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Abstract. Let E be a closed subset of the unit circle. A result of Nikolski
shows that, if T is an operator on a separable Hilbert space whose point
spectrum contains E, and if 0 < α < dimHE (the Hausdorff dimension of
E), then

P
n

nα−1‖Tn‖−2 <∞. We complement this result by showing that,

for each β > dimBE (the upper box dimension of E), there exists an operator
T on a separable Hilbert space, whose point spectrum contains E, and such
that

P
n

nβ−1‖Tn‖−2 = ∞. We also prove some more refined results along

the same lines.
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1. INTRODUCTION

Let T be a bounded linear operator on a complex Banach space X. We write σ(T )
for the spectrum of T and σp(T ) for the point spectrum of T . We also denote by
Γ the unit circle. In this article we investigate the connection between the size of
the set σp(T ) ∩ Γ and the growth of ‖Tn‖ as n→∞. The results we consider are
of interest only if the spectral radius of T equals one. In that case, σp(T ) ∩ Γ is
the peripheral point spectrum of T .

Jamison ([3]) has shown that if X is separable and T is power-bounded,
then σp(T ) ∩ Γ is at most countable (see also Theorem 4.1 below). For a general
Banach space, this is about all that can be said, because it is possible to have
σp(T ) ⊃ Γ and yet have ‖Tn‖ → ∞ arbitrarily slowly. Indeed, given a sequence
ω(n) → ∞ (without loss of generality ω(0) = 1 and ω(m + n) 6 ω(m)ω(n)), let
X = c0(1/ω) = {(xn) : xn/ω(n) → 0} and let T be the left shift on X. Then for
each λ ∈ Γ, the vector xλ = (1, λ, λ2, . . .) is an eigenvector of T with eigenvalue λ,
and ‖Tn‖ = ω(n) for all n > 1.



90 Omar el-Fallah and Thomas Ransford

The situation is different if X is a separable Hilbert space. In this case,
Nikolski has proved the following theorem (see p. 239, Theorem 11 in [7]). (For
the definition of γ-capacity and further information on the subject, we refer to
Chapter III in [4].)

Theorem 1.1. Let T be an operator on a separable Hilbert space.
(i) If σp(T ) ∩ Γ has positive Lebesgue measure, then

∑
n
‖Tn‖−2 <∞.

(ii) If σp(T )∩Γ has positive γ-capacity, where γ : Γ→ (0,∞) is an integrable
function with positive Fourier coefficients, then there exists an integer N > 0 such
that ∑

n

γ̂(n+N)‖Tn‖−2 <∞.

Our aim in this paper is to complement this result by constructing operators
T on a separable Hilbert space, with σp(T ) ∩ Γ prescribed in advance, and such
that ‖Tn‖ → ∞ relatively slowly. Given a closed subset E of Γ, we write Eδ for
the set of points of Γ whose arc-length distance from E is at most δ, and |Eδ| for
the Lebesgue measure of this set.

Theorem 1.2. Let E be a closed subset of Γ, and let (ηn) be a positive
sequence such that ηn → ∞. Then there exists an operator T on a separable
Hilbert space such that σp(T ) = σ(T ) = E and

(1.1)
∑
n

ηn|E1/n| ‖Tn‖−2 =∞.

For example, if E = Γ, then the theorem yields an operator T with σp(T ) = Γ
and

∑
n
ηn‖Tn‖−2 =∞. Though ηn may tend to infinity arbitrarily slowly, Theo-

rem 1.1(i) shows that we cannot remove it entirely.
To help compare Theorems 1.1 and 1.2, we prove a corollary which contains

weaker but simpler forms of both results. We write dimHE and dimBE for the
Hausdorff dimension and upper box dimension of E respectively. (For the defini-
tion of these dimensions and further information on the subject, see for example
Chapters 2 and 3 in [2].)

Corollary 1.3. Let E be a closed subset of Γ.
(i) If T is an operator on a separable Hilbert space such that σp(T ) contains

E, and if 0 < α < dimHE, then∑
n

nα−1‖Tn‖−2 <∞.

(ii) For each β > dimBE, there exists an operator T on a separable Hilbert
space such that σp(T ) contains E and∑

n

nβ−1‖Tn‖−2 =∞.

