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Abstract. We give a sufficient condition for a bilateral weighted shift to be
hypercyclic in the weak topology. Using this condition, we provide one such
shift that fails to be hypercyclic in the norm topology. Even more interesting,
the shift is bounded below by 1 and consequently every vector has a norm
increasing orbit. This result provides a negative answer to a natural question
raised by Feldman who asked whether every weakly hypercyclic operator is
necessarily norm hypercyclic. On the other hand, if the operator is a unilat-
eral weighted backward shift, we prove the answer is positive. Furthermore,
with a simple condition on the weights, there exists a weakly hypercyclic
vector that is not a norm hypercyclic vector.
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1. INTRODUCTION

Let X be a separable, infinite dimensional Banach space. We say a bounded linear
operator T : X → X is hypercyclic, or specifically norm hypercyclic, if there is a
vector x in X such that Orb(T, x) = {x, Tx, T 2x, . . .} is dense in X with respect
to the norm topology. Such a vector x is said to be a hypercyclic vector, or a norm
hypercyclic vector, for T . If Orb(T, x) is dense in X with respect to the weak
topology, then the operator T is weakly hypercyclic and such a vector x is a weakly
hypercyclic vector for T . The operator is cyclic if the linear span of Orb(T, x),
denoted by span Orb(T, x), is norm dense in X and such a vector x is a cyclic
vector for T . Since span Orb(T, x) is a convex set, it is norm dense if and only
if it is weakly dense. In other words, the operator T is cyclic if and only if it is
weakly cyclic. On the other hand, the norm topology is strictly stronger than the
weak topology, and so every hypercyclic operator is a weakly hypercyclic operator.
Hence, it is natural for Feldman ([6], Question 2.1) to pose the converse: Is every
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weakly hypercyclic operator, in fact, a hypercyclic operator and is every weakly
hypercyclic vector a hypercyclic vector?

In Section 2, we show some similarities between hypercyclicity and weak
hypercyclicity. In Section 3, we give a sufficient condition for a bilateral weighted
shift on `p(Z) with 2 6 p < ∞ to be weakly hypercyclic; see Theorem 3.2 below.
Since the sufficient condition is quite involved, we provide a less general condition
in Corollary 3.5 that can easily be applied. In this corollary, the finite products
of the negative indexed weights of the bilateral weighted shift are bounded. In
contrast, Theorem 3.2 shows an interesting phenomenon that these finite products
can in fact be unbounded. Using Theorem 3.2, we create a weakly hypercyclic
operator that fails to be hypercyclic, and hence it gives a negative answer for
both parts of the question posed by Feldman; see Corollary 3.3 below. Even more
interesting, this operator is bounded below by 1, and consequently all the orbits
of this weakly hypercyclic operator are norm increasing. For a unilateral weighted
backward shift, the situation is different. In Section 4, we show hypercyclicity and
weak hypercyclicity are equivalent for a unilateral weighted backward shift on `p

with 1 6 p < ∞; see Theorem 4.1 below. Nevertheless, it does not necessarily
imply that every weakly hypercyclic vector is a hypercyclic vector. For 1 < p <∞
and a simple condition on the weights of the shift, we show the corresponding
unilateral weighted backward shift on `p has a weakly hypercyclic vector that is
not a hypercyclic vector; see Theorem 4.2 below.

Recently, a lot of work on hypercyclicity has been based on the Hypercyclic-
ity Criterion which was originally established by Kitai ([11], Theorem 1.4), and
rediscovered by Gethner and Shapiro ([7], Theorem 2.2) in a more general form.
One version of the Criterion states:

A bounded linear operator T : X → X is hypercyclic if there exist a strictly
increasing sequence (nk)∞k=1 of positive integers, norm dense sets X0, Y0, and a
map (not necessarily linear or continuous) S : Y0 → Y0 such that:

(i) for each x ∈ X0, we have Tnkx→ 0 in norm as k →∞;
(ii) for each y ∈ Y0, we have Snky → 0 in norm as k →∞;
(iii) TS = I on Y0.

Note that if (i) and (ii) hold for norm dense sets X0, Y0, then they hold for
their linear span. Hence, by a convex set argument, we may assume that X0 and
Y0 are weakly dense instead of norm dense. Note also that a Banach space is
separable if and only if it is separable in the weak topology, by the same convex
set argument. Furthermore, a linear map from a Banach space to another Banach
space is norm-to-norm continuous if and only if it is weak-to-weak continuous; see,
for example, page 166 in [4]. It makes us wonder what happens if we replace the
norm topology in the Hypercyclicity Criterion with the weak topology. In fact,
the resulting statement fails to hold. For a simple counterexample, let X = `2

and define T : X → X by T (β0, β1, β2, . . .) = (β1, β2, β3, . . .). That is, T is the
unilateral backward shift. Let X0 = Y0 = span{eα : α > 0} where eα is the
sequence with 0 in all the entries except a 1 in the α-th entry. Define S : Y0 → Y0

by S(β0, β1, β2, . . .) = (0, β0, β1, . . .). Hence, TS = I on Y0, and furthermore
Tnx → 0 weakly for all x ∈ X0 and Sny → 0 weakly for all y ∈ Y0. Since
‖T‖ = 1, every orbit is bounded, and hence T cannot be weakly hypercyclic. This
phenomenon is not surprising since the proof of the Hypercyclicity Criterion by
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Gethner and Shapiro ([7], Theorem 2.2) uses the Baire Category Theorem, which
is not available in the weak topology.

2. WEAK HYPERCYCLICITY

In a separable, infinite dimensional Banach space X, the weak topology is strictly
weaker than the norm topology. Despite this fact, a weakly hypercyclic operator
shares many of the same properties as a hypercyclic operator. For example, it
clearly follows from the definitions that every hypercyclic vector for a bounded
linear operator T : X → X is automatically a cyclic vector for T . The same
applies to a weakly hypercyclic vector.

Proposition 2.1. If T : X → X is a bounded linear operator, then every
weakly hypercyclic vector is a cyclic vector for T .

Proof. If x is a weakly hypercyclic vector, then Orb(T, x) is weakly dense,
and so is spanOrb(T, x). Since the span is a convex set, the weak closure coincides
with the norm closure. This gives us that x is a cyclic vector for T .

Another property of a hypercyclic operator T : X → X is that it always
has an invariant, norm dense, linear subspace in which every nonzero vector is a
hypercyclic vector for T . The complex scalar case of this result was established
by Herrero ([9], Proposition 4.1) and independently by Bourdon ([3]). The real
scalar case was established by Bès ([1]). Again, we have a similar result for weakly
hypercyclic operators.

Proposition 2.2. Let T : X → X be a bounded linear operator. Then T
is a weakly hypercyclic operator if and only if there is an invariant, norm dense,
linear subspace in which every nonzero vector is a weakly hypercyclic vector for T .

Proof. Since span Orb(T, x) is convex, it is weakly dense if and only if it is
norm dense. Hence, it suffices to show that if T has a weakly hypercyclic vector
x, then every nonzero vector in span Orb(T, x) is a weakly hypercyclic vector for
T .

