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A COMPARISON BETWEEN
THE MAX AND MIN NORMS ON C*(F,) ® C*(F,)
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ABSTRACT. Let F,,, n 2> 2, be the free group on n generators, denoted by
Ui,Us,...,U,. Let C*(F,) be the full C*-algebra of F,,. Let X be the
vector subspace of the algebraic tensor product C*(F,) ® C*(F,), spanned
by 1®1,U1®1,...,Un®1,1®@U,...,1QU,. Let || - ||min and || + |jmax be
the minimal and maximal C'* tensor norms on C*(F;,) ® C*(Fy), and use the
same notation for the corresponding (matrix) norms induced on My (C) ® X,
keN.

Identifying X with the subspace of C*(F2, ) obtained by mapping U; ®
1,...,1®U, into the 2n generators and the identity into the identity, we get
a matrix norm || - [|c+(my,,,) which dominates the || - ||max norm on M (C)®X.

In this paper we prove that, with N = 2n + 1 = dim X, we have

||XHmax < HXHC*(FQ,L) < (N2 - N)1/2||XHmin7 X e Mk(c) & X.

KEYWORDS: Connes’s embedding conjecture, minimal tensor norm.
MSC (2000): Primary 46L05; Secondary 46106, 46L10.

Let F,, be the free group on n generators, n > 2. Let C*(F},) be the full C*-algebra
associated with F,, (see, e.g., [13]). As proved in [5] and [11], on the algebraic tensor
product C*(F,,) ® C*(F,) there exist a maximal and a minimal C*-algebra tensor
norm, denoted by || + [lmax and || - ||min respectively. Kirchberg, in [7], has revived
the study of the C*-tensor norms on A ® A°P. One particular case of his very
deep results shows that the equality of the two norms on C*(F) ® C*(Fy) is
equivalent to Connes’s embedding problem ([4]).

In [10], it is proven that if E is a subspace of the algebraic tensor product
Ay ® As of two C*-algebras A; and As, which has a basis consisting of unitaries
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that generate (as an algebra) A; ® Ag, then the complete isometry of the operator-
space structures induced on F by the max and min norms implies the equality
of the || - ||lmax and || « ||min norms on A; ® As. This method is then used in
[10] to re-prove (and generalize) Kirchberg’s theorem that C*(F},) ®max B(H) =
C*(F,) ®min B(H).

In this paper we consider X the N = 2n+1-dimensional subspace of C*(F,,)®
C*(F,) generated by {1®1, U1 ®1,...,U,®1,1®Uy,...,1®U,}. This space in-
herits operator-space structures ([2], [6], [9]) corresponding to the two embeddings.
We denote the corresponding norms on X ® My (C), for all k in N, by || - ||max and
|| : ”min-

We prove that the norm || - ||min dominates the || - ||max norm, on all the
tensor products in X @ M (C), k € N, by a factor (N2 — N)/2 where N = 2n+1.
More precisely, we prove that

”XHmax < (N2 - N)I/ZHX”minv X € Mk((c) ® X.

In particular, our result, in the terminology introduced by Pisier ([9]), also shows
that the d.p (multiplicative) distance between the two N-dimensional operator
spaces in C*(F,,) ® C*(F,,), corresponding to the norms || - ||max and || + ||min, is at
most (N2 — N)'/2 (in general ([9]) the 4, distance between two finite-dimensional
operator spaces of dimension N is bounded by N).

1. DEFINITIONS

Let k € N be a natural number and let (eq )% ,_; be a matrix unit in Mj(C). Let
Wi, Wa, ..., Wa, be the generators of Fy,, and let Wy = Id. Let X be the subspace
of C*(Fy,) spanned by Wy, Wy, ..., Ws,. Let X be an arbitrary element of X.
Then X*X has the form

i (Z Aia,iji*Wj + Ba,bId) X €q,b-

a,b=1  i#j
The norm || X||¢=(p,,) for X in C*(Fy,) is computed ([13], [2]) as the supre-
mum over all Hilbert spaces H and all unitaries Uy, Us, ..., Us, acting on H, and

k
allé = @ &, Y lull?=1,in H® - @ H (k times), of the quantity
a=1

k
L) (X6 = 3 (D Aiagn (W7 W,ka &) + Bapl6ar ).

ab=1  i#j

Since C*(Fyy,) is residually finite [3] (see also [13], [1]), it follows that the norm of
X*X might be computed using only finite-dimensional unitaries.

