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Abstract. Let Fn, n > 2, be the free group on n generators, denoted by
U1, U2, . . . , Un. Let C∗(Fn) be the full C∗-algebra of Fn. Let X be the
vector subspace of the algebraic tensor product C∗(Fn) ⊗ C∗(Fn), spanned
by 1⊗ 1, U1 ⊗ 1, . . . , Un ⊗ 1, 1⊗U1, . . . , 1⊗Un. Let ‖ · ‖min and ‖ · ‖max be
the minimal and maximal C∗ tensor norms on C∗(Fn)⊗C∗(Fn), and use the
same notation for the corresponding (matrix) norms induced on Mk(C)⊗X ,
k ∈ N.

Identifying X with the subspace of C∗(F2n) obtained by mapping U1⊗
1, . . . , 1⊗Un into the 2n generators and the identity into the identity, we get
a matrix norm ‖ · ‖C∗(F2n) which dominates the ‖ · ‖max norm on Mk(C)⊗X .

In this paper we prove that, with N = 2n + 1 = dimX , we have

‖X‖max 6 ‖X‖C∗(F2n) 6 (N2 −N)1/2‖X‖min, X ∈ Mk(C)⊗X .
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Let Fn be the free group on n generators, n > 2. Let C∗(Fn) be the full C∗-algebra
associated with Fn (see, e.g., [13]). As proved in [5] and [11], on the algebraic tensor
product C∗(Fn)⊗C∗(Fn) there exist a maximal and a minimal C∗-algebra tensor
norm, denoted by ‖ · ‖max and ‖ · ‖min respectively. Kirchberg, in [7], has revived
the study of the C∗-tensor norms on A ⊗ Aop. One particular case of his very
deep results shows that the equality of the two norms on C∗(F∞) ⊗ C∗(F∞) is
equivalent to Connes’s embedding problem ([4]).

In [10], it is proven that if E is a subspace of the algebraic tensor product
A1 ⊗ A2 of two C∗-algebras A1 and A2, which has a basis consisting of unitaries
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that generate (as an algebra) A1⊗A2, then the complete isometry of the operator-
space structures induced on E by the max and min norms implies the equality
of the ‖ · ‖max and ‖ · ‖min norms on A1 ⊗ A2. This method is then used in
[10] to re-prove (and generalize) Kirchberg’s theorem that C∗(Fn) ⊗max B(H) =
C∗(Fn)⊗min B(H).

In this paper we consider X the N = 2n+1-dimensional subspace of C∗(Fn)⊗
C∗(Fn) generated by {1⊗1, U1⊗1, . . . , Un⊗1, 1⊗U1, . . . , 1⊗Un}. This space in-
herits operator-space structures ([2], [6], [9]) corresponding to the two embeddings.
We denote the corresponding norms on X ⊗Mk(C), for all k in N, by ‖ · ‖max and
‖ · ‖min.

We prove that the norm ‖ · ‖min dominates the ‖ · ‖max norm, on all the
tensor products in X ⊗Mk(C), k ∈ N, by a factor (N2−N)1/2, where N = 2n+1.
More precisely, we prove that

‖X‖max 6 (N2 −N)1/2‖X‖min, X ∈ Mk(C)⊗X .

In particular, our result, in the terminology introduced by Pisier ([9]), also shows
that the δcb (multiplicative) distance between the two N -dimensional operator
spaces in C∗(Fn)⊗C∗(Fn), corresponding to the norms ‖ · ‖max and ‖ · ‖min, is at
most (N2−N)1/2 (in general ([9]) the δcb distance between two finite-dimensional
operator spaces of dimension N is bounded by N).

1. DEFINITIONS

Let k ∈ N be a natural number and let (ea,b)k
a,b=1 be a matrix unit in Mk(C). Let

W1,W2, . . . , W2n be the generators of F2n and let W0 = Id. Let X be the subspace
of C∗(F2n) spanned by W0,W1, . . . , W2n. Let X be an arbitrary element of X .
Then X∗X has the form

k∑

a,b=1

( ∑

i 6=j

Aia,jbW
∗
i Wj + Ba,bId

)
⊗ ea,b.