Recall that X is a locally convex space under the weak topology. Thus, by
a result of Bès ([1]), p(T ) has a weakly dense range for all nonzero polynomials p.
Hence, our result follows from the observation that

p(T )X ⊆ p(T )Orb(T, x)
wk

= Orb(T, p(T )x)
wk
.

Several necessary conditions exist for an operator to be weakly hypercyclic.
For example, if ‖T‖ 6 1 or sup{‖Tn‖ : n > 1} < ∞, then every orbit is norm
bounded, and hence can never be norm dense or weakly dense. Hence, if T is
weakly hypercyclic, then ‖T‖ > 1 and sup{‖Tn‖ : n > 1} = ∞. Another necessary
condition for an operator T : X → X to be weakly hypercyclic is that its adjoint
T ∗ has no eigenvalues. If T ∗x∗ = λx∗ for some nonzero x∗ in X∗, then

〈Tnx, x∗〉 = 〈x, T ∗nx∗〉 = λn〈x, x∗〉,
for any x in X. Hence, Orb(T, x) is not norm dense or weakly dense.

Even though the two types of hypercyclic operators share many of the same
properties, not all of the results for hypercyclic operators can be converted to
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results about weakly hypercyclic operators. The Hypercyclicity Criterion is one
such example as we have discussed in Section 1. Another example is the following
result:

A bounded linear operator T : X → X is hypercyclic if and only if for every
pair of nonempty, norm open sets U and V, there is a positive integer n such that
Tn(U) ∩ V 6= ∅.

A proof of this result can be found in Kitai’s dissertation ([11], Theorem 2.1).
In fact, the result holds in much greater generality which is known as the Birkhoff
Transitivity Theorem; see page 245 in [12]. By replacing the norm topology with
the weak topology in the result, one can directly see that the new forward im-
plication still holds true by Proposition 2.2. That is, if T : X → X is a weakly
hypercyclic operator, then for every pair of nonempty, weakly open sets U and V,
there is a positive integer n such that Tn(U) ∩ V 6= ∅. Even further, it is easy to
see the result still holds if the set U is assumed to be norm open. However, the
new backward implication fails to hold. If it did hold, then this would immedi-
ately imply that an invertible operator T is weakly hypercyclic if and only if T−1

is weakly hypercyclic. This statement is not true. In Corollary 3.6 below, we give
an example of an invertible weakly hypercyclic operator whose inverse fails to be
weakly hypercyclic.

3. BILATERAL SHIFTS

Let {eα : α ∈ Z} be the canonical basis for `p(Z). That is, eα is the sequence
(. . . , 0, 0, 1, 0, 0, . . .) where the 1 is in the α-th position. Then, the operator
T : `p(Z) → `p(Z) defined by Teα = wαeα−1 is a bilateral weighted (backward)
shift where the weight sequence {wα : α ∈ Z} is a bounded subset of positive real
numbers. Of course, a bilateral weighted backward shift is unitarily equivalent
to a bilateral weighted forward shift. We choose the backward direction in our
discussion because it is the only possible direction for a weighted shift to hyper-
cyclic on `p = `p(Z+), as we study in the next section. Salas ([14], Theorem 2.1)
established a necessary and sufficient condition for a bilateral weighted shift on
`p(Z) with 1 6 p < ∞ to be hypercyclic in the norm topology. His condition is
stated for a bilateral weighted forward shift. To be consistent, we rephrase his
result for a bilateral weighted backward shift:

A bilateral weighted shift T with positive weights {wα : α ∈ Z} is hypercyclic
if and only if for any given ε > 0 and q ∈ N, there exists an arbitrarily large n
such that for all |α| 6 q,

n∏
t=1

wα+t >
1
ε

and
n−1∏
t=0

wα−t < ε.

The main theorem of this section gives a sufficient condition for a bilateral
weighted shift on `p(Z) with 2 6 p < ∞ to be weakly hypercyclic. Like Salas’
condition, this sufficient condition is in terms of the weights of the bilateral shift.
Since hypercyclicity implies weak hypercyclicity, our sufficient condition is weaker
than Salas’ condition. Nevertheless, it is more difficult to state, and so we first
need to prove a lemma.
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Lemma 3.1. For any given real numbers λ > 1 and p > 1, there exists a
bijective map ν : N× N→ N with the following Properties:

(i) for each r > 1, the sequence (ν(r, s))∞s=1 is strictly increasing;
(ii) for each r > 1, we have r 6 ν(r, 1);
(iii) there exists a sequence (ar)∞r=1 of positive integers such that if (cr)∞r=1

is a sequence of nonnegative real numbers with cpr 6 rλpr for each r > 1, then the
new sequence (dn)∞n=1 given by dn = dν(i,j) = ci satisfies the inequality

ν(r,s)∑
n=1

dp
n 6 (ar + s) log(ar + s), for each r, s > 1.

Proof. Select a strictly increasing sequence (mi)∞i=1 of positive integers that
satisfies
(3.1) (1 + 2 + · · ·+ i)λpi 6 logmi.

Then let (αj)∞j=1 be the sequence of integers given by

(α1, α2, . . .) = (G1, . . . , G1︸ ︷︷ ︸
m2 copies

, G2, . . . , G2︸ ︷︷ ︸
m3 copies

, G3, . . . , G3︸ ︷︷ ︸
m4 copies

, . . .),

where Gi = (1, 2, . . . , i). Let ν : N×N→ N be defined by ν(r, s) = n if αn = r and
αj = r for precisely s positive integers j which are less than or equal to n. That
is, ν(r, s) is the position of the s-th appearance of the positive integer r in the
sequence (αj)∞j=1. Clearly, ν is a bijective map and for each r > 1, the sequence
(ν(r, s))∞s=1 is strictly increasing in s. Next, observe that

ν(1, 1) = 1 and ν(r, 1) = m2 + 2m3 + · · ·+ (r − 1)mr + r,

and thus Properties (i) and (ii) are satisfied.
To establish Property (iii), we let a1 = m1 and ar = ν(r, 1) for each r > 2

and proceed by induction on the positive integer s. Suppose (cr)∞r=1 and (dn)∞n=1
are the sequences stated in Property (iii) of our lemma. Actually, (dn)∞n=1 is given
by
(3.2) (d1, d2, . . .) = (F1, . . . , F1︸ ︷︷ ︸

m2 copies

, F2, . . . , F2︸ ︷︷ ︸
m3 copies

, F3, . . . , F3︸ ︷︷ ︸
m4 copies

, . . .),

where Fi = (c1, c2, . . . , ci). Moreover, ν(r, s) gives the position of the s-th appear-
ance of cr in the sequence (dn)∞n=1. For r = 1, we have that ν(r, 1) = ν(1, 1) = 1,
and thus by (3.1)

ν(r,1)∑
n=1

dp
n = cp1 6 λp 6 logm1 6 (a1 + 1) log(a1 + 1).

