
J. OPERATOR THEORY
52(2004), 113–132

c© Copyright by Theta, 2004

LINEAR SPANS OF UNITARY AND

SIMILARITY ORBITS OF A HILBERT SPACE OPERATOR

KENNETH R. DAVIDSON and LAURENT W. MARCOUX

Communicated by Nikolai K. Nikolski

Abstract. In this note, we show that if a bounded linear operator T acting
on an infinite dimensional, separable, complex Hilbert space H is not of the
form scalar plus compact, then every bounded linear operator on H can be
written as a linear combination of 14 or fewer operators unitarily equivalent
to T , as a linear combination of 6 or fewer operators similar to T , and as
a sum of 8 or fewer operators similar to T . When T is not polynomially
compact, the set of all sums of 2 operators similar to T is dense in B(H),
while if T is polynomially compact, but not of the form scalar plus compact,
then the set of sums of 3 operators similar to T is dense in B(H).
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There is an extensive literature about results which express operators on Hilbert
space or elements of various algebras as sums or products of nice operators, such
as projections, idempotents, symmetries, diagonal operators, etc. ([12], [15], [16],
[19], [20], [21], [23], [24], [25], [27], [30]). In particular, see the survey paper by
Wu ([31]). The purpose of this paper is to contribute to this arcana by showing
that there is actually nothing special about using a nice operator, and that in fact
almost any operator will do with reasonably small universal bounds.

More precisely, we investigate whether every operator may be expressed as a
sum or linear combination of operators which are similar or even unitarily equiv-
alent to a single given operator T . An immediate obstruction arises if T has the
form scalar plus compact, as the set of such operators is a similarity invariant
closed subspace. Surprisingly, this is the only obstruction!

We will show that when T is not of the form scalar plus compact, every
operator is the linear combination of 6 operators similar to T and the sum (without
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scalar multiples) of 8 such operators. When using operators unitarily equivalent
to T , there is an obvious norm obstruction for sums, so we only consider linear
combinations and show that 14 terms suffice; and in fact, 8 terms is sufficient if the
operator is not normal plus compact with the essential spectrum contained in a
line segment. Even though these results are relatively small, they are too large to
expect them to be sharp, and lower bounds are very difficult to obtain. The best
result shows that at least 5 terms are needed in general for linear combinations of
similarity orbits. So 6 is an excellent bound.

In this regard, we do significantly better when we only require the norm
density of these sums. Precisely, we show that if T is not polynomially compact,
then the set of sums of only two operators similar to T is dense in the set of all
bounded operators. We show that three terms are needed if T is quadratically
compact. This is used to prove that for all polynomially compact operators T
which are not scalar plus compact, the sums of three operators similar to T is
dense in B(H).

1. NOTATION

Let H be a complex, separable, infinite dimensional Hilbert space. We denote by
B(H) the algebra of bounded linear operators on H, and by K(H) the ideal of com-
pact operators. The canonical map from B(H) to the Calkin algebra B(H)/K(H)
is denoted by π. Given T ∈ B(H), the unitary orbit of T is U(T ) = {U∗TU :
U is unitary}. We write T ' R if R ∈ U(T ), and we say that T and R are
unitarily equivalent. Two operators T and R are similar if there exists an in-
vertible operator S such that S−1TS = R, and the corresponding similarity orbit
of T is S(T ) = {S−1TS : S is invertible}. More generally, for M ⊆ B(H), we
define the unitary orbit U(M) = {U∗MU : M ∈ M, U is unitary} and simi-
larity orbit S(M) = {S−1MS : M ∈ M, S is invertible}. We say that M is
unitarily invariant (respectively similarity invariant) if U(M) = M (respectively
S(M) = M). We also will say that T and R are approximately unitarily equiv-
alent (write T 'a R) if there is a sequence of unitary operators Un such that
R = lim

n
UnTU∗

n, or equivalently if U(T ) = U(R). The operator T is said to be

quasinilpotent if its spectrum σ(T ) = {0}, and T is called polynomially compact if
π(T ) is algebraic, i.e. if p(π(T )) = 0 for some polynomial p.

It was shown by Fong, Miers and Sourour in [14] that if L ⊆ B(H) is a
linear manifold, then L = U(L) if and only if L = S(L) and that both of these
notions are equivalent to L being a Lie ideal, i.e. if L ∈ L and A ∈ B(H), then
AL−LA ∈ L. Moreover, they independently obtained Topping’s result ([28]) that
any Lie ideal L of B(H) is either contained in the algebra T = CI + K(H) =
{λI + K : λ ∈ C,K ∈ K(H)} or equals B(H). Operators in T have been referred
to as thin in [11], but this nomenclature is not universal.

Given a subset M of B(H), let ΣnM denote the set of operators which are
the sum of n elements of M; and let CM =

⋃
λ∈C

λM. From the Fong, Miers and

Sourour result, it follows that if T is an operator and T 6∈ T , then
∞⋃

n=1
ΣnCU(T ) is

a unitarily invariant subspace of B(H) which is not contained in T , and thus must
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coincide with B(H). In other words, every operator X ∈ B(H) can be written as a
finite linear combination of operators Tk, each of which is unitarily equivalent to
T . A similar result holds with unitary equivalence replaced by similarity.

We define
βT (X) = min{n ∈ N : X ∈ ΣnCU(T )}

βT = sup{βT (X) : X ∈ B(H)}
µT (X) = min{n ∈ N : X ∈ ΣnCS(T )}

µT = sup{µT (X) : X ∈ B(H)}
σT (X) = min{n ∈ N : X ∈ ΣnS(T )}

σT = sup{σT (X) : X ∈ B(H)}.
The notation σT should not be confused with the spectrum σ(T ) of T . Evidently,
2 6 µT 6 min{βT , σT }.

In [20], the second author raised the question: for which operators T is
βT < ∞? The purpose of this note is to answer this question by proving that if
T 6∈ T , then βT 6 14, µT 6 6 and σT 6 8. There is also a topological version of
these results. We write

βT (X) = min{n ∈ N : X ∈ ΣnCU(T )}
βT = sup{βT (X) : X ∈ B(H)}

µT (X) = min{n ∈ N : X ∈ ΣnCS(T )}
µT = sup{µT (X) : X ∈ B(H)}

σT (X) = min{n ∈ N : X ∈ ΣnS(T )}
σT = sup{σT (X) : X ∈ B(H)}.

