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1. INTRODUCTION

In this paper we consider possibly nonselfadjoint norm closed algebras of operators
on a Hilbert space H. The general theory of such operator algebras, and of their
representations, is rather sparse in contrast to the selfadjoint case, namely the C∗-
algebra theory. The contrast is easily seen in the lack of certain fundamental tools
which are available in the selfadjoint case, such as von Neumann’s double com-
mutant theorem or Kaplansky’s density theorem. In recent years, with the help
of operator space theory, the situation has changed somewhat, and the general
theory of operator algebras has been growing rapidly. The theory that is emerging
also has the feature that it links much more closely together the three subjects of
operator algebras, C∗-algebra theory, and the theory of rings and modules. The
present paper is an attempt in this spirit to establish a double commutant theo-
rem for general operator algebras, one that would be useful at least for tackling
certain problems. Our main result simultaneously resembles two classical and fun-
damental results: von Neumann’s double commutant theorem ([17]), and Nesbitt
and Thrall’s purely algebraic result ([16]) to the effect that any module M over a
ring R, which is a “generator for RMOD”, satisfies the appropriate double com-
mutant theorem. Although for a subalgebra A ⊂ B(H) the double commutant
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A′′ may not equal the weak* closure Aweak∗ within B(H), we show that impor-
tant and canonical classes of completely isometric Hilbert space representations
π : A → B(K) of A do have the double commutant property, by which we will mean
that π(A)′′ = π(A)weak∗ = π(A)WOT in B(K). In fact, for a certain subclass of
these representations this double commutant is also isomorphic to A∗∗. If A is a
“dual operator algebra”, then we can find canonical classes of completely isometric
normal representations with the property π(A)′′ = π(A), as one is accustomed to
for von Neumann algebras.

A good illustration is the very simple example T2, the algebra of 2× 2 upper
triangular matrices. The usual representation of T2 on C2 clearly does not have the
double commutant property. However the direct sum ρ of the usual representation
and the 1-dimensional representation consisting of evaluation at the 1-1 entry, does
possess the double commutant property. Indeed this representation ρ satisfies our
general “sufficient condition” for the double commutant property (Theorem 1.1),
but the usual representation of T2 does not.

The substitution of a given embedding A ⊂ B(H) of an operator algebra A
for another in which the double commutant theorem holds, is easily justified by
the trend in the recent general theory of operator algebras towards a “coordinate-
free” approach, i.e. not to focus on any one fixed embedding A ⊂ B(H). In
the new perspective one is encouraged to think about all representations of A
simultaneously; some may be better than others for solving certain problems.

Before we turn to specific details, we feel it is important to mention that
although some of the representations we consider are quite “large”, in some appli-
cations this should not matter — the important thing is often just the universal
property and the functoriality, and the strong links to the C∗-algebra theory. A
good illustration of this may be found in the paper [4], where a difficult problem
concerning nonselfadjoint operator algebras was solved by transferring it to the
C∗-algebra world using some rather large representations. We will give other such
applications of our results in a sequel paper, as well as a characterization of the
double commutant property which is quite different to the considerations in the
present paper.

We now turn to specific details, and recall some definitions and facts (see
e.g. [5] for more details, if needed). Although everything in this paper can be done
within the Banach algebra context and without the matrix norms of operator space
theory, for specificity we use the operator space context. Thus, following the lead
suggested by Arveson ([2]), and by operator space theory, we define an abstract
operator algebra — or simply an operator algebra — to be a Banach algebra A
which is also an operator space, such that there exists a completely isometric
homomorphism θ : A → B(H) for some Hilbert space H. There is an abstract
characterization of these operator algebras due to the first author with Ruan and
Sinclair, but we shall not need this here. Except in the last section, operator
algebras are assumed to have a contractive approximate identity (c.a.i.). If A has
an identity of norm 1 then we say that A is unital.

It is helpful to use the language of Hilbert modules (see for example [18], [8],
[15]). For the purposes of this paper, we define a Hilbert A-module to be a Hilbert
space H which is a nondegenerate A-module via a completely contractive nonde-
generate representation π : A → B(H). Thus aζ = π(a)(ζ), for a ∈ A, ζ ∈ H.
The theory below may be modified to include “contractive Hilbert A-modules”, we
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omit the easy details. Except in the final section of our paper, the word “nonde-
generate” used above means that the span of such products aζ is dense in H. This
correspondence between Hilbert A-modules and completely contractive nondegen-
erate representations is bijective. Henceforth we use the term “representation of
A” for a completely contractive nondegenerate representation. We write AHMOD
for the category of Hilbert A-modules, with morphisms the bounded maps which
intertwine the representations (that is, the bounded A-module maps). This cat-
egory is closed under direct sums and quotients by closed submodules (see e.g.
[15]). If α is a cardinal then the direct sum of α copies of a Hilbert A-module
H, or of its associated representation π : A → B(H), is called a multiple of H
or of π; and is written as H(α) or πα. We say that two Hilbert A-modules are
spatially equivalent, and write H ∼= K, if they are isometrically A-isomorphic, that
is, if there exists a unitary A-module map from H onto K. We say that a closed
A-submodule K of a Hilbert A-module H is A-complemented if the projection of
H onto K is an A-module map. This may be reformulated in several equivalent
ways (see for example the discussion in [15]). We say that representations π, θ

of A are quasi-equivalent if there is a multiple of π which is spatially equivalent
to a multiple of θ. Thus two Hilbert A-modules are quasi-equivalent if and only
if there are cardinals α and β (which we may clearly assume to be equal) such
that H(α) ∼= K(β). We say that a Hilbert A-module H is A-universal, if every
K ∈ AHMOD is isometrically A-isomorphic (that is, spatially equivalent) to an
A-complemented submodule of a direct sum of copies of H. We say that a module
H ∈ AHMOD is a generator (respectively cogenerator) for AHMOD if for every
nonzero morphism R : K → L of AHMOD, there exists a morphism T : H → K

(respectively T : L → H) of AHMOD with RT 6= 0 (respectively TR 6= 0). We
will say that H is sub-tracing if the definition above for generator is modified so
that K ranges over the set of submodules of H. We say that H is completely sub-
tracing if a countably infinite multiple of H is sub-tracing. We also use these terms
when referring to the associated representation on H. Thus, for example, we will
often refer to a representation π : A → B(H) as being A-universal, or sub-tracing.
One would expect, just as in pure algebra, that there are many useful alternative
characterizations of generators, cogenerators, and sub-tracing modules. Indeed,
we will provide some in Section 2.

