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Abstract. For every invariant subspace M in the Hardy spaces H2(Γ2),
let Vz and Vw be multiplication operators on M . Then it is known that
the condition VzV ∗

w = V ∗
wVz on M holds if and only if M is a Beurling type

invariant subspace. For a backward shift invariant subspace N in H2(Γ2), two
operators Sz and Sw on N are defined by Sz = PNLzPN and Sw = PNLwPN ,
where PN is the orthogonal projection from L2(Γ2) onto N . It is given a
characterization of N satisfying SzS∗w = S∗wSz on N .
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1. INTRODUCTION

Let Γ2 be the 2-dimensional unit torus. We denote by (z, w) = (eiθ, eiϕ) the
variables in Γ2 = Γz × Γw. Let L2 = L2(Γ2) be the usual Lebesgue space on Γ2

with the norm ‖f‖2 = (
∫
Γ2

|f(eiθ, eiϕ)|2dθdϕ/(2π)2)1/2. The space L2 is a Hilbert

space with the usual inner product. For f ∈ L2, the Fourier coefficients are given
by

f̂(n,m) =

∫
Γ2

f(eiθ, eiϕ)e−inθe−imϕ dθ dϕ

(2π)2
= 〈f, znwm〉.

Let H2 = H2(Γ2) be the Hardy space on Γ2, that is,

H2 = {f ∈ L2 : f̂(n,m) = 0 if n < 0 or m < 0}.
For f ∈ H2, we can write f as

f =
∞∑

i,u=0

⊕ai,jziwj , where
∞∑

i,j=0

|ai,j |2 <∞.
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Let P be the orthogonal projection from L2 onto H2. For a closed subspace M of
L2, we denote by PM the orthogonal projection from L2 onto M . For a function
ψ ∈ L∞, let Lψf = ψf for f ∈ L2. The Toeplitz operator Tψ on H2 is defined
by Tψf = PLψf for f ∈ H2. It is well known that T ∗ψ = Tψ. It holds that
T ∗znTwm = TwmT ∗zn for n,m > 1. A function f ∈ H2 is called to be inner if
|f | = 1 on Γ2 almost everywhere. A closed subspace M of H2 is called invariant
if zM ⊂ M and wM ⊂ M . In one variable case, an invariant subspace M of
H2(Γ) has a form M = qH2(Γ), where q is inner. This is the well known Beurling
theorem ([2]). In two variable case, the structure of invariant subspaces of H2 is
more complicated; see [1], [9], [11].

Let M be an invariant subspace of H2. Then T ∗z (H2ªM) ⊂ (H2ªM) and
T ∗w(H2 ªM) ⊂ (H2 ªM). We call a closed subspace N of H2 to be backward
shift invariant if T ∗zN ⊂ N and T ∗wN ⊂ N . If N is a backward shift invariant
subspace of H2, then H2 ª N is invariant. There are studies of backward shift
invariant subspaces of the unit circle Γ; see [3] and [12].

Let M be an invariant subspace of H2 and ψ ∈ L∞. Let Vψ be the operator
on M defined by Vψ = PMLϕ|M . Then Vz = Tz and V ∗z = Vz on M . In [8],
Mandrekar proved that VzV ∗w = V ∗wVz on M holds if and only if M is Beurling
type, that is, M = qH2 for some inner function q; see also [4], [9], [10].

In this paper, we study a similar type problem on a backward shift invariant
subspace N of H2. For ψ ∈ L∞, put

Sψ = PNLψ|N on N .

Then we have S∗ψ = Sψ and S∗z = T ∗z on N . Our purpose is to characterize
backward shift invariant subspaces N which satisfiy the condition SzS

∗
w = S∗wSz

on N . Recently, this problem was studied in [5] and [6]. Our theorem in this paper
is the following complete characterization.

Theorem 2.1. Let N be a backward shift invariant subspace of H2 and
N 6= H2. Then SzS∗w = S∗wSz on N holds if and only if N has one of the following
forms:

(i) N = H2 ª q1(z)H2;
(ii) N = H2 ª q2(w)H2;
(iii) N = (H2 ª q1(z)H2) ∩ (H2 ª q2(w)H2);

where q1(z) and q2(w) are one variable inner functions.

In Section 2, we prove our theorem as a continuation of the study of [6]. In
Section 3, we study the above problem from another point of view.

Let H2(Γz) and H2(Γw) be the Hardy spaces on the unit circle Γ in variables
z and w, respectively. We think that H2(Γz) ⊂ H2 and H2(Γw) ⊂ H2. In [6] it is
proved that, if SzS∗w = S∗wSz and N 6= H2, then either (H2 ªN) ∩H2(Γz) 6= {0}
or (H2 ªN) ∩H2(Γw) 6= {0} holds. We prove the following.