Proof. (i) Let 0 < α < dimHE and define γ(t) = | sin(t/2)|−α. By p. 34,
Théorème I in [4], the set E is of positive γ-capacity. Also, γ̂(n) = (A + o(1))nα
as n → ∞, where A 6= 0 (see p. 40 in [4]). The result now follows directly from
Theorem 1.1(ii).
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(ii) Let β > β′ > dimBE. By Proposition 3.2, [2], we have |E1/n| = O(nβ
′−1)

as n→∞. Apply Theorem 1.2 with ηn = nβ−β
′
.

For many reasonably regular sets, the Hausdorff and upper box dimensions
coincide. Thus, for these sets at least, the corollary shows that Theorems 1.1
and 1.2 are not too far apart.

The basic construction of the operators T will be carried out in Section 2,
where we will prove a more general technical result. Theorem 1.2 will be deduced
from this in Section 3. Finally, in Section 4, we shall make some comments and
pose a few questions.

2. CONSTRUCTION OF THE OPERATORS

To carry out the construction of the operators T , we shall make use of a weight
function ω : Z→ (0,∞) satisfying the following conditions:

(2.1)



ω(−n) = ω(n) > ω(0),

ω(n)√
n

is increasing for n > 1,

ω(2n) 6 c ω(n),∑
n

1
ω(n)2 <∞.

For example, ω(n) =
√
|n|(1 + log |n|), n 6= 0, would do, though, for the proof of

Theorem 1.2, we shall eventually need to make a more careful choice. Our aim in
this section is to prove the following result.

Theorem 2.1. Let ω : Z → (0,∞) be a function satisfying (2.1). Let E be
a closed subset of Γ. Then there exists an operator T on a separable Hilbert space
such that σp(T ) = σ(T ) = E and

(2.2)
1
n

n−1∑
k=0

‖T k‖2 6 const ω(n)2|E1/n|, n > 1.

The basic idea for the construction is contained in the following simple
lemma. Given a Banach space X, we write X∗ for the dual of X.

Lemma 2.2. Let A be a commutative Banach algebra with identity and let
a ∈ A. Let T : A∗ → A∗ be defined by Tϕ(x) = ϕ(ax), ϕ ∈ A∗, x ∈ A. Then
σp(T ) = σ(T ) = σ(a).

Proof. The operator T is just the adjoint of the multiplication operator S :
x 7→ ax. Hence σp(T ) ⊂ σ(T ) = σ(S) ⊂ σ(a). To prove the reverse inclusion, take
λ ∈ σ(a). Then there is a character χ on A such that χ(a) = λ. For x ∈ A, we
have Tχ(x) = χ(ax) = χ(a)χ(x) = λχ(x), so Tχ = λχ, and λ ∈ σp(T ).
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Thus our strategy will be to construct a commutative Banach algebra A
which is isomorphic to a separable Hilbert space, and an element a ∈ A with
σ(a) = E. After that, we shall need to estimate the norms of the powers of the
operator T thereby obtained.

The first step is to take a separable Hilbert space and turn it into a Banach
algebra. Here we follow an idea of Nikolski ([6]). Denote by L2(ω) the Hilbert
space of functions f ∈ L2(Γ) such that

‖f‖2ω :=
∑
n∈Z
|f̂(n)|2ω(n)2 <∞.

Lemma 2.3. Let ω : Z→ (0,∞) be a function satisfying (2.1). Then L2(ω) is
an algebra with respect to pointwise multiplication, and there exists a constant Cω
such that ‖fg‖ω 6 Cω‖f‖ω‖g‖ω for f, g ∈ L2(ω). Also C∞(Γ) ⊂ L2(ω) ⊂ C(Γ).

Proof. Let f, g ∈ L2(ω). Then∑
n∈Z
|f̂g(n)|2ω(n)2 =

∑
n∈Z

∣∣∣∑
k∈Z

f̂(k)ĝ(n− k)
∣∣∣2ω(n)2

6
∑
n∈Z

(∑
k∈Z
|f̂(k)ĝ(n− k)|2ω(k)2ω(n− k)2

)(∑
k∈Z

ω(n)2

ω(k)2ω(n− k)2
)
.

Now if |k| > |n|/2, then ω(n) 6 ω(2k) 6 c ω(k). Likewise, if |k| 6 |n|/2, then
ω(n) 6 ω(2n− 2k) 6 c ω(n− k). Hence, for each n ∈ Z,∑
k∈Z

ω(n)2

ω(k)2ω(n− k)2
6

∑
|k|6|n|/2

c2

ω(k)2
+

∑
|k|>|n|/2

c2

ω(n− k)2
6 2

∑
k∈Z

c2

ω(k)2
<∞.