Note that any generator is sub-tracing. Since any multiple of a generator is
also a generator, we see that any generator is completely sub-tracing. Also, any
A-universal Hilbert module H is a generator. To see this, suppose that T : K → L

is a nonzero A-module map. Without loss of generality, there is a cardinal α
such that K is an A-complemented submodule of H(α); let Q be the associated
projection onto K from H(α). Let εi be the inclusion map of H into H(α) as its ith
summand H. If every map T ◦Q ◦ εi is zero, then T = 0, which is a contradiction.

The main results of our paper are the following:
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Theorem 1.1. Let A be an operator algebra with a contractive approximate
identity. A Hilbert A-module which is a generator or cogenerator for AHMOD, or
which is completely sub-tracing, has the double commutant property.

Theorem 1.2. Let A be an operator algebra with contractive approximate
identity.

(i) there exist A-universal representations for A;
(ii) any two A-universal representations for A are quasi-equivalent;
(iii) if π is a representation of A which is quasi-equivalent to an A-universal

representation, then π is an A-universal representation;
(iv) if π is an A-universal representation of A on a Hilbert space H, then

π(A)′′ = π(A)weak∗ ;

(v) if π is an A-universal representation, then A∗∗ is isomorphic to
π(A)weak∗ via a completely isometric weak*-homeomorphic homomorphism ρ :
A∗∗ → π(A)weak∗ such that ρ(â) = π(a) for all a ∈ A.

Proof. We prove only items (ii)–(iv) now, and defer the proofs of the other
assertions. In fact (iii) is clear by the definitions, or is an easy exercise. The proof
of (ii) is a simple application of set theory, and the well known “Eilenberg swindle”.
If H and K are two A-universal representations, then there exist cardinals α and
β, and Hilbert A-modules M and N , such that H⊕M ∼= K(α) and K⊕N ∼= H(β).
Without loss of generality, by adding on extra multiples of H or K to the last two
equations, α = β. We may also assume that α is a large enough cardinal so that
α · α equals α. Then

K(α) ∼= K(α) ⊕K(α) ⊕ · · · ∼= H ⊕M ⊕H ⊕M ⊕ · · · .
By associativity we get

K(α) ∼= H ⊕K(α) ⊕K(α) ⊕ · · · ∼= H ⊕K(α).

Since α · α = α, a multiple of the last equation yields

K(α) ∼= H(α) ⊕K(α).

Similarly, H(α) ∼= H(α) ⊕K(α) ∼= K(α), which proves (ii).
Item (iv) follows from Theorem 1.1 and the fact above that any A-universal

Hilbert module H is a generator.

It follows from (iv) and (v) that for A-universal representations, there is
an automatic “Kaplansky density” result, which is really Goldstine’s lemma in
disguise.

The main results above are proved in the first few sections of our paper. In
Sections 4–6 we give examples and complementary results. For example, we study
there dual algebras; the relations between various classes of Hilbert modules; and
in the final section we study operator algebras without c.a.i., showing for example
that all of Theorem 1.2 with the exception of (iv) holds in complete generality.

We list now some background facts that we will make much use of (often
without comment). One fact which is of great assistance when dealing with op-
erator algebras with c.a.i. but no identity, is the following: if B is a C∗-algebra
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generated (as a C∗-algebra) by a closed subalgebra A which has a c.a.i., then any
b ∈ B is a product ab′ (or b′a) with a ∈ A, b′ ∈ B. Equivalently:

(1.1) Any c.a.i. for A is also one for the C∗-algebra generated by A.

See e.g. Chapter 2, [5]. We use the notation [AK] for the norm closure of the span
of products of a term in A with a term in K.

If S ⊂ B(H) then we define S∗ = {x∗ : x ∈ S}. If K is another Hilbert
space (respectively if γ is a cardinal), then we write S ⊗ I = {x ⊗ I : x ∈ S}
for the set of appropriate “multiples” of elements in S. This is a set of operators
on H ⊗ K (respectively on H(γ)). It is a simple computation that the following
relations hold:

S ⊗ I weak∗ = S weak∗ ⊗ I, (S ⊗ I)′′ = S ′′ ⊗ I,

S∗ weak∗ = (S weak∗)∗, and (S∗)′′ = (S ′′)∗.
Hence S has the double commutant property if and only if S∗ has the double
commutant property, and if and only if S ⊗ I has the double commutant property.

2. GENERATORS AND TRACES

Following algebra texts (e.g. [1], p. 109) if H,K are Hilbert A-modules, then we
define the trace TrK(H) to be the closure of the set of finite sums of elements taken
from the ranges of bounded A-module maps from H into K. We define the reject
RejK(H) to be the intersection of the kernels of all bounded A-module maps from
K into H. Clearly TrK(H) and RejK(H) are closed submodules of K.

Lemma 2.1. Let H be a Hilbert A-module. Then:
(i) H is a generator for AHMOD if and only if TrK(H) = K for all Hilbert

A-modules K;
(ii) H is a cogenerator for AHMOD if and only if RejK(H) = {0} for all

Hilbert A-modules K;
(iii) H is sub-tracing if and only if TrK(H) = K for closed submodules K

of H.

Proof. (i) Suppose that H is a generator. If TrK(H) 6= K, then there exists
a nonzero bounded A-module map R : K → K/TrK(H) annihilating TrK(H),
namely the quotient map. Since the quotient of Hilbert A-modules is a Hilbert
A-module, and since H is a generator, there exists a T ∈ BA(H, K) with RT 6= 0.
This contradicts the definition of the trace.

Conversely, suppose that TrK(H) = K, and R : K → L is a bounded A-
module map. If R ◦ T = 0 for all T ∈ BA(H, K) then R is zero on TrK(H) = K.
So H is a generator. (iii) is proved similarly to (i).

For (ii), assume that RejK(H) = {0}. If R : L → K is a nonzero morphism,
but that TR = 0 for all T ∈ AB(K, H), then R maps into RejK(H) = {0}. Hence
R = 0. Conversely, if RejK(H) 6= {0}, then the inclusion map ε : RejK(H) → K
is a nonzero bounded A-module map with Tε = 0 for all T ∈ AB(K, H).
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Lemma 2.2. Suppose that π is a generator for AHMOD, that σ is a cogen-
erator for AHMOD, and that ρ is any representation in AHMOD. We have:

(i) π ⊕ ρ is a generator for AHMOD, σ ⊕ ρ is a cogenerator for AHMOD,
and π ⊕ σ ⊕ ρ is both a generator and cogenerator for AHMOD;

(ii) π and σ are 1-1 (i.e. faithful);
(iii) ρ is a generator (respectively, cogenerator) for AHMOD if and only if a

multiple of ρ is a generator (respectively, cogenerator) for AHMOD;
(iv) if ρ is quasi-equivalent to π (respectively to σ) then ρ is a generator

(respectively cogenerator) for AHMOD.