Backward shift invariant subspaces in the bidisc. II 363

Theorem 3.1. Let N be a backward shift invariant subspace of H2 and
M = H2ªN . Suppose that M ∩H2(Γz) 6= {0}. Put M ∩H2(Γz) = q1(z)H2(Γz),
where q1(z) is an inner function. Put M̃ = M ª q1(z)H2. Then the following
conditions are equivalent:

(i) SzS∗w = S∗wSz;
(ii) T ∗z M̃ ⊂ M̃ ;
(iii) either M̃ = {0} or M̃ = q2(w)(H2 ª q1(z)H2) holds for some inner

function q2(w) ∈ H2(Γw);
(iv) either M = q1(z)H2 or M = q1(z)H2 + q2(w)H2 holds.

Theorem 3.1 follows from Theorem 2.1 without difficulty. We also give a
proof of Theorem 3.1 without using Theorem 2.1. Since Theorem 2.1 follows from
Theorem 3.1, this means that we give two different proofs of Theorem 2.1. In the
forthcoming paper [7], we study backward shift invariant subspaces N satisfying
SzS

∗
w 6= S∗wSz and Sz2S∗w = S∗wS

2
z2 . In [7], both ideas will be used effectively.

2. PROOF OF THEOREM 2.1

To prove our theorem, we need some lemmas. The following two lemmas are
proved in [6].

Lemma 2.2. Let N be a backward shift invariant subspace of H2 and M =
H2 ªN . Then the following conditions are equivalent:

(i) SzS∗w = S∗wSz;
(ii) SwS∗z = S∗zSw;
(iii) (M ª zM)ª (M ∩H2(Γw)) ⊂ (M ∩H2(Γz))⊕ wM ;
(iv) (M ª wM)ª (M ∩H2(Γz)) ⊂ (M ∩H2(Γw))⊕ zM .

Lemma 2.3. Let N be a backward shift invariant subspace of H2 such that
N 6= H2. Let M = H2ªN . If SzS∗w = S∗wSz holds, then either M ∩H2(Γz) 6= {0}
or M ∩H2(Γw) 6= {0} holds.

Lemma 2.4. Let q1(z) and q2(w) be one variable inner functions. Then
M = q1(z)H2 + q2(w)H2 is an invariant subspace of H2.

Proof. We need to prove that M is closed. Since

H2 ª q2(w)H2 =
∞∑

j=0

⊕zj(H2(Γw)ª q2(w)H2(Γw)),

H2 ª q2(w)H2 is z-invariant. Then q1(z)(H2 ª q2(w)H2) ⊥ q2(w)H2 and

M = q1(z)H2 + q2(w)H2

= q1(z)((H2 ª q2(w)H2)⊕ q2(w)H2) + q2(w)H2

= (q1(z)(H2 ª q2(w)H2))⊕ q2(w)H2.

Hence M is closed.
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Proof of Theorem 2.1. Put M = H2 ªN . Then M is an invariant subspace.
Suppose that (i) holds. Then M = q1(z)H2, so that M ª wM = q1(z)H2(Γz)
and M ∩H2(Γz) = q1(z)H2(Γz). Hence (M ª wM) ª (M ∩H2(Γz)) = {0}. By
Lemma 2.2, SzS∗w = S∗wSz holds. Similarly if (ii) holds, then SzS∗w = S∗wSz.

Suppose that (iii) holds. By Lemma 2.4, we have M = q1(z)H2 + q2(w)H2.
Then we have

(2.1) q1(z), q2(w) ∈M.

If either q1(z) or q2(z) is constant, then we have M = H2, so that N = {0}.
In this case, trivially SzS

∗
w = S∗wSz holds. Hence we may assume that both of

q1(z) and q2(w) are not constant functions. We have M ∩H2(Γz) = q1(z)H2(Γz),
M ∩H2(Γw) = q2(w)H2(Γw), and

(2.2) M ª zM ⊂ q1(z)H2(Γw) + q2(w)H2(Γw).

By Lemma 2.2, it is sufficient to prove

(2.3) (M ª zM)ª q2(w)H2(Γw) ⊂ q1(z)H2(Γz)⊕ wM.

Let

(2.4) f ∈ (M ª zM)ª q2(w)H2(Γw).

Then by (2.2),

(2.5) f = q1(z)h1(w) + q2(w)h2(w), h1(w), h2(w) ∈ H2(Γw).

By (2.4), f ⊥ zM . Since q2(w)h2(w) ⊥ zM , we have

q1(z)h1(w) ⊥ z(q1(z)H2 + q2(w)H2).