For r > 2, we have that ν(r, 1) = m2 + 2m3 + · · ·+ (r − 1)mr + r, and thus
ν(r,1)∑
n=1

dp
n = m2c

p
1 + · · ·+mr(c

p
1 + · · ·+ cpr−1) + (cp1 + · · ·+ cpr)

6 (m2 +m3 + · · ·+mr + 1)(cp1 + · · ·+ cpr)

6 (ν(r, 1) + 1)((1 + 2 + · · ·+ r)λpr) 6 (ar + 1) logmr, by ( 3.1)

6 (ar + 1) log(ar + 1).
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Our induction assumption is that for some s > 1, the inequality
ν(r,s)∑
n=1

dp
n 6

(ar + s) log(ar + s) holds for each r > 1. We must show that the inequality holds
for s+ 1. Note that cr makes its first appearance in the sequence (dn)∞n=1 as the
last member in the first Fr appearing in the representation (3.2). As a result, we
need to separate the induction step into two cases.

Case 1. s 6 mr+1.
In this case, the s-th appearance of cr lies in an Fr. Hence,

ν(r,s+1)∑
n=1

dp
n =

ν(r,s)∑
n=1

dp
n + (cp1 + cp2 + · · ·+ cpr)

6 (ar + s) log(ar + s) + (1 + 2 + · · ·+ r)λpr

6 (ar + s) log(ar + s) + logmr, by (3.1)

6 (ar + s) log(ar + s+ 1) + log ar

6 (ar + s+ 1) log(ar + s+ 1).

Case 2. s > mr+1.
In this case, the s-th appearance of cr lies in an Fj for some j > r+1. Hence,

mr+1 + · · ·+mj < s 6 mr+1 + · · ·+mj +mj+1. This yields

ν(r,s+1)∑
n=1

dp
n =

ν(r,s)∑
n=1

dp
n + (cpr+1 + · · ·+ cpj + cp1 + · · ·+ cpr)

6 (ar + s) log(ar + s) + (1 + 2 + · · ·+ j)λpj

6 (ar + s) log(ar + s) + logmj , by (3.1)

6 (ar + s) log(ar + s+ 1) + log s

6 (ar + s+ 1) log(ar + s+ 1).

We are now ready to state and prove the main theorem of this section which
is a sufficient condition for a bilateral weighted shift to be weakly hypercyclic.
The bijective function ν in Lemma 3.1 plays an important role in the statement
of the theorem and the construction of the weakly hypercyclic vector. As a result
of the theorem, we point out a simpler sufficient condition in Corollary 3.5 which
does not involve the function ν above and the function σ in the statement of the
theorem.

Theorem 3.2. Let 2 6 p <∞ and T : `p(Z) → `p(Z) be a bilateral weighted
shift defined by Teα = wαeα−1. Suppose λ = ‖T‖ > 1 and ν : N × N → N is a
bijective map satisfying all three Properties in Lemma 3.1 with respect to p and λ.
Then T is weakly hypercyclic if

(A) there exists a map σ : N→ (0,∞) satisfying the following Conditions:
(A-1) σ(ν(r, s)) 6 σ(ν(r, s+ 1)) for all r, s > 1,

(A-2)
∞∑

s=2
[(s log s)σq(ν(r, s))]−1 = ∞ for each r > 1 where p−1 + q−1 =

1, and
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(B) there exists a sequence (kn)∞n=0 of positive integers satisfying the following
Conditions:

(B-1) k0 = 0 and kn > max{4kn−1, 4n} for each n > 1,

(B-2) for each n > 1, we have
kn∏
t=1

wα+t > n1/pλ2n+kn−1 for all α =

−2n, . . . ,−1, 0,

(B-3) for m = ν(r, s), we have
km−kn−r−1∏

t=0
wα−t 6 σ(m) for all α =

−2m, . . . ,−1, 0 and n = 0, 1, . . . ,m− 1.

Proof. We introduce the notation ĝ(α) = 〈g, eα〉 for any g in `p(Z). To
begin our construction of the weakly hypercyclic vector, select a norm dense set
{hr : r > 1} in `p(Z) such that for each r > 1,

(3.3) ‖hr‖p
p 6 r, and ĥr(α) = 0 whenever |α| > r.

Let fr = T rhr for each r > 1. Observe that

‖fr‖p
p 6 r‖T‖pr = rλpr.

If we set n = ν(i, j), set gn = gν(i,j) = fi for all i, j > 1, and set cr = ‖fr‖p for all
r > 1, then by Lemma 3.1, we have

(3.4)
ν(r,s)∑
n=1

‖gn‖p
p 6 (ar + s) log(ar + s),

where (ar)∞r=1 is the sequence given in Property (iii) of Lemma 3.1. Moreover,
since r 6 ν(r, s) and T is a bilateral shift, we have

‖gν(r,s)‖p
p = ‖fr‖p

p 6 ν(r, s)λpν(r,s), and(3.5)

̂gν(r,s)(α) 6= 0 only if − 2ν(r, s) 6 α 6 0.(3.6)

Next, define S : span{eα : α ∈ Z} → span{eα : α ∈ Z} by letting Seα = w−1
α+1eα+1

and extending linearly. Note that TS = ST = I on span{eα : α ∈ Z}. Also,
observe that if (kn)∞n=0 is the sequence given in the statement of the theorem,
then by (3.5), (3.6), and Condition (B-2), we get

(3.7)
‖Skngn‖p

p =
∥∥∥

0∑
α=−2n

ĝn(α)Skneα

∥∥∥
p

p
=

0∑
α=−2n

(
|ĝn(α)|p ·

kn∏
t=1

1
wp

α+t

)

6 1
n

(
1

λkn−1λ2n

)p

‖gn‖p
p 6

( 1
λkn−1λn

)p

.

Hence,
∞∑

n=1
‖Skngn‖p < ∞, and so g =

∞∑
n=1

Skngn is a vector in `p(Z). We claim

that g is a weakly hypercyclic vector for T . Before we show this, we need to prove
three claims involving the vectors

(3.8) ϕm =
m−1∑
n=1

T km−rSkngn and ψm =
∞∑

n=m+1

T km−rSkngn,
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for all m = ν(r, s) > 1.
Claim 1. For any given r > 1, we have ‖ψν(r,s)‖p → 0 as s→∞.

Proof of Claim 1. By (3.7) and the property that (ν(r, s))∞s=1 is strictly
increasing, we get

‖ψν(r,s)‖p 6
∞∑

n=ν(r,s)+1

‖T‖kν(r,s)−r‖Skngn‖p 6
∞∑

n=ν(r,s)+1

λkν(r,s)
1

λkn−1λn

6
∞∑

n=ν(r,s)+1

1
λn

=
1

λ− 1
· 1
λν(r,s)

→ 0, as s→∞.

This completes the proof for Claim 1.

We now proceed to estimate the norm of ϕν(r,s). Unlike Claim 1, the estimate
involves ar and the function σ given in the statement of the theorem.

Claim 2. For any r, s > 1, we have

‖ϕν(r,s)‖p
p 6 (ar + s) log(ar + s)σp(ν(r, s)).

Proof of Claim 2. First, observe that by (3.6) and the definition of S, we
have

(3.9) ̂Skngn(α) 6= 0 only if kn − 2n 6 α 6 kn.