Again, 2 6 µT 6 min{βT , σT }. Also it is clear that βT 6 βT , µT 6 µT and
σT 6 σT . We will prove that if T 6∈ T , then σT 6 3 and in fact µT = σT = 2 if T
is not polynomially compact.

2. SPANS AND SUMS OF UNITARY AND SIMILARITY ORBITS

2.1. Given two operators A and B, we shall say that A is a dilation of B — or
equivalently, B is a compression of A — if we can find operators Z2, Z3 and Z4 so

that A '
[

B Z2

Z3 Z4

]
. Our estimate for βT will rely on the following result of Fong

and Wu ([16]). Recall that an operator D ∈ B(H) is said to be diagonal if there
exists an orthonormal basis {en}∞n=1 of H and a bounded sequence {dn}∞n=1 ⊆ C
such that Den = dnen, n > 1. We denote by D the set of diagonal operators.

2.2. Theorem. (Fong-Wu) Every operator X ∈ B(H) admits a diagonal
dilation D with ‖D‖ 6 2‖X‖.

Indeed, the factor 2 may be replaced with 1 + ε. Any contraction dilates to
a unitary; and any unitary may be dilated to a normal operator of finite spectrum
whose convex hull contains the unit circle.
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2.3. Recall that the numerical range of an operator T ∈ B(H) is the set
W (T ) = {(Te, e) : e ∈ H, ‖e‖ = 1}. The essential numerical range of T is
We(T ) =

⋂
K∈K(H)

W (T + K). It is well-known that W (T ) and We(T ) are non-

empty and convex, and that We(T ) is compact and contains the spectrum of π(T )
in B(H)/K(H). Moreover, λ ∈ We(T ) if and only if there exists an orthonor-
mal set {en}∞n=1 such that lim

n→∞
(Ten, en) = λ. One also defines the numerical

radius as w(T ) = sup{|λ| : λ ∈ W (T )} and the essential numerical radius as
we(T ) = sup{|λ| : λ ∈ We(T )}. One has

1
2
‖T‖ 6 w(T ) 6 ‖T‖ and

1
2
‖π(T )‖ 6 we(T ) 6 ‖π(T )‖.

For more information regarding the essential numerical range, we refer the reader
to Fillmore, Stampfli and Williams ([13]). We shall require the following result
due to Anderson and Stampfli ([1]).

2.4. Theorem. (Anderson-Stampfli) (i) T ∈ T if and only if We(T ) = {λ}
for some complex number λ.

(ii) Let T ∈ B(H) and suppose that α, β ∈ We(T ). Then T can be represented
as [

D1 0 ∗
0 D2 ∗
∗ ∗ ∗

]

on H1⊕H2⊕H3, where each Hk is isomorphic to H, and where D1 = diag{αn}∞n=1

and D2 = diag{βn}∞n=1 are diagonal operators with lim
n→∞

αn = α and lim
n→∞

βn = β.

2.5. Lemma. Suppose T ∈ B(H) and 0 lies in the interior of We(T ). There
exists δ > 0 so that if W ∈ B(H) with ‖W‖ 6 δ, then W admits T as a dilation;

i.e. there exist operators W2,W3 and W4 so that T '
[

W W2

W3 W4

]
.

Proof. Since 0 lies in the interior of We(T ), there exists ε > 0 so that εik are
in We(T ) for 1 6 k 6 4. Let δ = ε/3. An easy generalization of Theorem 2.4 shows

that H can be decomposed as
5⊕

k=1

Hk so that with respect to this decomposition,

T can be represented as



D1 ∗
D2 ∗

D3 ∗
D4 ∗

∗ ∗ ∗ ∗ ∗




where each Dk = diag{αn(k)}∞n=0 for some sequence {αn(k)}∞n=0 satisfying
lim

n→∞
αn(k) = εik, 1 6 k 6 4. Without loss of generality, we may assume that

|αn(k) − εik| < ε/100, n > 0. If we set Bn = diag{αn(1), αn(2), αn(3), αn(4)}
for n > 0, then

4⊕
k=1

Dk '
∞⊕

n=0
Bn. Since the numerical range of a complex matrix
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is convex and must contain its spectrum, it follows that the ball of radius 2δ is
contained in W (Bn) for all n > 0.

Now, given n > 0 and cn ∈ C with |cn| 6 2δ, we can choose a basis
{w4n+1, w4n+2, w4n+3, w4n+4} for the space Jn upon which Bn acts so that

Bn '
[

cn Bn2

Bn3 Bn4

]
span{w4n+1}
span{w4n+2, w4n+3, w4n+4} .

Let N1 = span{w4n+1}∞n=0 and N2 = span{w4n+2, w4n+3, w4n+4}∞n=0. On decom-

posing
5⊕

k=1

Hk as N1 ⊕ (N2 ⊕H5), we have

T '
[

C ∗
∗ ∗

]
,

where C = diag{cn}∞n=0.
Let W ∈ B(H) with ‖W‖ 6 δ. By Theorem 2.2, W can be dilated to a

diagonal operator D with ‖D‖ 6 2δ. From above, any such D is a compression of
T . Hence for any W ∈ B(H) with ‖W‖ 6 δ, there exists an operator of the form[

W ∗
∗ ∗

]
in U(T ).

We isolate two calculations which will be used repeatedly in the sequel.

2.6. Lemma. (i) Suppose T =
[

A B
C D

]
. Then 2(A ⊕ D) ∈ Σ2U(T ) ⊆

Σ2S(T ).
(ii) Let f : B(H) → B(H) be an arbitrary function. Suppose that M1 and

M2 are unitarily invariant subsets of B(H) ' B(H ⊕ H) such that M1 contains
every operator of the form A⊕f(A) for A ∈ B(H) and M2 contains every operator
of the form B ⊕ 0 for B ∈ B(H). Then B(H) = M1 +M2.

Proof. (i) Observe that T =
[

A B
C D

]
' T1 :=

[
A −B
−C D

]
, and therefore

2(A⊕D) = T + T1 ∈ Σ2U(T ).
(ii) It is well known (see for example [16]) that every operator X admits an

infinite tridiagonal form X = [Yij ] for i, j > 1 with Yij = 0 if |i − j| > 1 with

respect to some decomposition H =
∞⊕

n=1
Hn into finite dimensional blocks. Now

define subspaces K1 =
∞⊕

n=0
H4n, K2 =

∞⊕
n=0

(H4n+1 ⊕H4n+3) and K3 =
∞⊕

n=0
H4n+2.

Then with respect to H = K1 ⊕K2 ⊕K3, X admits a 3× 3 tridiagonal form

X =

[
X11 X12 0
X21 X22 X23

0 X32 X33

]
.

