y). The linear space A® Cy(Y)
is turned into a pre-Hilbert Cy(Y)-module and its (Hausdorff-)completion £ is a
Hilbert Cy(Y)-module (see 2.7 in [9]). The algebra C*(G) acts on € by A(f)(§ ®
9)=(fx&) g forall f,£ € Aand g € Cyp(Y). The image is again *-isomorphic
to CF(G) (ct. [9], Theorem 2.10).

2.6. THE GROUPOID ASSOCIATED WITH AN INVERSE SEMIGROUP. To each inverse
semigroup S is associated a locally compact groupoid G (cf. [15]; see also [9]). To
construct this groupoid, one first considers the spectrum X of the commutative
C*-algebra C*(E). An element e of Eg is then a 0, 1-valued continuous function
on X, i.e. the characteristic function of a compact open subset F, of X. Then Gg
is the quotient of {(u,x) € S x X : © € Fy-,} by the equivalence relation given
by (u,z) ~ (v,y) whenever = y and there exists e € E such that € F, and
ue = ve.
Here are some important facts about Gg (cf. [15]; see [9], Proposition 3.2).

(a) The clopen sets F, generate the topology of X.

(b) For w € S, we denote by O, the set of classes in Gg of {(u,z) : © €
Fu«u}. The space Gg itself is covered by the compact open subsets O,. The
restrictions of the source (respectively range) map is a homeomorphism s : O,, —
Fxy (respectively 7 : Oy — Fyuyx).

(¢) An element e € E defines a character on C*(F), whence an element
€e € X, by the formula

f(ge):{l 1fe<f,

0 otherwise
(for f € E). Moreover, for u € S, we let g, be the class of (u, &+, ). We thus have
an injection of S into Gg, which maps F into a dense subset of X = Gg)).

THEOREM. For any inverse semigroup S, we have the natural isomorphisms

C*(8) = C*(Gs) and CF(S) = CY(Gs).

2.7. C(X)-ALGEBRAS. (cf. [8]) (a) Let X be a locally compact (Hausdorff) space.
A Cp(X)-algebra is a C*-algebra B together with a morphism p from Cp(X) into
the center Z(M(B)) of the multiplier algebra of B such that p(Co(X))B = B. In
what follows, the letter p will be often omitted: we will consider B as a Cy(X)-
module, and write fb instead of p(f)b.

(b) Let B be a Cy(X)-algebra.
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— If © is an open subset of X, one puts Bg = Co(2)B. It is an ideal in B,
and a Cy(2) algebra.

—If F' is a closed subset of X, one puts Br = B/Bx\p.

— In particular, if z € X, one writes B, instead of By,y. The evaluation

morphisms p,, : B — B, define a morphism B — [][ B, which is injective.
reX
- IfY = FNQis alocally closed subset of X, one easily see that By =
(Br)a = (Bq)r only depends on Y (up to a canonical isomorphism). The C*-
algebra By is a Cy(Y") algebra. For Z locally closed in Y, we have (By)z = Bz.

(¢) The elements b € C.(X)B C B are said to have compact support relative
to the Cp(X)-structure on B. One may actually define the support of an element
b € X to be the closure in X of the set of x such that b, # 0.

(d) Let X,Y be locally compact spaces and f : X — Y a continuous map. To
any Cy(Y)-algebra B is associated a Cy(X)-algebra f*(B): the graph Gy C X XY
of f is naturally homeomorphic to X. We consider the Cy(X x Y)-algebra Cp(X)®
B and put f*(B) = (Co(X)®B)g,. We sometimes write f*(B) = Co(X)®c¢,v)B-
For z € X, we have (f*(B))z = By()-

(e) A morphism ¢ : A — B of Cy(X)-algebras is a Cp(X)-linear morphism.
It then defines a map ¢, : A, — B, for each x € X. On the other hand, the
family (p,) determines the morphism .

3. CROSSED PRODUCTS BY GROUPOIDS

In [18], Jean Renault defines actions of groupoids on C*-algebras and associated
crossed products. In [12], Section 3, Pierre-Yves Le Gall defines an action of a
groupoid on a C*-algebra D in a less restrictive sense than that of [18], in that the
algebra D does not need to be a continuous field over the space of units X, but a
Co(X)-algebra in the sense of Kasparov ([8]) recalled above. An equivalent setting
was also studied by Quigg and Sieben ([16], Section 3), who further constructed
the full crossed product. We define here the full and reduced crossed product in
the setting of [12] and [16].

We fix a locally compact groupoid G with a Haar system v and denote by X
its space G of objects. We keep the notation recalled in 2.3 and 2.4 above.

Let us first recall Le Gall’s definition of an action of a groupoid:

3.1. AN ACTION OF G on a C*-algebra D is given by a structure of Cy(X)-algebra
on D and an isomorphism of Cy(G)-algebras « : s*D — r*D, such that, for each
(71,72) € G® we have vy, = 0y, 0 1y

Note that for v € G, the map ., is by definition (cf. 2.7 (d) and (e)) a
*-isomorphism Dy — D;(y)-

3.2. If G is not Hausdorff, this definition has to be slightly modified by working
with Hausdorff open subsets of G: An action of G on a C*-algebra D is given by:
(a) a structure of Cy(X)-algebra on D with X and
(b) an isomorphism of Cy(U)-algebras ay : s|j;D — r|;;D, for every open
Hausdorff subset U of G,
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such that

(i) if U C V are Hausdorff open subsets of G, then «y is the restriction
of ay;

(ii) for each (y1,72) € G® we have a.y,, = .y 0 iy

Condition (i) tells us that ., depends only on v and not on the Hausdorff
neighborhood U containing it. Thus (ii) makes sense.

3.3. FUNCTION ALGEBRA ASSOCIATED WITH A GROUPOID ACTION. Given a C*-
algebra D endowed with an action of a groupoid G, let A(D) be the function space
defined as follows:

— The Hausdorff case. If G is Hausdorff, let s*D be the Cy(G)-algebra
corresponding to the source map s: G — X (cf. 2.7(d)). Let A(D) = C.(s*D) =
C.(G) - s*D, i.e. continuous sections with compact support (cf. 2.7 (c)).

— The non-Hausdorff case. In this case the function space A(D) C [[ Dy

vEG

is the set of linear combinations of elements with compact support in sl*UD for

some open Hausdorff subset U of G, where sy : U — X is the restriction to U of
the source map.

— The product and convolution are defined in the following way.
Given f,g € A(D), let

(f*9)(v) =/a;f(f(wfl))g(%)st<7>(%) and  f*(y) =o' (f(y71)).

It is easily seen, like in the case where D = Cy(X), that these are well defined
operations turning A(D) into a x-algebra (cf. [9], Section 1).

3.4. THE NORM || - ||1. The norm on A(D) is defined by

B I =swp fwax{ [1seane). [1roarem .