The norm ‖X‖C∗(F2n) for X in C∗(F2n) is computed ([13], [2]) as the supre-
mum over all Hilbert spaces H and all unitaries U1, U2, . . . , U2n acting on H, and

all ξ =
k⊕

a=1
ξa,

∑ ‖ξa‖2 = 1, in H ⊕ · · · ⊕H (k times), of the quantity

(1.1) 〈X∗Xξ, ξ〉 =
k∑

a,b=1

( ∑

i 6=j

Aia,jb〈W ∗
i Wjξa, ξb〉+ Ba,b〈ξa, ξb〉

)
.

Since C∗(F2n) is residually finite [3] (see also [13], [1]), it follows that the norm of
X∗X might be computed using only finite-dimensional unitaries.

Let Ṽ1, . . . , Ṽn be the generators of a different copy of the free group Fn. We
identify X with a subspace of the algebraic tensor product C∗(Fn) ⊗ C∗(Fn) by
mapping 1 into 1 ⊗ 1, and Wi into Ṽi ⊗ 1 for i = 1, 2, . . . , n, Wi+n into 1 ⊗ Ṽi

for i = 1, 2, . . . , n. With this identification, and by using again the fact that
C∗(Fn) is residually finite, it follows that the norm ‖X‖max viewed as an element
of (C∗(Fn)⊗max C∗(Fn))⊗Mk(C) is computed by the same supremum as the one
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used for ‖X‖C∗(F2n), with the additional restriction on the unitaries U1, . . . , U2n,
that for 1 6 i 6 n < j 6 2n, we have [Ui, Uj ] = 0.

Clearly this gives (as in [2]) that ‖X‖C∗(F2n) > ‖X‖C∗(Fn)⊗maxC∗(Fn). The
norm ‖X‖min for X in X ⊗Mk(C), viewed as an element in C∗(Fn)⊗min C∗(Fn)⊗
Mk(C), is then computed by the same supremum formulas as for ‖X‖max, by
imposing the additional condition that the Hilbert space H splits as K1⊗K2 and
there exist unitaries α1, . . . , αn acting on K1, and β1, . . . , βn unitaries on K2, such
that Ui = αi ⊗ 1 and Ui+n = 1 ⊗ βi for 1 6 i 6 n (see also [12]). Motivated by
this we introduce the following definition:

Definition 1.1. A triplet (H, (Ui)2n
i=1, (ηa)k

a=1) consisting of a Hilbert
space H, unitaries (Ui)2n

i=1 acting on H and vectors (ηa)k
a=1 is called in tensor

position if there exist a Hilbert space K, unitaries Ũ1, . . . , Ũn, Ṽ1, . . . , Ṽn on K,
vectors (η̃a)k

a=1 in K⊗K with the following properties. Denote W̃i = Ũi⊗ IdK for
1 6 i 6 n and W̃i+n = IdK ⊗ Ṽi, 1 6 i 6 n. Also denote U0 = IdH , W̃0 = IdK⊗K .
With these notations the following should hold true for 0 6 i, j 6 n, 1 6 a, b 6 k:

〈Uiηa, Ujηb〉 = 〈W̃iη̃a, W̃j η̃b〉.

2. MAIN RESULT

Our main result gives a comparison between the norms ‖ · ‖C∗(F2n) and ‖ · ‖min

on the space X (and its tensor products X ⊗Mk(C)). To do this we use the fact
that, for any triplet (H, (Ui)2n

i=1, (ξa)k
a=1), U0 = Id, the information contained in

the matrix 〈Uiξa, Ujξb〉, 0 6 i, j 6 2n, is unchanged (except for the Gram–Schmidt
matrix of ξa) if we replace H, Ui and ξa by a direct sum and linear combinations
of elementary triplets (Hα, (Uα

i )2n
i=1, (ξ

α
a )k

a=1) having the property that the vectors
{Uα

i ξα
a }i,a are an orthonormal system (with the exception of some repetitions).

The following lemma is an obvious property for triplets as in Definition 1.1:

Lemma 2.1. Let Λ be a countable index set. Assume the following triplets
(Hα, (Uα

i )2n
i=1, (η

α
a )k

a=1)α∈Λ are in tensor position. Let (µα
a )k

a=1, α∈Λ be arbitrary
complex numbers such that

∑
α
|µα

a |2‖ηα
a ‖2 < ∞ for all a. Let H =

⊕
α∈Λ

Hα, let

Ui =
⊕
α

Uα
i and ηa =

⊕
α

µα
aηα

a .