Proof. (i) is obvious from the definitions. For (ii), suppose that π(a) = 0,
and let K be a faithful A-module, with corresponding 1-1 representation σ. If
T ∈ AB(H, K) then σ(a)T (ζ) = Tπ(a)ζ = 0. Hence σ(a) is zero on TrK(H) = K
(using Lemma 21). So a = 0. A similar obvious argument proves the assertion
for σ. We leave (iii) and (iv) as exercises; they will not be explicitly used in the
paper.

Proposition 2.3. Let A be an operator algebra with c.a.i. Suppose that
ρ : A → B(H) is a sub-tracing representation. Then ρ(A)′′ ⊂ alg lat ρ(A).

Proof. Fix x ∈ H,x 6= 0, and consider the closed span K of ρ(A)x in H. If
{eα} is a c.a.i. for A then ρ(eα)x → x. Thus x ∈ K. Suppose that T ∈ ρ(A)′′.
If V ∈ AB(H, K) then V (regarded as a map into H) is in ρ(A)′. Thus TV H =
V TH ⊂ K. Consequently, T maps the trace TrK(H) into K. By Lemma 2.1 (iii),
T (x) ∈ T (K) ⊂ K. Since x was arbitary, we are done.

Corollary 2.4. If A is an operator algebra with c.a.i. and if π is a com-
pletely sub-tracing representation of A on a Hilbert space H, then

π(A)′′ = π(A)weak∗ = π(A)WOT.

Proof. By definition, for a separable infinite dimensional Hilbert space H0

we have that π(·)⊗ IH0 is sub-tracing. Hence by the previous proposition we have

(π(A)⊗ IH0)
′′ ⊂ alg lat

(
π(A)⊗ IH0

) ⊂ alg lat (π(A)weak∗ ⊗ IH0).

By well known facts about “reflexive algebras” (see e.g. Lemma 15.4 in [6]),

alg lat (π(A)weak∗ ⊗ IH0) = π(A)weak∗ ⊗ IH0 .

Of course (π(A)⊗ IH0)
′′ = π(A)′′ ⊗ IH0 . Putting the facts above together yields

π(A)′′ ⊗ IH0 ⊂ π(A)weak∗ ⊗ IH0

so that
π(A)′′ ⊂ π(A)weak∗ ⊂ π(A)WOT.

The other direction is trivial since π(A)′′ is weakly closed.

By the last result, we are now almost done with the proof of Theorem 1.1.
The final part is completed as follows. Suppose that H is a cogenerator for
AHMOD. Then by simple observations in the next section (before (3.1)), H is
a generator for A∗HMOD. Thus the image of A∗ in B(H) has the double commu-
tant property. The facts at the end of Section 1 now complete the proof.
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Remark 2.5. It is fairly clear that the definitions of A-universal, generator,
cogenerator, or sub-tracing, are functorial. In particular, if B is another such
operator algebra, and if the categories AHMOD and BHMOD are equivalent as
categories, then it is easy algebra to check that the equivalence functor takes A-
universal representations to B-universal representations and vice versa. Similarly
for generators, cogenerators, or sub-tracing Hilbert modules.

3. THE UNIVERSAL C∗-ALGEBRA AND UNIVERSAL REPRESENTATIONS

We will need to recall several simple facts (see e.g. [5] for more details, and exam-
ples, if needed). Firstly, there is a canonical functor A 7→ C∗(A) from the category
of operator algebras (with c.a.i.) and completely contractive homomorphisms, to
the category of C∗-algebras and ∗-homomorphisms, with the following universal
property: there exists a completely isometric homomorphism i : A → C∗(A) such
that i(A) generates C∗(A) as a C∗-algebra, and such that if φ : A → D is any
completely contractive homomorphism into a C∗-algebra D, then there exists a
(necessarily unique) ∗-homomorphism φ̃ : C∗(A) → D such that φ̃ ◦ i = φ. The
algebra C∗(A) is called the maximal C∗-algebra generated by A, and is sometimes
written as C∗max(A). For those interested in algebra, this universal property essen-
tially says that the functor A 7→ C∗(A) is the left adjoint to the forgetful functor
from the category of C∗-algebras to the category of operator algebras.

From the universal property of C∗(A), it is clear that if H is a Hilbert A-
module, then the associated representation π has a unique extension π̃ which is a
nondegenerate ∗-representation of C∗(A) on H. Conversely, every nondegenerate
∗-representation of C∗(A) on H restricts (using the fact (1.1) from Section 1 if
necessary) to a nondegenerate representation of A on H. Thus we may regard
Hilbert A-modules as Hilbert C∗(A)-modules, and vice versa, in this canonical
way. By symmetry, every Hilbert A-module is also a nondegenerate Hilbert module
over the subalgebra A∗ of C∗(A) (one may deduce the nondegeneracy from fact
(1.1) from Section 1 again). If T : H → K is a bounded A-module map, then
it is easy to see that T ∗ : K → H is an A∗-module map; and conversely. From
this we can make a few simple deductions. Firstly, it follows from the last fact
that H is a generator for AHMOD if and only if H is a cogenerator for A∗HMOD.
Similarly, H is a cogenerator for AHMOD if and only if H is a generator for
A∗HMOD. Secondly, if we call a bounded A-module map T between Hilbert A-
modules adjointable if T ∗ is also an A-module map, then we have from the above
that:

(3.1) T is adjointable if and only if T is a C∗(A)-module map.

We shall not need adjointable maps very much, except in the special case that
i is an isometric A-module map between Hilbert A-modules, such that i∗ is an
A-module map. It follows from (3.1) that i and i∗ are C∗(A)-module maps. In
particular we deduce that unitary morphisms, i.e. unitary A-module maps, are
C∗(A)-module maps. That is, two Hilbert A-modules are spatially equivalent as
A-modules if and only if they are spatially equivalent as C∗(A)-modules.

From the above, it also follows that the class of A-complemented submod-
ules of a Hilbert A-module H is the same as the class of closed C∗(A)-submodules
of H. Hence Hilbert A-module direct sums (respectively summands) of Hilbert
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A-modules are the same as Hilbert C∗(A)-module direct sums (respectively sum-
mands). From these considerations the following result is clear. Note that part
(ii) of Corollary 3.1 below establishes (i) of Theorem 1.2:

Corollary 3.1. Let A be an operator algebra with c.a.i.
(i) a Hilbert A-module H is A-universal if and only if H is C∗(A)-universal;
(ii) any C∗(A)-universal representation of C∗(A), such as the usual “uni-

versal representation” πu of C∗(A), restricts to an A-universal representation of
A;

(iii) two Hilbert A-modules are quasi-equivalent as Hilbert A-modules if and
only if they are quasi-equivalent as Hilbert C∗(A)-modules;

(iv) if π and θ are quasi-equivalent representations of A, then there exists
a (necessarily unique) weak*-homeomorphic completely isometric isomorphism ρ :
π(A)weak∗ → θ(A)weak∗ such that ρ ◦ π = θ.