Let (U;)ier be a covering of G by open Hausdorff subsets and set Q = [[U; =

i€l
{(7,%) € GxI:v €U} Itis alocally compact Hausdorff space. Let sq : @ — X
be the (continuous) map (v,i) — s(v). For g € C.()s(D), we put

32) gl = sup {max{z st dlldvaa) = 3 [ lgt.l duﬂc(w}}.

iel iel
Moreover, we let ¢(g) € A(D) be the function v +— > g(7,i) (these are finite
sums).

As in the case when D = C(X) (cf. [9], Lemmas 1.3 and 1.4), the map ¢ is
onto and, for f € A(D), we have

(3.3) £l = inf{llgll : g € Ce(Q)56,(D), ¢(g) = f}-
3.5. THE FULL CROSSED PRODUCT. With the product, involution, and norm

I - |l defined above, A(D) is a normed #-algebra exactly as in the case of a trivial
action D = Cy(X). The enveloping C*-algebra of the Banach x-algebra obtained
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by completion of A(D) with respect to the norm || - ||; is called the full crossed
product of D by G and is denoted by D X, G.

3.6. REGULAR REPRESENTATIONS AND THE REDUCED CROSSED PRODUCT. Let
x € X. Consider the Hilbert D,-module L?(G,,v,) ® D,; it is the completion
of the space C.(Gy; D) of continuous compactly supported functions on G, with
values in D, With respect to the D, valued inner product defined by (g, h) = (¢* *

= [g(v)*h(y) dvg(7). For f € A(D) and g € Co(Gy; Dy), put Ay (f)g = f*g.
For f € A(D ) and g,h € C.(Gy; Dy) we have
(34) (9, Ma(f)h) = (5" [ h)(2) = (A (f7)g, ).

Also,
<g7Az(f)h>*/ ()" (f * ) () dva ()

// FOr () dve (1) dve (7).

Let Q be asin 3.4. Write f = ¢(fo) and fo(7,7) = f1(y, 1) f2(7,1), where fo,fl,fg
C.(2)s*(D) are such that, for all (v,i) € Q, we have ||fo(v,9)| = || f1(v,)|?
[ f2(,9)]?. We find:

LA D) 1) h(r) dvg (1) dve ()
;// Y Y1t i)) h(y v y
= kl 1, k2( 1,° )dV’I‘( 1)dV7«( )

;// (7,7 v, v

where, for i € I, 7,71 € Gy, we have put k1(v,71,9) = o5 (fi(vy; ',4)) g(7) and
k2 (v,m,4) = a M (f2(v1 1 i))h(y1). Using the Cauchy-Schwarz inequality in the
Hilbert D,-module L?(G, x G, x I; D), we find

g, Ax ()M < ([ ll2[F2]l2

where, for j = 1,2, we put

k115 = ;// (vov1,8) ki (v, 7, )dvz(%)dvz(v)”
Now
i =| S [ sras (it )f1(771_17i)*)9(7)dvx(V1)dvz(v)H
< ;// (vt )fl(wl17i)*||g(v)dvz(71)dvx(v)H
= [0 (S [ i il v )t st

el



CROSSED PRODUCTS OF C*-ALGEBRAS 263

Moreover, 3 [ lfo(yyi sl dve(11) = X2 [ 1oz, ) dv" @) (32) < [ foll (where
1€ 1€

| foll1 is given by formula (3.2)). It follows that ||k1]|?> < [|gl|3]|foll1- In the same
way, ||k2|> < ||hl13] foll1. We deduce that

(3.5) g, Aa(H)WI < [ foll1 [lgll2 [1A]]2-

This is true for all fy such that ¢(fy) = f. Taking the infimum of the right hand
side in formula (3.5), we find (using formula (3.3))

(3.6) g, Aa (DM < N f I g2 [12]]2-

From formulas (3.4) and (3.6) we deduce that A, (f) extends to an element denoted
by A.(f) € L(L*(Gy,v,) ® D,) with adjoint A,(f)*. Finally, A, yields a *-
representation of D %, G.

DEFINITION. The reduced crossed product D X G of D by G is the quotient
of the full crossed product with respect to the family (A;)zex of representations
defined above.

3.7. Here is an equivalent construction of the reduced crossed product, analogous
to the one of [9], Theorem 2.10 (outlined here in 2.5).
Let D be the set of bounded sections of [[ D,. An element f € A(D) defines

by restriction to X C G an element f|x € D. Denote by D’ the C*-subalgebra of
D generated by these elements. Note that, if G is Hausdorff, then D’ = D. For
§n € A(D) and f,g € D' we then put (£ ® f), (n®g)) = f*(§" xn)xg € D".

In this way, the right D’ module A(D) ® D’ is turned into a pre-Hilbert D’'-
module. Its (Hausdorff-)completion is a Hilbert D’-module denoted L?(G,v; D').

Note that the crossed product D x, G acts on L?(G,v; D") by A(f)(E®g) =
(fx&) ®g for all f,¢& € A(D) and g € D’. The image is again #-isomorphic
to D XgorG. Indeed, for x € X, let p, : D' — D, be the natural evalua-
tion map. Since D’ C D, the family (p), is a faithful family. Whence, for
T € L(L*(G,v; D)), we have ||T| = sup||T ®,, 1||. For z € X, we have

L*(G,v; D) ®,, D, = L*(Gy,vy) @ D, and, under this identification, for ev-
ery f € A(D) we have A(f) ®,, 1 = Ay(f). Whence ||[A(f)|| = sup ||Az(f)| =
xr

If1lp ... ¢

REMARK. Let Y be the locally compact Hausdorff space associated with G,
p: Y — X the continuous map and L?(G,v) the Hilbert Cy(Y)-module con-
structed in [9] Section 2 (see 2.5 above). Then, p*D is a Cy(Y)-algebra. Consider
the Hilbert Co(Y)-module L?(G,v) defined in Section 2. Let

L*(G,v;p*(D)) = L*(G,v) ®c,(v) p*D.

One may also construct a representation of D X, G on the Hilbert p*(D)-module
L?(G,v;p*(D)) and thus give a third definition of the reduced crossed product.
To relate these constructions, one notes that there is a natural injection
j: D' — p*(D): one just needs to define j(f ® b) where f € A, b € D, since by
definition of A(D) such elements generate a dense subspace; put then j(f ® b) =
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flx ®cx) b € Co(Y) ®c(xy D = p*(D), where f|x is, by definition of Y, an
element of Cy(Y).

In this way, L?(G,v;p*(D)) = L*(G,v;D') ®p p*(D). We thus get an
isomorphism = — x ® 1 between these reduced crossed products.

Note that, in general, D’ # p*(D): let, for instance, T' be a non trivial
discrete group and put, G =T x [0,1]/ ~, where (g,8) ~ (h,t) iff s =¢ =0 or
(g,8) ~ (h,t). Put D =C, and let X = [0, 1] act by f-b= f(0)b. In other words,
Dy = C and D; = {0} for t # 0. Obviously D’ = D. On the other hand, there are
two points of Y which map to 0 (cf. [9], Example 1.2), whence p*(D) = C @ C.

4. THE INVERSE SEMIGROUP SQ(A)

In this section we construct an inverse semigroup of automorphisms between quo-
tients of ideals of a C*-algebra. Let us begin by recalling a few easy facts about
quotients of ideals.

