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SET THEORY AND CYCLIC VECTORS
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Abstract. Let H be a separable, infinite dimensional Hilbert space and let
S be a countable subset of H. Then most positive operators on H have the
property that every nonzero vector in the span of S is cyclic, in the sense
that the set of operators in the positive part of the unit ball of B(H) with
this property is comeager for the strong operator topology.

Suppose κ is a regular cardinal such that κ > ω1 and 2<κ = κ. Then
it is relatively consistent with ZFC that 2ω = κ and for any subset S ⊂ H of
cardinality less than κ the set of positive operators in the unit ball of B(H)
for which every nonzero vector in the span of S is cyclic is comeager for the
strong operator topology.
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1. INTRODUCTION

Let H be a separable, infinite dimensional Hilbert space and let B(H) be the set
of bounded linear operators A : H → H. A closed subspace E of H is invariant
for such an operator A if A(E) ⊂ E. The invariant subspace problem (ISP) for
Hilbert spaces asks whether there exists an operator A ∈ B(H) whose only closed
invariant subspaces are {0} and H.

It was shown by Enflo ([2]) that there exists a bounded operator on a Banach
space that has no proper closed invariant subspaces. Read ([7]) showed that the
Banach space could be taken to be l1 = l1(N). A simplified version of Read’s
example is given in [1]. The ISP remains open for Hilbert spaces; it is also unknown
whether there exists a separable, infinite dimensional Banach space on which every
bounded operator has a proper closed invariant subspace.

This note was motivated by the observation that the ISP for Hilbert spaces
can be rephrased as a question about the existence of a generic filter on a certain
poset. (This material is not needed for Section 2.) The construction is this. Let
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P be the poset consisting of all partially defined operators A on the Hilbert space
l2 = l2(N) with the properties

(a) dom(A) is a finite dimensional subspace of l2;
(b) if E is a subspace of dom(A) and A(E) ⊂ E then E = {0}; and
(c) ‖A‖ < 1.

Order P by reverse inclusion. For any unit vectors v, w ∈ l2 define

Dv,w = {A ∈ P : there exists n such that An(v) is defined and 〈Anv, w〉 6= 0}.
It is not too hard to see that every Dv,w is dense in P , and a filter of P which inter-
sects every Dv,w defines a bounded operator with no proper invariant subspaces.
Conversely, if there is such an operator it can be scaled to have norm < 1, and
then its finite dimensional restrictions define a filter of P which intersects every
Dv,w. Thus, the ISP for Hilbert space can be cast in set-theoretic terms: it is
equivalent to the existence of a D-generic filter on P , where D = {Dv,w : v, w ∈ l2

and ‖v‖ = ‖w‖ = 1}.
The poset P is not ccc, but this is not essential; for example, it can be

replaced by the countable poset of all finite matrices with rational entries, ordered
by a reasonable notion of approximate inclusion. Thus, one can apply Martin’s
axiom (see, e.g., [6]) to obtain the consistency of an operator which meets “many”
of the sets Dv,w. This raises the possibility that the ISP for Hilbert space may
be independent of ZFC. However, the assertion that A ∈ B(l2) has no invariant
subspaces is Σ1 (it can be reformulated as “for all unit vectors v, w ∈ l2 there exists
n such that 〈Anv, w〉 6= 0”) and hence absolute, so if the ISP is independent, this
cannot be shown using a straightforward forcing argument.

2. A RELATIVE CONSISTENCY RESULT

As we indicated above, although Martin’s axiom alone will not suffice to
prove the consistency of an operator with no proper closed invariant subspaces
(unless this can already be proven in ZFC), it does allow one to prove partial
results in this direction. In this section we present perhaps the strongest natural
result along these lines. It was in fact originally proven directly from Martin’s
axiom, but here we give a better proof based on a suggestion of Kenneth Kunen.

It is easy to see that the operator A ∈ B(H) has no proper closed invariant
subspaces if and only if every nonzero vector is cyclic, i.e., for every nonzero v ∈ H
the span of the sequence (Anv) is dense in H. Thus, the more cyclic vectors A
has, the “closer” it gets to being a counterexample to the ISP.

If X is a Banach space then we let [X]1 denote its closed unit ball. The
strong operator topology on B(H) is generated by the basic open sets

OB,E,ε = {A ∈ B(H) : ‖A|E −B‖ < ε}
taken over ε > 0, E a finite dimensional subspace of H, and B : E → H a linear
map. If H is separable then this topology is second countable and its restriction
to [B(H)]1 is metrizable by d(A,A′) =

∑
2−n‖(A − A′)(vn)‖, where (vn) is a

countable dense subset of [H]1. Moreover, this metric is complete, so [B(H)]1
with the relative strong operator topology is a Polish space.