Writing C2
ω = 2

∑
k

c2/ω(k)2, we thus have

∑
n∈Z
|f̂g(n)|2ω(n)2 6 C2

ω

∑
n∈Z

(∑
k∈Z
|f̂(k)ĝ(n− k)|2ω(k)2ω(n− k)2

)
= C2

ω

∑
k∈Z
|f̂(k)|2ω(k)2

∑
l∈Z
|ĝ(l)|2ω(l)2 <∞.

Hence fg ∈ L2(ω) and ‖fg‖ω 6 Cω‖f‖ω‖g‖ω.
The conditions (2.1) imply that ω(n) = O(nα) as n→ ±∞, where α = log2 c,

and the inclusion C∞(Γ) ⊂ L2(ω) follows easily from this. Also, if f ∈ L2(ω), then∑
n∈Z
|f̂(n)| 6

(∑
n∈Z
|f̂(n)|2ω(n)2

)1/2(∑
n∈Z

1
ω(n)2

)1/2

<∞,

and this yields the other inclusion L2(ω) ⊂ C(Γ).

We are now ready to define the operator T . Let ω : Z→ (0,∞) be a function
satisfying (2.1). By the preceding lemma, L2(ω) can be given an equivalent norm
making it a regular Banach function algebra on Γ. Given a closed subset E of Γ,
the ideal

I(E) := {f ∈ L2(ω) : f |E = 0}
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is closed in L2(ω), and the quotient L2(ω)/I(E) is a commutative Banach algebra
whose character space can be identified with E. In particular, if we write u for
the function u(z) = z, and π : L2(ω) → L2(ω)/I(E) for the quotient map, then
the spectrum of π(u) in L2(ω)/I(E) is precisely E. Note that L2(ω)/I(E) is also
isomorphic to a separable Hilbert space. We define A = L2(ω)/I(E) and a = π(u),
and then T as in Lemma 2.2. By that lemma, T is an operator on a separable
Hilbert space with σp(T ) = σ(T ) = E.

What remains is to obtain bounds for the norms of powers of T . We shall
do this indirectly, by first establishing an estimate for the norm of the resolvent
(T − λI)−1.

Suppose once again that ω : Z → (0,∞) satisfies (2.1). Define ψ : [1,∞) →
(0,∞) by setting ψ(n) = ω(n)

√
n, n > 1, and then interpolating so as to make

ψ(t)/t linear on each interval [n, n+ 1]. Notice that from (2.1) it follows that the
function ψ(t)/t is increasing, and that ψ(2t) 6 2c2ψ(t) for all t > 1.

Lemma 2.4. With this notation,

(2.3) ‖(T − λI)−1‖ 6 const ψ
( 3

dist(λ,E)

)
,

1
2
< |λ| < 2, λ /∈ E.

This result in turn depends on two further lemmas.

Lemma 2.5. Suppose that ω satisfies (2.1). Let u ∈ L2(ω) be the function
u(z) = z. Then

‖(u− λ)−1‖ω 6 const ψ
( 1

dist(λ,Γ)

)
,

1
2
< |λ| < 2, λ /∈ Γ.

Proof. Suppose that 1
2 < |λ| < 1. Then

‖(u− λ)−1‖2ω =
∥∥∥∑
k>1

λk−1u−k
∥∥∥2

ω
6 4

∑
k>1

|λ|2kω(k)2 6
4

1− |λ|
sup
k>1

|λ|kω(k)2.

If 1 6 k 6 1/(1− |λ|), then, since ψ(t)2/t is increasing,

|λ|kω(k)2 6 ω(k)2 =
ψ(k)2

k
6 ψ

( 1
1− |λ|

)2

(1− |λ|).

On the other hand, if k > 1/(1 − |λ|), then we may choose an integer j > 1 such
that 2j−1/(1− |λ|) < k 6 2j/(1− |λ|), and then

|λ|kω(k)2 6
(

1− 2j−1

k

)k
ψ
( 2j

1− |λ|

)2 (1− |λ|)
2j

6 e−2j−1
(2c2)2jψ

( 1
1− |λ|

)2 (1− |λ|)
2j

.