4.1. Let A be a C*-algebra. We denote by EQ(A) the set of quotients of ideals of A.
Such “ideal quotients” will be sometimes called subquotients somewhat unproperly.
In other words, B € EQ(A) if there exist closed two-sided ideals I, J in A such that
I C Jand B = J/I. Note that we have a natural morphism g5 : A — M(B) whose
image contains B and that B = Jp/Ip where I5 = ker(qp) and Jp = ¢5'(B).
Note however that this writing is far from being unique in general: one can write
B = J/I where J is any ideal J C Jp such that J+ Ip = Jg and I = J N Ip.

REMARK. One may make things a little more formal and precise, by saying
that EQ(A) is the quotient of the set of pairs (I, .J) of ideals of A such that I C J
by the equivalence relation

(I,J)~I',J) = INJ' =I'0"J and I+J =TI+ J.

4.2. The set EQ(A) has a natural order: if B,C € EQ(A), we write B < C'if B is
a subquotient of C, i.e. the morphism ¢p : A — M(B) is written as a composition
qp,c © qc where Gp o is the extension to the multiplier algebra of a morphism
qgp.c : C — M(B) such that B C ¢p,c(C). This is equivalent to saying that B
and C are written as quotients J/I and J'/I' with I'nNJ C I and J C I+ J'.
Another equivalent condition is I¢ C Ig and Jg C Jo + Ig. In that case, B and
C can be written as quotients J/I and J'/I'’ with I' c I c J C J'.

Moreover, if B is a subquotient of A, any subquotient of B is naturally a
subquotient of A. In other words, we may identify EQ(B) with {C € EQ(A) :
C < B}.

4.3. With this order, EQ(A) is a semi-lattice: for B,C € EQ(A) we have

BAC = ((JpnJe)+Ip+1c))/(Is+1c) = (JsNJc)/(JsNJcn (s +Ic)).

Indeed, it is obvious that BAC < B and BAC < C; if D € EQ(A) satisfies
D <Band D <C,then Ip D Ip+Ic and Jp C (Jp+Ip)N(Je+1Ip). It follows
that D < BAC.
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4.4. In the commutative case, elements of EQ(Cy (X)) are Cy(Y) (seen as an ideal
in the quotient Cy(Y) of Cy(X)) where Y runs over locally closed subsets of X.
We have Co(Y) < Co(Z) if and only if Y C Z and Co(Y) A Co(Z) = Co(Y N Z).

4.5. We denote by SQ(A) the set of triples (B, «,C) where B,C € EQ(A) and
«: C — B is a *-isomorphism.

If « : C — B is a x-isomorphism, to any subquotient D of C there corre-
sponds a subquotient a(D) and an isomorphism a.p : D — «(D) with extension
@.p to the multipliers, such that the diagram

commutes.

4.6. The composition of two elements (B, «,C) and (B’,a’,C’) of SQ(A) is the
triple
(B,a,C) - (B',o/,C") = ((B' A C), 8, () (BN C))

where 3 is the composition a.g/pc © af(a,),l(B,AC).

Note that if D, D’ € EQ(A) are such that (B'AC) < D < C and (B'AC) <
D’ < B’, then
(4.1)  (B,a,0)-(B',d/,C") = (a(D),c.p, D) - (D’,af(a,)_l(D,), ()"H(D")).
Indeed, one checks immediately that D A D' = B’ A C; also (a:D>:B’/\C = q.p'AC

and (af(a/)*l(D/)):(a’)*l(B’/\C) = a:/(o/)*l(B’/\C)'
Also write (B,a,C) - (B',o/,C") = (B1,01,C1) and let D € EQ(A). We
easily see that

(42) (a1(C1AD),(a1).c,ap: C1AD) = (B, ,C)-(a/(C"'AD), (a).c'np, C'AD).
In the same way, setting D; = oy *(B; A D), we find

(4.3)  (BiAD,(a1).p,,D1) = (BAD,.q-1(papy.a” (BAD))- (B, a,C").
We have:

4.7. PROPOSITION. With the above operations, SQ(A) is an inverse semi-
group.

Proof. The inverse of (B,a,C) is (C,a~*, B). The only thing which has
to be proved is associativity of the composition. Let (B,a,C), (B',;a/,C") and
(B”,a”,C") be elements of SQ(A).

Write (B, o, C) - (B, o/, C") = (By,01,C1). We have (using formula (4.2)),

(Bl, a, Cl) . (B/I, Oé//, C”) = (al(B" A Cl), (al):B”/\Cl s B/I A Cl) . (B//, Oé//7 C”).
It follows from formula (4.2) that both ((B,«a,C) - (B’,a/,C")) - (B”,a”,C") and
(B,a,C) - ((B',a/,C") - (B",a”,C")) remain unchanged if we replace (B’,a/,C")

by
(OLI(C/ A B//), (CV/):C'/\B”,CI A B/I).
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We may therefore assume that C’ < B”. In the same way, using formula (4.3), we
may also assume that B’ < C. But in this case, both products are equal to

((B"),a.p 0’ 0 &l -1 (cry, (@) THC)). 0

To B € EQ(A) corresponds the idempotent (B,idp, B) in SQ(A). In this
way, the set of idempotents of SQ(A) identifies with EQ(A).

5. ACTIONS OF INVERSE SEMIGROUPS AND CROSSED PRODUCTS

The main purpose of this section is to describe a general construction of a crossed
product by an action of an inverse semigroup. In the next section, we will inves-
tigate the connection between this crossed product, the one defined by Sieben in
[19], and the crossed product by the associated groupoid.

ACTIONS.

5.1. DEFINITION. Let S be an inverse semigroup. An action of S on a
C*-algebra A is a semigroup homomorphism « : S — SQ(A).

In other words, an action of an inverse semigroup S with set of idempotents
E is given by a pair (B, ) where B = (B.).cE is a collection of elements of EQ(A)
such that B.y = B, A By, and for each u € S, o, is an isomorphism o, : By« —
Buu* SatiSfying (Buvv*u* y Oy, Bv*u*uv) = (Buu* y Oy Bu"u) ! (BU'U* y Oy, Bv*v) for
all u,v € S.

5.2. EXAMPLES. Actions by partial automorphisms, or by endomorphisms
of an inverse semigroup are easily seen to be special cases of the above definition.
They actually form two extreme cases of our definition.

(a) Recall that a partial automorphism of A is a triple (I,«,J), where [
and J are closed ideals of A and o : J — I is a #-isomorphism (cf. [6]). Partial
automorphisms of A form an inverse semigroup PAut(A). Sieben (cf. [19]) defines
an action of a unital inverse semigroup S on A to be a semigroup homomorphism
B :S — PAut(A). Note that PAut(A) is a sub-semigroup of SQ(A), therefore an
action in Sieben’s sense is a particular case of an action in the sense of Definition 5.1
when the B.’s are ideals.

(b) At the other end, we may also consider the case where all the B,’s are
quotients.