Since q1(z)h1(w) ⊥ zq1(z)H2, we have q1(z)h1(w) ⊥ zq2(w)H2. Since q1(z) is
not constant, q1(z) 6⊥ zn for some n > 1. Since q1(z)h1(w) ⊥ znq2(w)H2(Γw),
we get h1(w) ⊥ q2(w)H2(Γw). Hence q1(z)h1(w) ⊥ q2(w)H2(Γw). By (2.4),
f ⊥ q2(w)H2(Γw). Therefore by (2.5), q2(w)h2(w) ⊥ q2(w)H2(Γw). Thus we
get h2(w) = 0. Let h1(w) = ĥ1(0) + wh′1(w), where h′1(w) ∈ H2(Γw). By (2.1),
q1(z)h′1(w) ∈M . Hence we get

f = q1(z)h1(w) = ĥ1(0)q1(z) + q1(z)wh′1(w) ∈ q1(z)H2(Γz)⊕ wM.

Thus (2.3) holds. Therefore SzS∗w = S∗wSz holds.
Next, we prove the converse assertion. We may assume that N 6= {0}.

Suppose that SzS∗w = S∗wSz. By Lemma 2.3, we may further assume that M ∩
H2(Γw) 6= {0} holds. In this case, we shall prove that N has either the form (ii)
or the form (iii). Similarly, if M ∩H2(Γz) 6= {0} holds, then we can prove that N
has either the form either (i) or (iii).
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By the Beurling theorem ([2]),

(2.6) M ∩H2(Γw) = q2(w)H2(Γw),

where q2(w) is an inner function. By Lemma 2.2,

(M ª zM)ª q2(w)H2(Γw) ⊂ (M ∩H2(Γz))⊕ wM.

Put

(2.7) K0 = (M ª zM)ª q2(w)H2(Γw).

Then

(2.8) K0 ⊂ (M ∩H2(Γz))⊕ wM

and

(2.9) K0 ⊥ (zM ⊕ q2(w)H2(Γw)).

We have

(2.10) q2(w)H2 = q2(w)H2(Γw)⊕ zq2(w)H2.

By (2.6), we have q2(w) ∈M . Then zq2(w)H2 ⊂ zM . Hence, by (2.9) and (2.10),

(2.11) K0 ⊥ q2(w)H2.

We also have

(2.12) q2(w)H2 =
∞∑

j=0

⊕zjq2(w)H2(Γw).

Then

M =
∞∑

j=0

⊕zj(M ª zM)

=
∞∑

j=0

⊕zj(K0 ⊕ q2(w)H2(Γw)) by (2.7)

=
( ∞∑

j=0

⊕zjq2(w)H2(Γw)
)
⊕

( ∞∑

j=0

⊕zjK0

)

= q2(w)H2 ⊕
( ∞∑

j=0

⊕zjK0

)
by (2.12).

Hence

(2.13) M = q2(w)H2 ⊕
( ∞∑

j=0

⊕zjK0

)
.

Since (2.8) holds, it occurs one of the following three cases:

K0 = {0}, K0 ⊂ wM, and K0 6⊂ wM.

Case 1. K0 = {0}.
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In this case, by (2.13) it follows that M = q2(w)H2. Therefore N = H2 ª
M = H2 ª q2(w)H2. Hence (ii) holds.

Case 2. K0 ⊂ wM .
In this case, we shall prove that K0 = {0}. Let F ∈ K0. By our assumption

of Case 2,

(2.14) F = wf, f ∈M.

We shall prove that

(2.15) f ∈ K0.

We have
〈
f, q2(w)H2 ⊕

∞∑

j=1

⊕zjK0

〉
=

〈
wf,w

(
q2(w)H2 ⊕

∞∑

j=1

⊕zjK0

)〉

=
〈
F, z

( ∞∑

j=1

⊕zj−1wK0

)〉
by (2.11) and (2.14)

= 0.

The last equation follows from the facts

z
( ∞∑

j=1

⊕zj−1wK0

)
⊂ zM, F ∈ K0, and K0 ⊥ zM.

Then by (2.13), we have (2.15). Hence F ∈
∞⋂
n=1

wnK0 holds, so that F = 0.

Case 3. K0 6⊂ wM .
In this case, by (2.8) it follows that M ∩ H2(Γz) 6= {0}. By the Beurling

theorem,

(2.16) M ∩H2(Γz) = q1(z)H2(Γz), where q1(z) is inner.

By (2.8) again, K0 ⊂ q1(z)H2(Γz) ⊕ wM holds. Let G ∈ K0. Then G =
q1(z)h0(z)⊕ wh1, where h0(z) ∈ H2(Γz) and h1 ∈M . We have

(2.17) G = ĥ0(0)q1(z)⊕ zq1(z)h2(z)⊕ wh1 for some h2(z) ∈ H2(Γz).