By our assumption, there exists an operator Z ∈ B(H) so that

M1 =

[
X11 X12 0
X21 X22 0
0 0 Z

]
∈M1.
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Also, M2 =

[ 0 0 0
0 0 X23

0 X32 X33 − Z

]
lies in M2, and hence X = M1 +M2 belongs to

M1 +M2.

Observe that by setting f to be the zero function, we may also conclude that
B(H) = Σ2M2.

2.7. Lemma. Let λ ∈ C, B ∈ B(H) and A = B ⊕ B(∞) ⊕ −B(∞). If
T ∈ B(H) admits λI + A as a compression, then B ⊕ 0 belongs to Σ4CU(T ).

Proof. Suppose T =
[

λI + A Z2

Z3 Z4

]
. By Lemma 2.6(i), Σ2U(T ) contains

T1 = 2
(
(λI + A)⊕ Z4

)
=

(
2λI + 2(B ⊕B(∞) ⊕−B(∞))

)⊕ 2Z4.

Since −A ' B ⊕−B(∞) ⊕B(∞), we find that Σ2CU(T ) also contains

−T1 ' −2(λI + A)⊕−2Z4

' T2 :=
(− 2λI + 2(B ⊕−B(∞) ⊕B(∞))

)⊕−2Z4.

Hence T1 + T2 ' 4(B ⊕ 0) ∈ Σ4CU(T ), which is clearly sufficient.

2.8. Theorem. Let M⊆ B(H) and suppose that M is unitarily invariant.
Suppose furthermore that for each A ∈ B(H), there is an operator L(A) in CM
which admits A as a compression. Then B(H) = Σ6CM. That is, every operator
in B(H) can be expressed as a linear combination of 6 or fewer operators in M.

Proof. Our assumption is that if we are given any A ∈ B(H), we can find

L(A) ∈ M so that L(A) '
[

A Z2

Z3 Z4

]
. By Lemma 2.6(i), L2(A) = A⊕ Z4 lies in

Σ2CM. If B ∈ B(H) is arbitrary, then with A = B ⊕ B(∞) ⊕−B(∞) and λ = 0,
it follows from Lemma 2.7 that B ⊕ 0 ∈ Σ4CU(L(A)) ⊆ Σ4CM.

We then apply Lemma 2.6(ii) with M1 = Σ2CM and M2 = Σ4CM to
conclude that B(H) = M1 +M2 = Σ6CM.

2.9. Theorem. Let T ∈ B(H) be an operator which is not of the form scalar
plus compact.

(i) If 0 lies in the interior of the essential numerical range We(T ) of T ,
then every operator X ∈ B(H) can be expressed as a linear combination of 6 or
fewer operators unitarily equivalent to T . Thus βT 6 6.

(ii) If the essential numerical range We(T ) has non-empty interior, then 8
operators unitarily equivalent to T will suffice, and so βT 6 8.

(iii) In the remaining case, T is normal plus compact with essential spectrum
contained in a line segment. Then every operator X ∈ B(H) can be written as a
linear combination of 14 or fewer operators unitarily equivalent to T , i.e. βT 6 14.

Proof. (i) This is an immediate consequence of Lemma 2.5 and Theorem 2.8
applied to U(T ).

(ii) Suppose We(T ) contains the point λ in its interior. By Lemma 2.5,
there exists δ > 0 so that if ‖A‖ < δ, then A + λI admits T as a dilation.
Suppose B ∈ B(H) is arbitrary and let A = (δ/2‖B‖)(B⊕B(∞)⊕−B(∞)). Using
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Lemma 2.7 and the fact that Σ4CU(T ) is invariant under scalar multiplication,
we find that B ⊕ 0 ∈ Σ4CU(T ). The comment following Lemma 2.6 implies that
Σ8CU(T ) = B(H).

(iii) When We(T ) does not have interior yet T is not of the form scalar plus
compact, We(T ) contains at least two points. As We(T ) is convex and compact,
it must in fact be a line segment of the form [α, β]. First suppose that We(T ) is
contained in R+. If A is the image of π(T ) under a faithful ∗-representation on
K, it follows that W (A) ⊂ R+. That is, (Ax, x) > 0 for all x ∈ K, whence A is
positive. Therefore T is positive plus compact. In general, by translating T by a
scalar and multiplying by a non-zero constant, we reduce to this case; and hence
T is normal plus compact with essential spectrum contained in the line segment
We(T ).

By Theorem 2.4, we can decompose H as
4⊕

k=1

Hk so that the corresponding

operator matrix for T is:

T ' T1 =




D1 ∗
D2 ∗

D3 ∗
∗ ∗ ∗ ∗


 ,

where D1 = αI +K1, D2 = αI +K2, D3 = βI +K3 and Kk are compact diagonal
operators for 1 6 k 6 3.

Then T is unitarily equivalent to

T2 =




D3 0 0 ∗
0 D1 0 ∗
0 0 D2 ∗
∗ ∗ ∗ ∗


 ' T3 =




D2 0 0 ∗
0 D3 0 ∗
0 0 D1 ∗
∗ ∗ ∗ ∗


 .

Now T1 +iT2 ∈ Σ2CU(T ), and {α+iβ, α+iα, β +iα} ⊆ We(T1 +iT2). Since these
three points are never collinear in C, the convex set We(T1 +iT2) has interior. The
proof of (ii) shows that for any B ∈ B(H), B ⊕ 0 belongs to Σ4CU(T1 + iT2) ⊆
Σ8CU(T ).

Now note that Σ3CU(T ) contains the operator R = (β − α)−1
3∑

k=1

ωkTk,

where ω = e2πi/3. We claim that 0 lies in the interior of We(R). Indeed,

R =




ω2(I + J1) 0 0 ∗
0 (I + J2) 0 ∗
0 0 ω(I + J3) ∗
∗ ∗ ∗ ∗




where J1, J2 and J3 are compact. It now follows from [13] that {1, ω, ω2} is con-
tained in We(R), and hence 0 lies in the interior of the convex set We(R).