Proof. (i)–(iii) are obvious from the discussion above. Let C = C∗(A). If
π and θ satisfy the hypothesis in (iv), then by (iii) we know that π̃ and θ̃ are
quasi-equivalent in the usual C∗-algebraic sense. Thus by 5.3.1 (ii) in [7], there is

a W ∗-isomorphism Φ : π̃(C)weak∗ → θ̃(C)weak∗ such that Φ◦π = θ. The restriction
of Φ to π(A) maps onto θ(A), so that by weak*-continuity we obtain the result.

Thus there is a “canonical” A-universal representation of A, namely the
restriction of the universal representation of C∗(A) to A. We will call this the
universal representation of A, and we write this representation of A as πu.

The following result, which shall not be used in an essential way in this
paper, shows that the universal representation satisfies quite a strong form of the
“sub-tracing” condition.

Proposition 3.2. Let A be an operator algebra with c.a.i. Suppose that
ρ : C∗(A) → B(H) is a nondegenerate ∗-representation with the following property:
For every state ϕ on C∗(A) there exists a ξ ∈ H such that ϕ(b) = 〈ρ(b)ξ, ξ〉 for
all b ∈ C∗(A). Then for every topologically singly generated A-submodule K of H,
there is a partial isometry in A′ with range K.

Proof. Let B = C∗(A). Fix x ∈ H, ‖x‖ = 1, and consider the closed span K
of ρ(A)x in H. As noted in the proof of Proposition 2.3, x ∈ K. Since ρ(A)K ⊂ K,
by the universal property of C∗(A) there exists a ∗-representation π of C∗(A) on K
with π(a) = ρ(a)|K for a ∈ A. Let ϕ = 〈π(·)x, x〉. This is a state, so by hypothesis
there exists a ξ ∈ H such that ϕ = 〈ρ(·)ξ, ξ〉 for all b ∈ B. Therefore

‖ρ(b)ξ‖2 = ‖π(b)x‖2
for all b ∈ B, and so there is a well defined unitary V0 from [ρ(B)ξ] to [π(B)x] ⊂ K
taking ρ(b)ξ to π(b)x. Extend V0 to a partial isometry V ∈ B(H) by setting it to
be zero on [ρ(B)ξ]⊥. It is easy to see that

ρ(A)[ρ(B)ξ]⊥ ⊂ ρ(B)[ρ(B)ξ]⊥ ⊂ [ρ(B)ξ]⊥,

and therefore V ρ(a)y = ρ(a)V y = 0 if y ∈ [ρ(B)ξ]⊥ and a ∈ A. On the other
hand, if y = ρ(b)ξ ∈ [ρ(B)ξ], then

V ρ(a)y = V ρ(ab)ξ = π(ab)x = ρ(a)π(b)x = ρ(a)V ρ(b)ξ = ρ(a)V y.

Hence V ∈ ρ(A)′.
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Remark 3.3. If πu is the universal representation of C∗(A) on Hu, and if
H0 is any Hilbert space, then the ∗-representation ρ = πu(·) ⊗ IH0 of C∗(A) on
Hu ⊗H0, satisfies the conditions of the proposition.

4. DUAL OPERATOR ALGEBRAS AND NORMAL REPRESENTATIONS

In this section we turn to dual operator algebras, and we will also prove the
remaining part, namely (v), of Theorem 1.2. We again begin by recalling some
facts and notations (see e.g. [5] for more details, if needed). A dual operator
algebra is an operator algebra A which has a predual such that A is completely
isometrically isomorphic, via a homomorphism which is a homeomorphism for
the weak* topologies, to a σ-weakly closed unital subalgebra of B(H). There
is an abstract characterization of dual operator algebras due to Le Merdy, with
a contribution by the first author, but we shall not need this here. A normal
representation of a dual operator algebra is a unital completely contractive weak*
continuous homomorphism π : A → B(K). We write ANHMOD for the category
of the Hilbert modules corresponding to such normal representations, and call an
object in ANHMOD a normal Hilbert A-module. The morphisms are the same as
in AHMOD. Again it is a simple exercise that ANHMOD is closed under direct
sums.

Let A be an operator algebra with c.a.i. It is a well known fact (that appears
first in [9], and which may be deduced for example from the first part of the
next proof) that A∗∗ is a unital operator algebra in a canonical way. For any
H ∈ AHMOD, with corresponding representation π, we may use the universal
property of C∗(A) to get a ∗-representation π̃ : C∗(A) → B(H). As is explained
in any text on C∗-algebras, we may extend this ∗-representation in a unique fashion
to a unital normal ∗-representation θ : C∗(A)∗∗ → B(H). Let π be θ restricted to
A∗∗. Then clearly π is the unique normal representation A∗∗ → B(H) extending
π from A. Moreover, since π is w*-continuous, its range is contained in the dual
operator algebra π(A)weak∗ .

We remark in passing that the converse is true too: any normal representation
ρ : A∗∗ → B(H) restricts to a nondegenerate completely contractive representation
of A on H. In fact, generalizing a well known fact for C∗-algebras (see p. 53 of
[18]), it is clear that the categories AHMOD and A∗∗NHMOD are equivalent for
any operator algebra A with c.a.i.

Proof of (v) of Theorem 1.2. Applying the remark above to the universal rep-
resentation πu of A, we obtain a normal representation πu : A∗∗ → πu(A)weak∗ ⊂
B(Hu). In fact πu is completely isometric, since it is the restriction of the faithful
∗-isomorphism between C∗∗ and πu(C)′′, where C = C∗(A). Thus by the Krein-
Smulian theorem, the image B of A∗∗ under πu is weak* closed, and πu is a
homeomorphism for the weak* topologies. Since B contains πu(A) we have that
πu(A)weak∗ = B. This proves the result in the special case that π = πu.

To prove the general case, suppose that θ is an A-universal representation
of A. By (ii) of Theorem 1.2, θ is quasi-equivalent to πu. By (iv) of Corol-
lary 3.1, there exists a weak* homeomorphic completely isometric isomorphism
ρ : πu(A)weak∗ → θ(A)weak∗ such that ρ ◦ π = θ. Composing ρ with the map
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πu : A∗∗ → πu(A)weak∗ of the previous paragraph, gives the desired map in (v) of
Theorem 1.2.