Now, if 1 6 n < n′, then by Condition (B-1), we have

kn′ − 2n′ > 4kn′−1 − 2n′ = kn′−1 + (3kn′−1 − 2n′) > kn′−1 > kn.

It follows that if we fix r, s > 1 with m = ν(r, s) > 1, then for any integer α, there
exists at most one n such that (T km−rSkngn)̂(α) 6= 0. As a result,

(3.10) ‖ϕm‖p
p =

m−1∑
n=1

‖T km−rSkngn‖p
p.

By Condition (B-1) and the fact r 6 ν(r, s) = m, we have

km − r − kn > 4km−1 − r − kn > (km−1 − r) + (km−1 − kn) > 0,

for all n = 1, . . . ,m− 1. Therefore, T km−rSkngn = T km−r−kngn. Hence, by (3.6)
and Condition (B-3), we get

(3.11)

‖T km−rSkngn‖p
p =

∥∥∥
0∑

α=−2n

ĝn(α)T km−r−kneα

∥∥∥
p

p

6
0∑

α=−2n

(
|ĝn(α)|p ·

km−r−kn−1∏
t=0

wp
α−t

)
6 σp(m)‖gn‖p

p.

To conclude the proof of Claim 2, we observe that by (3.4), (3.10) and (3.11),

‖ϕm‖p
p 6 σp(m)

m−1∑
n=1

‖gn‖p
p 6 σp(m)

m∑
n=1

‖gn‖p
p 6 (ar + s) log(ar + s)σp(m).
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We now proceed to prove one more claim before we return to the main
argument of the proof.

Claim 3. Let r > 1, ε > 0 and x1, . . . , xt ∈ `q(Z). Then for any S > 1,
there exists s > S such that

|〈ϕν(r,s), xj〉| < ε whenever 1 6 j 6 t.

That is, the zero vector is a weak limit point of the set {ϕν(r,s) : s > 1}.
Proof of Claim 3. By way of contradiction, suppose there is an S > 1 such

that for each s > S,
|〈ϕν(r,s), xjs〉| > ε for some js with 1 6 js 6 t.

First, observe that by the definition of ϕν(r,s) in (3.8) and (3.9),
̂ϕν(r,s)(α) 6= 0 only if − kν(r,s) + r + k1 − 2 6 α 6 −kν(r,s) + r + kν(r,s)−1.

If s and s′ are any two positive integers with 1 6 s < s′, then by Condition (B-1),
we have

kν(r,s′) > 4kν(r,s′)−1 > kν(r,s′)−1 + 2 + kν(r,s).

Hence,
−kν(r,s′) + r + kν(r,s′)−1 < −kν(r,s) + r − 2 < −kν(r,s) + r + k1 − 2.

This implies that for any given integer α, there is at most one positive integer s
with ̂ϕν(r,s)(α) 6= 0.

Next, let As = span{eα : ̂ϕν(r,s)(α) 6= 0} for each s > 1. Note that As∩As′ =
{0} if s 6= s′. Also, observe that each As is a finite dimensional space which can
be viewed as a subspace of `p(Z) as well as its dual `q(Z) where p−1 + q−1 = 1.
Thus, if we let Pν(r,s) : `p(Z) → `p(Z) be a linear coordinate projection onto As

given by

Pν(r,s)eα =
{
eα if α ∈ As,
0 if α /∈ As,

then its adjoint P ∗ν(r,s) : `q(Z) → `q(Z) is a linear coordinate projection onto As.
Hence, for each s > S, we get

ε 6 |〈ϕν(r,s), xjs〉| = |〈Pν(r,s)ϕν(r,s), xjs〉|
= |〈ϕν(r,s), P

∗
ν(r,s)xjs〉| 6 ‖ϕν(r,s)‖p‖P ∗ν(r,s)xjs‖q.

Therefore, by Claim 2, Condition (A-1), and the assumption that 2 6 p <∞, we
get

‖P ∗ν(r,s)xjs‖q
q > εq(‖ϕν(r,s)‖p

p)
−q/p > εq[(ar + s) log(ar + s)σp(ν(r, s))]−q/p

> εqσ−q(ν(r, s))[(ar + s) log(ar + s)]−1

> εqσ−q(ν(r, ar + s))[(ar + s) log(ar + s)]−1.

However, since As ∩As′ = {0} if s 6= s′, the last inequality implies that
t∑

j=1

‖xj‖q
q >

t∑

j=1

∞∑

s=S+1

‖P ∗ν(r,s)xj‖q
q =

∞∑

s=S+1

t∑

j=1

‖P ∗ν(r,s)xj‖q
q >

∞∑

s=S+1

‖P ∗ν(r,s)xjs‖q
q

> εq
∞∑

s=S+1

[(ar + s) log(ar + s)σq(ν(r, ar + s))]−1 = ∞, by Condition (A-2).

Hence, we have a contradiction and this ends the proof for Claim 3.
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Now, we are ready to show g is a weakly hypercyclic vector for T . Recall
the set {hr : r > 1} is a norm dense set, and so it suffices to show {hr : r > 1} ⊆
Orb(T, g)

wk
. For that we let r > 1, ε > 0 and x1, . . . , xt be t nonzero vectors in

`q(Z). Let γ = max{‖xj‖q : 1 6 j 6 t}. By Claim 1, there exists S > 1 such that

(3.12) ‖ψν(r,s)‖p <
ε

2γ
for all s > S.

Then, by Claim 3, there exists s0 > S such that

(3.13) |〈ϕν(r,s0), xj〉| < ε

2
whenever 1 6 j 6 t.

If we let N = kν(r,s0) − r, then by (3.8)

TNg = ϕν(r,s0) + TNSkν(r,s0)gν(r,s0) + ψν(r,s0)

= ϕν(r,s0) + TNSkν(r,s0)T rhr + ψν(r,s0) = ϕν(r,s0) + hr + ψν(r,s0).

Hence, for all j = 1, . . . , t, we have

|〈TNg − hr, xj〉| 6 |〈ϕν(r,s0), xj〉|+ ‖ψν(r,s0)‖p‖xj‖q

<
ε

2
+

ε

2γ
γ, by (3.12) and (3.13)

= ε,

which completes the whole proof.

A bilateral weighted shift that satisfies the conditions of Theorem 3.2 may in
fact be a hypercyclic operator. For example, consider the bilateral weighted shift
on `p(Z) with 2 6 p < ∞ given by Teα = 3eα−1 if α > 1 and Teα = 3−1eα−1 if
α 6 0. With σ ≡ 1, the operator satisfies the conditions of Theorem 3.2, but it is
also a hypercyclic operator as one may easily check using Salas’ condition stated
before Lemma 3.1. Nevertheless, this is not always the situation.

Corollary 3.3. For 2 6 p < ∞, there exists a bilateral weighted shift T
on `p(Z) that is weakly hypercyclic and satisfies the inequality ‖Tf‖p > ‖f‖p for
all f ∈ `p(Z). Hence, T is not hypercyclic.

