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Abstract. We prove that the C∗-algebra of a directed graph E is liminal if
and only if the graph satisfies the finiteness condition: if p is an infinite path
or a path ending with a sink or an infinite emitter, and if v is any vertex, then
there are only finitely many paths starting with v and ending with a vertex
in p. Moreover, C∗(E) is type I precisely when the circuits of E are either
terminal or transitory, i.e., E has no vertex which is on multiple circuits,
and E satisfies the weaker condition: for any infinite path λ, there are only
finitely many vertices of λ that get back to λ in an infinite number of ways.
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1. INTRODUCTION

A directed graph E = (E0, E1, o, t) consists of countable sets E0 of vertices and E1

of edges, and maps o, t : E1 → E0 identifying the origin (source) and the terminus
(range) of each edge. The graph is row-finite if each vertex emits at most finitely
many edges. A vertex is a sink if it is not an origin of any edge. A vertex v is
called singular if it is either a sink or emits infinitely many edges. A path is a
sequence of edges e1e2 · · · en with t(ei) = o(ei+1) for each i = 1, 2, . . . , n − 1. An
infinite path is a sequence e1e2 · · · of edges with t(ei) = o(ei+1) for each i.

For a finite path p = e1e2 · · · en, we define o(p) := o(e1) and t(p) := t(en).
For an infinite path p = e1e2 · · ·, we define o(p) := o(e1). We regard vertices as
paths of length zero, and hence if v ∈ E0, o(v) = v = t(v). Define:

E∗ =
∞⋃

n=0
En, where En := {p : p is a path of length n};

E∗∗ := E∗ ∪ E∞, where E∞ is the set of infinite paths.
A Cuntz-Krieger E-family consists of mutually orthogonal projections {pv :

v ∈ E0} and partial isometries {se : e ∈ E1} satisfying:
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(1) pt(e) = s∗ese ∀e ∈ E1;
(2)

∑
e∈F

ses
∗
e 6 pv ∀v ∈ E0 and for any finite subset F of {e ∈ E1 : o(e) = v};

(3)
∑

o(e)=v

ses
∗
e = pv for each non-singular vertex v ∈ E0.

The graph C∗-algebra C∗(E) is the universal C∗-algebra generated by a
Cuntz-Krieger E-family {se, pv}.

For a finite path µ = e1e2 · · · en, we write sµ for se1se2 · · · sen
.

Since the family {sµs∗ν : µ, ν ∈ E∗} is closed under multiplication, we have:

C∗(E) = span{sµs∗ν : µ, ν ∈ E∗ and t(µ) = t(ν)}.
The outline of the paper is as follows. In Section 2 we introduce the basic

notation and conventions we will use throughout the paper. Section 3 deals with
row-finite graphs with no sinks. We begin the section by defining a property of
a graph which we later prove to characterize liminal graph C∗-algebras when the
graph has no singular vertices. Section 4 provides us with a proposition that gives
a method on how to obtain the largest liminal ideal of a C∗-algebra of a row-finite
graph with no sinks. In Sections 5, respectively 6, using ‘desingularizing graphs’
of [4], we generalize the results of Sections 3, respectively 4, to arbitrary graphs.
In Section 7 we give a characterization for type I graph C∗-algebras. We finish
the section with a proposition on how to obtain the largest type I ideal of a graph
C∗-algebra.

2. PRELIMINARIES

Given a directed graph E, we write v > w if there is a directed path from v to w.
For a directed graph E, we say that H ⊆ E0 is hereditary if v ∈ H and

v > w imply that w ∈ H. We say that H is saturated if v is not singular and
{w ∈ E0 : v > w} ⊆ H imply that v ∈ H.

If z ∈ T, then the family {zse, pv} is another Cuntz-Krieger E-family which
generates C∗(E), and the universal property gives a homomorphism γz : C∗(E) →
C∗(E) such that γz(se) = zse and γz(pv) = pv. This γz is a strongly continuous
action, called gauge action, on C∗(E). See [1] for details.