As a corollary of (iv) and (v) of Theorem 1.2, one may immediately obtain
the following fact which implies some results proved in [3] and [13]:

Corollary 4.1. Suppose that A is an operator algebra with c.a.i., which
possesses an A-universal representation π with π(A)′ selfadjoint. Then A is a
C∗-algebra.

Proof. If π(A)′ is selfadjoint, then by the above A∗∗ ∼= π(A)′′ is a W ∗-algebra.
The proof is completed by an appeal to the following lemma.

Lemma 4.2. Suppose that A is an operator algebra such that A∗∗ possesses
an involution with respect to which A∗∗ is a C∗-algebra. Then A is a C∗-algebra.

Proof. Suppose that A is a subalgebra of a C∗-algebra B. Then we have the
following closed subalgebras: Â ⊂ A∗∗ ⊂ B∗∗. It is well known that a contractive
homomorphism between C∗-algebras is a ∗-homomorphism. Thus, if A∗∗ possesses
an involution as stated, then it follows that A∗∗ is a ∗-subalgebra of B∗∗. We
complete the proof by showing that Â is closed under the above involution. For if
a ∈ A, then â∗ ∈ A∗∗ ∩ B̂. By a basic fact for Banach spaces, A∗∗ ∩ B̂ = Â.

A different proof of this lemma was found together with Le Merdy around
year 1999.

If π is a normal completely isometric representation of a dual operator alge-
bra, then it follows from the Krein-Smulian theorem that π(A) is weak* closed. If
further π is completely sub-tracing, then it follows immediately from Corollary 2.4
that

π(A)′′ = π(A).

One may define normal generators and normal A-universal representations for the
category ANHMOD, in an obvious way. It is clear as before that every normal
A-universal is a normal generator, and that every normal generator is completely
sub-tracing.

In order to see that for any dual operator algebra there do exist normal
A-universal representations, and for its own intrinsic interest, we will define a
maximal W ∗-algebra W ∗(A) of a dual operator algebra A. This is a W ∗-algebra,
together with a weak* continuous completely isometric homomorphism j : A →
W ∗(A) whose range generates W ∗(A) as a W ∗-algebra, and which possesses the
following universal property: given any normal representation π : A → B(H),
there exists a normal ∗-representation W ∗(A) → B(H) extending π. It is elemen-
tary to define this if A = B∗∗ for an operator algebra B, in this case simply let
W ∗(A) = C∗(B)∗∗, and one may easily check that this has the desired universal
property. But if A is a general dual operator algebra a little more care is needed
in order to show the existence of W ∗(A). Although such “existence proofs” are
standard fare, we include most of the details below for the readers convenience.

Let A be a dual operator algebra. We suppose that the cardinality of A is
less than or equal to a cardinal I = 2J , where J is infinite, and define F to be the
set of normal completely contractive representations π : A → B(`2(J)) where J
varies over the cardinals corresponding to subsets of I. We write Hπ = `2(J).
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Define j =
⊕{π : π ∈ F}, that is, j(a) =

⊕
π∈F

π(a) for all a ∈ A. This is a normal

completely contractive representation of A on a Hilbert space Hw =
⊕

π∈F
Hπ. In

fact j is also completely isometric, as may be seen by the standard arguments
(Sketch: take any one normal completely isometric representation σ on a Hilbert
space H. If H is of dimension 6 I, we are done. If not, then for each finite subset
F of H set HF to be the Hilbert space generated by σ(A)F , and set πF to be
σ(·)|HF

. Each πF is unitarily equivalent to a representation on F . Also, for each
x = [xij ] ∈ Mn(A) we may clearly find such a finite set F such that the norm
of [πF (xij)] is close to that of [σ(xij)].) Thus, by the Krein-Smulian theorem,
j is a homeomorphism for the weak* topologies, with weak* closed range. The
projection of Hw onto its πth coordinate will be written as Pπ. We define W ∗(A)
to be the von Neumann algebra inside B(Hw) generated by {j(a) : a ∈ A}. If
θ : A → B(H) is any normal completely contractive representation of A, with
dimension H 6 I, then there is a unitary U such that ρ = U∗θ(·)U ∈ F . Define
ρ̃ : W ∗(A) → B(Hρ) to be ρ̃(T ) = PρT|Hρ

. Then ρ̃ is a weak* continuous ∗-
homomorphism on W ∗(A), and ρ̃◦j = ρ. Then θ̃ = Uρ̃(·)U∗ is a weak* continuous
∗-homomorphism W ∗(A) → B(H), and θ̃ ◦ j = θ. Clearly θ̃ is the unique such
∗-homomorphism.

Thus we have shown that W ∗(A) has the desired universal property at least
for representations on Hilbert spaces of dimension 6 I. From this fact and a
routine Zorn’s lemma argument it is not hard to show that W ∗(A) has the desired
universal property for arbitary dimensions of normal representations.

We next prove a variant on Proposition 2.3:

Proposition 4.3. Suppose that ρ : W ∗(A) → B(H) is a normal ∗-represen-
tation with the property that for every normal state φ on W ∗(A), there is an x ∈ H
such that φ = 〈ρ( · )x, x〉 on W ∗(A). Then ρ(A)′′ ⊂ alg lat ρ(A).

Proof. Note K = [ρ(A)x] has cardinality 6 Iℵ0 = I, for I as above. Thus
dim(K) 6 I, and so there is a normal ∗-representation π of W ∗(A) on K extending
ρ(a)|K . The rest of the proof is the same as that of Proposition 3.2 combined with
Proposition 2.3.

Remark 4.4. If π is any faithful normal ∗-representation of W ∗(A) on a
Hilbert space K, then π(·)⊗ I∞ satisfies the hypothesis of Proposition 4.3.

Corollary 4.5. For a dual operator algebra A, and for any faithful normal
∗-representation π of W ∗(A), we have π(A)′′ = π(A).

Proof. This is almost identical to the proof of Corollary 2.4.

One may show using standard facts (see e.g. 1.3 in [18]) that any faithful
normal representation of W ∗(A) restricts to a normal A-universal representation
of A. One may also prove “normal” analogues of parts (i)–(iii) of Theorem 1.2,
for a dual operator algebra A and normal A-universal representations. Indeed this
follows exactly the proof of Theorem 1.2.
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5. COMPLEMENTS AND EXAMPLES

If A is a C∗-algebra then the A-universal representations are quite well under-
stood. We will recap some facts almost all of which may be found in Section 1
of [18], and then we will contrast these with the situation for nonselfadjoint alge-
bras. Recall, from Section 1 above, that a module H ∈ AHMOD is a generator
(respectively cogenerator) for AHMOD if for every nonzero morphism R : K → L

of AHMOD, there exists a morphism T : H → K (respectively T : L → H) of

AHMOD with RT 6= 0 (respectively TR 6= 0). We shall say that H is a semigen-
erator (respectively semicogenerator) if the condition in the last sentence is valid
in the case that R is the identity map on a nonzero Hilbert module. Thus, for
example, H is a semigenerator if for every nonzero Hilbert module K there is a
nonzero bounded A-module map T : H → K. We shall say that H is a ∗-generator
(respectively an ∗-semigenerator) if the definition above for generator (respectively
semigenerator) is modified so that the map T considered there is required to be
adjointable (that is, T ∗ is also an A-module map).