Using Lemma 2.5 and Lemma 2.6(i), we conclude that for any operator
A ∈ B(H) there exists Z ∈ B(H) so that A⊕ Z ∈ Σ2CU(R) ⊆ Σ6CU(T ). Finally
an application of Lemma 2.6(ii) tells us that B(H) = Σ14CU(T ), completing the
proof.
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Recall that a unilateral (respectively bilateral ) weighted shift on H is a map
V ∈ B(H) so that V en = vnen+1 where {en}n∈N (respectively {en}n∈Z) is an
orthonormal basis forH and {vn}n∈N (respectively {vn}n∈Z) is a bounded sequence
of complex numbers. It is well-known that the spectrum and essential spectrum of
a weighted shift have circular symmetry, i.e. if z ∈ σ(V ) (respectively z ∈ σ(π(V ))),
then λz ∈ σ(V ) (respectively λz ∈ σ(π(V ))) for all |λ| = 1. Moreover, when V
is not compact, the spectral radius of π(V ) is strictly positive. Since We(V ) is
convex and contains σ(π(V )), the above theorem implies:

2.10. Corollary. Let V be a non-compact weighted unilateral or bilateral
shift. Then B(H) = Σ6CU(V ). Thus βV 6 6.

This improves a result of [20], where it was shown that every X ∈ B(H) is
a sum of 18 or fewer weighted shifts, not necessarily unitarily equivalent to each
other. It would be interesting to know if there exists an operator T so that βT < 6,
and more generally, what the minimum possible value of βT is as T ranges over
B(H).

2.11. Corollary. If T is not normal plus compact with essential spectrum
contained in a line segment, then B(H) = Σ8CU(T ). Thus βT 6 8.

2.12. Remark. If T ∈ T , then U(T ) ⊆ T and any linear combination of
operators in T is again in T . In general, however, we do not expect

⋃
n>1

ΣnCU(T ) =

T . K(H) contains many ideals, including amongst others the ideal of finite rank
operators and each of the Schatten p-classes Sp(H). (See, for example, [10] for
the definition and properties of these ideals.) If T = λI +K and K lies in such an
ideal, then any linear combination of operators unitarily equivalent to T is again
of the form αI + L where L lies in that ideal.

We also cannot expect a uniform bound β (independent of T ) when examin-
ing this problem on a finite dimensional space. There, rank plays a factor, so that
if P ∈ Mn(C) is a rank one projection, then the identity operator In ∈ Mn(C)
can be expressed as a linear combination of no fewer than n copies of P . We
do, however, draw the reader’s attention to the paper [19] of Laurie, Mathes and
Radjavi which deals with the question of which n × n matrices can be expressed
as a sum of k idempotent matrices. Also Wang and Wu ([30]) obtain interesting
results on expressing matrices (and operators) as sums of nilpotents of order 2.

These remarks apply equally well to the case of spans of similarity orbits.

For spans of similarity orbits, we have the following result:

2.13. Theorem. Let T ∈ B(H) and suppose T is not of the form scalar
plus compact. Then every bounded linear operator on H can be written as a linear
combination of 6 or fewer operators similar to T . That is, B(H) = Σ6CS(T ), and
so µT 6 6.

Proof. By Theorem 5 of [1], given A ∈ B(H) we can find Q invertible so that

Q−1TQ '
[

A Z2

Z3 Z4

]

for some Z2, Z3 and Z4. Since S(T ) is clearly unitarily invariant, we can once
again apply Theorem 2.8 to obtain the conclusion.
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2.14. Remarks. The case of projections has been well studied. In particu-
lar, it has been shown ([23], [21]) that every self-adjoint operator is a real linear
combination of 5 projections, and hence every operator is a linear combination of
at most 10 projections. One can verify that their formulae yield projections of
infinite rank and nullity, so that one obtains Σ10CU(I ⊕ 0) = B(H) or µI⊕0 6 10.

On the other hand, it has been shown (c.f. [31] and [25]) that the sum of four
idempotents cannot equal −I. Conversely, it was shown by Pearcy and Topping
([24]) that every bounded linear operator X is a sum of 5 idempotent operators.
An examination of their proof shows that all five idempotents that they use are
similar to T = I ⊕ 0. So σI⊕0 = 5.

The next theorem can be viewed as a generalization of the Pearcy and Top-
ping result to arbitrary non-thin operators. This aspect of using operators similar
to a single operator was not part of the considerations of Pearcy and Topping, and
arose merely because the similarity classes of an idempotent are rather limited,
being a function only of rank and nullity.

They also show that every operator is the sum of five nilpotents of order
2. In this case however, even though all nilpotents of order 2 are similar to an

operator of the form
[

0 X
0 0

]
, there are many different similarity classes and their

argument does not actually imply our result for any nilpotent of order 2. However
a lower bound comes from a result of Wang and Wu ([30]) where it is shown that
sums of four nilpotents of order 2 are always commutators; and thus the identity
is not such a sum. Hence µQ = σQ > 5 for any Q with Q2 = 0. Theorem 2.13
shows that σQ = µQ 6 6 if Q is not compact. This shows that Theorem 2.13 is
rather close to being sharp.

We now turn to the question of sums, rather than linear combinations of
the similarity orbit. One would expect, a priori, that many more terms would be
needed. However, the same techniques require only two extra terms.

2.15. Theorem. Let T ∈ B(H) and suppose T is not of the form scalar plus
compact. Then every bounded linear operator on H can be written as a sum of 8
or fewer operators similar to T . Hence B(H) = Σ8S(T ), or equivalently, σT 6 8.

Proof. The proof of Theorem 5 of [1] shows that there is an operator Z so
that T is similar to an operator of the form

[
0 I ∗
0 0 ∗
∗ ∗ Z

]
.

Given A ∈ B(H),
[

I 0
−A I

] [
0 I
0 0

] [
I 0
A I

]
=

[
A I
−A2 −A

]
,

and so T is also similar to

T1 =

[
A I ∗
−A2 −A ∗
∗ ∗ Z

]
.

The key issue is that the operator Z is independent of A.
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Let U = I ⊕ ωI ⊕ ω2I, where ω = e2πi/3 is the cube root of unity. Then

T1 + UT1U
∗ + U∗T1U = 3(A⊕−A⊕ Z) ∈ Σ3S(T ).

In particular, given B ∈ B(H), we can choose A = (B ⊕−B ⊕ Z ⊕−Z)(∞). Note
that

3(A⊕−A⊕ Z) ' 3A ' 3(B ⊕A) ' 3(B ⊕−A).

Adding the last two terms, we find that 6B ⊕ 0 ∈ Σ6S(T ). Since B was arbitrary,
C ⊕ 0 ∈ Σ6S(T ) for all C ∈ B(H).

Moreover, by Lemma 2.6(i), we also find that 2
(

A⊕
[
−A ∗
∗ Z

])
belongs to

Σ2S(T ) for all A ∈ B(H). So by Lemma 2.6(ii), it follows that B(H) = Σ8S(T ).