Let E be a row-finite directed graph, let I be an ideal of C∗(E), and let
H = {v : pv ∈ I}. In Lemma 4.2 in [1] they proved that H is a hereditary saturated
subset of E0. Moreover, if IH := span{SαS∗β : α, β ∈ E∗ and t(α) = t(β) ∈ H},
the map H 7→ IH is an isomorphism of the lattice of saturated hereditary subsets
of E0 onto the lattice of closed gauge-invariant ideals of C∗(E) ([1], Theorem 4.1
(a)). Letting F := F (E \ H) = the subgraph of E that is gotten by removing
H and all edges that point into H, it is proven in Theorem 4.1 (b) of [1] that
C∗(F ) ∼= C∗(E)/IH . In case I is not a gauge-invariant ideal, we only get IH

⊂
=/ I.

We will use the following notation and conventions.
(i) Every path we take is a directed path.
(ii) A circuit in a graph E is a finite path p with o(p) = t(p). We save the

term loop for a circuit of length 1.
(iii) We say that a circuit is terminal if it has no exits, and a circuit is

transitory if it has an exit and no exit of the circuit gets back to the circuit.
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(iv) ΛE := {v ∈ E0 : v is a singular vertex}.
(v) Λ∗E := t−1(ΛE) ∩ E∗ i.e., Λ∗E is the set of paths ending with a singular

vertex. When there are no ambiguities, we will just use Λ∗.
(vi) We say v gets to w (or reaches w) if there is a path from v to w.
(vii) We say v gets to a path p if v gets to a vertex in p.
(viii) For a subset S of E0, we write S > v if w > v, ∀ w ∈ S.
(ix) For a subset H of E0, we write Graph(H) to refer to the subgraph of

E whose set of vertices is H and whose edges are those edges of E that begin and
end in H.

(x) V (v) := {w ∈ E0 : v > w}.
(xi) E(v) := Graph(V (v)), i.e., E(v) is the subgraph of E that the vertex v

can ‘see’. Accordingly we use F (v), etc. when the graph is F , etc.
(xii) For v ∈ E0 let ∆(v) := {e ∈ E1 : o(e) = v}.
(xiii) For a finite subset F of ∆(v), we write V (v;F ) := {v}∪ ⋃

e∈∆(v)\F
V (t(e)).

(xiv) E(v; F ) := Graph(V (v; F )).
(xv) For a hereditary subset H of E0, we write H to refer to the saturation

of H, i.e. the smallest saturated set containing H. Notice that H is hereditary
and saturated.

(xvi) For any path λ, λ0 will denote the vertices of λ.
(xvii) As was used above, F (E \ H) will denote the subgraph of E that is

obtained by removing H and all edges that point into H.
(xviii) We use K to denote the space of compact operators on an (unspecified)

separable Hilbert space.

3. LIMINAL C∗-ALGEBRAS OF GRAPHS WITH NO SINGULAR VERTICES

We begin this section by a definition.

Definition 3.1. A subset γ of E0 is called a maximal tail if it satisfies the
following three conditions:

(i) for any v1, v2 ∈ γ there exists z ∈ γ such that v1 > z and v2 > z;
(ii) for any v ∈ γ, ∃e ∈ E1 such that o(e) = v and t(e) ∈ γ;
(iii) v > w and w ∈ γ imply that v ∈ γ.

We will prove a result similar to (one direction of) Proposition 6.1 in [1],
Proposition 6.1 with a weaker assumption on the graph E and a weaker assumption
on the ideal.

Lemma 3.2. Let E be a row-finite graph with no sinks. If I is a primitive
ideal of C∗(E) and H = {v ∈ E0 : pv ∈ I}, then γ = E0 \H is a maximal tail.

Proof. By Lemma 4.2 in [1], H is hereditary and saturated. The complement
of a hereditary set satisfies (iii) in Definition 3.1. Since E has no sinks, and H
is saturated, γ satisfies (ii). We prove now (i). Let v1, v2 ∈ γ and let Hi = {v ∈
γ : vi > v}. We will first show that H1 ∩H2 6= ∅. Let F = F (E \H). For each
i, IHi

is a non-zero ideal of C∗(F ) ∼= C∗(E)/IH , hence is of the form Ii/IH , and
pvi + IH ∈ IHi