If A is a C∗-algebra then generators, cogenerators, and ∗-generators, are
the same thing, due to the fact that T is a bounded A-module map if and only
if T ∗ is one also. Similarly, for C∗-algebras semigenerators, ∗-semigenerators, and
semicogenerators, coincide. Indeed one has:

Theorem 5.1. ([18], Section 1) Let A be a C∗-algebra, and let π : A →
B(H) be a nondegenerate ∗-representation. View H as a Hilbert A-module in the
usual way. The following are equivalent:

(i) the canonical (and unique) weak* continuous map π : A∗∗ → B(H)
extending π, is 1-1;

(ii) H is a semigenerator for AHMOD;

(iii) H is a generator for AHMOD;

(iv) H is A-universal.

The above is quite useful. For example it follows immediately from (i) that
for a finite dimensional C∗-algebra , the A-universal representations are exactly
the faithful unital ∗-representations.

Next, let A be a nonselfadjoint operator algebra, and let H be a Hilbert
A-module, and let π : A → B(H) be the associated representation. We consider
the following properties that H may or may not have:
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(DCP) π has the double commutant property; that is π(A)′′ = π(A)weak∗ .
(I) π has the double commutant property and the canonical (and unique)

weak* continuous map π : A∗∗ → B(H) extending π, is completely isometric.
(II) H is a semigenerator for AHMOD.
(II)′ H is a semicogenerator for AHMOD.
(II)′′ H is a ∗-semigenerator for AHMOD.
(III) H is a generator for AHMOD.
(III)′ H is a cogenerator for AHMOD.
(III)′′ H is a ∗-generator for AHMOD.
(IV) H is A-universal.

The following table summarizes several earlier observations. We leave omit-
ted details to the reader.

(IV) ⇒ (III) ⇒ (II)

(IV) ⇒ (III)′ ⇒ (II)′

(IV) ⇒ (I) ⇒ (DCP)

(IV) ⇔ (III)′′ ⇔ (II)′′

((III) or (III)′) ⇒ (DCP).

Example 5.2. Let A = T2 be the algebra of 2×2 upper triangular matrices.
In this case it is possible to precisely characterize the representations with the
double commutant property. First notice that the representations π of T2 on a
Hilbert space H are of one of the following types:

(a) H = H1 ⊕H2 with H1 6= {0}, H2 6= {0} and H1 ⊥ H2; and there exists
a contraction T : H2 → H1 such that π(A)(ζ + η) = a11ζ + a12T (η) + a22η, for all
ζ ∈ H1, η ∈ H2, and A = [aij ] ∈ T2.

(b) H 6= {0} and π(A)(ζ) = a11ζ, for all ζ ∈ H and A = [aij ] ∈ T2.
(c) H 6= {0} and π(A)(ζ) = a22ζ, for all ζ ∈ H and A = [aij ] ∈ T2.
(d) H = {0}.
We will not discuss the trivial case (d) below. Clearly types (b) and (c)

possess the double commutant property. We write a representation π as in (a)
above as a 3-tuple (H1, H2, T ).

Proposition 5.3. Let π be a type (a) representation of T2, with associated
3-tuple (H1,H2, T ) as above.

(i) π possesses the double commutant property if and only if T : H2 → H1

is not invertible;
(ii) π is a semigenerator if and only if T (H2) is not dense in H1;
(iii) π is a semicogenerator if and only if T is not 1-1;
(iv) π is a generator if and only if T (H2) is not dense in H1 and T 6= 0;
(v) π is a cogenerator if and only if T is not 1-1 and T 6= 0;
(vi) π is (completely) sub-tracing if and only if T (H2) is not dense in H1.

Proof. (i) An elementary computation shows that π(A)′ consists of all oper-
ators A⊕D, where A ∈ B(H1), D ∈ B(H2), such that AT = TD. One observation
which will be useful later is that if ζ ∈ H2, η ∈ H1 then A = Tζ⊗η and D = ζ⊗T ∗η
satisfies AT = TD.

If T is invertible then the set of solutions (A,D) to the equation AT = TD
is {(A, T−1AT ) : A ∈ B(H1)}. In this case the operator z defined to be T−1 on
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H1 and zero on H2, is easily seen to be in π(A)′′, since z(A ⊕ T−1AT )(ζ + η) =
T−1Aζ = (A ⊕ T−1AT )z(ζ + η) for ζ ∈ H1, η ∈ H2. However z is clearly not in
π(A)weak∗ = π(A).

On the other hand, suppose that T is not invertible. If T is the zero operator,
then any A ∈ B(H1), D ∈ B(H2) satisfies AT = TD, from which it is easily seen
that π(A)′′ = π(A). Thus we may suppose that T 6= 0. An operator R in π(A)′′
may be written as a 2 × 2 operator matrix with respect to the decomposition
H1 ⊕ H2. The 1-1 entry x of this matrix must therefore commute with any A
satisfying AT = TD as above. Picking A = Tζ ⊗ η and D = ζ ⊗T ∗η as above, we
have that xTζ ⊗ η = Tζ ⊗ x∗η, so that η ⊗ xTζ = x∗η ⊗ Tζ. It follows from this
that x∗η is a scalar multiple of η for every vector η, which implies that x ∈ CIH1 .
A similar argument shows that the 2-2 entry of R is in CIH2 . A similar argument
shows that the 1-2 entry y of R is a scalar multiple of T . To complete the proof,
we need to show that the 2-1 entry z of R is zero. The fact that Dz = zA yields
as above that ζ ⊗ z∗T ∗η = zTζ ⊗ η for all ζ ∈ H2, η ∈ H1 as above. It follows
that either zT = Tz = 0, or that T is both left and right invertible. The latter
is impossible, by hypothesis. Thus if T (H2) is dense in H1 then z = 0. On the
other hand, if T (H2) is not dense in H1, then set D = 0 and let A = ξ ⊗ σ, where
σ ∈ T (H2)⊥. Clearly AT = 0 = TD, so that zA = zξ⊗σ = 0. Since ξ is arbitrary
we must have z = 0.

We leave (ii)–(vi) as simple but tedious exercises. For example, to check (iv)
one assumes that T (H2) is not dense in H1, and then one considers the various
cases that can arise (corresponding to the types (a)–(c) of T2-modules) for nonzero
maps R between Hilbert T2-modules.