Combining these estimates, we obtain

‖(u− λ)−1‖2ω 6 Cψ
( 1

1− |λ|

)2

,
1
2
< |λ| < 1,

where C = 4 sup
j>0

e−2j−1
(2c4)j . The case 1 < |λ| < 2 is similar.
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Lemma 2.6. Let E be a closed subset of Γ and let v : C \ E → [0,∞) be a
subharmonic function. Suppose that

v(λ) 6 ϕ
( 1

dist(λ,Γ)

)
, λ ∈ C \ Γ,

where ϕ : (0,∞) → (0,∞) is a continuous increasing function such that ϕ(2t) 6
const ϕ(t). Then

v(λ) 6 const ϕ
( 1

dist(λ,E)

)
, λ ∈ C \ E.

Proof. See pp. 366–367 in [9].

Proof of Lemma 2.4. As remarked earlier, the spectrum of T is equal to E.
Thus the resolvent λ 7→ (T − λI)−1 is holomorphic on C \ E. The result now
follows by applying Lemma 2.6 with v(λ) = ‖(T − λI)−1‖ and ϕ(t) = const ψ(t)
(extended so as to be constant on (0, 1]).

The final step is to use the resolvent estimate (2.3) to obtain bounds on the
norms of powers of T . This type of problem was studied in [1], where it was shown
that if S is an operator on an arbitrary Banach space, whose resolvent satisfies

‖(S − λI)−1‖ 6
C

dist(λ,E)
, |λ| > 1,

then ‖Sn−1‖ 6 1
2eC2ΦE(n), n > 1, where ΦE(n) = (n/π)|Eπ/2n|. We shall need

a refinement of that result for operators on a Hilbert space.

Lemma 2.7. Let S be an operator on a Hilbert space H. Suppose that

‖(S − λI)−1‖ 6 ϕ
( 1

dist(λ,E)

)
, 1 < |λ| < 2,

where E is a closed subset of Γ, and where ϕ : (1/3,∞) → (0,∞) is a function
such that ϕ(t)/t is increasing. Then

(2.4)
1
n

n−1∑
k=0

‖Skx‖2 6
e2

2
ϕ(n)2

n2
ΦE(n)‖x‖2, x ∈ H, n > 1.

Proof. For n = 1 the result is elementary. Fix n > 2 and x ∈ H. Let
1 < r < 2, and consider

J :=
1

2πr

∫
|λ|=r

‖(S − λI)−1x‖2 |dλ|.

On the one hand, because H is a Hilbert space, we can apply Parseval’s theorem
to get

J =
∞∑
k=0

‖Skx‖2

r2k+2
>

1
r2n

n−1∑
k=0

‖Skx‖2.
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On the other hand, from the resolvent estimate for S and the fact that ϕ(t)/t is
increasing,

J 6
1

2πr

∫
|λ|=r

ϕ
( 1

dist(λ,E)

)2

‖x‖2 |dλ| 6
ϕ
(

1
r−1

)2
1

(r−1)2

‖x‖2

2πr

∫
|λ|=r

|dλ|
dist(λ,E)2

.

Combining these inequalities and rearranging gives

(2.5)
1
n

n−1∑
k=0

‖Skx‖2 6
ϕ
(

1
r−1

)2
1

(r−1)2

‖x‖2r2n

2πrn

∫
|λ|=r

|dλ|
dist(λ,E)2

.

We now take r = (n + 1)1/2/(n − 1)1/2. As in the proof of Theorem 1.1 of
[1],

rn

2πn

∫
|λ|=r

|dλ|
dist(λ,E)2

6
e
2

ΦE(n).

Also 1/(r − 1) 6 n and rn−1 =
(
1 + 2/(n − 1)

)(n−1)/2
6 e. Substituting these

estimates into (2.5) and once again exploiting the fact that ϕ(t)/t is increasing
yields (2.4).

Proof of Theorem 2.1. All that remains is to prove (2.2). LetH=L2(ω)/I(E),
and let S be the operator on H of multiplication by π(u). Since T is defined as
the Banach-space adjoint of S, the resolvent estimate (2.3) holds equally for S.
Recall also that ψ(t)/t is increasing. Therefore we can apply the preceding lemma
with ϕ(t) = const ψ(3t), to obtain

(2.6)
1
n

n−1∑
k=0

‖Skx‖2 6 const
ψ(3n)2

n2
ΦE(n)‖x‖2, x ∈ H, n > 1.