By (2.16), we have q1(z) ∈ M . Hence zq1(z)h2(z) ∈ zM . Then by (2.9), G ⊥
zq1(z)h2(z) holds. Therefore by (2.17), zq1(z)h2(z) = 0, so that G = ĥ0(0)q1(z)⊕
wh1 holds. Thus we get

(2.18) G = a0q1(z)⊕ wh1, h1 ∈M.

Here we shall prove that

(2.19) h1 ∈ K0.
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Since q2(w) ∈M , M = q2(w)H2⊕(Mªq2(w)H2). Put h1 = h′1⊕h′′2 ∈ q2(w)H2⊕
(M ª q2(w)H2). Then we have G = a0q1(z)⊕wh′1 ⊕wh′′2 . Since wh′1 ∈ q2(w)H2,
by (2.11) wh′1 ⊥ K0 holds. Since G ∈ K0, we have h′1 = 0. Thus we get

(2.20) h1 ⊥ q2(w)H2.

We have

(2.21) q1(z) ⊥ w
( ∞∑

j=1

⊕zjK0

)
.

Since w
( ∞∑
j=1

⊕zjK0

)
⊂ zM , G ∈ K0, and K0 ⊥ zM , we have

(2.22) G ⊥ w
( ∞∑

j=1

⊕zjK0

)
.

Then we have
〈
h1,

∞∑

j=1

⊕zjK0

〉
=

〈
wh1, w

( ∞∑

j=1

⊕zjK0

)〉

=
〈
G− a0q1(z), w

( ∞∑

j=1

⊕zjK0

)〉
by (2.18)

= 0 by (2.21) and (2.22).

Hence h1 ⊥
∞∑
j=1

⊕zjK0. Therefore by (2.13) and (2.20), we get (2.19).

Applying (2.18) and (2.19) infinitely many times, we have

G =
∞∑

j=0

⊕ajq1(z)wj = q1(z)
( ∞∑

j=0

⊕ajwj
)
∈ q1(z)H2(Γw).

Hence K0 ⊂ q1(z)H2(Γw), so
∞∑

j=0

⊕zjK0 ⊂ q1(z)H2.

Therefore by (2.13), M ⊂ q1(z)H2 + q2(w)H2. By (2.6) and (2.16), we have
q1(z), q2(w) ∈ M . Then q1(z)H2 + q2(w)H2 ⊂ M . Thus we get M = q1(z)H2 +
q2(w)H2. Hence N = (H2 ª q1(z)H2) ∩ (H2 ª q2(w)H2).

Corollary 2.5. Let N be a backward shift invariant subspace of H2 and
N 6= H2. Let M = H2 ªN . Then SzS

∗
w = S∗wSz holds if and only if M has one

of the following forms:
(i) M = q1(z)H2;
(ii) M = q2(w)H2;
(iii) M = q1(z)H2 + q2(w)H2;

where q1(z) and q2(w) are one variable inner functions.
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3. ANOTHER PROOF OF THEOREM 2.1

Let N be a backward shift invariant subspace of H2 and M = H2ªN . Then M is
an invariant subspace. Let q1(z) be an inner function in H2(Γz). In this section,
we assume that

(3.1) q1(z)H2 ⊂M and M ∩H2(Γz) = q1(z)H2(Γz).

Then q1(z)H2 ⊂M . Put

(3.2) M̃ = M ª q1(z)H2.

Then

(3.3) H2 ª q1(z)H2 = M̃ ⊕N

and M̃ is w-invariant. The following is the main theorem in this section.

Theorem 3.1. Let N be a backward shift invariant subspace of H2 and
M = H2ªN . Suppose that M ∩H2(Γz) 6= {0}. Put M ∩H2(Γz) = q1(z)H2(Γz),
where q1(z) is an inner function. Put M̃ = M ª q1(z)H2. Then the following
conditions are equivalent:

(i) SzS∗w = S∗wSz;
(ii) T ∗z M̃ ⊂ M̃ ;
(iii) either M̃ = {0} or M̃ = q2(w)(H2 ª q1(z)H2) holds for some inner

function q2(w) ∈ H2(Γw);
(iv) either M = q1(z)H2 or M = q1(z)H2 + q2(w)H2 holds.

To prove our theorem, we need to study the properties of M̃ .

Lemma 3.2. Let f ∈ M̃ . Then we have the following:
(i) T ∗wf ∈ M̃ if and only if f ∈ wM̃ ;
(ii) T ∗wf ⊥ M̃ if and only if f ∈ M̃ ª wM̃ .

Proof. (i) Suppose that T ∗wf ∈ M̃ . Put

(3.4) f =
∞∑

j=0

⊕wjfj(z), fj(z) ∈ H2(Γz).

Then

(3.5)
∞∑

j=1

⊕wj−1fj(z) ∈ M̃.