A particular case is obtained by a semigroup homomorphism g : S —
End(A). Given such a morphism for each e € E let B, = A/ker .. If e, f € E,
we have Bey = B 0 By = Bf o Be, thus ker Bey D ker B + ker By; if x € ker By,
then Be(Be(z)) = Be(w). Hence, z — Be(x) € ker B and By (Be(x)) = 0, whence
Be(z) € ker B; thus = € ker B, + ker By. Whence B,y = B A By.

Note that for each u € S, since By+y = Bur © By and By = By © Bury We
have ker 8, = ker B,+y, and 3, defines an isomorphism vy, : Bysy — Byyx given
by au © quiy = Quur © Bu, Where quey @ A — Byxy and quy+ @ A — Byy- are the
quotient maps.

For instance, consider the group I' = Z(™) with the basis (e,,)nen. The endo-

morphisms 35 and S+« of T given by Bs(e,) = ent1 and B« (e,) = { 8”*1 g Z i 8’
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yield an action § of the bicyclic semigroup T (i.e. the semigroup generated by s, s*
with the property s*s = 1) on ZM) . Corresponding to this action is a morphism
T — End(C*(T)).

(c) Here is a simple example where not all of the B.’s are ideals or quotients.

The sub-semigroup S = {0,1,e = e11,u = ej2,u™ = ea1, f = ez} of My(C)
(for the matrix product) is an inverse semigroup.

Let A be an extension of K by K (ie. 4 = K ® K). Let J ~ K be its
non-trivial ideal and B = A/J ~ K its nontrivial quotient.

Set By = A, B = J, By = B and By = {0} and let «,, be an isomorphism
from J onto B. In this way, the semigroup S acts on A.

CONSTRUCTION OF THE CROSSED PRODUCT. We now define the crossed product
constructions for actions in the sense of Definition 5.1. Let B,C,D € EQ(A). If
D < B, we have a natural morphism ¢p g : C — M(D). Moreover, if D = BAC,
for every x € B and y € C, ¢p . g(z)gp,c(y) € D. In this way, we get a bilinear
map (z,y) — zoy =qp,(x)¢p.c(y) from Bx C — BAC.

5.3. PROPOSITION. Let S be an inverse semigroup and (B,«a) an action of
S on a C*-algebra A. For g € T] Buew, set |l = 3 [o(w)] (€ Ry U {+oo}).
ues u

Put (*(S,B) = {cp € [I Buu:llelh < +oo}. For o, € ((S, B), set
u€sS

(prd)(w) = Y avuralp(u) o au((v)), 9" (w) = au- (p(u)").

With these operations (1(S, B) is a Banach x-algebra.

An element ¢ € ¢1(S, B) is formally written as a sum

= dup(u) =Y au(p(u))du.

uesS uesS
Proof. Let u,v € S, & € Bysy and y € By=,. Then x ¢ o, (y) € Busupv*,
whence av*u*u(xoav(y)) € By*yruv- Moreover ||av*u*u(x<>av(y))” < HxHHyH It

follows that o x v € £1(S, B).

It is also easy to see that [|¢*[|1 = |l¢ll1 and (@ x)* = ¥* * ¢*, and hence
the only thing that remains to be proved is the associativity of x.

If u € S, we denote by @, : M(By+y) — M(Byy) the extension of a,, to
the multipliers. Let e € F; we denote by the same symbol q., for every f € E
such that e < f the natural map ¢. : By — M(B.) and by g, its extension to
multipliers. If e < f < g we have an equality g, o ¢f = g, : By — M(B.).

Note that if u € S and e € F, we have ey © @y = Qe © Geurw (by definition
of the inverse semigroup SQ(A)). Extending this equality to multipliers, we find

e © Ty = Oye O Goyprqy * M(Bysn) = M(Bueyr)-
Let u,v,w € S, x € Byry, Yy € Byry and z € By, We want to show that

((60.2)(6.1)) 02) = (Bu) ((6.1)(602) ).
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We have
(5ux) (51)2/) = 6uvav*u*u (qu*uvv* (ﬁ)QU*uvv* (av (y)))

= Ouw (av*u*u © Qu*uvv* )(m)qu*u*uv (y)7

whence ((6,2)(0,¥))(0wz) = SupwT1y121, Where

T1 = Qyv*uruv © Qv uruv © Cv*uru © Qe(m)a

Y1 = aw*v*u*uv © qu*v*u*uv o qv*u*uv(y) = aw"v"uﬁ‘uﬂ; © wa*v*u*uv(y)v and

21 = qw*v*u*uvw<z)- Note that Qv uruw O Cv*uru = Cww*v*u*uCQyww* v*uus
and hence

1 = Cwro*uru O Guww v uru (). On the other hand, (6,Y)(20w) = Opw@uwrv*v©
qu*v*v(y)qw*v*vw(z))- Thus,

(6u2)((00y)(20w)) = duvwTa2y222,

where

To = Oy yp*u*u © Quruvww*v* (x) =1,

Y2 = aw*y*u*uvw Oaw*v*v o wa*'u*'u(y) =Y, and

22 = Qe prurwow © Quorow(2) = 21 1

5.4. DEFINITION. The full crossed product of A by the action a of S is by

definition the enveloping C*-algebra of this Banach x-algebra, and is denoted by
Ax,S.

5.5. REMARKS. (a) Let S be the inverse semigroup obtained by adjoining a

unit to S, i.e. S = SU{1}, with operations 1* =1 and ul = lu = u for all u € S.

An action (B, «a) of S on a C*-algebra A can be extended to an action (still
denoted by (B, a)) of S on A by setting By = A and a3 = ida. Then ¢}(S, B) is
a closed two sided ideal in ¢1(S, B).

Recall that if J is a closed, two sided, self-adjoint ideal in a Banach x-algebra
D, then its enveloping C*-algebra identifies with the closure of J in the enveloping
C*-algebra D. In other words, the homomorphism C*(J) — C*(D) is injective.
Also see Lemma 2.3, [16].

Indeed, we just have to construct a homomorphism D — M(C*(J)) extend-
ing the natural map iy : J — C*(J). Adjoining a unit to D, we may assume that
D is unital. Let then a € D with ||a| < 1. Put b = /1 — a*a (using holomorphic
functionnal calculus). We have b = b* and a*a + b*> = 1. It follows that, for all
x € J, we have (az)*(ax) + (bz)*(bx) = x*x. Whence ||is(az)| < ||is(x)]. In this
way, we associate to a a left multiplier of C*(J). Using a similar construction, we
get a right multiplier of C*(J), whence the result.

It follows that A xS is identified to a closed two-sided ideal of A x, S.

Furthermore, the map a — d1a is a *-homomorphism from A into A X, S.
It defines a homomorphism A — M(A x4 S).

(b) Let A’ be a subquotient of A such that for all e € F, B, < A’. The
algebra ¢*(S, B) is the same when considering the B, as being in EQ(A) or in
EQ(A’). If S is unital, then we may take A’ = B; (where 1 is the unit element of
S).