Proof. Let ν : N × N → N be a bijective function given by Lemma 3.1
with respect to p and λ = 2. Define σ : N → (0,∞) by σ(n) = 1. By the

integral test,
∞∑

s=2
[(s log s)σq(ν(r, s))]−1 = ∞ for each r > 1. Hence, σ satisfies

Conditions (A-1) and (A-2) in Theorem 3.2. Now, consider the bilateral weighted
shift T : `p(Z) → `p(Z) given by

Teα =
{
eα−1 if α 6 0,
2eα−1 if α > 1.

That is, wα = 1 for all α 6 0 and wα = 2 for all α > 1. Note that λ = 2 = ‖T‖.
Next, observe that if we fix n > 1, then for any m > 2n, we get

m∏
t=1

wα+t = 2m+α for all α = −2n, . . . ,−1, 0,(3.14)

and
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m−1∏
t=0

wα−t = 1 for all α = −2n, . . . ,−1, 0.(3.15)

To create a sequence of positive integers (kn)∞n=0 which satisfies Conditions (B-1)-
(B-3) in Theorem 3.2, first set k0 = 0. Then, by (3.14), find a strictly increasing
sequence of positive integers (k′n)∞n=1 that satisfies Condition (B-2). Lastly, by
(3.15), inductively define (kn)∞n=1 by choosing kn > max{4kn−1, 4n, k′n} that sat-
isfies Condition (B-3). In fact, one can simply take kn = 5n. Thus, T is a weakly
hypercyclic operator. Also, by the definition of T , we have

(3.16) ‖f‖p 6 ‖Tf‖p for every f in `p(Z).

Therefore, T cannot be hypercyclic.

It is interesting to note that the weakly hypercyclic bilateral weighted shift
T in Corollary 3.3 satisfies (3.16), and hence every nonzero vector has a norm
increasing orbit. Since weakly convergent sequences are necessarily bounded by
the Principle of Uniform Boundedness, this tells us that no sequence in any weakly
dense orbit Orb(T, x) converges weakly to any vector outside the orbit. As a result,
one must use nets to describe the convergence property. Moreover, a review of the
construction of the weakly hypercyclic vector g as presented in Theorem 3.2 yields
‖Tn+1g‖p > ‖Tng‖p, and so (Tng)∞n=1 is a strictly norm increasing, weakly dense
sequence. This leads to the following result.

Corollary 3.4. For 2 6 p < ∞, there exists a strictly norm increasing,
weakly dense sequence in `p(Z).

A norm increasing, weakly dense sequence can be constructed without using
the weakly hypercyclic operator provided in Corollary 3.3. For instance, when
p = 2, the space `p(Z) = H is a Hilbert space, and we may construct the sequence
in H in the following manner.

Let {eα : α > 1} be an orthonormal basis of H. Choose a set {hs : s > 1}
that is norm dense in {h ∈ H : ‖h‖ > 1} with the properties

(3.17) 1 6 ‖hs‖2 6 s, and ĥs(α) = 0 whenever α > s.

Consider the set {fr,s : r > 1 and 1 6 s 6 r} where the vector fr,s = hs +
√
rer+s.

Note that by (3.17), we have

‖fr,s‖2 = ‖hs‖2 + ‖√rer+s‖2 = ‖hs‖2 + r,

and so r + 1 6 ‖fr,s‖2 6 2r for any r > 1 and 1 6 s 6 r. This implies that
for any positive integer n, there is only a finite number of vectors in the set
{fr,s : r > 1 and 1 6 s 6 r} whose norm is less than n. Thus, this set can be
ordered into a sequence (gn)∞n=1 with ‖gn‖ 6 ‖gn+1‖.

To show the sequence (gn)∞n=1 is weakly dense, it suffices to show {hs : s >
1} ⊆ {fr,s : r > 1 and 1 6 s 6 r}.wk

Observe that for any fixed s > 1, we have

0 ∈ {√rer+s : r > s},wk
and thus

hs ∈ {hs +
√
rer+s : r > s}wk ⊆ {fr,s : r > 1 and 1 6 s 6 r}.wk
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If we further require the weakly dense sequence (gn)∞n=1 in H to be strictly
norm increasing, choose a strictly increasing sequence of positive integers (kn)∞n=1

such that
ĝi(kn) = 0 for all i = 1, . . . , n.

Consider the new sequence (gn + βnekn)∞n=1 where βn = n/(n + 1). This new
sequence is still weakly dense and satisfies ‖gn‖ < ‖gn+1‖.

Now turning our attention to the proof of Corollary 3.3, we can easily see a
sufficient condition for a bilateral weighted shift to satisfy Theorem 3.2.

Corollary 3.5. For 2 6 p < ∞, a bilateral weighted shift T : `p(Z) →
`p(Z) is weakly hypercyclic if its weight sequence {wα : α ∈ Z} satisfies the follow-
ing conditions:

(i) inf{wα : α > 1} > 1;

(ii) sup
{ n∏

α=m
wα : m 6 n 6 0

}
<∞.

The bilateral weighted shift in the corollary above is weakly hypercyclic but

not norm hypercyclic if we further impose the condition that inf
{ n∏

α=m
wα : m 6

n 6 0
}
> 0. The bilateral weighted shift in Corollary 3.3 satisfies the conditions in

Corollary 3.5. However, this condition is not necessary. For example, we may let
σ(ν(r, s)) = (log log(r+s+1))1/q and carefully choose the weights wα so that they
satisfy the conditions in Theorem 3.2. Then we can create a weakly hypercyclic
bilateral weighted shift which fails to be norm hypercyclic and the finite products
of consecutive negative indexed weights are unbounded.

Though we know that a purely weakly hypercyclic operator exists, it does
not necessarily carry all the properties of a hypercyclic operator. For instance, a
result of Kitai ([11], Corollary 2.2) showed that an invertible operator T : X → X
is hypercyclic if and only if T−1 is hypercyclic. Theorem 3.2 allows us to provide
a counterexample to this result in the weak topology.

Corollary 3.6. For 2 6 p <∞, there exists an invertible bilateral weighted
shift on `p(Z) that is weakly hypercyclic but its inverse is not weakly hypercyclic.

Proof. Consider the same bilateral weighted shift T given in Corollary 3.3.
Then, T−1 is given by

T−1eα =
{
eα+1 if α 6 −1,
2−1eα+1 if α > 0.

Note that ‖T−1‖ = 1, and so T−1 is not weakly hypercyclic.

All of the results in this section are operator theoretic in nature, but the
ideas can easily be translated to function theory on an annulus. For the details,
one may refer to the survey article of Shields ([16]). For instance, the result in
Corollary 3.3 can be translated into a result on the Hardy space H2(A) of the
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annulus A = {z ∈ C : 1 < |z| < 2} consisting of all the functions f(z) =
∞∑
−∞

anz
n

analytic on A with

‖f‖2A =
1
2π

lim
r↘1

∫ 2π

0

|f(reiθ)|2 dθ +
1
2π

lim
t↗2

∫ 2π

0

|f(teiθ)|2 dθ

=
∞∑
−∞

(1 + 22n)|an|2 <∞.