We point out two special cases of interest where we can improve the estimate.

2.16. Proposition. Let Z ∈ B(H). If T is similar to an operator of the

form
[

0 I
0 0

]
⊕ Z or

[
I 0
0 0

]
⊕ Z, then Σ6S(T ) = B(H), and hence σT 6 6.

Proof. Suppose first that T is similar to
[

0 I
0 0

]
⊕ Z. The proof is an easy

modification of that of Theorem 2.15, if we simply note that given A ∈ B(H), T

is similar to
[

A I
−A2 −A

]
⊕ Z and so 2(A⊕−A⊕ Z) ∈ Σ2S(T ), from which the

above calculation yields C⊕ 0 ∈ Σ4S(T ) for all C ∈ B(H), which in turn accounts
for the reduction of 2 in the estimate for σT .

Next suppose that T is similar to
[

I 0
0 0

]
⊕ Z. Then for any A ∈ B(H),

T ∼
[

A A−A2

I I −A

]
⊕ Z, and hence 2(A⊕ (I −A)⊕ Z) ∈ Σ2S(T ). Fix B ∈ B(H)

and let A = (B ⊕ (I −B)⊕ Z ⊕ (I − Z))(∞). Then

A⊕ (I −A)⊕ Z ' A ' B ⊕A ' B ⊕ (I −A).

Adding the last two expressions, we find that 4(B ⊕ I) ∈ Σ4S(T ).
Moreover, setting f(A) = (I − A) ⊕ Z, we see that 2(A ⊕ f(A)) ∈ Σ2S(T )

for all A ∈ B(H). Given X =

[
X11 X12 0
X21 X22 X23

0 X32 X33

]
arbitrary, it follows that

X = 2




1
2 (X11 − 4) 1

2X12 0
1
2X21

1
2X22 0

0 0 Y


 + 4




1 0 0
0 0 1

4X23

0 1
4X32

1
4 (X33 − 2Y )




lies in Σ6S(T ), where Y = f

([
1
2 (X11 − 4) 1

2X12
1
2X21

1
2X22

])
. Thus σT 6 6.

We have already pointed out that lower bounds for these estimates are not
easy to obtain. The following is an exception.
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2.17. Proposition. Let T ∈ B(H). Not every operator can be expressed as
a sum of two operators similar to T , and so σT > 3.

Proof. Suppose otherwise, i.e. suppose σT = 2. Then for all λ ∈ C, there
exists T1, T2 ∈ S(T ) so that T1 +T2 = λI, and thus T1 = λI−T2. But the spectra
σ(T1) and σ(T2) of T1 and T2 coincide with σ(T ), whence σ(T ) = λ−σ(T ) by the
Spectral Mapping Theorem for every λ ∈ C. This is evidently absurd.

3. APPROXIMATION RESULTS

Suppose T 6∈ T . The main result of this section is that if T is not polynomially
compact, then µT = 2, and if T is polynomially compact, then µT 6 3. Further-
more, we show that if T is quadratically compact, i.e. there is a polynomial p of
degree 2 so that p(T ) is compact, then µT = 3. So 3 is in fact a sharp estimate in
these cases.

3.1. Following [18], we shall write A−→
sim

B to indicate that B ∈ S(A). This is

a transitive relation, so that if A−→
sim

B and B−→
sim

C, then A−→
sim

C, but it is not
symmetric.

Suppose that R is a universal quasinilpotent in the sense of [18], i.e. σ(R) =
{0} and π(Rk) 6= 0 for any k > 1. It was shown independently by Apostol ([2])
and Herrero ([17]) that the closure of the similarity orbit of R contains every other
quasinilpotent operator (hence the terminology “universal”). More precisely, the
closure of the similarity orbit of R coincides with the set of all biquasitriangular
operators whose spectrum and essential spectrum are connected and contain the
origin (c.f. [18]), where an operator T ∈ B(H) is biquasitriangular if both T and
T ∗ have compact perturbations which are (upper) triangularizable with respect
to some (potentially different) orthonormal bases ordered like N. It is a deep
result of Apostol, Foiaş and Voiculescu ([4]) that biquasitriangular operators are
characterized by the index conditions nul(T − λI) − nul(T − λI)∗ = 0 whenever
π(T − λI) is either right or left invertible in the Calkin algebra.

3.2. Remarks. We gather a number of facts which will be useful below.
(i) The following result is a special case of the Rosenblum-Davis-Rosenthal

Corollary and can be found in [18], Corollary 3.22. The proof depends upon the
invertibility of Rosenblum operators τZii,Zjj when the spectra of Zii and Zjj are
disjoint.

If Z =




Z11 · · · · · · Z1n

0 Z22 · · · Z2n
...

. . . . . .
...

0 0. · · · 0 Znn


, and if σ(Zii) ∩ σ(Zjj) = ∅ if i 6= j, then Z

is similar to
n⊕

k=1

Zkk.

(ii) The Apostol-Morrel simple models ([5]; see also [18], Chapter 6.1) are
bounded operators similar to a finite direct sum of essentially normal operators
(i.e. π(Mk) is normal in the Calkin algebra) with pairwise disjoint spectra. It was
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shown in [5] that every operator in B(H) can be approximated in norm by simple
models.

Note that if Mk is essentially normal and β ∈ σe(Mk), then Mk 'a Mk ⊕ βI

([7]). From this it follows that the similarity orbit S(M) is dense in B(H) if M
contains all operators of the form A⊕ λI where A is taken from any norm dense
subset of B(H) and λ is restricted so that λ 6∈ σ(A) or 0 < |λ| 6 ‖A‖. We will
use these two variants. Thus to show that a similarity invariant set of operators
is dense in B(H), it suffices to show that it contains one of these sets of operators.

(iii) Let X ∈ B(H), and suppose that ρ is a faithful representation of
C∗(π(X)). From Voiculescu’s non-commutative Weyl-von Neumann Theorem
([29]), we know that X 'a X ⊕ (ρ(π(X)))(∞). As a simple consequence of this re-
sult, if X is any operator and n > 1 is a positive integer, then X is approximately
unitarily equivalent to an operator of the form X1 ⊕X2 ⊕ · · · ⊕Xn.