COVARIANT REPRESENTATIONS. Until the end of the section, we fix an inverse
semigroup S with the set of idempotents E and an action (B,«) of S on a C*-
algebra A, and examine the representations of the crossed product A x, S. For
e € E, we denote by ¢. : A — M(B.) the natural map.
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5.6. DEFINITION. A covariant representation of (A, S, «) on a Hilbert mod-
ule H (over some C*-algebra C) is a pair (mw,0), where 7 : A — L(H) and
o : S — L(H) are x-representations such that, for all u € S, a,b € A satisfy-
ing qu+u(a) € Bysy and au,(qu+u(a)) = quur (b) we have

(5.1) w(b)o(u) = o(u)m(a).

5.7. THEOREM. (a) Let (m,0) be a covariant representation of (A, S, a) on a
Hilbert module H. There is a unique representation I1 : A x, S — L(H) satisfying
(6yquu(a)) = o(u)m(a), for allu € S, a € A such that qu+,(a) € Byssy.

(b) Conversely, every representation Il of A xS on a Hilbert space H is of
the above form.

Proof. (a) Let u,v € S, © € By+y, and y € By«,. Take a,b,b’ € A such
that qu«y(a) = 2, gy (V') =y, and ¢y (b) = a,(y). Note that, by property (5.1),
II(6,y) = w(b)o(v).

In particular, II((0,y)*) = o(v*)7(b*) = II(d,y)*.

Put e = v*u*uv. We have x ¢ o, (y) = quruvu~(ab); let also ¢ € A be such
that guey up(€) = Quryry (@ © 0y (y)). We have

H((&ul') ((5vy)) = H(éuvqmu*uv (C))

= o(uv)7(c)

= o(u)o(u uv)r(c) writing uwv = u(u*uv)
= o(u)m(ab)o(u*uv) by property (5.1)

= o(u)m(ab)o(u*u)o(v)

= o(u)o(u*u)m(ab)o(v) by property (5.1)

= (o(w)o(uu)m(a))(m(b)o(v))

= H(0uz)II(6y).

(b) Let now H be a Hilbert space and II: A xS — L(H) be a representa-

tion. Up to replacing H by II(A %, S)H we may assume that II is nondegenerate.
It uniquely extends to a representation, denoted by ﬁ, of Axo S , in which A x, S
is an ideal (Remark 5.5 (a)). Now  — 812 is an embedding of A in A x, 5. Put
m(a) = II(d1a). In this way, we get a representation of A.

The construction of ¢ is a consequence of the following lemma:

5.8. LEMMA. Let u € S. For any approzimate identity (a®) of By«, the
net I1(6,a*) converges *-strongly in L(H) to a partial isometry.

Proof. Let (e ;)1<i,j<2 denote the matrix unit of M>(C). The map j, :
By @ Ma(C) — A ® My (C) given by the formulae j,(z ® e11) = dy=u @ €11,
Ju(r®e2,1) = 0,2®es.1, ju(T®e12) = Ty~ Req 2, and j, (x®ez 2) = oy (T)dyu- ez 2
is a *-homomorphism. We deduce a x-representation II/, = (H ® isz(C)) 0 Ju :

It is now obvious that the net IT’ (a* ® e2,1) converges *-strongly to a partial
isometry, and the lemma follows. &
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For u € S, we let o(u) be the strong-*-limit of I1(5,a"), where (a’) is an
approximate unit for By «,.

For u,v € S, let (a*) and (b*) be bounded approximate identities of By, and
B,,+ respectively. Put e = u*uvv*. Consider the natural maps q : By, — M(B.),
and ¢ : Byy» — M(B.). For z € B, the net (q(a*)q’ (b*)x) converges to z (since
Be = Byy+ A Bysy, and (@) is bounded). In the same way, the net (zq(a?)q’ (b))
converges to x i.e. ¢(a*)q (b*) = a* ¢ b* is an approximate identity of B.; finally
(av*u*u(a’\ o b’\)) is an approximate identity of Bysyrye, and H(((Sua’\)(b’\év))
converges to o(uv) by Lemma 5.8. Using again Lemma 5.8 and the boundedness
of the nets (a*) and (b*), we see that II((6,a")(b*d,)) converges to o(u)o(v), so
that o(uv) = o(u)o(v), and o is a representation of S. As the o(u)’s are partial
isometries, o is a *-representation of S.

Let u € S and a,b € A with gu-y(a) € Bysy and guu=(b) = @y 0 gury(a).
We have 6,a*61a = 6,a"qyuy(a), hence the net (6,a*61a) converges in norm to
duqurv(a) (in A x4 S). Therefore,

(5.2) 1(6uGu-u(a)) = imI1(6,a*01a) = o(u)7(a).

Also, 6166, = 8ty Guu~ (b)a> = 8uqu+y(a)a?, and hence the net (61b6,a*) con-
verges in norm to §,qyu+y(a) (in A x4 S), whence

(5.3) (8yqu-u(a)) = im II(6166,a7) = 7(b)o (u).

From formulas (5.2) and (5.3) it follows that (7, 0) is a covariant representation
of (A,S,«). Moreover, the corresponding representation of A x, .S will be II by
formula (5.2). 1

REMARK. Note that (b) needs not be true if H is a Hilbert module and not
a Hilbert space: the d,’s need not be multipliers of A x, S (e.g. if A and S are
unital and B, is not unital), whence the representation of A x,, S on itself by left
multiplication does not give rise to a representation of S.

Let (m,0) be a covariant representation of (A, .S, «) on a Hilbert module H.
Note that, for all e € A and a € A such that g.(a) € B, we have o(e)m(a) =
m(a)o(e) (by formula (5.1)). If moreover ¢.(a) = 0, we find 7(a)o(e) = 0. It
follows that there is a representation 7. : B, — L(o(e)H) satistying 7. o ¢.(a) =
7(a) :o(eym for each a € A such that g.(a) € B..

5.9. PROPOSITION. Let (m,0) be a covariant representation of (A, S,a) on
a Hilbert module H and let 11 : A xS — L(H) be the associated representation.
(a) If II is non degenerate, the representations m and o are nondegenerate
and mw is uniquely determined by II.
(b) Assume that the following two conditions are satisfied:
(i) the representation o : C*(S) — L(H) is nondegenerate;
(i) for each e € E, the representation me : Be — L(o(e)H) given by
Te © ge(a) = m(a) :o(ey for each a € A such that qc(a) € Be is nondegenerate;
then 11 is nondegenerate.
(¢c) If H is a Hilbert space and I1 is nondegenerate, one may choose uniquely
o in such a way that condition (ii) is satisfied.

Proof. (a) The span of T1(§,qyu=(a))€ with u € S, a € A such that g, (a) €
By and € € H is dense in H. Since II(6yquvu(a))é = o(u)m(a), it follows
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immediately that o is nondegenerate. Also II(6y Gy (a)) = 7(b)o(u)€, where
b € A is such that gy~ (b) = ay(qu+w(a)), so that 7 is nondegenerate.