If we define a new norm on H2(A) by

‖f‖2 =
0∑
−∞

|an|2 +
∞∑
1

22n|an|2,

then one can easily check that ‖f‖ 6 ‖f‖A 6
√

2 ‖f‖. Hence, ‖ · ‖ and ‖ · ‖A are
equivalent norms. If we define

eα =
zα

‖zα‖ =
{
zα if α 6 0,
2−αzα if α > 1,

then {eα : α ∈ Z} is an orthonormal basis of H2(A) under ‖ · ‖. Consider the
operator Mz : H2(A) → H2(A) defined by (Mzf)(z) = zf(z) for all f in H2(A).
One can easily check that

Mzeα =
zα+1

‖zα‖ =
‖zα+1‖
‖zα‖

zα+1

‖zα+1‖ =
{
eα+1 if α 6 −1,
2eα+1 if α > 0,

and the adjoint M∗
z of Mz satisfies

M∗
z eα =

{
eα−1 if α 6 0,
2eα−1 if α > 1.

It follows that M∗
z is unitarily equivalent to the operator T in the proof of Corol-

lary 3.3. Hence, the operator M∗
z is weakly hypercyclic but not norm hypercyclic.

4. UNILATERAL BACKWARD SHIFTS

Let {eα : α > 0} be the canonical basis for `p = `p(Z+). That is, eα is the sequence
(0, . . . , 0, 1, 0, . . .) where the 1 is in the α-th position. Then the operator T : `p →
`p defined by Teα = wαeα−1 for α > 1 and Te0 = 0 is a unilateral weighted
backward shift where the weight sequence {wα : α > 1} is a bounded subset of
positive real numbers. These shifts provided the first examples of hypercyclic
operators on a Banach space, as shown by Rolewicz ([13], Theorem 1) in 1969. In
fact, he showed that if the all the weights are a constant value strictly larger than
1, then T is hypercyclic. Then, in 1995, Salas ([14], Theorem 2.8) gave a necessary
and sufficient condition on the weights of a finite direct sum of unilateral weighted
backward shifts to be hypercyclic. In particular, for a single shift T , he showed
that T is hypercyclic if and only if sup{w1w2 · · ·wn : n > 1} = ∞. This condition,
as we see in the next theorem, is equivalent to weak hypercyclicity as well.
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Theorem 4.1. Let 1 6 p <∞, and let T : `p → `p be a weighted unilateral
backward shift. Then T is hypercyclic if and only if T is weakly hypercyclic.

Proof. Clearly hypercyclicity implies weak hypercyclicity. For the converse,
we suppose g is a weakly hypercyclic vector for T and use the coefficients ĝ(α) of
g to construct a hypercyclic vector for T . Let {hi : i > 1} be a norm dense set
in `p for which there is a strictly increasing sequence of positive integers (mi)∞i=1

such that

ĥi(α) = 0 whenever α > mi.

For each i, k > 1, let U(i, k) denote the basic weakly open set

U(i, k) =
{
h ∈ `p : |〈h− hi, eα〉| < 1

k
for all α = 0, 1, . . . ,mi

}
.

Claim. For any given ε > 0 and integers i, k,N > 1, there exists n > N

such that if ϕ =
n+mi∑
α=n

ĝ(α)eα, then Tnϕ ∈ U(i, k) and ‖ϕ‖p < ε.

Proof of Claim. Since ‖g‖p
p =

∞∑
α=0

|ĝ(α)|p < ∞, there exists M > N such

that
∞∑

α=M

|ĝ(α)|p < εp. Next, choose n > M such that Tng ∈ U(i, k). By letting

ϕ =
n+mi∑
α=n

ĝ(α)eα, we get T̂ng(α) = T̂nϕ(α) for α = 0, 1, . . . ,mi, and hence Tnϕ ∈
U(i, k). Moreover, since n > M , we get ‖ϕ‖p < ε. This finishes the proof of the
claim.

Let {(ir, kr) : r > 1} be an enumeration of N × N. By the Claim, we can
select n1 > 1 and ϕ1 ∈ span{en1 , . . . , en1+mi1

} such that

Tn1ϕ1 ∈ U(i1, k1) and ‖ϕ1‖p <
1
2
.

Then, for r > 2, inductively let nr >
r−1∑
j=1

(mij +nj) and ϕr ∈ span{enr , . . . , enr+mir
}

such that

(4.1) Tnrϕr ∈ U(ir, kr) and ‖ϕr‖p <
1

2r‖T‖nr−1
.

Since T is weakly hypercyclic, ‖T‖ > 1, and so the sum ψ =
∞∑

j=1

ϕj is absolutely

convergent. We want to show that ψ is a hypercyclic vector for T . It suffices to
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show {hi : i > 1} ⊆ Orb(T, ψ)
norm

. Note that for any r > 1, we have

‖Tnrψ − hir‖p =
∥∥∥Tnrϕr − hir +

∞∑

j=r+1

Tnrϕj

∥∥∥
p

6 ‖Tnrϕr − hir‖p +
∞∑

j=r+1

‖T‖nr‖ϕj‖p

6
( mir∑

α=0

| ̂Tnrϕr(α)− ĥir
(α)|p

) 1
p

+
∞∑

j=r+1

‖T‖nr

2j‖T‖nj−1
, by (4.1)

<
1
kr

(mir
+ 1)1/p +

1
2r
, by (4.1).

For any i > 1 and ε > 0, choose a sufficiently large r so that

ir = i,
1
2r

<
ε

2
, and

1
kr

<
ε

2(mi + 1)1/p
.

Thus,

‖Tnrψ − hi‖p 6 1
kr

(mi + 1)1/p +
1
2r

< ε.

At first glance, the proof seems to suggest that a unilateral weighted back-
ward shift is hypercyclic if and only if it has an unbounded orbit, but this is not
the case. To construct a counterexample, we let n0 = 1, w1 = 1/4 and w2 = w3 =
· · · = w11 = 41/10. Inductively, for all integers k > 1, we let nk = (5k + 1)(k + 1)
and set wnk

= 4−k−1 and set wnk+1 = wnk+2 = · · · = wnk+10(k+1) = 41/10. Since
nk +10(k+1)+1 = nk+1 by definition, the weights wα are defined for all integers
α > 1. Note that if k > 0 and 0 6 i 6 10(k + 1), then

wnk
wnk+1 · · ·wnk+i 6 1.

It follows that w1w2 · · ·wn 6 1 for all n > 1. Hence, if T : `2 → `2 is the unilateral
weighted backward shift with weight sequence {wα : α > 1}, then T is not norm
hypercyclic, by the result of Salas which is stated before Theorem 4.1. To show

that T has an unbounded orbit, consider the vector f =
∞∑

k=0

2−kenk−1 in `2. For

any integer m > 1, by orthogonality, we have

‖T 10mf‖2 > ‖T 10m2−menm−1‖2 = ‖2−mwnm−10m · · ·wnm−1enm−10m−1‖2.
Since nm−1 + 10m+ 1 = nm, we see that

‖T 10mf‖2 > 2−mwnm−1+1wnm−1+2 · · ·wnm−1+10m = 2−m4m = 2m,

and hence T has an unbounded orbit.