Then the triplet (H, (Ui)2n
i=1, (ηa)k

a=1) is in tensor position.

Proof. For each α ∈ Λ, use the definition of tensor position to find a Hilbert
space Kα and unitaries W̃α

i = Ũα
i ⊗ IdKα , 1 6 i 6 n, Wα

i+n = IdKα ⊗ Ṽ α
i as in

Definition 1.1. Let K̃ =
⊕
α

Kα and H̃ = K̃ ⊗ K̃ ⊇ ⊕
α

Kα ⊗Kα. Let Ũi =
⊕
α

Ũα
i ,

Ṽi =
⊕
α

Ṽ α
i and W̃i = Ũi ⊗ Id

K̃
, 1 6 i 6 n, W̃i+n = Id

K̃
⊗ Ṽi, 1 6 i 6 n,

η̃a =
⊕
α

µα
a η̃α

a . Then the triplet (H̃, (W̃i)2n
i=1, (η̃a)k

a=1) has the property that

〈Uiηa, Ujηb〉 = 〈W̃iη̃a, W̃j η̃b〉
for all 0 6 i, j 6 2n, a, b = 1, 2, . . . , k, and hence it is in tensor position.
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Definition 2.2. For a triplet (H, (Ui)2n
i=1, (ηa)k

a=1) with U0 = Id, the as so-
ciated matrix will be XU

ia,jb = Xia,jb = 〈Uiηa, Ujηb〉 for 0 6 i, j 6 2n, a, b =
1, 2, . . . , k.

Clearly Xia,ib = 〈ηa, ηb〉 for all i and all a, b. Also Xia,jb = Xjb,ia by defini-
tion.

Remark 2.3. The property in the definition of a triplet in tensor position
is completely contained in the information the matrix X.

Moreover, with the notation in Lemma 2.1, if X is the matrix for the triplet
(H, (Ui)2n

i=1, (ηa)k
a=1) and Xα is the matrix for the triplets (Hα, (Uα

i )2n
i=1, (η

α
a )k

a=1),
then we have

Xia,jb =
∑
α

µα
a µα

b Xα
ia,jb.

It is easy to construct elementary triplets in tensor position.

Lemma 2.4. Let H be a separable Hilbert space. Let ε be a complex number
of absolute value 1. Let n, k be strictly positive integers. Fix a vector η in H of
length 1. Let ηa = η for a = 1, . . . , k. Let α = (i0, j0), with i0, j0 ∈ {0, 1, . . . , 2n},
i0 6= j0. Assume (Ui)2n

i=1 are unitaries such that

εUi0ηa = εUi0η = Uj0ηa = Uj0η

and such that the vectors

εUi0η = Uj0η, {Ukη : k 6= i0, j0}
are pairwise orthogonal.

Then (H, (Ui)2n
i=1, (ηa)k

a=1) is in tensor position, and the associated matrix
is, for 0 6 i, j 6 2n, 1 6 a, b 6 k,

Xα,ε
ia,jb = 1 if i = j,

Xα,ε
i0a,j0b = ε, Xα,ε

j0a,i0b = ε,

Xα,ε
ia,jb = 0 if i or j are not in {i0, j0} and i 6= j.

Proof. It is obvious that this should be the formula for the matrix Xα,ε

associated to the triplet.
We need to construct a specific triplet in tensor position, which gives the

matrix Xα,ε. To do this we split into two cases.
First we analyze the case where 0 6 i0 6 n and n < j0 6 2n. In this case

consider a Hilbert space K of sufficiently large dimension. Let e0, e1, . . . be a basis
for this Hilbert space and let η be the vector e0 ⊗ e0. With the notation from
Definition 1.1, let W̃i0 = Id⊗ Id, W̃j0 = εId⊗ Id (which corresponds to the choice
Ũi0 = Id, Ṽj0−n = εId).