Let (7',0’) be another covariant representation associated with IT. Extend
o’ to S by setting o/(1) = 1. The corresponding representation IT of A x,, S is the
unique extension of the non degenerate representation II, since A x,, .S is an ideal
in Ax,S (Remark 5.5 (a)). For a € A, we have 7'(a) = o/(1)n'(a) = II(d1a).
Therefore, II determines 7.

(b) If conditions (i) and (ii) are satisfied then for all e € E, TI(6.B.)H =
o(e)H (by condition (ii)), whence II(A)H contains o(e)H; as the representation
o is non degenerate, the Hilbert space spanned by the o(e)H is dense in H. It
follows that the representation II is non degenerate.

(¢) One may choose ¢ to be given as in Lemma 5.8. Then for every e € E,
and every approximate identity (a*) of B, o(e) is the strong-#-limit of 7. (a*)o(e),
i.e. the representation 7. is nondegenerate.

On the other hand, let u € S, choose an approximate identity (b*) of {x €
A; queu(z) € By} Then a* = gu-,(b") is an approximate identity of By-y,.
If the representation s, is nondegenerate, then o(u*u) is the strong-+-limit of
T (@) o(uu) = I(a 0y+y) = H(8y+ya’). Therefore o(u) is the strong-*-limit of
o(W)I(8yna?) = o(u)o(u*u)r(b) = I(d,a). In other words, o(u) is given by
Lemma 5.8. 1

REMARK. Note that, in general, the representation ¢ is not determined by
IT: take for instance S = E = {1,e}, B; = A and B, = {0}. Then o(e) can be
taken to be any projection in L(H)!

REGULAR REPRESENTATIONS AND THE REDUCED CROSSED PRODUCT. Let e € E,
and S, = {u € S : u*u = e}. Consider the Hilbert B.-module ¢?(S.; B.) =
B ® ?(S,). Forx € A, u € S and ¢ € 2(S,; B.), we put

LE(@)€(u) = o (- (@))€(0) amd (A ()g)(w) = { §@T0) i o0 <

5.10. PROPOSITION. For every e € E, the pair (L, A\°) is a nondegenerate
covariant representation of (A, S, ) on the Hilbert A-module €(Se; Be).

Proof. Let u € S and a,b € A be such that g,y (a) € By and gy (b) =
@ (quu(a)). Let & € £2(Se; Be) and v € S,.

If vv* < uu*, we have

(A (u) L (a)§)(v) = (L(a)§)(u"v) = @pru(qurvv-u(a))§(u"v)

and
(LEB)A(w)€) (v) = Wy (qurn (b)) (A (w)€) (v) = Qu (quo- (b)) €(u").

With the notations ¢y, ¢y and @, that we already used in the proof of Proposi-
tion 5.3, we have

av"u(QUU* (a)) = Qy* O Qyyry O au*vv*u © qu*u(a) = Qy* 0 vi* (au(qu*u(a)))
= av* o qvv* (quu* (b)) = av* (qv’v* (b))
If vo* € wu®, then (A°(u)L¢(a)é)(v) = (LE(b)A¢(u)é)(v) =0. 1
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5.11. DEFINITION. The reduced crossed product of the action «, denoted by

A X4y S, is defined to be the quotient of A xS under the family of representations
associated with the nondegenerate covariant representations (L¢, \°) for e € E.

THE CROSSED PRODUCT A x E. Let us consider the case where S = E consists

only of idempotents.

5.12. PROPOSITION. For any e € E, the closed linear span J. in A xqo E of
{6jxz: f e E, f<e x& By} isa closed two sided ideal of Axy E. Fore, f € E,
we have Jef = J. N J¢.

Proof. By definition J. is the closed linear span of {6;x: f € E, f <e,z €

By}. For f,g € E and = € By, y € By, we have (§;2)(d4y) = d74(z0y). It follows
that if f <eor g <e, then (67z)(0,y) € Je, whence J, is an ideal.

Lete, f,e, f' € Esuchthat ¢’ < eand f' < f, 2 € B and y € Bys. One has
e'f' <ef, whence (6e)(d5y) = berpr(x 0 y) € Jeg. It follows that J. N Jy C Jey.

The opposite inclusion is obvious. &
Note that, if (a*) is an approximate identity of B, then for all f € E such

that f < e and z € By, the nets (¢f(a*)z) and (zqs(a*)) converge to x, whence
(d.a’) is an approximate identity of .J,.

In the case when the B.’s are quotients, we can give a rather explicit descrip-

tion of A x4 E. Recall that C*(FE) is a commutative C*-algebra that we identify

with a Cy(X), where X = G(SO). Under this identification, the elements of E are
{0, 1}-valued functions on X.

5.13. PROPOSITION. We write C*(E) = Co(X). For x € X, let I, be the
ideal in A generated by ker q. for e € E with e(x) = 1. Put I = {p € Co(X; A) :
Vo € X, p(x) € I,}. There is a natural embedding

U:Ax, E— Cy(X;A)/I.

If the B.’s are quotients, i.e. if for all e € E, q.(A) = Be, then U is an isomor-
phism.

Proof. For e € E and x € X such that e(z) =1, let ¢z : Be — A/, be the
composition B, — A/kerq. — A/I, (since kerq. C I,).
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Let e € E and a € A be such that b = g.(a) € B. Define ¥(d.b) to be the
image in Cy(X;A)/I of §e ® a € C*(E) ® A = Cy(X;A). In other words, for
r € X, we have:

_Jo if e(x) =
(T(8eb)) () = {qw,e(b) if e(z) =

This writing shows that ¥(d.b) only depends on b (and not on a). It follows also
easily that ¥ extends to a *-homomorphism from ¢*(E, B) to Co(X;A)/I, and

thus defines a *-homomorphism ¥ : A x, E — Cy(X; A)/I.

0,
1.

Let now II be an irreducible representation of A x,, E on a Hilbert space H,
and let (m,0) be the corresponding covariant representation of (A, F, ) satisfying
condition (b)(ii) of Proposition 5.9. For any a € A and e € E, we have w(a)o(e) =
o(e)m(a). One deduces immediately that o(e) commutes with II(A x,, E), whence
it is a scalar. Therefore, it is a character of C*(E): there exists © € X such that
o(e) = e(z). Let then e € E be such that e(z) = 1. By condition (b)(ii) of
Proposition 5.9, there is a non degenerate representation 7. of B, on o(e)H = H

such that, for every a € A satisfying ¢.(a) € B., we have 7(a) = 7.(¢e(a)). It
follows that w(a) = 0 for all a € I, whence there is a representation 7’ of A/I,
such that IT = 7’ o hy, o U, where hy : Co(X;A)/I — A/I, is the evaluation map.

It follows that U is one to one.