Set theory and cyclic vectors 135

Let [B(H)]+1 denote the set of positive operators A ∈ [B(H)]1, i.e., those
self-adjoint operators which satisfy 0 6 〈Av, v〉 6 1 for all v ∈ [H]1. (In the case
of complex scalars, self-adjointness follows from the second condition.) If H is
separable then [B(H)]+1 is a Polish space via the same metric which shows that
[B(H)]1 is Polish.

Lemma. Let H be a separable, infinite dimensional Hilbert space and let
E be a finite dimensional subspace of H. Then the set of operators in [B(H)]+1
for which every nonzero vector in E is cyclic is comeager for the relative strong
operator topology.

Proof. Let (xn) be an orthonormal basis of H. For m ∈ N and δ > 0 let
Um,δ be the set of operators A ∈ [B(H)]+1 such that

d(xm, span{Akv : k ∈ N}) < δ

for every nonzero v ∈ E. We will show that Um,δ is open and dense in [B(H)]+1
for every m and δ. Intersecting the sets Um,δ over all m and all δ of the form
δ = 1/n yields the set of A ∈ [B(H)]+1 for which span{Akv : k ∈ N} = H for every
nonzero v ∈ E; so we will have shown that this set is a countable intersection of
open, dense sets, as desired.

Fix m and δ for the remainder of the proof. We first show that Um,δ is open.
Let A ∈ Um,δ and for each unit vector v ∈ E let f(v) be the smallest integer such
that

d(xm, span{Akv : 0 6 k 6 f(v)}) < δ.

Then the function f is upper semicontinuous on the unit sphere of E (which is
compact), so f is bounded. Let N be an upper bound for f and let F = span{Akv :
v ∈ E, 0 6 k 6 N} and

δ′ = sup{d(xm, span{Akv : 0 6 k 6 N}) : v ∈ E, ‖v‖ = 1}.
Since E is finite dimensional, so is F . Also, by compactness of the unit

sphere δ′ < δ. Now for ε > 0 let Uε be the set of operators B ∈ [B(H)]+1 which
satisfy ‖(B −A)w‖ < ε for all w ∈ [F ]1. This set is strong operator open for each
positive ε. For each unit vector v ∈ E let g(v) be the supremum of the set of ε > 0
such that B ∈ Uε implies

d(xm, span{Bkv : 0 6 k 6 N}) 6 1
2
(δ′ + δ) < δ.

Then every vector in the unit sphere of F has a neighborhood in which g is
bounded away from 0, so g must be bounded below by some positive ε, and we
have A ∈ Uε ⊂ Um,δ for this ε. Thus Um,δ is strong operator open.

Now we must show that Um,δ is strong operator dense in [B(H)]+1 . Fix
A ∈ [B(H)]+1 , a finite dimensional subspace F of H which contains E and xm,
and ε > 0. We will find an operator B ∈ Um,δ such that ‖(B − A)w‖ < ε for all
w ∈ [F ]1. Let F ′ = span(F + A(F )), let n = dim(F ′), let PF ′ be the orthogonal
projection of H onto F ′, and let A′ = PF ′APF ′ . Note that A′v = Av for all v ∈ F .
Next, choose an integer r > 4n/δ2 and let X be a subspace of H of dimension
nr which contains F ′. We can identify X with the tensor product space Kn ⊗Kr
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(where K is the scalar field, K = R or K = C) in such a way that F ′ is identified
with Kn ⊗ {(r−1/2, . . . , r−1/2)}.

Since A is positive and ‖A‖ 6 1, the same is true of A′. Thus F ′ is spanned
by eigenvectors of A′, each of which belongs to an eigenvalue between 0 and 1,
inclusive. Let v′1, . . . , v

′
n be an orthonormal set of eigenvectors belonging to the

eigenvalues λ1, . . . , λn. (The λi need not be distinct.) According to the above
identification we have v′i = vi⊗ (r−1/2, . . . , r−1/2) for some orthonormal basis {vi}
of Kn.

Let {wj : 1 6 j 6 r} be the standard orthonormal basis of Kr. Then
the vectors vi ⊗ wj constitute an orthonormal basis of X ∼= Kn ⊗ Kr. Define
B′ ∈ B(X) by setting B′(vi⊗wj) = λivi⊗wj . Then B′ is positive, ‖B′‖ 6 1, and
B′|F = A′|F = A|F .

To complete the proof, we will show that there exists B ∈ [B(X)]+1 such that
‖B − B′‖ < ε and BPX ∈ Um,δ. We will define B by choosing an orthonormal
basis {eij} of X and corresponding values 0 6 σij 6 1 and setting Beij = σijeij .
If each eij is sufficiently close to vi⊗wj and each σij is sufficiently close to λi then
we will have ‖B − B′‖ < ε. Thus, we must show that there exist {eij} and {σij}
arbitrarily close to {vi ⊗ wj} and {λi} which achieve BPX ∈ Um,δ.