(iv) Suppose that L1 and L2 are nilpotents of order two, that both have 0 as
an infinite dimensional direct summand, and that neither L1 nor L2 is compact.
By Proposition 8.5 of [18] (see also Section 8.4 of the same reference), L1−→

sim
L2

and L2−→
sim

L1, or in other words, S(L1) = S(L2). (Herrero attributes this result

to C. Apostol and D. Voiculescu in an unpublished manuscript.) Indeed, any non-

compact nilpotent of order 2 contains the operator W =
[

0 I
0 0

]
⊕0 in the closure

of its similarity orbit.

3.3. Lemma. Suppose that A ' B ⊕ C, where C ' C(∞). To show that
σA 6 3, it suffices to show that S(B) + S(C) + S(C) is dense in B(H).

Proof. Suppose that we can do this. Then for any Y ∈ B(H), it follows from
3.2 (iii) that Y 'a Y ⊕ Z ⊕ Z for some Z ∈ B(H). Then

A ' A1 := B ⊕ C ⊕ C ' A2 := C ⊕B ⊕ C ' A3 := C ⊕ C ⊕B.

Find invertible operators Rk and Sk for k = 1, 2, 3 so that

‖(R−1
1 BR1 + R−1

2 CR2 + R−1
3 CR3)− Y ‖ < ε,

and

‖(S−1
1 BS1 + S−1

2 CS2 + S−1
3 CS3)− Z‖ < ε.

It easily follows that with G1 = R1 ⊕ S2 ⊕ S2, G2 = R2 ⊕ S1 ⊕ S3 and G3 =
R3 ⊕ S3 ⊕ S1 we have

‖(G−1
1 A1G1 + G−1

2 A2G2 + G−1
3 A3G3)− (Y ⊕ Z ⊕ Z)‖ < ε,

and hence Y ∈ Σ3S(A); and thus σA 6 3.
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3.4. Lemma.
(i) If T 'a T1 ⊕ T2 ⊕ · · · ⊕ Tm, then σT 6 max{σTi : 1 6 i 6 m}.
(ii) If T 'a T1 ⊕ T2 ⊕ · · · ⊕ Tm, then σT 6 2min{σTi : 1 6 i 6 m}.
(iii) σsT+tI = σT for all scalars s, t ∈ C with s 6= 0.
(iv) If A ∈ S(T ), then σT 6 σA.

Proof. Since T and T1⊕T2⊕· · ·⊕Tm have the same closed unitary orbit, we
may assume that T actually equals this direct sum for the purpose of computing
σT . Let max{σTi

: 1 6 i 6 m} = r. By 3.2 (iii) above, given X in B(H), we can
find Xk ∈ B(H) for 1 6 k 6 m so that X 'a X1⊕· · ·⊕Xm. Let ε > 0 and choose

Sj(k) invertible in B(H) for 1 6 j 6 r so that
∥∥∥

r∑
j=1

Sj(k)−1TkSj(k) − Xk

∥∥∥ < ε.

Then ∥∥∥
r∑

j=1

( m⊕

k=1

Sj(k)
)−1

T
( m⊕

k=1

Sj(k)
)
−

m⊕

k=1

Xk

∥∥∥ < ε,

which is clearly sufficient.
For part (ii), we may collapse all but one summand into a single term, so

that T 'a T1 ⊕ T2. We may suppose that r = σT1 takes the minimum value of
the σTi . Again write an arbitrary operator as X 'a X1 ⊕X2. Choose invertible
operators Rj and Sj for 1 6 j 6 r so that

∥∥∥(X1 − rT2)−
r∑

j=1

R−1
j T1Rj

∥∥∥ < ε,
∥∥∥(X2 − rT2)−

r∑

j=1

S−1
j T1Sj

∥∥∥ < ε.

Then
r∑

j=1

[
Rj 0
0 I

]−1 [
T1 0
0 T2

] [
Rj 0
0 I

]
+

[
0 I
Sj 0

]−1 [
T1 0
0 T2

] [
0 I
Sj 0

]

approximates X1 ⊕X2 to within ε.
(iii) Suppose that ΣrS(T ) is dense in B(H), and consider sT + tI for s 6= 0.

Given X ∈ B(H), set Y = s−1(X − rtI). Choose Rk invertible for 1 6 k 6 r so

that
∥∥∥

r∑
k=1

R−1
k TRk − Y

∥∥∥ < |s|−1ε. Then

∥∥∥
r∑

k=1

R−1
k (sT + tI)Rk −X

∥∥∥ = |s|
∥∥∥

r∑

k=1

R−1
k TRk − Y

∥∥∥ < ε.

Clearly this process is reversible, so σsT+tI = σT .
(iv) is straightforward.

3.5. Theorem. Suppose T1, T2 ∈ B(H) are not polynomially compact. Then
S(T1) + S(T2) is dense in B(H). In particular, σT1 = 2.

Proof. Since Tk is not polynomially compact, it follows from [3], Theorem 9.1
that Tk −→

sim
rD, where r = ‖T1‖+‖T2‖ and D is a normal operator whose spectrum

is equal to the closed unit disk D = {z ∈ C : |z| 6 1}. Given X ∈ B(H), index
considerations show that X ⊕ (r + ‖X‖)D is biquasitriangular and has spectrum
containing rD. From the Similarity Orbit Theorem ([3], Theorem 9.1), we then
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find that rD−→
sim

X ⊕ (r + ‖X‖)D, and likewise rD−→
sim

0⊕ (
αI − (r + ‖X‖)D)

if

|α| 6 ‖X‖.
Thus X ⊕ αI ∈ Σ2S(rD) ⊆ S(T1) + S(T2). By 3.2 (ii), S(T1) + S(T2) is

dense in B(H). Take T2 = T1 to obtain σT1 = 2.

3.6. Lemma. Suppose that P is a projection of infinite rank and nullity. Let
C ∈ B(H) with 1 6∈ σ(C). Then Σ3S(P ⊕ C) is dense in B(H), i.e. σP⊕C 6 3.
This includes the case when C is non-existent.

Proof. Observe that P ' P (∞) and so P ⊕ C ' P (∞) ⊕ (P ⊕ C ⊕ 0). Let
D ' C ⊕ 0. We will apply Lemma 3.3 to P ⊕ (P ⊕D). That is, it suffices to show
that S(P )+S(P )+S(P ⊕D) is dense in B(H). Moreover, using 3.2 (ii), it suffices
to approximate operators Y of the form A ⊕ λI where A comes from a dense set
of operators and λ 6∈ σ(A).

We may assume that A + (λ− 3)I −D is not scalar plus compact, for if it is
not, we merely add a small perturbation to A to make it so. By the Brown-Pearcy
Theorem ([8]), we can find W,X ∈ B(H) so that

A + (λ− 3)I −D = [W,X] := WX −XW.