. Since each IHi
is gauge-invariant, so is IH1

∩ IH2
. Therefore

IH1
∩ IH2

= IH1∩H2
. If H1 ∩ H2 = ∅, then IH1

∩ IH2
= {0} ⊆ I/IH . But
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I/IH is a primitive ideal of C∗(E)/IH , therefore I1/IH ⊆ I/IH or I2/IH ⊆ I/IH .
Without loss of generality, let I1/IH ⊆ I/IH hence pv1 + IH ∈ I/IH implying that
pv1 ∈ IH or pv1 ∈ I \ IH . But pv1 ∈ I \ IH is a contradiction to the construction
of H, and pv1 ∈ IH , which implies that v1 ∈ H, which is again a contradiction to
v1 ∈ γ = E0 \H. Therefore H1 ∩H2 6= ∅. Let y ∈ H1 ∩H2. Applying Lemma 6.2
in [1] to F and v1 shows that ∃x ∈ E0 \ H such that y > x and v1 > x. Since
y ∈ H2 and H2 is hereditary, x ∈ H2. Applying Lemma 6.2 in [1] to F and v2

shows that ∃z ∈ E0 \H such that y > z and v2 > z. Thus v1 > z, and v2 > z as
needed.

Now, we prove that for a row-finite graph E with no sinks, C∗(E) is liminal
precisely when the following finiteness condition is satisfied: for any vertex v and
any infinite path λ, there is only a finite number of ways to get from v to λ.

To state the finiteness condition more precisely, we will use the equivalence
relation defined in Definition 1.8 in [8].

If p = e1e2 · · · and q = f1f2 · · · ∈ E∞, we say that p ∼ q if and only if ∃j, k
so that ej+r = fk+r for all r > 0, i.e., if and only if p and q (eventually) share the
same tail.

We use [p] to denote the equivalence class containing p.

Definition 3.3. A row-finite directed graph E that has no sinks is said to
satisfy Condition (M) if for any v ∈ E0 and any [p] ∈ E∞/ ∼ there is only a finite
number of representatives of [p] that begin with v.

We note that if E satisfies Condition (M) then every circuit in E is terminal.

Lemma 3.4. Let E be a row-finite directed graph with no sinks that satisfies
Condition (M). Let F be a subgraph of E so that F 0 is a maximal tail. If F has
a circuit, say α, then the saturation of α0, α0, is equal to F 0.

Proof. Let vα be a vertex of α. Since α is terminal, vα > z implies that z is
in α0. Also, for each w ∈ F 0, by (i) of Definition 3.1, there exists z ∈ F 0 such that
w > z and vα > z, but z is in α0 which implies that z > vα. Therefore w > vα,
i.e., each vertex in F 0 connects to vα (via a directed path).

Now, assuming the contrary, let v1 /∈ α0. Suppose v1 is in a circuit, say
β. Then, by the previous paragraph, v1 > vα hence either β = α or β has an
exit. But v1 /∈ α0, therefore β = α is not possible, and since F satisfies Condition
(M), β can not have an exit. Thus v1 is not in a circuit. Therefore ∃e1 ∈ F 1

such that o(e1) = v1, t(e1) /∈ α0. Let v2 = t(e1). Inductively, ∃en ∈ F 1 such that
vn = o(en), t(en) = vn+1 /∈ α0. Look at the infinite path e1e2 · · ·.

Notice that the vi’s are distinct and each vi > vα. Therefore there are
infinitely many ways to get to α from v1, i.e., there are infinitely many repre-
sentatives of [α] that begin with v1, which contradicts to the assumption that E
satisfies Condition (M). Therefore F 0 = α0.
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Lemma 3.5. Let E be a row-finite directed graph with no sinks that satisfies
Condition (M). Let F be a subgraph of E so that F 0 is a maximal tail. If F has
no circuits then F has a hereditary infinite path, say λ, such that F 0 = λ

0
.

Proof. Since F has no sinks, it must have an infinite path, say λ. Let vλ

be a vertex in λ. By Condition (M), there are only a finite number of infinite
paths that begin with vλ and share a tail with λ. By going far enough on λ, there
exists w ∈ λ0 such that vλ > w and [λ] has only one representative that begins
with w. By re-selecting vλ (to be w, for instance) we can assume that there is
only one representative of [λ] that begins with vλ. We might, as well, assume that
o(λ) = vλ.

We will now prove that λ0 is hereditary. Suppose u ∈ F 0 such that vλ > u
and u /∈ λ0. Since F 0 is a maximal tail and since F has no circuits, by (ii) of
Definition 3.1 we can choose w1 ∈ F 0 such that vλ > w1 and vλ 6= w1. By (i)
of Definition 3.1 there exists z1 ∈ F 0 such that u > z1, and w1 > z1. If z1 ∈ λ0

then we have two ways to get to λ from vλ (through u and through w1) which
contradicts to the choice of vλ, hence z1 /∈ λ0.