Let V4, ..., V, be the generators of a different copy of the free group F,,. We
identify X with a subspace of the algebraic tensor product C*(F,,) ® C*(F,) by
mapping 1 into 1 ® 1, and W; into V; ® 1 for ¢« = 1,2,...,n, W;y,, into 1 ® V;
for i = 1,2,...,n. With this identification, and by using again the fact that
C*(F,) is residually finite, it follows that the norm || X ||;max viewed as an element
of (C*(Fy,) @max C*(Fr)) ® My (C) is computed by the same supremum as the one
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used for || X||c=(r,,), with the additional restriction on the unitaries U, ..., Us,,
that for 1 < i < n < j < 2n, we have [U;,U;] =

Clearly this gives (as in [2]) that ||X||C* (Fan) 2 1 X" (F)@maxC*(Fn)- The
norm || X||min for X in X ® M (C), viewed as an element in C* ( ) @min C* (Fr) ®
My (C), is then computed by the same supremum formulas as for || X||max, by
imposing the additional condition that the Hilbert space H splits as K1 ® K5 and
there exist unitaries aq, ..., a, acting on K;, and 31,..., 3, unitaries on K5, such
that U; = a; ® 1 and Uy, = 1 ® 3; for 1 < i < n (see also [12]). Motivated by
this we introduce the following definition:

DEFINITION 1.1. A triplet (H, (U;)?",, (n.)%_;) consisting of a Hilbert
space H, unitaries (U;)?", acting on H and vectors (n,)*_, is called in tensor
position if there exist a Hilbert space K, unitaries ﬁl, .. (77,, ‘71, .. ‘7 on K,
vectors (7q)k_ 1 in K ® K with the followmg properties. Denote W, = U ®Idg for

1<i<nand Wl+n =Idg ® V“ 1 < i < n. Also denote Uy = Id g, Wo =ldxgk-
With these notations the following should hold true for 0 < i,7 < n, 1 < a,b < k:

(Ui, Uiny) = (Widla, Wiin).-

2. MAIN RESULT

Our main result gives a comparison between the norms || - |[c«(m,,) and || - [lmin
on the space X' (and its tensor products X ® My (C)). To do this we use the fact
that, for any triplet (H, (U, )Z 15 (€)F_1), Up = 1d, the information contained in
the matrix (U;&,, U;&), 0 < 4,7 < 2n, is unchanged (except for the Gram-Schmidt
matrix of &,) if we replace H, U; and &, by a direct sum and linear combinations
of elementary triplets (H®, (U#)2",, (£2)%_,) having the property that the vectors

K3
{UZES Y o are an orthonormal system (with the exception of some repetitions).

The following lemma is an obvious property for triplets as in Definition 1.1:

LEMMA 2.1. Let A be a countable index set. Assume the following triplets

(H*, (UM, (n2)E_)aea are in tensor position. Let (u&)k_ 1.aca be arbitrary

complex numbers such that Z |1&)?(n%]|? < oo for all a. Let H = &P He, let

acA
Ui = EBU”‘ and nq = EBuana-

Then the triplet (H (U2, (na)k_y) is in tensor position.

Proof. For each a € A, use the deﬁmtlon of tensor position to find a Hilbert
space K and unitaries I/V(l U @Idge, 1 <@t <n, W, =ldge ® Va as in
Definition 1.1. Let K = @ K* and H = K®K ODPK*® K“. Let U, = EB 2,

= ?Vﬁ and W; = U; @ Idz, 1 < i < n, Wign = ldz®V;, 1 < i < m,
= @ po7®. Then the triplet (H, (Wi)fgl, (7a)¥_,) has the property that

<Ui77aa Uﬂ]b> <W Nas Wjﬁb>
forall 0 < 4,5 <2n,a,b=1,2,...,k, and hence it is in tensor position. &
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DEFINITION 2.2. For a triplet (H, (U;)?", (n,)%_;) with Uy = Id, the as so-
ciated matriz will be Xil(]z,jb = Xiajb = (Uine, Ujmp) for 0 < 4,5 < 2n, a,b =
1,2,... . k.