From the above it is easy to find very simple finite dimensional completely
isometric representations of T2 satisfying (I), but not (II), (II)′, (III), (III)′, or
(IV). Similarly (II), or even (II) together with (II)′, does not imply (IV). And
(III), or even (III) together with (III)′, does not imply (IV). Indeed by the last
result one can easily find finite dimensional completely isometric representations
satisfying (I), (III), and (III)′; however no finite dimensional representation of T2

can be A-universal. To see this note that by (i) of Corollary 3.1 any A-universal
representation on a Hilbert space H is C∗(A)-universal, and therefore extends to a
faithful representation of C∗(A) on H. Indeed the A-universal representations are,
by (i) of Corollary 3.1 and Theorem 5.1, in 1-1 correspondence with the normal
faithful ∗-representations of C∗(A)∗∗. However in [3] Section 2 it is shown that
C∗(T2) is infinite dimensional.

Example 5.4. We consider a generalization of Example 5.2, which will show
for example that (II) does not imply the double commutant property, and also that
even for completely isometric representations (II) and (III) may differ.

Let X be an operator space, and let U(X) be the canonical “upper trian-
gular” algebra consisting of upper triangular 2 × 2 matrices with scalars on the
diagonal and X in the 1-2 corner. Then U(X) has a canonical operator space struc-
ture making it a unital operator algebra. See the last section in [3] for example. As
is spelled out there, the nontrivial representations π of U(X) are in 1-1 correspon-
dence with completely contractive maps α : X → B(H2, H1). Also, π is completely
isometric if and only if α is completely isometric. We may thus associate with π
the tuple (H1, H2, α). If X = C then this is simply the (H1,H2, T ) notation we
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met in Example 5.2. If π is such a representation, with H1 6= {0} and H2 6= {0},
then it is easy to compute the commutant π(A)′. Analoguously to Example 5.2,
this commutant consists of the operators A ⊕ D with A ∈ B(H1), D ∈ B(H2),
such that Aα(x) = α(x)D for all x ∈ X. The second commutant π(A)′′ therefore
is the set of 2× 2 operator matrices

[
x y
z w

]

satisfying the equations Ax = xA, Dw = wD,Ay = yD and zA = Dz, when-
ever A ∈ B(H1), D ∈ B(H2) satisfy Aα(x) = α(x)D for all x ∈ X. From this
and Theorem 1.2 (respectively, Corollary 4.4) we can deduce “double commutant
theorems” for X. For example it follows that:

Corollary 5.5. For any operator space (respectively dual operator space)
X, there exists a completely isometric (respectively and weak* homeomorphic) lin-
ear α : X → B(H2,H1) such that the weak* closure of α(X) (respectively such
that α(X)) coincides with the set of operators S ∈ B(H2,H1) such that AS = SD,
whenever A ∈ B(H1), D ∈ B(H2) satisfies AT = TD for all T ∈ α(X).

It is elementary to check that a representation π of U(X), associated with a
tuple (H1,H2, α) as above (with H1 and H2 nonzero), is a semigenerator if and only
if the span of the ranges of the operators α(x), for all x ∈ X, is not dense in H1.
Also, the representation is a semicogenerator if and only if

⋂
x∈X

Ker α(x) 6= {0}.
From this it is quite easy to find semigenerators or semicogenerators which do not
satisfy (DCP). For example, choose α with the span of the ranges of the operators
α(x) not dense in H1, but for which there exist operators w ∈ B(H2) which are not
scalar multiples of the identity such that Dw = wD for all A ∈ B(H1), D ∈ B(H2)
satisfying Aα(x) = α(x)D for all x ∈ X. (For a concrete such example let X = `∞
and α(x) = S diag{x}, where S is the forward shift.) Then the 2 × 2 operator
matrix with w in the 2-2 entry and other entries zero, is in π(A)′′ but not in the
weak* closure of π(A). Thus (II) does not imply the (DCP). Similar considerations
show that (II)′ does not imply the (DCP).

We now exhibit an example of a completely isometric representation π of the
type considered in Example 5.4, which satisfies (II) and (II)′, but which is not a
generator (i.e. does not have (III)). One such is given by α : `∞ → B(`2) of the
form α(x) = S diag{0, x}, where S is the forward shift again. It is clear that this
has property (II) and (II)′. To see that (III) fails we appeal to the following

Claim. Let X be a non-reflexive dual operator space. Then any represen-
tation π : U(X) → B(H) associated with a 3-tuple (H1,H2, α) with α weak*
continuous, is a generator.

To prove this Claim, consider a fixed non weak* continuous contractive linear
functional β on X, and consider the representation of U(X) on K = C2 associated
with the tuple (C,C, β). Let L = C, with the “type (c) action” of U(X) described
in Example 5.2, and let R ∈ B(K, L) be the projection onto the second coordinate.
This is clearly a nonzero A-module map on K. A nonzero A-module map T : H →
K is easily seen to be necessarily of the form T1⊕T2, where T1 ∈ B(H1,K1), T2 ∈
B(H2,K2) may be any pair satisfying T1α(x) = β(x)T2 for all x ∈ X. In fact this
is true for any U(X)-modules H, K. If T2 6= 0 this implies that β(x) is a constant
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multiplied by 〈α(x)ξ, σ〉 for some vectors ξ, σ. This implies the contradiction that
β is weak* continuous. Thus T2 = 0, so that RT = 0.

The examples above rule out most of the variants for nonselfadjoint algebras
of the remaining implications of Theorem 5.1. Some questions which we have not
taken the time to settle, are the following: Does a completely isometric repre-
sentation satisfying ((II) and (II)′) automatically possess the double commutant
property? Also, for faithful representations of unital operator algebras A, how
close is the condition (DCP) to the condition ((III) or (III)′)? To the condition
((II) or (II)′)?

Finally, we remark that there are other variants on the definition of “genera-
tor”, which are situated between (III) and (IV). In particular, the class of Hilbert
A-modules H with the following property: For any other Hilbert A-module K
there is a cardinal α and a bounded module map T : H(α) → K which is surjec-
tive (respectively, has dense range, is a 1-quotient map). We will not say anything
further about these three classes except that they contain (but are not equal to)
the class (IV), and are contained in class (III), and hence are faithful and satisfy
the double commutant property.

6. NONUNITAL OPERATOR ALGEBRAS

In this section we verify that all of Theorem 1.2, with the exception of part (iv),
is valid more generally for operator algebras A which do not have a c.a.i. We shall
see that if part (iv) was valid too then A must have a c.a.i.