Since wM̃ ⊂ M̃ , it follows that
∞∑
j=1

⊕wjfj(z) ∈ M̃ . By (3.4), we have f0(z) ∈ M̃ .

Then by (3.1),

f0(z) ∈ M̃ ∩H2(Γz) ⊂M ∩H2(Γz) = q1(z)H2(Γz).
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Then by (3.2), f0(z) ⊥ M̃ . Thus we get f0(z) = 0. Hence, by (3.4) and (3.5),
f ∈ wM̃ holds. The converse is trivial.

(ii) follows from the fact that T ∗wf ⊥ M̃ if and only if f ⊥ wM̃ .

We denote by P⊥ the orthogonal projection from H2 onto H2 ª q1(z)H2.
Then we have a Toeplitz type operator Qz on H2 ª q1(z)H2 such that

(3.6) Qz : H2 ª q1(z)H2 3 f → P⊥(Tzf) ∈ H2 ª q1(z)H2.

Since zM ⊂M , by (3.2) it follows that QzM̃ ⊂ M̃ . By (3.3), Qz has the following

matrix form:

(3.7) Qz =
( ∗ P

M̃
Tz|N

0 Sz

)
on H2 ª q1(z)H2 =


 M̃
⊕
N


 .

Since H2ªq1(z)H2 is backward shift invariant, it follows that T ∗w(H2ªq1(z)H2) ⊂
H2ªq1(z)H2. Since T ∗wN ⊂ N , the operator T ∗w on H2ªq1(z)H2 has the following

matrix form:

(3.8) T ∗w =
(

∗ 0
PNT

∗
w|M̃ S∗w

)
on H2 ª q1(z)H2 =


 M̃
⊕
N


 .

Put

(3.9) A = P
M̃
Tz|N and B = PNT

∗
w|M̃.

Lemma 3.3. We have the following:
(i) T ∗wQz = QzT

∗
w on H2 ª q1(z)H2;

(ii) TwQz = QzTw on H2 ª q1(z)H2.

Proof. Let f ∈ H2 ª q1(z)H2. Put

(3.10) zf = f1 ⊕ f2 ∈ (H2 ª q1(z)H2)⊕ q1(z)H2.

Then Qzf = f1. Hence T ∗wQzf = T ∗wf1. On the other hand, by (3.10) we have

zT ∗wf = T ∗wzf = T ∗wf1 + T ∗wf2.

Since T ∗wq1(z)H
2 ⊂ q1(z)H2, then T ∗wf2 ∈ q1(z)H2. Since T ∗wf1 ∈ H2 ª q1(z)H2,

by the above we have QzT ∗wf = T ∗wf1. Thus we get T ∗wQz = QzT
∗
w.

Since Tw(H2 ª q1(z)H2) ⊂ H2 ª q1(z)H2, similarly we have TwQz = QzTw
on H2 ª q1(z)H2.
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Lemma 3.4. SzS
∗
w = S∗wSz holds if and only if BA = 0.

Proof. By Lemma 3.3(i), T ∗wQz = QzT
∗
w on H2ªq1(z)H2. Then by (3.7) and

(3.8), we have BA+S∗wSz = SzS
∗
w. Then SzS∗w = S∗wSz if and only if BA = 0.

Theorem 3.5. Let N be a backward shift invariant subspace of H2 and
M = H2ªN . Suppose that M ∩H2(Γz) 6= {0}. Put M ∩H2(Γz) = q1(z)H2(Γz),
where q1(z) is a one variable inner function. Put M̃ = M ª q1(z)H2. Then the
following conditions are equivalent:

(i) SzS∗w = S∗wSz;
(ii) M̃ ª {f ∈ M̃ : T ∗z f ∈ M̃} ⊂ wM̃ ;
(iii) T ∗z M̃ ⊂ M̃ .

Proof. (i) ⇔ (ii) By Lemma 3.4, condition (i) is equivalent to BA = 0. By
(3.3), (3.9), and Lemma 3.2(i), we have that

kerB = {f ∈ M̃ : T ∗wf ∈ M̃} = wM̃.

We denote by [ranA] the closed range of A. Let A1 = P
M̃
TzPN on M̃ ⊕N . Then

we have [ranA] = [ran A1]. Since A∗1 = PNT
∗
z PM̃ , we have

kerA∗1 = N ⊕ {f ∈ M̃ : T ∗z f ∈ M̃}.
Then

[ranA] = [ranA1] = (M̃ ⊕N)ª kerA∗1 = M̃ ª {f ∈ M̃ : T ∗z f ∈ M̃}.
Therefore, it follows that BA = 0 if and only if

M̃ ª {f ∈ M̃ : T ∗z f ∈ M̃} ⊂ wM̃.