Clearly Xia,ib = (1)a, M) for all ¢ and all a,b. Also Xjq j» = Xjpia by defini-
tion.

REMARK 2.3. The property in the definition of a triplet in tensor position
is completely contained in the information the matrix X.

Moreover, with the notation in Lemma 2.1, if X is the matrix for the triplet
(H,(U)?",, (na)k_,) and X is the matrix for the triplets (H<, (U~)?%,, (n®)k_,),

=1
then we have
. T a «@
Xia,jb = E Ha By Xia jb-
«

It is easy to construct elementary triplets in tensor position.

LEMMA 2.4. Let H be a separable Hilbert space. Let € be a complex number
of absolute value 1. Let n,k be strictly positive integers. Fix a vector n in H of
length 1. Letn, =n fora=1,...,k. Let a = (ig, jo), with ig,jo € {0,1,...,2n},
io # jo. Assume (U;)?", are unitaries such that

g1]1'0770« = gUioU = Ujo"]a = UjoN
and such that the vectors

eUi,n = Ujyn, {Ukn tk# iOajO}
are pairwise orthogonal.
Then (H, (U;)2",, (na)¥_) is in tensor position, and the associated matriz
is, for 0 <i,57 <2n, 1< a,b <k,
X;éb =1 Zfl = .ja

€ _ a,e

ioa,job — & Joasiob —
a,e” o, . . . . . .
Xiwip =0 if i or j are not in {ig, jo} and i # j.

Proof. 1t is obvious that this should be the formula for the matrix X®*
associated to the triplet.

We need to construct a specific triplet in tensor position, which gives the
matrix X*¢. To do this we split into two cases.

First we analyze the case where 0 < i9p < n and n < jo < 2n. In this case
consider a Hilbert space K of sufficiently large dimension. Let eg, e1, ... be a basis
for this Hilbert space and let 1 be the vector eg ® eg. With the notation from
Definition 1.1, let W;, =Id®1d, W;, = €ld ® Id (which corresponds to the choice
Ui, =1d, Vj,—, =€ld).

For i # ip, ¢ = 0,1,...,n, let U; be a unitary on K, such that {Ujeo}i-s,
and eq is an orthonormal system in K. (For example we can send Useq to other
elements in the basis.) Likewise, we choose Vjeg such that {Vjeo} 2j,—n and eg is
an orthonormal system. It is obvious now that the unitaries (U;);_,, (V})j-, form
a triplet in tensor position as in the statement of Lemma 2.4.

The case 0 < ig < jg < n is easier and may be treated similarly. 1
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In the next lemma we provide a decomposition of an arbitrary triplet
(H,(U)#,, (na)k_,), with H finite-dimensional, into elementary triplets as in
Lemma 2.4. The drawback out this construction is that in the decomposition
of (H, (U;)?*,, (na)k_,), the vectors in the triplet have greater length (by a factor
of (N2 — N)'/2, with N = 2n 4 1).

LEMMA 2.5. Let H be a finite-dimensional vector space. Let n,k be strictly
positive integer numbers. Let Uy = 1d, Uy,...,Us, be unitaries on H, and let
(€.)k_, be vectors in H.

Then there exists a triplet (K, (U )2, (a)k_ 1) in tensor position, such that
(with N = 2n + 1) we have:

() (Uika, Usés) = (Uilla, Uyiiv), i # j;
(i) (Tas ) = (N? = N)(€a: &);
foralla,b=1,2,... k and for all i,j =0,1,...,2n (and i # j).