Assume now that the B.’s are quotients. Let ¢ be the trivial action of E
on A given by t(e) = (4,id, A) for all e € E. We obviously have Ax; F =
A® C*(E) = Cy(X, A). Moreover we have a natural surjective *-homomorphism
p:Co(X,A) = Axy E — A X, E which maps d.a into 6.¢.(a). Now ¥ o p is the
quotient map Co(X, A) — Co(X,A)/I (as checked on generators), whence ¥ is

onto. 1

Let € X. Denote by hy, : Co(X,A)/I — A/I, the evaluation map. It is
easily seen that, for e € E, the map h., oV : Ax, E — A/kerq. C M(B,.) is the
regular representation associated with e. For € X and f € Co(X;A)/I, hy(f)
is the limit of h._(f) along the net F,. It follows that the regular representations
form a faithful family of A x, E. In other words,

AxgE=AXy, E.
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6. RELATION WITH CROSSED PRODUCTS IN THE SENSE OF SIEBEN
AND WITH GROUPOID CROSSED PRODUCTS

Let us briefly recall Sieben’s construction in [19]. As mentioned before, he de-
fines an action of an inverse semigroup S on a C*-algebra A to be a semigroup
homomorphism g : S — PAut(A).

On L = {y € (1(S, A) : ¥(u) € L}, where B(u) = (Lyu=, Bu, Lurw), define
the convolution by:

() (w) = > BulBur (p(w)(v)],

Uuv=w

and the involution by
@*(u) = Bulp(u®)?).

The crossed product of A by S is the closure of a quotient of L under the norm
induced by taking supremum over a family of representations (called covariant
representations — cf. [19], Definition 3.4) of the pair (S, A). This condition is
more restrictive than the one we used (Definition 5.6). In order not to mix these
definitions, a covariant representation in Sieben’s sense will be called hereafter
strictly covariant.

6.1. DEFINITION. (cf. [19], Definition 3.4) A strictly covariant representa-
tion of (A, S,a) on a Hilbert space H is a pair (m,0), where 7 : A — L(H) and
0 :S — L(H) are x-representations such that:

(a) for all u € S and a € I+, we have 7(5,(a))o(u) = o(u)r(a);

(b) for all e € E, o(e) is the projection onto w(I.)H.

It is very easily seen that every strictly covariant representation is covariant
in the sense of 5.6. On the other direction, every representation of L satisfies
condition (a) in Definition 6.1, but not necessarily condition (b).

To see the exact relation between our notion of crossed product and the one
defined by Sieben, note that when B and C' are ideals and D = BAC = BNC,
we have z oy = ¢p p(z)gp,c(y) = zy, for € B and y € C. Since qyry+y is the
restriction of a,,«, our convolution formula in Proposition 5.3 reduces in this case

to
(prv)(w) = > e (p(u)an($(v))).
It follows that the map ¢ +— 1 where ¥ (u) = Bu.(p(u)) is a *-isomorphism from
our ¢1(S, B) onto Sieben’s L. However, his crossed product is a quotient of the one
defined here. In particular, Sieben proves that: A x E 2 A (cf. [19], Corrolary 4.6).
Here is a result which relates our construction to Sieben’s.

6.2. THEOREM. Let « : S — SQ(A) be an action of S on a C*-algebra
A. Associated to « is a natural action B of S on A X, E by partial automor-
phisms. The crossed product A X, S is naturally isomorphic to the crossed product
in Sieben’s sense of Axy E by 3.

The action 3 is defined in the following obvious lemma, where the J.’s are
those defined in Proposition 5.12.
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6.3. LEMMA. (a) For u € S, there is a x-isomorphism By : Juru — Jyur
such that, for all f € E satisfying f < u*u and for all x € By, we have 3,(dfx) =
5ufu*05u:Bf (.’E)

(b) For allu € S and e € E, such that e < u*u, the morphism Bye is the
restriction to Be of By

(¢c) If u,v € S are such that u*u = vv*, we have B, o By, = Buy-

From Lemma 6.3, it follows that the map 8 : u +— (Jyur, Bu, Juru) is an
action of S by partial automorphisms.

Let now IT be a nondegenerate faithful representation of A x,, S. Associated
to IT is a covariant representation (m, o) of (4, S, ) satisfying the conditions (b)(i)
and (b)(ii) of Proposition 5.9. Let 7 be the restriction of I to A x4 E.

6.4. LEMMA. The pair (T,0) is a strictly covariant representation of the
triple (A xq E, S, ).

Proof. Let w € S, f € E and © € By. Assume that f < u*u. Let a,b €
A such that gf(a) = = and gufu~(b) = aus(xz). We have T(0x) = II(0fx) =
o(f)m(a). Moreover (5, (0¢x)) = H(yfuraus(x)) = o(ufu*)m(b) = m(b)o(ufu*).
Therefore

T(Bu(d5x))o(u) = m(b)o(ufu®)o(u) = w(b)o(uf) = o(uf)m(a) = o (u)T(d5z).

Moreover, by condition (b)(ii) of Proposition 5.9, the range of the projection o(e)
is me(B.)o(e)H, which contains 7(J.)H. The opposite inclusion holds for any
covariant pair. 1

Proof of Theorem 6.2. Let A denote the crossed product in the sense of
Sieben of A x4, F by the action 3. It follows from Lemma 6.4 that there is a
representation I’ of A in H characterized by the formula II'(6,2) = o(u)7(z) for
uw e S and z € Jy+,. In particular, IT'(0,(052)) = o(u)o(f)z = II(d,z) for f € E
such that f < u*u and « € By. Hence IT'(A) C TI(A x4 S). Since II is faithful,
there exists a unique #-homomorphism x : A — A %, .S such that II’ = IT o x.
Note that x(8,(07z)) = sz for u € S, f € E such that f < v*u and x € By.
Taking f = u*u we immediately see that x is surjective.

Let now (7, o) be a strictly covariant representation of (A x,, E, S, 8). Denote
by II' the corresponding representation of A. We may further assume that IT' is
nondegenerate, whence 7 is nondegenerate. Corresponding to it is a covariant
representation (m,7) of (A, E,«), satisfying condition (b)(ii) in Proposition 5.9.
Let e € E and (a*) an approximate identity of B,. It follows from the construction
of 7 (cf. Lemma 5.8) that 7(d.a”) converges strongly to 7(e). On the other hand,
(6.a?) is an approximate identity of B.; whence by condition (b) in Definition 6.1,
(T(dea™)) converges strongly to o(e).

Let uw € S and a,b € A such that g,y (a) € By, and ay, (quey(a)) = quu~ (b).
Then dyux quur (0) = Bu(OuruGurw(a)). Whence,

w(b)o(u) = w(b)o(uu™)o(u) = 7(b)T(uu™)o(u) = T(Syux Guu= (b))o(w)
= 0(uW)T(Suruqu-u(a)) = o(u)m(a).

In other words, (w,0) is a covariant representation of (A,S,«). For u € S,
f € E such that f < v*u and z € By we have II'(6,(d7x)) = o(w)T(d5z) =



276 MAHMOOD KHOSHKAM AND GEORGES SKANDALIS

o(w)o(f)m(a) = o(uf)m(a), for every a € A such that gr(a) = z. In other words,
we have II' = II o y, where II is the representation of A x, S associated with the
covariant representation (m, o).

This proves that every strictly covariant representation of (A x,, E, S, 3) fac-
tors through x, whence y is faithful. 1

THE CASE OF QUOTIENTS.