First, we claim that there exist orthonormal bases {eij} arbitrarily close
to the basis {vi ⊗ wj} with the property that every n-element subset of the set
{PF ′(eij)} is linearly independent. That is, any n vectors in the basis orthog-
onally project to independent vectors in F ′. This is true because, for any n
indices i1j1, . . . , injn the family of bases {eij} for which the vectors PF ′(ei1j1), . . .,
PF ′(einjn) are dependent is a variety of codimension 1 in the manifold of all or-
thonormal bases. Thus, the family of bases for which some n elements project
onto a dependent set is a union of

(
rn
n

)
meager sets, and hence meager. So, we

can perturb the basis {vi ⊗ wj} by an arbitrarily small amount and achieve this
condition.

Now, having chosen {eij} so as to satisfy the previous claim, we conclude by
showing that any choice of distinct values σij such that each difference |σij − λi|
is sufficiently small will ensure BPX ∈ Um,δ. To see this, observe first that for any
nonzero v ∈ F ′ at most n−1 of the inner products 〈v, eij〉 are zero. Otherwise, n of
the vectors eij would be orthogonal to v, and hence n of the vectors PF ′(eij) would
be orthogonal to v, which would imply linear dependence since dim(F ′) = n. This
contradicts the previous claim. Now for each nonzero v ∈ F ′ let

Fv = span{eij : 〈v, eij〉 6= 0}.
Distinctness of the σij implies that the vectors Bkv are linearly independent for
0 6 k < dim(Fv); since Fv clearly contains span{Bkv : k ∈ N} (it contains v and
is invariant for B) this shows that the two are equal. Thus, we must show that
d(xm, Fv) < δ. But xm ∈ F ′, so |〈xm, vi ⊗ wj〉| 6 r−1/2 for every i and j. We
may therefore assume that |〈xm, eij〉| 6 2r−1/2 < δ/

√
n for every i and j. Thus,

if x′m = xm − PFv (xm) then

‖x′m‖2 =
∑

eij 6∈Fv

|〈xm, eij〉|2 < n · (δ2/n) = δ2,

i.e., ‖x′m‖ < δ, since Fv contains all but at most n − 1 of the vectors eij . This
shows that d(xm, Fv) < δ, as desired.
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Since a countable intersection of comeager sets is comeager, the lemma im-
mediately implies the following result.

Theorem 1. Let H be a separable, infinite dimensional Hilbert space and
let S be a countable subset of H. Then the set of operators in [B(H)]+1 for which
every nonzero vector in the span of S is cyclic is comeager in [B(H)]+1 .

Theorem 2. Let H be a separable, infinite dimensional Hilbert space and
let κ be a regular cardinal such that κ > ω1 and 2<κ = κ. Then it is relatively
consistent with ZFC that 2ω = κ and for any subset S ⊂ H of cardinality < κ
the set of operators in [B(H)]+1 for which every nonzero vector in the span of S is
cyclic is comeager in [B(H)]+1 .

Proof. It is relatively consistent with ZFC + MA that 2ω = κ ([6], Theo-
rem 6.3). Let S ⊂ H be a subset of cardinality < κ. Then the span of S is a union
of fewer than κ finite dimensional subspaces of H, and the lemma implies that
for each such subspace E the set of operators in [B(H)]+1 for which every nonzero
vector in E is cyclic is comeager. The proof is completed by observing that MA
implies that the intersection of fewer than 2ω comeager sets in a Polish space is
comeager ([3], Corollary 22C).

Theorem 1 is related to the main theorem of [5]. That result implies, for
instance, that for any countable linearly independent subset S of a separable,
infinite dimensional Hilbert space H there exists A ∈ B(H) for which every v ∈ S
is cyclic.

Sophie Grivaux has pointed out to me that in Theorem 1 one can explicitly
construct a single operator for which every nonzero vector in the span of S is
cyclic. Namely, first find an orthonormal basis of H whose span contains S (this
can be accomplished by applying the Gramm-Schmidt algorithm to S); then one
can show directly that the operator V +V ∗, where V is the unilateral shift for the
new basis, has the desired property. Moreover, using this technique one can give
a fairly simple proof that the set of operators in B(H) for which every nonzero
vector in the span of S is cyclic is comeager in B(H). (Related results appear
in [4].) However, density in [B(H)]+1 seems to be a more difficult result, and this
is needed in Theorem 2 because [B(H)]+1 with the strong operator topology is a
Polish space, while B(H) is not.
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