Thus we get (i) ⇔ (ii).
(ii) ⇒ (iii) Suppose that

(3.11) M̃ ª {f ∈ M̃ : T ∗z f ∈ M̃} ⊂ wM̃.

Since {f ∈ M̃ : T ∗z f ∈ M̃} is a closed subspace, by (3.11) we have

(3.12) M̃ ª wM̃ ⊂ {f ∈ M̃ : T ∗z f ∈ M̃}.
Since wM̃ ⊂ M̃ , we have

(3.13) M̃ =
∞∑

j=0

⊕wj(M̃ ª wM̃).

To prove (iii), let f ∈ M̃ . Then by (3.13),

f =
∞∑

j=0

wjgj , where gj ∈ M̃ ª wM̃.

Since T ∗z Tw = TwT
∗
z on H2, by (3.12) we have

T ∗z f =
∞∑

j=0

wjT ∗z gj ∈ M̃.

(iii) ⇒ (ii) is trivial.
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For a one variable inner function q(z), put q∗(z) = z(q(z)− q̂(0)).

Lemma 3.6. Let q1(z) and q2(z) be inner functions. Then we have the fol-

lowing:
(i) T ∗z q1(z) = q∗1(z) and q∗1(z) ⊥ q1(z)H2(Γz);
(ii) if q1(z)H2(Γz) ⊆/ q2(z)H2(Γz), then the smallest closed T ∗z -invariant

subspace of H2(Γz) containing q2(z)H2(Γz) ª q1(z)H2(Γz) is equal to H2(Γz)ª
q1(z)H2(Γz);

(iii) the closed subspace generated by T ∗nz q∗1(z), n = 0, 1, 2, . . ., it is equal to
H2(Γz)ª q1(z)H2(Γz).

Proof. (i) Trivially T ∗z q1(z) = q∗1(z) holds. For h ∈ H2(Γz), we have

〈q∗1(z), q1(z)h〉 = 〈T ∗z q1(z), q1(z)h〉 = 〈q1(z), zq1(z)h〉 = 〈1, zh〉 = 0.

Thus we get (i).
(ii) Let L be the smallest backward shift invariant subspace of H2(Γz) con-

taining q2(z)H2(Γz) ª q1(z)H2(Γz). Then L ⊂ H2(Γz) ª q1(z)H2(Γz). Let
f ∈ H2(Γz) ª q1(z)H2(Γz) such that f ⊥ L. Since H2(Γz) ª L is invariant,
zkf ⊥ L for k > 0. Hence

zkf ⊥ q2(z)H2(Γz)ª q1(z)H2(Γz) for every k > 0.

Since q2(z)H2(Γz) ⊂ L⊕ q1(z)H2(Γz), we have f ⊥ q2(z)H2(Γz). Hence

f ⊥ zn(q2(z)H2(Γz)ª q1(z)H2(Γz)) for every k > 0.

Since q2(z)H2(Γz) ª q1(z)H2(Γz) 6= {0}, we have f = 0. Thus we get L =
H2(Γz)ª q1(z)H2(Γz).

(iii) Let E be the closed subspace generated by T ∗nz q∗1(z), n > 0. By (i),
E ⊂ H2(Γz)ªq1(z)H2(Γz) and E is a backward shift invariant subspace ofH2(Γz).
Then H2(Γz)ªE = q3(z)H2(Γz) for some inner function q3(z) and q1(z)H2(Γz) ⊂
q3(z)H2(Γz). If q1(z)H2(Γz) = q3(z)H2(Γz) our assertion holds.

Suppose that q1(z)H2(Γz)⊆/ q3(z)H2(Γz). Put q4(z) = q1(z)/q3(z). Then
q4(z) is a nonconstant inner function, and q∗1(z) = q3(z)q∗4(z) + q̂4(0)q∗3(z). We
have q∗4(z) 6= 0, so that q3(z)q∗4(z) 6⊥ q3(z)H2(Γz). By (i), q∗3(z) ⊥ q3(z)H2(Γz).
Hence q∗1(z) 6⊥ q3(z)H2(Γz). Since q∗1(z) ∈ E, E 6⊥ q3(z)H2(Γz). This is a

contradiction. Hence we get our assertion.

Proof of Theorem 3.1. First, we shall prove our theorem using Corollary 2.5

and Theorem 3.5.

(i) ⇔ (ii) follows from Theorem 3.5.

(i) ⇒ (iv) follows from Corollary 2.5.



372 Keiji Izuchi, Takahiko Nakazi and Michio Seto

(iv) ⇔ (iii) If M = q1(z)H2, then M̃ = {0}. Suppose that M = q1(z)H2 +
q2(w)H2. Then

M = q1(z)H2 + q2(w)(q1(z)H2 ⊕ (H2 ª q1(z)H2))

= q1(z)H2 + q2(w)(H2 ª q1(z)H2).