6.5. THEOREM. Let S be an inverse semigroup with the set of idempotents
E, and (B, a) an action of S on a C*-algebra A. We assume the B, ’s are quotients:
in other words, we assume that for all e € E, q.(A) = B..

(a) The crossed product A X E is naturally endowed with an action of the
groupoid G associated with S.

(b) We have natural isomorphisms

AXg SZ(AXgE)xG and Axg,S=(AxyE)x,G.

This result is a consequence of Theorem 6.2 together with [16]. Before pro-
ceeding with the proof, let us recall some facts from [16]. If G is a locally compact
r-discrete groupoid, to any action « of G on a C*-algebra A there corresponds
naturally an action by partial automorphisms of the inverse semigroup S of open
G-sets ([16], Section 5). We then have an isomorphism of A x,, G with the crossed
product of A by the action of S¢ in the sense of [19] (cf. [16], Section 7). Moreover,
an action by partial automorphisms of the inverse semigroup Sg on a C*-algebra
A comes from an action of G if and only if the algebra A is, in a compatible way,
a Co(G®)-algebra ([16], Section 6).

Note that all these are also true if one replaces Sg by any of its full sub-
semigroups. In particular, this holds for any inverse semigroup S considered as a
full sub-semigroup of the groupoid Gg. Indeed, the map u € S — O, defines an
embedding of S into Sgg as a full sub-semigroup (see 2.6 (b)).

Proof. The algebra Co(X) = C*(FE) is generated by projections ., e € E. It
acts on A X, E by multiplication (Proposition 5.13). It follows now from [16] that
there is an action of G on A X, F such that the crossed product (A X, E) x G is
isomorphic to the crossed product in the sense of [19] of A x,, E by S; by Theorem
6.2, the latter is isomorphic to A x, S.

In the light of Proposition 5.13, it is quite easy to give the isomorphism

D:A%,S8 — (Axa E)xG

on the generators: let w € S and b € By+y. Then ®(d,b) is the image in A C
(Axq E) %G of the function x.,j, where x,, is the characteristic function of the
compact (Hausdorff) open set O, (cf. 2.6 (b)) and ¢} is the function which to
v € O, associates the class of b modulo I(+). Note that since s(y) € Fyru, we
have I,(,) D ker g+, whence the class of b modulo I,y is well defined.

Let us now turn to the reduced crossed product. Consider the algebra D’
associated with the action of G = Gg in D = A x, E introduced in 3.7. By
definition, D’ is a subalgebra of [[ Dg; let p, : D' — D, be the natural eval-

zeX
uation map. The reduced crossed product (A X, F) %, G is defined thanks to

a faithful representation A on the Hilbert D’-module L?(G,v;D'). For z € X,
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we also put A, = A®,, 1. Let e € E and e, the corresponding element of
X (2.6 (c)). Following the above identifications, one checks that A., o @ is
the regular representation of A x, S associated with the covariant representation
(L¢, X¢) (Proposition 5.10). We have thus constructed a surjective homomorphism
U:(AXaE)x, G — AXg, S.

We have to show that this homomorphism is an isomorphism, i.e. that the
family (A¢,)eep is a faithful family of representations of (A %, E) %, G.

Recall some facts from [9] (see also [15]). An element z € X is determined
by the set F, = {e € E : e(x) = 1}. Moreover, F, is a directed ordered set by
p < q if ¢ < p, and the net (¢.).cx, converges to x.

By Proposition 5.13, D, = A/( U ker qe>. In particular, for e € E we have

ecF,
D,, = B.. For x € X and e € F, we denote by ¢, . : B — D, the natural
quotient map.

6.6. LEMMA. Foreveryx € X andb € D', we have p,(b)= liI]?E_l Gz, (Pe, (b)).
ecFq

Proof. The proof is similar to Lemma 3.4 of [9].
It is enough to check this equality on generators, i.e. if b is the restriction to
X of some ®(d,a) for u € S and a € By+y,. In that case, for z € X, we have
0 if 2 Oyruy
p.(b)(2) =4 0 if 2 € Ouru, (u,2) # 2,
Gourul(a) if 2 € Oyry, (u,2) = 2,
where (;Tz) denotes the class of (u,z) in G.
If x & Oy~y, then as u*u & F,.. For every e € F, we have e € u*u, whence
(u*u)(ee) =0, i.e. € & Oyry; therefore 0 = gy o (pe, (b)) converges to 0 = p,(b).
Second, take © € Opysy, but (u,z) # z. Then, for all e € F,, we have

ep & Oy+y, for otherwise we get that (u,x) = (e, x) which is in contradiction with
(u,x) # z; therefore 0 = gy ¢ (pe, (b)) converges to 0 = p,(b).

Finally, assume (u,z) = x. Then, by definition of G, there exists ey € F,
su/c\}l that ueg = eg. For all e € F, with ¢y < e, we have ue = e whence
(u,ee) = €. Therefore pe (b)) = e, yru(a) and py(b) = ¢ u+u(a). It follows that
for e € F, with ey < e, we have ¢z ¢(pe, (b)) = po(b). 1

End of the proof of Theorem 6.5. By Lemma 6.6, the family of representations
(pe,)ecr of D’ is faithful. It follows that the family of representations (T' —
T ®@p.. 1)eer of A((Axq E)xG) C L(L*(G,v;D")) is faithful (cf. Lemma 2.1,
[9]). In other words, the family (Ac,)cer is a faithful family of representations of
(Axq E) %, G. 1

6.7. EXAMPLE. We end by the computation of A xS in the case of Exam-
ple 5.2 (¢). In this case, S is finite. By Property 2.3 (c), the points of Gg are
closed: it follows that the injection with dense range from S into Gg given by
2.6 (c) is onto, i.e. S =2 Gg and E = S. It follows immediately that we have an
isomorphism

C*(Gs) = C(Gs) = C*(S) = C*(S) = My(C) & C & C.
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Now consider the action of S on the C*-algebra defined in Example 5.2 (c).
In order to better understand the algebra A x, S, we will use the sub-semigroup
S1 = S\ {1} with set of idempotents Eq = {0,e, f}. First note that the map
(a,b) — ade + bdy defines an isomorphism J § A/J = KK = Ax, Eq. It

follows that we have an isomorphism A x S; & M3(K). Note now that S = Sy
and F = F;. We thus get extensions

0-KeK—-Ax,E—-A—0 and 0— M(K) = Ax,5— A—0.

Put moreover Fs = {1,e}. An easy check shows that

AxEy={(z,y)eAdA:z—yeJ} 2 (KaK)aK.

Using the exact sequence 0 — A x{e} - Ax FEy — A — 0, we find a commuting
diagram
0 — K — AxE, — A — 0

l l |
0 - MyK) — Ax,S — A — 0.

It follows that in the Busby invariant A — M(M3(K))/M2(K) associated to this
exact sequence, the image of J is 0 and the image of any nonzero projection in
A/J is nonzero, therefore lifts to an infinite dimensional projection in M(M3(K)).
We deduce an isomorphism

Ax, S=(Kak)®K.
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