Now because S is a multiplication operator, it has the additional property that
there exists a vector x0 ∈ H such that ‖Skx0‖ > ‖Sk‖ for all k > 0. Indeed,

‖Skx‖ = ‖π(uk)x‖ = ‖π(u)kπ(1)x‖ 6 const ‖Skπ(1)‖ ‖x‖, x ∈ H, k > 0,

so taking x0 to be a large enough multiple of π(1) will do. Putting x = x0 in (2.6),
and recalling the definitions of ψ and ΦE , we obtain

1
n

n−1∑
k=0

‖Sk‖2 6 const
ω(3n)2

n

n

π
|Eπ/2n| 6 const ω(n)2|E1/n|, n > 1.

Finally, since T is the adjoint of S, its powers satisfy the same inequalities.
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3. COMPLETION OF THE PROOF OF THEOREM 1.1

To deduce Theorem 1.2 from Theorem 2.1, we need to make a careful choice of
the weight function ω. We require two elementary lemmas.

Lemma 3.1. Let (an)n>0 be a positive sequence, and let sn = (1/n)
n−1∑
k=0

ak,

n > 1. Let (wn)n>1 be a positive sequence such that
∑
n
wn/sn diverges. Suppose,

in addition, that there exists c > 0 such that wm 6 cwn whenever n 6 m 6 2n.
Then

∑
n
wn/an diverges.

Proof. Let (vn)n>1 be a strictly positive, increasing sequence with vn → ∞
such that

∑
n
wn/(vnsn) diverges. Given p > 1, define

Np = {n ∈ Z ∩ [2p−1, 2p) : an 6 v2ps2p}.
Then, for each p > 1,

2ps2p =
2p−1∑

0

an >
∑

n∈[2p−1,2p)\Np

an > (2p−1 − |Np|)v2ps2p .

It follows that |Np| > 2p−1 − 2p/v2p . In particular, since vn →∞, there exists p0

such that |Np| > 2p−2 for all p > p0.
Now, if n 6 m 6 2n, then wm 6 cwn and sm > sn/2. Hence∑

n>1

wn
an

>
∑
p>p0

∑
n∈Np

wn
an

>
∑
p>p0

|Np|
c−1w2p

v2ps2p

>
∑
p>p0

|Np|
2p

2p+1−1∑
n=2p

c−2wn
vn2sn

=
1

8c2
∑
n>p0

wn
vnsn

,

and this last sum diverges.

Lemma 3.2. Given a positive sequence (ηn)n>1 such that ηn → ∞, there
exist positive sequences (αn)n>1 and (βn)n>1 such that:

(i) αn 6 ηn for all sufficiently large n;
(ii)

∑
n

(βn/n) converges and
∑
n

(αnβn/n) diverges;

(iii) (αn) is increasing and α2n 6 2αn for all n;
(iv) (βn) is decreasing and β2n > βn/2 for all n.

Proof. Choose an increasing sequence of positive integers (mk)k>1 such that

ηn > 2k for n ∈ (2mk , 2mk+1 ].

We can further suppose that mk+1 > 2mk and mk+12−mk+1 < (1/2)mk2−mk for
all k. Our first attempt is to set

αn = 2k and βn =
2−k

mk+1
for n ∈ (2mk , 2mk+1 ].
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Then (i) is clearly satisfied, and (ii) follows from the observation that, for each
k > 1, ∑

n∈(2mk ,2mk+1 ]

βn
n

=
2−k

mk+1

∑
n∈(2mk ,2mk+1 ]

1
n

=
2−k

mk+1

(
log
(2mk+1

2mk

)
+ O

( 1
2mk

))
� 2−k.

Also (iii) is clear, as is the first part of (iv). However, the second part of (iv) fails,
because if n = mk, then β2n/βn = mk/2mk+1, which may be very small.

So we modify the sequence (βn) as follows. For k > 1 and 1 6 j 6 mk+1−mk,
set

β̃n = max(βn, 2−jβ2mk ) for n ∈ (2mk+j−1, 2mk+j ].
Note that β̃2mk = β2mk for all k (this amounts to checking that mk+12−mk+1 <
(1/2)mk2−mk , which we were careful to assume at the outset). It follows easily
that the modified sequence (β̃n) now satisfies (iv). It remains to check (ii). The
divergence of

∑
n
αnβ̃n/n is clear, because β̃n > βn. Also, the convergence of∑

n
β̃n/n will follow if we can show that

∑
n

(β̃n − βn)/n converges. But this latter

sum is majorized by∑
k>1

∑
j>0

β2mk 2−j(2mk+j − 2mk+j−1)
2mk+j−1

= 2
∑
k>1

β2mk 6 2
∑
k>1

2−k <∞,

so
∑
n
β̃n/n does indeed converge, and the proof of the lemma is complete.