Let V = A−WX −D. Then

Z1 :=
[

WX W
X −XWX I −XW

]
and Z2 :=

[
V V

I − V I − V

]

are idempotents of infinite rank and nullity, and hence are similar to P .
Since σ(D) ∩ {1} =

(
σ(C) ∪ {0}) ∩ {1} = ∅, it follows from 3.2 (i) that

Z3 :=
[

D −W − V
0 I

]
∼ D ⊕ I ' D ⊕ P.

We now compute

Z1 + Z2 + Z3

=
[

WX W
X −XWX I −XW

]
+

[
V V

I − V I − V

]
+

[
D −W − V
0 I

]

=
[

A 0
X −XWX + I − V λI

]
∼ A⊕ λI,

where the similarity follows from Rosenblum’s Theorem. By Lemma 3.3, this is
sufficient.

3.7. Corollary. Let N be a normal operator which is not scalar plus
compact. Then Σ3S(N) is dense in B(H), i.e. σN 6 3.

Proof. First suppose that σe(N) contains {0, 1}. Then by the Weyl-von
Neumann-Berg-Sikonia Theorem ([6]), it follows that N 'a P⊕N where P = 0⊕I
is a projection of infinite rank and nullity.

Split N ' N1 ⊕N2 so that N1 − I and N2 are invertible. Then

P ⊕N ' (P ⊕N1)⊕
(
(I − P )⊕N2

)
.
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By Lemma 3.6, σP⊕N1 6 3. Likewise, σP⊕(I−N2) 6 3. Then by Lemma 3.4(iii),
the same holds for I − (

P ⊕ (I −N2)
)

= (I − P )⊕N2. Finally, by Lemma 3.4(i),
it follows that

σN = σP⊕N 6 max{σP⊕N1 , σP⊕(I−N2)} 6 3.

To finish, note that σe(N) contains at least two points. Thus for some
scalars s, t ∈ C with s 6= 0, σe(sN + tI) contains {0, 1}. By Lemma 3.4(iii),
σN = σsN+tI 6 3.

3.8. Lemma. Let W =
[

0 I
0 0

]
⊕ 0 and A ∈ B(H) be arbitrary. Then

Σ3S(W ⊕A) is dense in B(H), so that σW⊕A 6 3.

Proof. Since W ' W (∞), by considering Lemma 3.3, it suffices to show that
S(W ) + S(W ) + S(W ⊕A) is dense in B(H).

Let 0 6= λ ∈ C, and suppose that R is a universal quasinilpotent. Denote
by Rλ the operator R − λI. Let 0 < ε < 1. Since the spectral radius of R is 0,
Rota’s Theorem ([26]) (alternatively, Corollary 3.35 of [18]) implies that we can
find an invertible operator B so that ‖B−1RλB + λI‖ < ε. For any α > 0, we
always replace B by αB and B−1 by α−1B−1, so that we can assume a priori that
‖B‖ < ε/‖Rλ‖ at a cost of having ‖B−1‖ very large.

Let N =
[

Rλ RλB
−B−1Rλ −B−1RλB

]
⊕ 0. Now both N and W are nilpotents

of order two, both have 0 as an infinite dimensional direct summand, and neither
N nor W is compact. By 3.4 (iv), W −→

sim
N and N −→

sim
W . Then

A⊕N '




A 0
∣∣∣ 0

0 Rλ

∣∣∣ Rλ

0 −B−1Rλ

∣∣∣ −B−1RλB


⊕ 0 '

[
X Y 0
Z −B−1RλB 0
0 0 0

]
=: M,

where X =
[

A 0
0 Rλ

]
, Y =

[
0

Rλ

]
and Z = [ 0 −B−1Rλ ].

Let Si denote contractive invertible operators to be chosen later, and define
two nilpotents of order two similar to N and W respectively by

N1 = (S1 ⊕ I ⊕ I)N(S−1
1 ⊕ I ⊕ I) =




S1RλS−1
1 S1RλB 0

−B−1RλS−1
1 −B−1RλB 0

0 0 0


 ;

and with V = −ZS−1
2 S1R

−1
λ B, let

N2 =

[
S1R

−1
λ B 0 0
0 I 0
0 V I

] [
0 0 0
I 0 0
0 0 0

] [
B−1RλS−1

1 0 0
0 I 0
0 −V I

]

=




0 0 0
B−1RλS−1

1 0 0
−ZS−1

2 0 0


 .
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Finally, define an operator similar to N ⊕A by

(S2 ⊕ I ⊕ I)M(S−1
2 ⊕ I ⊕ I) =




S2XS−1
2 S2Y B 0

ZS−1
2 −B−1RλB 0

0 0 0




'

 S2XS−1

2 0 S2Y B
0 0 0

ZS−1
2 0 −B−1RλB


 =: N3.

Therefore N1, N2 ∈ S(W ) and N2 ∈ S(W ⊕A). Compute
N1 + N2 + N3

=




S1RλS−1
1 + S2XS−1

2 S1RλB S2Y B
0 −B−1RλB 0
0 0 −B−1RλB




=

[
S1RλS−1

1 + S2XS−1
2 0 0

0 λI 0
0 0 λI

]
−

[ 0 −S1RλB −S2Y B
0 B−1RλB + λI 0
0 0 B−1RλB + λI

]
.

Consequently,∥∥(N1 + N2 + N3)−
(
(S1RλS−1

1 + S2XS2)⊕ λI ⊕ λI
)∥∥ < 2ε.

As neither Rλ nor X = A ⊕ Rλ is polynomially compact, S(Rλ) + S(A ⊕ Rλ) is
dense in B(H) by Theorem 3.5. From this we see that

S(W ) + S(W ) + S(A⊕W ) 3 T ⊕ λI

for any T ∈ B(H) and λ 6= 0. By 3.2 (ii), it follows that

S(W ) + S(W ) + S(A⊕W ) = B(H),
which concludes the proof.

3.9. Lemma. If A is a non-compact operator such that Ar is compact for

some r > 2, then A−→
sim

A⊕W where W =
[

0 I
0 0

]
⊕ 0.

Proof. Let ρ denote a faithful ∗-representation of C∗(π(A)). Then Q =
ρ(π(A))(∞) is a non-compact nilpotent operator. By Voiculescu’s non-comm-
utative Weyl–von Neumann Theorem ([29]), A 'a A ⊕ Q. Thus it suffices to
show that Q−→

sim
W . Define H1 = kerQ, H2 = kerQ2ªkerQ and H3 = (kerQ2)⊥.