Though Theorem 4.1 tells us that for a unilateral weighted backward shift,
hypercyclicity and weak hypercyclicity are equivalent, it does not imply every
weakly hypercyclic vector is a hypercyclic vector. Under a simple condition on the
weights of a unilateral weighted backward shift on `p with 1 < p <∞, there exists
a weakly hypercyclic vector that fails to be a hypercyclic vector.



54 Kit C. Chan and Rebecca Sanders

Theorem 4.2. Let 1 < p < ∞. If T : `p → `p is a unilateral weighted
backward shift whose positive weights {wα : α > 1} satisfy the condition inf{wα :
α > 1} > 1, then there exists a weakly hypercyclic vector for T that is not a
hypercyclic vector for T .

Proof. Select a norm dense set {hi : i > 1} in `p for which there is a strictly
increasing sequence of positive integers (mi)∞i=1 such that for each i > 1,

ĥi(α) = 0 whenever α > mi.

Let β = inf{wα : α > 1} > 1 and λ = sup{wα : α > 1} = ‖T‖. Set n0 = m0 = 0
and inductively choose a sequence of positive integers (ni)∞i=1 that satisfies

ni > mi +
i−1∑

j=0

(mj + nj) and βni > 2iλni−1(‖hi‖p
p + 1)1/p

for each i > 1. Let ki = ni+1 − ni − 1. Define a linear map S : span{eα : α >
0} → span{eα : α > 0} by taking Seα = w−1

α+1eα+1.

Claim. For each i > 1, we have ‖Sni(hi + eki
)‖p < (2iλni−1)−1.

Proof of Claim. Observe that for any h in span{eα : α > 0}, we have
‖Sh‖p 6 β−1‖h‖p. Thus,

‖Sni(hi + eki)‖p
p 6

( 1
βni

)p

‖hi + eki‖p
p.

Since ki > mi, we have ĥi(ki) = 0, and so
‖hi + eki‖p

p = ‖hi‖p
p + 1.

Our claim then follows from the choice of ni.

By the claim, the sum h =
∞∑

i=1

Sni(hi+eki) is absolutely convergent. We want

to show that h is a weakly hypercyclic vector for T . In fact, we prove Orb(T, h) is
weakly sequentially dense. First observe that by the definition of T and (ki)∞i=1,
we have that for any j > 2,

TnjSni(hi + eki) = Tnj−ni(hi + eki) = 0, for all i = 1, . . . , j − 1.
Thus, for any fixed g in `p, x in `q with p−1 + q−1 = 1 and j > 2, we get

|〈Tnjh− g, x〉| =
∣∣∣
〈
hj + ekj − g +

∞∑

i=j+1

TnjSni(hi + eki), x
〉∣∣∣

6 |〈hj − g, x〉|+ |〈ekj , x〉|+
∞∑

i=j+1

|〈TnjSni(hi + eki), x〉|

< ‖hj − g‖p‖x‖q + |〈ekj , x〉|+
∞∑

i=j+1

λnj‖Sni(hi + eki)‖p‖x‖q

< ‖hj − g‖p‖x‖q + |〈ekj , x〉|+ ‖x‖q

∞∑

i=j+1

1
2i
, by the Claim

= ‖hj − g‖p‖x‖q + |〈ekj , x〉|+
‖x‖q

2j
.
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Since the above estimation holds for the entire sequence (nj)∞j=1, we can now
choose a strictly increasing sequence (jm)∞m=1 such that

‖hjm
− g‖p → 0 as m→∞.

Hence, Tnjmh→ g weakly as m→∞. Therefore, Orb(T, h) is sequentially dense.
To finish the proof, we now prove that h is not a hypercyclic vector for

T by showing that ‖Tnh‖p > 1 for each n > n1. Fix n > n1. Then there
exists j > 1 such that nj 6 n < nj+1 and so, n = nj + m for some m with
0 6 m 6 nj+1 − nj − 1 = kj . This gives us that

(4.2) ‖Tmekj
‖p

p > 1,

because β > 1.
Now, observe that if fi = hi+eki , then Ŝnifi(α) 6= 0 only if ni 6 α 6 ni+1−1.

This implies that for any given integer α > 0, there exists at most one i with
(TnSnifi)̂(α) 6= 0. Hence,

‖Tnh‖p
p =

∞∑

i=1

‖TnSnifi‖p
p > ‖TnSnjfj‖p

p = ‖Tm(hj + ekj )‖p
p.

Also, since ĥj(kj) = 0, we get from (4.2)

‖Tm(hj + ekj )‖p
p = ‖Tmhj‖p

p + ‖Tmekj‖p
p > 1,

which concludes the theorem.

Since the operator T in Theorem 4.2 is weakly hypercyclic, there exists a
norm dense set of weakly hypercyclic vectors for T by Proposition 2.2. However,
some of the vectors in this set may be norm hypercyclic vectors as well. On the
other hand, with the weakly hypercyclic vector h given in the proof of Theorem 4.2,

we can easily see that any vector of the form h+
m∑

α=0
aαeα is a weakly hypercyclic

vector that fails to be a norm hypercyclic vector. Since the set of these types of
vectors is norm dense, we have the following refinement of Theorem 4.2:

The set of weakly hypercyclic vectors for T that fail to be norm hypercyclic
vectors is norm dense.

The weakly hypercyclic vector created in the proof of Theorem 4.2 has the
property that its orbit is weakly sequentially dense. Nevertheless, one may modify
the proof to give a weakly hypercyclic vector whose orbit is not sequentially dense.
To do that, we may use the set {k1/qenk

: k > 1} which has 0 as a weak limit
point and follow the ideas in the proof of Theorem 3.2.

Examining the weakly hypercyclic vector created in Theorem 4.2, we can see
the fact that it is a weakly hypercyclic vector depends heavily on the fact that
the sequence (enk

)∞k=1 converges weakly to the zero vector in `p with 1 < p <∞,
but this is false when p = 1. Thus, the same proof does not work for a unilateral
weighted shift in `1.
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5. FINAL REMARKS

Throughout the previous sections, we have seen both similarities and differences
between weak hypercyclicity and norm hypercyclicity of a bounded linear operator
T on a separable, infinite dimensional Banach space X. The similarities follow
from the fact that the weak closure and the norm closure of a convex set are the
same. Many of the differences often arise from the loss of the Baire Category
Theorem in the weak topology, or from the fact that a weakly convergent net need
not be bounded. These differences seem to make a lot of the techniques in norm
hypercyclicity unavailable for the weak hypercyclicity. Consequently, it is natural
to wonder whether some other well known properties of norm hypercyclic operators
are shared by weakly hypercyclic operators. For instance, Kitai ([11], Theorem 2.8)
showed that every component of the spectrum of a hypercyclic operator T must
intersect the unit circle. The techniques she used in the proof of this result are
not available for the weak topology. This leads to the question:

Question 5.1. If T is weakly hypercyclic, must the spectrum of T intersect
the unit circle?