Proof of Theorem 1.2. Given ηn → ∞, choose sequences (αn) and (βn)
satisfying the conclusions of the preceding lemma. Set ω(n) =

√
n/βn for n > 1,

and extend ω to Z by defining ω(−n) = ω(n) and ω(0) = ω(1). The properties
(βn) ensure that ω satisfies (2.1).

By Theorem 2.1, given a closed subset E of Γ, there exists an operator T on
a separable Hilbert space with σp(T ) = σ(T ) = E such that (2.2) holds. We are
going to apply Lemma 3.1 with

an = ‖Tn‖2, sn =
1
n

n−1∑
k=0

‖T k‖2 and wn = αn|E1/n|.

From (2.2), we have∑
n

wn
sn

> const
∑
n

αn|E1/n|
ω(n)2|E1/n|

= const
∑
n

αnβn
n

=∞.

Also, if n 6 m 6 2n, then wm = αm|E1/m| 6 α2n|E1/n| 6 2αn|E1/n| = 2wn.
Hence, Lemma 3.1 applies, and we deduce that

∑
n
wn/an diverges, i.e.∑

n

αn|E1/n| ‖Tn‖−2 =∞.

Finally, since αn 6 ηn for all large enough n, we deduce that (1.1) holds. This
completes the proof.



98 Omar el-Fallah and Thomas Ransford

4. COMMENTS AND QUESTIONS

(i). For countable subsets E of Γ there is a much simpler construction. We
can just take T to be a diagonal operator with entries from E: this is unitary
and satisfies σp(T ) = E. In fact this observation can be exploited to improve
slightly upon Theorem 2.1. Given a closed subset E of Γ, we can decompose it as
E = Ep ∪ Ec, where Ep is perfect and Ec is countable. Let T1 be the operator
associated to Ep by Theorem 2.1, and let T2 be the diagonal operator with entries
from Ec. Writing T as the direct sum of T1 and T2, we then have σp(T ) = E,
and (2.2) now holds with |E1/n| replaced by |Ep

1/n|, which in principle grows less
rapidly.

(ii). The same circle of ideas leads to a partial extension of Theorem 2.1 to
general Fσ sets. It is natural to seek such an extension, in view of a theorem of
Nikolskaja ([5]) to the effect that the point spectrum of an operator on a separable
Hilbert space is always an Fσ set. Given an Fσ subset F of Γ, write F =

⋃
j>1

Ej ,

where the Ej are closed in Γ. For each j, Theorem 2.1 provides us with an operator
Tj on a separable Hilbert space such that σp(Tj) = Ej and (2.2) holds with E
replaced by Ej . A close inspection of the proof of Theorem 2.1 reveals that the
constant in (2.2) depends only on ω, not on the sets Ej , so the norms of the Tj are
uniformly bounded, and their direct sum T is thus still a bounded linear operator
on a separable Hilbert space. This T then satisfies σp(T ) = F and∥∥∥n−1∑

k=0

T ∗kT k
∥∥∥ 6 const ω(n)2 sup

j>1

|Ej1/n|, n > 1.

We do not know if it is possible to replace the left-hand side by
n−1∑
k=0

‖T k‖2.

(iii). The method of proof of Theorem 2.1 breaks down if ω(n) = O(
√
n),

because this would lead to an operator satisfying (2.3) with ψ(t) = const t, and it
then follows from a result of Nikolski ([7], p. 209, Corollary 2) that σp(T )∩Γ is at
most countable. In fact Nikolski’s result applies to any separable, reflexive Banach
space. We here give another proof which shows that the hypothesis of reflexivity
is unnecessary.

Theorem 4.1. Let X be a separable Banach space and let T be an operator
on X satisfying

(4.1) ‖(T − λI)−1‖ 6
C

dist(λ,Γ)
, |λ| > 1.

Then σp(T ) ∩ Γ is at most countable.