For i 6= i0, i = 0, 1, . . . , n, let Ũi be a unitary on K, such that {Ũie0}i 6=i0

and e0 is an orthonormal system in K. (For example we can send Ũie0 to other
elements in the basis.) Likewise, we choose Ṽje0 such that {Ṽje0}j 6=j0−n and e0 is
an orthonormal system. It is obvious now that the unitaries (Ũi)n

i=1, (Ṽj)n
j=1 form

a triplet in tensor position as in the statement of Lemma 2.4.
The case 0 6 i0 < j0 6 n is easier and may be treated similarly.
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In the next lemma we provide a decomposition of an arbitrary triplet
(H, (Ui)2n

i=1, (ηa)k
a=1), with H finite-dimensional, into elementary triplets as in

Lemma 2.4. The drawback out this construction is that in the decomposition
of (H, (Ui)2n

i=1, (ηa)k
a=1), the vectors in the triplet have greater length (by a factor

of (N2 −N)1/2, with N = 2n + 1).

Lemma 2.5. Let H be a finite-dimensional vector space. Let n, k be strictly
positive integer numbers. Let U0 = Id, U1, . . . , U2n be unitaries on H, and let
(ξa)k

a=1 be vectors in H.
Then there exists a triplet (K̃, (Ũi)2n

i=1, (η̃a)k
a=1) in tensor position, such that

(with N = 2n + 1) we have:
(i) 〈Uiξa, Ujξb〉 = 〈Ũiη̃a, Ũj η̃b〉, i 6= j;
(ii) 〈η̃a, η̃b〉 = (N2 −N)〈ξa, ξb〉;

for all a, b = 1, 2, . . . , k and for all i, j = 0, 1, . . . , 2n (and i 6= j).

Proof. Let (et)t∈T be an orthonormal basis for H and let λt
i,a be the com-

ponents of the vector Uiξa in this basis for i = 0, 1, . . . , 2n, a = 1, . . . , k, t ∈ T .
Then we have that

(2.1) 〈Uiξa, Ujξb〉 =
∑

t

λt
i,a λt

j,b , i, j = 0, 1, . . . , 2n, a, b = 1, . . . , k.

The usual factorization formula ([8]) gives, with ε =
√−1, that for all i, j =

0, 1, . . . , 2n and for all a, b = 1, . . . , k we have that

(2.2) λt
i,a λt

j,b =
1
4

3∑
s=0

εs(λt
i,a + εsλt

j,a) (λt
i,b + εsλt

j,b) .

Note also that the following holds:

(2.3)
1
4

3∑
s=0

(λt
i,a + εsλt

j,a) (λt
i,b + εsλt

j,b) = λt
i,a λt

i,b + λt
j,a λt

j,b .

For a given pair α = (i, j), 0 6 i < j 6 n, a, b = 1, . . . , k, t ∈ T , and s = 0, 1, 2, 3,
we let

θt,s
α,a = λt

i,a + εsλt
j,a.

With these notations the relations (2.2) and (2.3) become respectively

〈Uiξa, Ujξb〉 =
∑

t

λt
i,aλt

j,b =
∑
t,s

εsθt,s
α,a θt,s

α,b,(2.4)

∑
t,s

θt,s
α,a θt,s

α,b =
∑

t

λt
i,a λt

i,b +
∑

t

λt
j,a λt

j,b(2.5)

= 〈Uiξa, Uiξb〉+ 〈Ujξa, Ujξb〉 = 2〈ξa, ξb〉.
The relations (2.4) and (2.5) hold for all 0 6 i < j 6 2n, and all a, b = 1, 2, . . . , k.

For each fixed t ∈ T , α = (i0, j0), 0 6 i0 < j0 6 2n, and each s = 0, 1, 2, 3,
let (Hα,s,t, (Uα,s,t

i )2n
i=1, (η

α,s,t
a )k

a=1) be the triplet constructed in Lemma 2.4 for
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ε = εs. (This triplet does not depend on t, but for each t we consider one copy.)
The matrix associated to this triplet is defined by

(2.6)

Xα,s,t
ia,jb = 0 if {i, j} 6⊆ {i0, j0} and i 6= j,

Xα,s,t
ia,ib = 1,

Xα,s,t
i0a,j0b = εs, Xα,s,t

j0a,i0b = εs for all a, b = 1, 2, . . . , k.