Let w2 ∈ λ0 (far enough) so that w2 >/ z1. If such a choice was not possible,
we would be able to get to z1 and hence to any path that begins with z1 from vλ

in an infinite number of ways, contradicting Condition (M).
Again since F 0 is a maximal tail, there exists z2 ∈ F 0 such that w2 > z2

and z1 > z2. Notice that there are (at least) two ways to get to z2 from vλ. By
inductively choosing a wn ∈ λ0 and a zn ∈ F 0 such that wn >/ zn−1, wn > zn and
zn−1 > zn, there are at least n ways to get to zn from vλ (one through wn and
n− 1 through zn−1).

We now form an infinite path α that contains z1, z2, . . . as (some of) its
vertices that we can reach to, from vλ, in an infinite number of ways, which is
again a contradiction. Hence no such u can exist. Thus λ is hereditary.

We will now prove that F 0 = λ
0
. Assuming the contrary, let v1 /∈ λ

0
. Then

∃e1 ∈ F 1 such that o(e1) = v1, t(e1) /∈ λ
0
. Inductively, let vn = t(en−1), then

∃en ∈ F 1 such that vn = o(en), t(en) = vn+1 /∈ λ
0
. Consider the infinite path

e1e2 · · ·.
Notice that since F 0 is a maximal tail, for each vi, ∃xi such that vi > xi

and vλ > xi. But λ0 is hereditary hence xi ∈ λ0, implying that each vi reaches λ.
Therefore there are infinitely many ways to get to λ from v1, i.e., there are infinitely
many representatives of [λ] that begin with v1 which contradicts to Condition (M).
Therefore F 0 = λ

0
.

Lemma 3.6. Let IH be a primitive ideal of C∗(E), where H is a hereditary
saturated subset of E0. Let F = F (E \H). Then F has no circuits.

Proof. Note that F 0 is a maximal tail and C∗(F ) ∼= C∗(E)/IH . Since IH is
a primitive ideal of C∗(E), {0} is a primitive ideal of C∗(F ).

Suppose that F has a circuit, say α. By Lemma 3.4, F 0 = α0. Hence
C∗(F ) ∼= Iα0 = the ideal of C∗(F ) generated by {α0}. Since α has no exits (is
hereditary), by Proposition 2.1 in [5], Iα0 is Morita equivalent to C∗(α) which is
Morita equivalent to C(T). But {0} is not a primitive ideal of C(T) implying that
{0} is not a primitive ideal of C∗(F ) which is a contradiction. Hence F has no
circuits.
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Hidden in the proofs of Lemma 3.5 and Lemma 3.6 we have proven a (less rel-
evant) fact: if a directed graph E with no singular vertices satisfies Condition (M)
and F 0 is a maximal tail then F has (essentially) one infinite tail, i.e., F∞/ ∼
contains a single element.

Remark 3.7. Let E1 be a subgraph of a directed graph E2. Applying The-
orem 2.34 of [8] and Corollary 2.33 of [8], we observe that C∗(E1) is a quotient of
a C∗-subalgebra of C∗(E2). (Letting S2 = E0

2 \ {v ∈ E0
2 : v is a singular vertex}.)

Lemma 3.8. Let E be a directed graph. Suppose all the circuits of E are
transitory and suppose ∃λ ∈ E∞ such that the number of vertices of λ that emit
multiple edges that get back to λ is infinite. Then C∗(E) is not type I.

Proof. Let v1 ∈ λ0 such that v1 emits (at least) two edges that get back
to λ. Choose a path α1

1 = e1e2 · · · en1 , such that e1 is not in λ, o(e1) = v1 and
t(α1

1) = v2 ∈ λ0. If t(en1) = v1, i.e. e1e2 · · · en1 is a circuit, we extend e1e2 · · · en1

so that v2 is further along λ than v1 is.
We might again extend α1

1 along λ, if needed, and assume that v2 emits (at
least) two edges that get back to λ.

Let α2
1 be the path along λ such that o(α2

1) = v1 and t(α2
1) = v2. Inductively,

choose α1
k = e1e2 · · · enk

such that e1 is not in λ, o(e1) = vk, t(α1
k) = vk+1 ∈ λ0;

by extending α1
k, if needed, we can assume that vk+1 is further along λ than vk

and emits multiple edges that get back to λ. Let α2
k be the path along λ such that

o(α2
k) = vk and t(α2

k) = vk+1. Now look at the following subgraph of E, call it F :

v1

α
1

1

!!