Proof. Let µ, ν be distinct elements of σp(T ) ∩ Γ, and let eµ, eν be corre-
sponding eigenvectors of norm 1. For r > 1, set Qr = (T − νI)(T − rνI)−1.
Then

Qr(eµ − eν) = (µ− ν)(µ− rν)−1eµ, r > 1.
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On the other hand, since Qr = I + (r − 1)(T − rνI)−1, the resolvent condition
(4.1) implies that ‖Qr‖ 6 1 + C, r > 1. Hence

(1 + C) ‖eµ − eν‖ > |(µ− ν)(µ− rν)−1|, r > 1.

Letting r → 1, we deduce that ‖eµ − eν‖ > 1/(1 + C). As X is separable, this
implies that σp(T ) ∩ Γ is at most countable.

Note that every power-bounded operator satisfies (4.1), as well as some that
are not power-bounded (see e.g. [1], [8], [10]). This raises the question as to
whether Theorem 1.1 can also be generalized in terms of resolvents.

(iv). Let T be an operator on a Hilbert space satisfying the resolvent con-
dition (4.1). Then Lemma 2.7, applied with S = T , E = Γ and ϕ(t) = Ct, shows
that

n−1∑
k=0

‖T kx‖2 6 e2C2n2‖x‖2, x ∈ H, n > 1.

In particular, if there exists vector x0 ∈ H such that

(4.2) ‖Tnx0‖ > ‖Tn‖, n > 0,

then it follows that min
n6k<2n

‖T k‖ = O(
√
n) as n → ∞. Is it true that ‖Tn‖ =

O(
√
n)? This question was posed by Shields in p. 373 in [8], without the extra

condition (4.2), but in this generality the answer is now known to be negative (see
[10]).

(v). The operator T constructed in the proof of Theorem 2.1 satisfies (4.2)
for some x0 because it is the adjoint of a multiplication operator. As such, it even
enjoys the stronger property that

(4.3) ‖f(T )x0‖ > ‖f(T )‖
for all functions f holomorphic on a neighbourhood of σ(T ). For such operators,
the technique of Lemma 2.7 can also be used to prove a lower bound for the
left-hand side of (2.4). As before, we write ΦE(n) = (n/π)|Eπ/2n|.

Theorem 4.2. Let T be an operator on a Hilbert space H whose spectral
radius equals one, and set E = σ(T ) ∩ Γ. Suppose that there exists x0 ∈ H such
that (4.3) holds for all functions f holomorphic on a neighbourhood of σ(T ). Then

1
n

n−1∑
k=0

‖T kx0‖2 >
(1− π/4)3

8
ΦE(n), n > 1.

Proof. For n = 1 the result is elementary. Fix n > 2. Let 0 < r < 1, and
consider

J :=
1

2π

∫
|z|=r

‖(I − znTn)(I − zT )−1x0‖2 |dz|.

On the one hand, by Parseval,

J =
1

2π

∫
|z|=r

∥∥∥n−1∑
k=0

zkT kx0

∥∥∥2

|dz| =
n−1∑
k=0

r2k‖T kx0‖2 6
n−1∑
k=0

‖T kx0‖2.
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On the other hand, using (4.3) with f(T ) = (I − znTn)(I − zT )−1, together with
the fact that the norm of f(T ) is at least as large as its spectral radius, we have

J >
1

2π

∫
|z|=r

(1− |z|n)2

dist(z, E)2
|dz| > 1

2π

∫
z∈rE1−r

(1− rn)2

(2− 2r)2
|dz| > 1

8π
n2r2n−1|E1−r|.

Combining these inequalities, and setting r = 1− π/2n, we obtain

1
n

n−1∑
k=0

‖T kx0‖2 >
1
8

(
1− π

2n

)2n−1

ΦE(n) >
1
8

(
1− π

4

)3

ΦE(n),

as desired.

Corollary 4.3. If, in addition, T is power-bounded, then σ(T ) ∩ Γ is a
finite set.

Proof. If T is power-bounded, then the theorem shows that ΦE(n) remains
bounded as n→∞. This implies that E is a finite set.

Corollary 4.4. Let A be a Banach algebra which is isomorphic to a Hilbert
space. If a is a power-bounded element of A, then σ(a) ∩ Γ is finite.

Proof. Let T : A → A be the multiplication operator x 7→ ax. Then (4.3)
holds with x0 a multiple of the identity. The result therefore follows from Corol-
lary 4.3.
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Université Mohammed V Université Laval
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