Let Λ be the set of pairs

Λ = {(i, j) : 0 6 i < j 6 2n}.
Let µα,s,t

a = θs,t
α,a for all α ∈ Λ, s = 0, 1, 2, 3, t ∈ T . We apply Lemma 2.1 (and the

Remark 2.3) to the direct sum of the triplets (Hα,s,t, (Uα,s,t
i )2n

i=1, (η
α,s,t
a )k

a=1). In
the direct sum H̃ =

⊕
α,s,t

Hα,s,t, Ũi =
⊕

α,s,t
Uα,s,t

i , i = 1, 2, . . . , 2n, we consider the

vectors η̃a =
⊕

α,s,t
µα,s,t

a ηα,s,t
a .

By Lemma 2.1, for fixed i0 < j0, a, b = 1, 2, . . . , k, we have

〈Ũi0 η̃a, Uj0 η̃b〉 =
∑
α,s,t

µα,s,t
a µα,s,t

b Xα,s,t
i0a,j0b.

By the relation (2.6), and since i0 < j0, an entry in the matrix Xα,s,t
i0a,j0b is nonzero

only when α is equal to (i0, j0), and is equal in this case to εs. Thus, with
α0 = (i0, j0) and using the relation (2.4), we obtain

(2.7) 〈Ũi0ηa, Ũj0ηb〉 =
∑
s,t

εsµα0,s,t
a µα0,s,t

b =
∑
s,t

εsθt,s
α0,a θt,s

α0,b = 〈Ui0ξa, Uj0ξb〉

for all a, b = 1, . . . , k.
Since also 〈Uj0ξb, Ui0ξa〉 = 〈Ui0ξa, Uj0ξb〉 and similarly for Ũiη̃a, it follows

that relation (2.7) holds for all i0 6= j0, 0 6 i0, j0 6 2n.
Similar computations yield the value of 〈η̃a, η̃b〉. Indeed, by the relation (2.5)

we have

〈η̃a, η̃b〉 =
∑
α,s,t

µα,s,t
a µα,s,t

b =
∑

α∈Λ

∑
s,t

θt,s
α,a θt,s

α,b

=
∑

α∈Λ

2〈ξa, ξb〉 =
N2 −N

2
· 2〈ξa, ξb〉 = (N2 −N)〈ξa, ξb〉.

By Lemmas 2.1 and 2.4, the triplet (H̃, (Ũi)2n
i=1, (η̃a)k

a=1) is in tensor position. This
completes the proof of Lemma 2.5.

We now can prove the main result. We will show that on X = Sp{1⊗1, U1⊗
1, . . . , Un⊗1, 1⊗U1, . . . , 1⊗Un}, the matrix norm structures induced by the norms
‖ · ‖max and ‖ · ‖min on C∗(Fn)⊗C∗(Fn) are comparable by a factor (N2−N)1/2.

In particular this shows (in the terminology introduced in [9]) that the δcb

multiplicative distance between the two operator spaces is less than (N2 −N)1/2.
(By [9], this distance is at most N .)
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Theorem 2.6. Let n, k be integers, n > 2, k > 1. Let Fn be the free group
on n generators V1, V2, . . . , Vn. Consider the vector subspace X of C∗(Fn)⊗C∗(Fn)
spanned by {1⊗1, V1⊗1, . . . , Vn⊗1, 1⊗V1, . . . , 1⊗Vn}. Clearly X has dimension
N = 2n + 1.

By embedding X into C∗(Fn) ⊗min C∗(Fn) or C∗(Fn) ⊗max C∗(Fn) respec-
tively, we get two corresponding norms on X ⊗Mk(C), denoted by ‖ · ‖max and
‖ · ‖min.

Let F2n be the free group on 2n generators W1, . . . , W2n. We also identify
X with a subspace of the full C∗-algebra C∗(F2n) by mapping 1 ⊗ 1 into 1, and
V1 ⊗ 1, . . . , Vn ⊗ 1 into W1, . . . ,Wn, and 1 ⊗ V1, . . . , 1 ⊗ Vn into Wn+1, . . . , W2n,
respectively. For X in X ⊗Mk(C) we denote the corresponding norm coming from
this embedding by ‖X‖C∗(F2n).

Then, for all X in X ⊗Mk(C), we have

‖X‖min 6 ‖X‖max 6 ‖X‖C∗(F2n) 6 (N2 −N)1/2‖X‖min.