Proof. Let (et)ier be an orthonormal basis for H and let )\ﬁ’a be the com-
ponents of the vector U;§, in this basis for ¢ = 0,1,...,2n, a =1,...,k, t € T.
Then we have that

(2.1) (Uika, Uj&) = Z)\w Ly 1i=0,1,....2n, a,b=1, ..k

The usual factorization formula ([8]) gives, with e = /—1, that for all ¢,j =
0,1,...,2n and for all a,b =1, ...,k we have that

3

| . . -
(2.2) )‘f a )‘] b= g ZEK ()‘g,a +e )‘2@) ()‘E,b + 88/\§',b) .
s=0

Note also that the following holds:

] =
R

(2.3) (Mo "X ) (AL, oAl ) = AL, AL, + X8 AL

Il
=)

S

For a given pair a = (4,5),0<i<j<n,a,b=1,....k, t€T,and s =0,1,2,3,
we let

055, = N o +e°X, .
With these notations the relations (2.2) and (2.3) become respectively

(2:4) (Uita, Ujs) = ZA L= Zssegsa o',
(25) Za(txsaaigb_z)‘ A:b—’—Z)\J(L 7,b
t

= (Ui, Ui&) + (Uj§a7U’€b> = 2(&, &)-

The relations (2.4) and (2.5) hold for all 0 <i < j < 2n, and all a,b=1,2,...,k.
For each fixed t € T, o = (ip, Jo), 0 < ip < jo < 2n, and each s = 0,172 3,
let (H*t (U522 (n251)k_ ) be the triplet constructed in Lemma 2.4 for

7
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¢ = ¢°. (This triplet does not depend on ¢, but for each t we consider one copy.)
The matrix associated to this triplet is defined by

X =0 if {i,j} & {io, jo} and i # j,

t
(2.6) X =1,
Xy =e% Xooi, =e5 foralla,b=1,2,...,k

Let A be the set of pairs

A= {(.):0<i<j <2}
Let pg®" = 05" foralla € A, s =0,1,2,3,t € T. We apply Lemma 2.1 (and the
Remark 2.3) to the direct sum of the triplets (H*** (UO‘ Shy2n (peestyk_). Tn

[ a=1

the direct sum H = @ H**', U; = @ U™ i =1,2,...,2n, we consider the

a,s,t a,s,t
«,s,t ast

vectors 7, = @ pd>tng

a,s,t

By Lemma 2.1, for fixed ig < jo, a,b=1,2,...,k, we have

o~ ast ast as,t
<Uio77aa Jonb E Hq, zoa,job'

«@,s,t

By the relation (2.6), and since ig < jp, an entry in the matrix Xz . ] , 18 nonzero
only when « is equal to (ig,j0), and is equal in this case to £°. Thus, with
ag = (ig, jo) and using the relation (2.4), we obtain

(27) <(7iona7 Jonb ZEQ ao,st ao,ét Z‘Sge(txgaei;b < i0€a7Uj0£b>

forall a,b=1,... k.

Since also (Ujo&p, Uiyéa) = (Uipéa,Ujo&p) and similarly for Tj}-ﬁm it follows
that relation (2.7) holds for all iy # jo, 0 < i, jo < 2n.

Similar computations yield the value of (7j,, 7). Indeed, by the relation (2.5)

we have
(as ) = > ue=t g™t =575 gt 0

a,s,t aeAst

- Z fmgb <§a7£b> ( N)<§aa€b>'

acA

By Lemmas 2.1 and 2.4, the triplet (f[ (U )22 (1a)k_,) is in tensor position. This
completes the proof of Lemma 2.5. &

We now can prove the main result. We will show that on X = Sp{1®1,U; ®

LU, 10U, ...,10U,}, the matrix norm structures induced by the norms

|+ lmax and || - ||min on C*(F,) ® C*(F,,) are comparable by a factor (N2 — N)'/2.

In particular this shows (in the terminology introduced in [9]) that the dp

multiplicative distance between the two operator spaces is less than (N? — N )1/ 2,
(By [9], this distance is at most N.)
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THEOREM 2.6. Let n,k be integers, n > 2, k > 1. Let F,, be the free group
onn generators Vi, Va, ..., V. Consider the vector subspace X of C*(F,)®C*(F),)
spanned by {1 1,V1®1,...,V,®1,1@V;,...,1®V,}. Clearly X has dimension
N =2n+1.