If T is the weakly hypercyclic bilateral weighted shift in the proof of Corollary
3.3, then T is invertible and by Theorem 5 in [16], the spectrum of T is the closed
annulus {z ∈ C : 1 6 |z| 6 2}. Notice the boundary contains the whole unit circle.
In fact, it appears that a shift satisfying the sufficient condition in Theorem 3.2
will contain the unit circle in its spectrum. These observations naturally lead to
the question whether one can give a negative answer to Question 5.1 by a careful
argument involving the weights of a bilateral weighted shift.

The next question is motivated by an open problem of Herrero ([10], Prob-
lem 1) who asked whether T ⊕ T is hypercyclic whenever T is hypercyclic. A
partial answer was obtained by Bès and Peris ([2], Theorem 2.3) who showed that
T satisfies a general version of the Hypercyclicity Criterion if and only if T ⊕ T

is hypercyclic. It remains open whether every hypercyclic operator satisfies this
general version of the Hypercyclicity Criterion. Since the weak topology version
of the Criterion does not hold as we have shown in Section 1, it is natural to ask
the following question.

Question 5.2. If T is weakly hypercyclic, does it follow that T⊕T is weakly
hypercyclic on X ⊕X?

When X is a Hilbert space, Kitai ([11], Corollary 4.5) proved that a hyponor-
mal operator T on X is never hypercyclic by estimating the norm of the vector
Tnf for any f in X. On the other hand, a norm increasing orbit can be weakly
dense as we have seen in Corollary 3.3. Since an operator satisfying the sufficient
condition in Theorem 3.2 appears not to be hyponormal, we have the following
question.
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Question 5.3. Does there exist a weakly hypercyclic hyponormal operator
on a Hilbert space?

Now we turn our attention to the proof of Theorem 3.2. It can easily be
shown that the conclusion still holds if we replace Condition (A-2) with

(5.1)
∞∑

s=2

(s log s)−q/pσ−q(ν(r, s)) = ∞.

Moreover, under this new condition, it may appear that Theorem 3.2 would hold
for the case with 1 < p < 2. However, in this case there does not exist a function
σ : N → (0,∞) that satisfies both Conditions (A-1) and (5.1), and so the proof
of the theorem does not help in the construction of a weakly hypercyclic bilateral
weight shift on `p(Z).

When p = 1, the construction in the proof of Theorem 3.2 fails in a more
complicated way. First, the dual of `1(Z) is `∞(Z) which contains sequences that
are not summable in a manner that allows us to have an analogue of Claim 3 in
the proof. Furthermore, in the proof of Theorem 3.2, we have used the fact that
for a fixed r, the zero vector is a weak limit point of the set {ϕν(r,s) : s > 1}.
We have also used the fact that for every α ∈ Z there is at most one s such that
̂ϕν(r,s)(α) 6= 0. In `1(Z), these two facts imply that a subsequence of (ϕν(r,s))∞s=1

converges in norm to the zero vector, as we now prove.

Proposition 5.4. Let (ϕn)∞n=1 be a sequence of vectors in `1(Z) with the
property that for any α ∈ Z, there is at most one n such that ϕ̂n(α) 6= 0. Then
the following are equivalent:

(i) a subsequence (ϕnk
)∞k=1 of (ϕn)∞n=1 converges to the zero vector in norm;

(ii) a subsequence (ϕnk
)∞k=1 of (ϕn)∞n=1 converges weakly to the zero vector;

(iii) the zero vector is a weak limit point of the set {ϕn : n > 1}.
Proof. The equivalence of (i) and (ii) is because a sequence in `1(Z) converges

weakly to zero if and only if it converges in norm to zero; see, for example, page
135 in [4]. It only remains to show (iii) implies (i). For each n > 1, let An = {α ∈
Z : ϕ̂n(α) 6= 0}. From the hypothesis, we have Am ∩ An = ∅ whenever m 6= n.
Next, for each n > 1 and α ∈ An, let βn,α ∈ C such that

βn,αϕ̂n(α) = |ϕ̂n(α)|.
Let ϕ be the sequence in `∞(Z) given by ϕ̂(α) = βn,α if α ∈ An for some n and
ϕ̂(α) = 0 otherwise. Note that ‖ϕ‖∞ = 1 and for any n > 1,

〈ϕn, ϕ〉 =
∑

α∈An

βn,αϕ̂n(α) =
∑

α∈An

|ϕ̂n(α)| = ‖ϕn‖1.

Since the zero vector is a weak limit point, there exists a strictly increasing se-
quence (nk)∞k=1 such that

‖ϕnk
‖1 = |〈ϕnk

, ϕ〉| < k−1,

for all k > 1, and hence the subsequence (ϕnk
)∞k=1 converges in norm to the zero

vector.
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Our discussion above seems to indicate that the construction in the proof of
Theorem 3.2 may not work for `p(Z) when 1 6 p < 2. Hence, we are led to the
following question.

Question 5.5. For 1 6 p < 2, does there exist a weakly hypercyclic bilateral
weighted shift on `p(Z) that is not norm hypercyclic?

The sufficient condition for weak hypercyclicity provided by Theorem 3.2
does not seem to be a necessary condition as well. On the other hand, there
is a necessary and sufficient condition for a bilateral weighted shift to be norm
hypercyclic, given by Salas ([14], Theorem 2.1).

Question 5.6. Does there exist a necessary and sufficient condition for a
bilateral weighted shift to be weakly hypercyclic?

For a unilateral weighted backward shift on `p with 1 6 p < ∞, we have
seen in Section 4 that norm hypercyclicity and weak hypercyclicity are equivalent.
Furthermore, for a special class of unilateral weighted backward shifts, there exist
weakly hypercyclic vectors that fail to be hypercyclic vectors in the norm topology.
These results naturally lead to the next two questions.

Question 5.7. For every norm hypercyclic operator on a Hilbert space,
must there exist a weakly hypercyclic vector that fails to be a norm hypercyclic
vector?

Of course, a positive answer to Question 5.7 will imply that there is no
operator on `2 for which every vector is a norm hypercyclic vector.

Question 5.8. Are there other classes of operators for which norm hyper-
cyclicity and weak hypercyclicity are equivalent?

The weak topology techniques we have used in this paper are specialized for
shift operators, especially when we produce a weakly hypercyclic bilateral shift in
Corollary 3.3. This shift, as we pointed out at the end of Section 3, is unitarily
equivalent to the adjoint of a multiplication operator on the Hardy space of an
annulus. Hence, it is interesting to study and to phrase the weak hypercyclicity
phenomenon in terms of function theory. For instance, it is desirable to have a
sufficient condition for weak hypercyclicity for certain classes of operators, say
the adjoints of multiplication operators or the composition operators on a Banach
space of analytic functions. These directions, along with the questions raised
above, may call for a broad base of weak topology techniques in functional analysis
as well.
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Note added in proof. Question 5.1 was answered in the positive by Dilworth and
Troitsky ([5]), and Question 5.3 was answered in the negative by Sanders ([15]).