Proof. Let (ea,b)k
a,b=1 be a matrix unit in Mk(C) and let

(2.8) X =
k∑

r,s=1

2n∑

i=0

λi
r,sWi ⊗ er,s, λi

r,s ∈ C,

be an arbitrary element in Mk(C)⊗ C. (We denote by W0 the identity.)
Then, obviously,

(2.9) X∗X =
k∑

a,b=1

( 2n∑

i,j=0
i6=j

Aia,jbW
∗
i Wj + Ba,bId

)
⊗ ea,b,

where for i 6= j, i, j = 0, . . . , 2n, 1 6 a, b 6 k, we have

Aia,jb =
k∑

r=1

λi
r,aλi

r,b,(2.10)

Ba,b =
k∑

r=1

2n∑

i=0

λi
r,a λi

r,b.(2.11)

Clearly the matrix
∑
a,b

Ba,b ⊗ ea,b is positive. By definition, the C∗(F2n)-norm of

a noncommutative polynomial P in Id,W1, . . . , W2n is computed by taking the
supremum, over all unitaries U1, . . . , U2n, of the norms of the operators obtained
by replacing in P the unitaries Wi by Ui, i = 1, 2, . . . , 2n.

By [3], C∗(F2n) is residually finite ([13], [12], [1]), and hence we can restrict
to a supremum over unitaries acting on finite-dimensional vector spaces.

As a consequence, the square of the ‖ · ‖C∗(F2n) norm of the element X
is computed as the supremum, over all finite-dimensional Hilbert spaces H, all
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2n-tuples of unitaries U1, . . . , U2n acting on H, and all vectors ξ = (ξa)k
a=1 in

H ⊕H ⊕ . . .⊕H,
k∑

a=1
‖ξa‖2 = 1, of the quantities

‖Xξ‖2 = 〈X∗Xξ, ξ〉 =
∑

a,b

( 2n∑

i,j=0
i 6=j

Aia,jb〈Ujξa, Uiξb〉+ Ba,b〈ξa, ξb〉
)
.

Similarly, the norm ‖X‖min will be computed as the supremum of the same quan-
tities, with the additional condition that the unitaries U1, . . . , U2n are represented
on a Hilbert space H = K1 ⊗K2, and there are unitaries α1, . . . , αn, respectively
β1, . . . , βn, on K1, respectively K2, such that Ui = αi⊗1, Ui+n = 1⊗βi, 1 6 i 6 n.

Hence, for every ε > 0, there exists a triplet (H, (Ui)2n
i=1, (ξa)k

a=1) consisting
of a finite-dimensional vector space, 2n unitaries on H and k vectors in H, such
that, with U0 = Id,

(2.12) ‖X∗X‖C∗(F2n) − ε 6
k∑

a,b=1

( 2n∑

i,j=0
i 6=j

Aia,jb〈Ujξa, Uiξb〉+ Ba,b〈ξa, ξb〉
)
.

By Lemma 2.5 we can find a triplet in tensor position, (H̃, (Ũi)2n
i=1, (η̃a)k

a=1), con-
sisting of unitaries Ũi on H̃, with Ũ0 = Id, and vectors η̃a ∈ H̃ such that for all
a, b,

〈Ujξa, Uiξb〉 = 〈Ũj η̃a, Ũiη̃b〉, i 6= j, i, j = 0, . . . , 2n,(2.13)

〈η̃a, η̃b〉 = (N2 −N)
1
2 〈ξa, ξb〉.(2.14)

The relation (2.14) implies that
∑

a

‖η̃a‖2 =
∑

a

〈η̃a, η̃a〉 = (N2 −N)
∑

a

‖ξa‖2 = (N2 −N).

Thus, by the definition of the norm ‖X‖min, and since (Ũi)2n
i=1 are in tensor posi-

tion, it follows that

(2.15)
k∑

a,b

( 2n∑

i,j=0
i 6=j

Aia,jb〈Ũj η̃a, Ũiη̃b〉+ Ba,b〈η̃a, η̃b〉
)

6 (N2 −N)‖X‖2min.

Moreover, the relation (2.14) and the fact that the matrix
∑
a,b

Ba,b⊗ea,b is positive

imply that the right-hand side in the inequality (2.12) is less than the left-hand
side in the inequality (2.15). Hence

‖X∗X‖C∗(F2n) − ε 6 (N2 −N)‖X‖2min.

Since ε is arbitrary, the result follows.
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