Since H2 ª q1(z)H2 is w-invariant, we have

M = q1(z)H2 ⊕ q2(w)(H2 ª q1(z)H2).

Thus we get M̃ = q2(w)(H2 ª q1(z)H2).
The converse assertion is not difficult to prove.
(iii) ⇒ (ii) is easy.

Here we give another proof of (ii)⇒ (iii) without using Corollary 2.5. We may
assume that M̃ 6= {0}. By condition (ii), we have T ∗z M̃ ⊂ M̃ . Then T ∗z M̃ ⊥ N ,
so that M̃ ⊥ zN . Hence by (3.3) and (3.6),

(3.14) QzN ⊂ N.

Since M̃ 6= {0} and wM̃ ⊂ M̃ , M̃ ªwM̃ 6= {0} holds. Let f ∈ M̃ ªwM̃ . Then by
(3.3) and Lemma 3.2(ii), we have T ∗wf ∈ N . Hence T ∗wT ∗z f = T ∗z T

∗
wf ∈ N . Since

T ∗z M̃ ⊂ M̃ , T ∗z f ∈ M̃ holds. Hence by Lemma 3.2(ii) again, T ∗z f ∈ M̃ ª wM̃
holds. Thus we get

(3.15) T ∗z (M̃ ª wM̃) ⊂ M̃ ª wM̃.

By (3.2), we have f ∈ M and zf = f1 + f2 ∈ M̃ ⊕ q1(z)H2. Then by (3.6),
we have Qzf = f1 ∈ M̃ . Since T ∗wf ∈ N , by (3.14) and Lemma 3.3(i) we have
T ∗wQzf = QzT

∗
wf ∈ N . Then by (3.3) and Lemma 3.2(ii), Qzf ∈ M̃ ª wM̃ holds.

Thus we get

(3.16) Qz(M̃ ª wM̃) ⊂ M̃ ª wM̃.

We define the operator Wz on M̃ to q1(z)H2 by

(3.17) Wz = Pq1(z)H2Tz = Tz −Qz.

Then by Lemma 3.3(ii),

(3.18) WzTw = TwWz on M̃ .

Then wWzM̃ = Wz(wM̃) ⊂WzM̃ . Hence we get

(3.19) wWzM̃ ⊂WzM̃,

where WzM̃ is the norm closure of the space WzM̃ . Since M̃ ⊥ q1(z)H2, zM̃ ⊥
zq1(z)H2 holds. Then by (3.17), we obtain

WzM̃ ⊂ q1(z)H2 ª zq1(z)H2 = q1(z)H2(Γw).
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Hence q1(z)WzM̃ ⊂ H2(Γw), so that by (3.19) and the Beurling theorem,

(3.20) q1(z)WzM̃ = q2(w)H2(Γw)

for some inner function q2(w).
Let f ∈ M̃ ª wM̃ and g ∈ M̃ . Since QzM̃ ⊂ M̃ , by Lemma 3.3(ii) we have

QzwM̃ ⊂ wM̃ . Then by (3.16), Qzf ⊥ Qzwg holds. Since zf ⊥ zwg, by (3.17)
we have

0 = 〈zf, zwg〉 = 〈Qzf ⊕Wzf,Qzwg ⊕Wzwg〉 = 〈Wzf,Wzwg〉.

Then Wz(M̃ ª wM̃) ⊥Wz(wM̃). Hence by (3.18), we get

Wz(M̃ ª wM̃) ⊥ wWzM̃.

Therefore by (3.20), we obtain

Wz(M̃ ª wM̃) ⊂WzM̃ ª wWzM̃ = [q1(z)q2(w)],

where [q1(z)q2(w)] is the linear span of q1(z)q2(w). If Wz(M̃ ª wM̃) = {0}, by
(3.16) and (3.17) it follows that z(M̃ ª wM̃) ⊂ M̃ ª wM̃ . Then zn(M̃ ª wM̃) ⊂
M̃ ª wM̃ for every positive integer n. Since M̃ ª wM̃ 6= {0}, we have that
zn(M̃ ª wM̃) 6⊥ q1(z)H2 for some n. These contradict with (3.2). Thus there
exists f0 in M̃ ª wM̃ such that

(3.21) Wzf0 = aq1(z)q2(w) and a 6= 0.

Since zf0 = Qzf0 +Wzf0, we have

f0 = T ∗zQzf0 + T ∗zWzf0

= T ∗zQzf0 + aq∗1(z)q2(w) by (3.21) and Lemma 3.6(i).