We say that a homomorphism π : A → B(H) is nondegenerate if the span
of terms of the form c1c2 · · · cnζ, for ζ ∈ H and ci ∈ π(A) ∪ π(A)∗, is dense in H.
Perhaps a better name for this is ∗-nondegeneracy, but for simplicity we will use
the other name here. We will not use this fact, but any contractive homomorphism
π : A → B(K) can be replaced by a nondegenerate one, by restricting each π(a) to
the closed subspace of K densely spanned by the products c1c2 · · · cnζ mentioned
above. We remark that if A has a c.a.i. then this new definition of nondegeneracy
of representations coincides with the old. To see this, suppose that {eα} is a c.a.i.
for A, and that π is a contractive homomorphism which is nondegenerate in the
new sense above. By fact (1.1) from Section 1 we know that {π(eα)} is a c.a.i. for
the C∗-subalgebra of B(H) generated by π(A). Thus π(eα) → Id strongly on H.
The converse is easier.

If A is any operator algebra then a recent paper ([14]) proves the remark-
able results that (a) there are unique matrix norms on A+ = A ⊕ C such that
A+ is a unital abstract operator algebra (with identity 1+ = (0, 1)) containing A
completely isometrically, and (b) given a contractive (respectively completely con-
tractive, isometric, completely isometric) homomorphism ϕ : A → B between op-
erator algebras, the extension ϕ+ : A+ → B+ given by ϕ+(a+λ1+) = ϕ(a)+λ1+,
for a ∈ A, λ ∈ C, is also a contractive (respectively completely contractive, iso-
metric, completely isometric) homomorphism. From this it is easy to define a
C∗-envelope (in the spirit of Arveson and Hamana ([12], [2]) and a maximal uni-
versal C∗-algebra of operator algebras without a c.a.i. Again for specificity will do
this in the operator space framework, as opposed to the Banach algebra version.

If A is any operator algebra then we define C∗e (A) (respectively C∗(A)) to
be the C∗-subalgebra of C∗e (A+) (respectively C∗(A+)) generated by the copy
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of A. See [12] and [2] for the basic properties of the C∗-envelope C∗e (A+). We
claim that C∗e (A) (respectively C∗(A)) has the appropriate universal properties,
analogous to the well known properties they have in the case that A has a c.a.i.
We first treat C∗e (A). If π : A → B is a completely isometric homomorphism into a
C∗-algebra B such that π(A) generates B as a C∗-algebra, then π+ : A+ → B+ is a
completely isometric homomorphism into a C∗-algebra, whose range generates B+

as a C∗-algebra. Thus by the universal property of C∗e (A+), there is a surjective ∗-
homomorphism ρ : B+ → C∗e (A+) such that ρ◦π+ = j, where j : A+ → C∗e (A+) is
the canonical embedding. Let θ be ρ restricted to B, then θ is a ∗-homomorphism
with

θ(π(a)) = ρ(π+(a)) = j(a) ∈ C∗e (A)

for all a ∈ A. Thus θ maps B into C∗e (A), and the above shows that (C∗e (A), j)
has the universal property which one would desire for a “C∗-envelope of A”.

We now check that C∗(A) has the universal property which one would desire.
Suppose that π is a completely contractive homomorphism from A into a C∗-
algebra B. By the universal property of C∗(A+), there is a ∗-homomorphism
ρ : C∗(A+) → B+ such that ρ ◦ κ = π+, where κ : A+ → C∗(A+) is the canonical
embedding. Let θ be ρ restricted to C∗(A); then θ is a ∗-homomorphism with

θ(κ(a)) = ρ(κ(a)) = π+(a) = π(a) ∈ B,

for all a ∈ A. Thus θ maps C∗(A) into B.
If A is a nonunital operator algebra then we let AHMOD be the category of

nondegenerate Hilbert A-modules, using the definition of “nondegenerate” given
at the beginning of this section. By the universal property of C∗(A), the objects in
AHMOD are “the same as” the objects in C∗(A)HMOD. In particular, a completely
contractive representation of A is nondegenerate in the new sense if and only if
the associated representation of C∗(A) is nondegenerate in the usual sense. We
may define direct sums in AHMOD by associating them with the corresponding
direct sums in C∗(A)HMOD. Thus, a direct sum of Hilbert A-modules is nonde-
generate if and only if every one of the individual summand Hilbert A-modules is
nondegenerate. The fact from Section 3 labelled (3.1) is still valid with the same
proof, and so we may treat A-complemented submodules and direct summands in
AHMOD just as we did before. Indeed Corollary 3.1 also carries over verbatim, as
does (i)–(iii) of Theorem 1.2. We define the universal representation πu of A to be
the restriction to A of the universal representation πu of C∗(A). The facts in the
second paragraph of Section 4 also transfer immediately, the only difference being
that A∗∗ and θ there need not be unital. Now we see that (v) of Theorem 1.2
carries over verbatim too. Thus all of Theorem 1.2, with the exception of part
(iv), is valid when A is an operator algebra with no c.a.i.

Indeed, it is clear that if (iv) and (v) of Theorem 1.2 both hold, then A∗∗ is
unital, and from the theory of Banach algebras it follows that A has a c.a.i.
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Corollary 6.1. An operator algebra A possesses a c.a.i. if and only if for
every nondegenerate contractive homomorphism π : A → B(H), we have x ∈
[π(A)x] whenever x ∈ H.

Proof. The one direction is easy, using the facts noted at the beginning of
this section. The other direction may be proved by noting that if the hypothesis
holds then the rest of the proof of Theorem 1.2 (iv) is easily amended to yield
the nonunital case. Hence A∗∗ ∼= A′′ is unital, and so A has a c.a.i. as mentioned
above Corollary 6.1.

Remarks 6.2. A direct “reflexivity” proof of Corollary 6.1 may also be
given. Also, we point out that the qualification “for all” in Corollary 6.1 may
not be replaced by “for some completely isometric nondegenerate homomorphism
π : A → B(H)”. To see this consider the unitary operator U on H = L2[0, 2π]
given by an irrational rotation. If A ⊂ B(H) is the uniform closure of the span of
U,U2, U3, . . ., then it is fairly clear that f ∈ [Af ] for all f ∈ L2[0, 2π]. In particular
A acts nondegenerately on H. If A contained a c.a.i. {Eα} then EαU → U , and so
Eα → IdH . Hence IdH ∈ A. On the other hand, A is contained in the closure of
the C∗-algebra generated by I and U , and this latter C∗-algebra is isomorphic to
the set C(T) of continuous functions on the circle, by basic spectral theory. Under
this isomorphism A corresponds to the nonunital ideal zA(D) in the disk algebra
A(D) ⊂ C(T). Here z represents the function eiθ 7→ eiθ on T. This contradiction
shows that A does not have a c.a.i.
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