By embedding X into C*(F,) Qmin C*(Fp) or C*(F,) Qmax C*(F,,) respec-
tively, we get two corresponding norms on X ® My(C), denoted by || - |lmax and
[l Ilmin-

Let Fs,, be the free group on 2n generators Wy, ..., Wa,. We also identify
X with a subspace of the full C*-algebra C*(Fy,) by mapping 1 ® 1 into 1, and
iewl,...,Vp,®1linto Wi,..., Wy, and 1 @ V1,...,1 @V, into Wyt1,..., Wa,
respectively. For X in X ® My (C) we denote the corresponding norm coming from
this embedding by || X ||c=(r,,,)-

Then, for all X in X @ My (C), we have

HX”min < ”XHmax < ||X|

o (Fz) < (V% = N)Y2||.X | nin-

Proof. Let (eq)F ,_; be a matrix unit in M, (C) and let

2n

k
(2.8) X=> > N Wi®es, M, eC,

r,s=11=0

be an arbitrary element in My (C) ® C. (We denote by Wy the identity.)
Then, obviously,

k 2n

(2.9) XX =30 (X AuwpWiW, + Busld) @ o,
a,b=1  i,j=0
i#]

where for ¢ # j,4,7=0,...,2n, 1 < a,b < k, we have

k
(2.10) Aago = Y Xiahly,
r=1
k 2n o
2.11) Bus =3 S NN,
r=1 =0

Clearly the matrix Y By ® e, is positive. By definition, the C*(Fy,,)-norm of
a,b
a noncommutative polynomial P in Id, Wy,..., W5, is computed by taking the

supremum, over all unitaries Uy, ..., Us,, of the norms of the operators obtained
by replacing in P the unitaries W; by U;, i =1,2,...,2n.

By [3], C*(Fzy) is residually finite ([13], [12], [1]), and hence we can restrict
to a supremum over unitaries acting on finite-dimensional vector spaces.

As a consequence, the square of the || - ||¢+(p,,) norm of the element X
is computed as the supremum, over all finite-dimensional Hilbert spaces H, all
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2n-tuples of unitaries Uy, ..., Us, acting on H, and all vectors £ = (fa)§:1 in
k
HeoH®...®H, Y ||&lI* =1, of the quantities
a=1

2n
1X€? = (X" XE,6) =3 (S A Uika Uiks) + Bapléa &)).
ab  3,j=0
i)
Similarly, the norm || X||min will be computed as the supremum of the same quan-
tities, with the additional condition that the unitaries Uy, ..., Us, are represented
on a Hilbert space H = K; ® K5, and there are unitaries aq, ..., ay, respectively
B1, -+, Bn, on Ky, respectively Ko, such that U; = o;®1, U, = 1®06;, 1 < i < n.
Hence, for every € > 0, there exists a triplet (H, (U;)?",, (£4)%_,) consisting
of a finite-dimensional vector space, 2n unitaries on H and k vectors in H, such
that, with Uy = Id

k 2n

< 3 (X AwnlUia Uih) + Buslbn, @)
a,b=1 4,7=0
i#£j

(2.12)

By Lemma 2.5 we can find a triplet in tensor position, (H, (U; )f 1 (Ma)k_1), con-

sisting of unitaries U; on H with UO = Id, and vectors 7, € H such that for all
a,b,

(213) <U §G7U§b> < Jna7U77b> Z#.L Z.,j:O,...72’r'l,,

(214) <77a7 77b> = (N - )2 <§a7 £b>

The relation (2.14) implies that
S al? = (Fariia) = (N2 = N) Y ||&a]> = (N? = N).

Thus, by the definition of the norm || X |[mi, and since (U )27, are in tensor posi-
tion, it follows that

(2.15) Z(ZAmb SiTas i) + Bao las ) ) < (V2 = N) | X2

a,b 4,7=0
i#]
Moreover, the relation (2.14) and the fact that the matrix Y B, ;, ® €45 is positive
a,b
imply that the right-hand side in the inequality (2.12) is less than the left-hand
side in the inequality (2.15). Hence

X X e () — € < (N? = N)|IX -

Since ¢ is arbitrary, the result follows. 1
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