Hence by (3.15) and (3.16), it follows that q∗1(z)q2(w) ∈ M̃ ª wM̃ , n > 0. By
Lemma 3.6(iii), we obtain

(3.22) q2(w)(H2(Γz)ª q1(z)H2(Γz)) ⊂ M̃ ª wM̃.

We shall prove that

(3.23) M̃ ª wM̃ = q2(w)(H2(Γz)ª q1(z)H2(Γz)).

Let

(3.24) F ∈ (M̃ ª wM̃)ª q2(w)(H2(Γz)ª q1(z)H2(Γz)).

Let i, j be nonnegative integers. Since q2(w)(H2(Γz) ª q1(z)H2(Γz)) is invariant
for the operator T ∗z ,
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T ∗iz (q2(w)(H2(Γz)ª q1(z)H2(Γz))) ∈ q2(w)(H2(Γz)ª q1(z)H2(Γz)).

Since M̃ ªwM̃ ⊥ wn(M̃ ªwM̃) for every positive integer n, by (3.22) and (3.24)
we have

wjF ⊥ T ∗iz (q2(w)(H2(Γz)ª q1(z)H2(Γz)))

and

F ⊥ wjT ∗iz (q2(w)(H2(Γz)ª q1(z)H2(Γz))).

Hence

(3.25) wjF ⊥ ziq2(w)(H2(Γz)ª q1(z)H2(Γz))

and

(3.26) F ⊥ ziwjq2(w)(H2(Γz)ª q1(z)H2(Γz)).

Since q2(w)(H2(Γz)ªq1(z)H2(Γz)) is invariant for the operator Qz, similarly
we have

(3.27) wjF ⊥ Qiz(q2(w)(H2(Γz)ª q1(z)H2(Γz)))

and

(3.28) F ⊥ wjQiz(q2(w)(H2(Γz)ª q1(z)H2(Γz))).

By (3.6),

Qiz(q2(w)(H2(Γz)ª q1(z)H2(Γz))) = P⊥(ziq2(w)(H2(Γz)ª q1(z)H2(Γz))).

Since M̃ ⊥ q1(z)H2 and wjF ∈ M̃ , by (3.27) and (3.28) we have

(3.29) wjF ⊥ ziq2(w)(H2(Γz)ª q1(z)H2(Γz))

and

(3.30) F ⊥ ziwjq2(w)(H2(Γz)ª q1(z)H2(Γz)).

Since M̃ 6= {0}, by (3.2) q1(z) is not constant. Hence H2(Γz)ªq1(z)H2(Γz) 6= {0}.
Therefore by (3.25), (3.26), (3.29), and (3.30), we get F = 0. Thus we get (3.23).

By (3.23), we obtain

M̃ =
∞∑

j=0

⊕wj(M̃ ª wM̃) = q2(w)(H2 ª q1(z)H2).
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The following is a consequence sufficiently interesting in its own right.

Corollary 3.7. Let q1(z) be a nonconstant inner function. Let L be a
closed subspace of H2 ª q1(z)H2 and L 6= {0}. Suppose that wL ⊂ L, QzL ⊂
L, and Q∗zL ⊂ L. Then, there exists an inner function q2(w) such that L =
q2(w)(H2 ª q1(z)H2).

Proof. We note thatQ∗z = T ∗z onH2ªq1(z)H2. PutM = L⊕q1(z)H2. Then,
by our assumption, M is an invariant subspace and q1(z)H2(Γz) ⊂ M ∩H2(Γz).
Put M ∩ H2(Γz) = q3(z)H2(Γz), where q3(z) is inner. Then q1(z)H2(Γz) ⊂
q3(z)H2(Γz).

Suppose that q1(z)H2(Γz) 6= q3(z)H2(Γz). Let L1 be the smallest closed
subspace ofH2(Γz)ªq1(z)H2(Γz) containing q3(z)H2(Γz)ªq1(z)H2(Γz) such that
T ∗z L1 ⊂ L1. By Lemma 3.6(ii), L1 = H2(Γz)ª q1(z)H2(Γz). Since M ∩H2(Γz) =
q3(z)H2(Γz),

q3(z)H2(Γz)ª q1(z)H2(Γz) ⊂ L.

Since T ∗z L = Q∗zL ⊂ L, we have L1 ⊂ L. Hence we have

H2 ª q1(z)H2 =
∞∑

j=0

⊕wjL1 ⊂ L ⊂ H2 ª q1(z)H2.

Therefore, L = H2 ª q1(z)H2. Thus, we get our assertion.
Suppose that q1(z)H2(Γz) = q3(z)H2(Γz). We have L = M ª q1(z)H2.

By our assumption, T ∗z L = Q∗zL ⊂ L. Then by Theorem 3.1, we have L =
q2(w)(H2 ª q1(z)H2) for an inner function q2(w).
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