With respect to the decomposition H = H1 ⊕H2 ⊕H3, we can write

Q =

[
0 Q12 Q13

0 0 Q23

0 0 Q33

]
.

Clearly Q12 is injective, and Q33 is nilpotent. Since Q has infinite multiplicity,
Q12 ' Q

(∞)
12 is not compact.

Choose Sm so that ‖S−1
m Q33Sm‖ < 1/m and ‖Sm‖ < 1/m. Then

lim
m→∞

(I ⊕ I ⊕ Sm)−1Q(I ⊕ I ⊕ Sm) =
[

0 Q12

0 0

]
⊕ 0.

We can now appeal to 3.2 (iv) to conclude that Q−→
sim

W .
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3.10. Theorem. Suppose that T is not of the form scalar plus compact.
(i) If T is not polynomially compact, then Σ2CS(T ) is dense in B(H), that

is µT = 2.
(ii) If T is polynomially compact, then Σ3CS(T ) is dense in B(H), that is

µT 6 3.

Proof. Part (i) was proven in Theorem 3.5.
For part (ii), suppose that T is polynomially compact. Since π(T ) is alge-

braic, σe(T ) is finite, say of cardinality n. We separate the argument into two
cases.

If n = 1, then σe(T ) = {λ} and so T − λI is essentially nilpotent but is not
compact. By Lemma 3.9, T −→

sim
T ⊕ (λI + W ). It follows by Lemma 3.4(iii) and

(iv) and Lemma 3.8 that

σT 6 σ(λI+W )⊕T = σW⊕(T−λI) 6 3.

If n > 2, apply Proposition 5.13 of [18] to observe that there is a normal
operator N in S(T ) with σe(N) = σe(T ). So by Lemma 3.4(iv) and Corollary 3.7,
σT 6 σN 6 3.

In general, the estimate of 3 for µT obtained in part (ii) of the above theorem
cannot be improved, as the following theorem and its corollary demonstrate.

3.11. Theorem. Let q(x) = (x − α)(x − β) be a quadratic polynomial.
Suppose that Ti are operators which are not scalar plus compact such that q(Ti) is
compact, i = 1, 2. Then

‖T1 + T2 − λI‖ > |α + β − λ|
2

.

Therefore σT1 = 3.

Proof. By Olsen’s Theorem ([22]), there is a compact operator Ki so that

Ti − Ki '
[

αI Ri

0 βI

]
. Hence it is a simple calculation to show that We(Ti) is

an ellipse with foci α and β that depends only on ‖Ri‖. Let ri be the length of
the major axis length of We(Ti), and let δ = |α − β|/2. Then the minor axis is
r′i = (r2

i − δ2)1/2. Without loss of generality, r1 > r2, and thus r′1 > r′2. It follows
We(T2) is contained in We(T1).

Let ε = |α + β − λ|/2, and suppose that ‖T1 + T2 − λI‖ < ε. Then T1 =
λI − T2 + X where ‖X‖ < ε. It follows that

dH

(
We(T1), We(λI − T2)

)
6 ‖X‖ < ε

where dH is the Hausdorff distance between compact sets. We claim that the
Hausdorff distance between these two ellipses is at least ε, which will yield a
contradiction.

Note that We(λI −T2) = λ−We(T2) = µ + We(T2), where µ = (λ−α−β)/2,
is the ellipse with foci λ− α and λ− β, centre y = λ− x = x + µ, and major axis
r2. The supremum over the larger ellipse We(T1) of the distance to the smaller
one is at least as great as dH

(
We(T1), µ + We(T1)

)
= |µ| = ε. To see that this

latter distance is exactly ε, note that there is a certain point on the boundary of
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the first ellipse at which the tangent line is orthogonal to µ and the distance to
the translated ellipse is exactly ε.

By Theorem 3.10, σT 6 3. However the argument above, using T2 similar to
T1, shows that Σ2S(T1) contains only one scalar and thus σT1 > 3.

3.12. Corollary. Suppose that T ∈ B(H) is not of the form scalar plus
compact. If T 2 is compact, then:

(i) Σ2CS(T ) 6= B(H), and hence µT = 3.
(ii) Σ4CS(T ) 6= B(H), and hence 5 6 µT 6 6.

Proof. (i) The point here is that the set of essential nilpotents of order two
is invariant under scalar multiplication as well as similarity. Thus µT = σT = 3
by the previous theorem.

(ii) Any multiple of T is also an essential nilpotent of order 2. Suppose that
I is the sum of four essential nilpotents of order two. Then in the Calkin algebra,
the identity is the sum of four nilpotents of order two, and by taking a separable
∗-representation of the C∗-algebra that they generate, one obtains the identity as
the sum of four nilpotents of order two. However, Wang and Wu ([30]) show that
the sum of four nilpotents of order 2 is always a commutator; and the identity is
not. So µT > 5. On the other hand, by Theorem 2.8, µT 6 6.

3.13. Example. Let T be a universal contraction

T :=
∞⊕

n=1

∞⊕

k=1

(Tn,k ⊕−Tn,k)(∞)

where {Tn,k}∞k=1 is a dense subset of the unit ball of Mn(C) for all n > 1. We
take advantage of this opportunity to correct an error which occurred in the proof
of the lower bound of 3 for βT for this operator which appeared in Example 4.7
of [20]. In that paper, the second author correctly showed that I 6∈ Σ2CU(T ), but
then misstated the conclusion that βT > 3. Although the proof was incorrect, the
result is nevertheless true. This can be seen as follows:

Suppose ‖I−λ1T1−λ2T2‖ < 1 for some λ1, λ2 ∈ C and T1, T2 ∈ U(T ). Since
Tk 'a eiθTk for all θ ∈ R, there is no loss of generality in assuming that each
λk > 0, k = 1, 2, and that λ2 6 λ1. Moreover, by replacing Tk by approximately
unitarily equivalent copies of themselves, we may also assume that 1 and −1 are
eigenvalues of Tk for k = 1, 2. Choose x ∈ H so that ‖x‖ = 1 and T1x = −x.
Then from ‖(1 + λ1)x − λ2T2x‖ < 1, and the fact that ‖T2‖ = 1, we conclude
that λ2 < λ1, a contradiction. Thus the operator I cannot be approximated by
elements of Σ2CU(T ), and so βT > 3. As was shown there, βT 6 3, and hence
βT = 3.

On the other hand, by Theorem 3.10 , µT = 2.
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