α
2

1

==
v2

α
1

2

!!

α
2

2

==
v3

α
1

3

!!

α
2

3

==
v4

α
1

4

  

α
2

4

>>. . .

Now let {se, pv : e ∈ F 1, v ∈ F 0} be a Cuntz-Krieger F -family.
Thus C∗(F ) = span{sµs∗ν : µ, ν ∈ F ∗ and t(µ) = t(ν)}.
Let Fk := span{sµs∗ν : µ, ν are paths made up of αr

i ’s (or just vk) such that
t(µ) = vk = t(ν)}.

By Corollary 2.3 in [5], Fk
∼= MNk

(C) where Nk is the number of paths made
up of αr

i ’s (or just vk) ending with vk, which is finite.
Also, if sµs∗ν ∈ Fk then sµs∗ν = sµpvk

s∗ν = sµsα1
k
s∗

α1
k

s∗ν + sµsα2
k
s∗

α2
k

s∗ν ∈ Fk+1.

Hence Fk
⊂
=/ Fk+1. Let A =

∞⋃
k=1

Fk. Then A is a C∗-subalgebra of C∗(F ). Since

A is a UHF algebra, it is not type I. Therefore C∗(F ) has a C∗-subalgebra that
is not type I and can not be type I. Since F is a subgraph of E, by Remark 3.7
C∗(E) has a C∗-subalgebra whose quotient is not type I. Therefore C∗(E) is not
type I.
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It might be useful to keep following graph in mind when reading Lemma 3.9;
it can be viewed as a prototype of a graph that satisfies the assumption of the
lemma:

z1

f2 // z2

f3 //

��

z3

f4 //

��

. . .

vλ e1

//

f1

OO

.
e2

// .
e3

// . . .

Lemma 3.9. Let E be a directed graph, let λ = e1e2 · · · be an infinite path
in E, and let o(λ) = vλ. Suppose:

(i) E has no circuits;
(ii) the number of representatives of [λ] that begin with vλ is infinite;
(iii) vλ is the only such vertex in λ0;
(iv) E = E(vλ);
(v) ∀v ∈ E0 ∃w ∈ λ0 such that v > w (i.e., E0 > λ0).

Then
(a) {0} is a primitive ideal of C∗(E);
(b) C∗(E) is not simple.

Proof. We prove (a). First note that E satisfies Condition (K) of [1]: every
vertex lies on either no circuits or at least two circuits. This is because E has
no circuits. We will show that E0 is a maximal tail. Since E has no sinks, E0

satisfies (ii) of Definition 3.1, and clearly E0 satisfies (iii). We will show that E
satisfies (i). Let v1, v2 ∈ E0. By (iv) above, ∃w1, w2 ∈ λ0 such that vi > wi. Since
λ is is an infinite path, either w1 > w2 or w2 > w1. Without loss of generality let
w2 > w1. We have v1 > w1 and v2 > w2 > w1, hence (i) is satisfied. Therefore
E0 is a maximal tail and, by Proposition 6.1 in [1], I∅ = {0} is a primitive ideal
of C∗(E).

We will prove (b). Since E is row finite and since vλ gets to λ infinitely
often, ∃f1 ∈ E1 such that o(f1) = vλ and z1 := t(f1) gets to λ infinitely often.
Moreover, there is no vertex in λ0 that gets to λ infinitely often except vλ and E
has no circuits, therefore z1 /∈ λ0. Inductively, ∃fn+1 ∈ E1 such that o(fn+1) = zn,
zn+1 := t(fn+1) gets to λ infinitely often, and zn+1 /∈ λ0. Notice that the number
of representatives of [λ] that begin with t(e1), by (ii) above, is finite. Therefore
t(e1) does not get to any of the zi’s, that is, t(e1) does not reach the infinite path
f1f2 · · ·. Thus E is not co-final. Therefore C∗(E) is not simple.

We are now ready to prove the first of the measure results.

Theorem 3.10. Let E be a row-finite directed graph with no sinks. C∗(E)
is liminal if and only if E satisfies Condition (M).

Proof. Suppose E satisfies (M). Let I be a primitive ideal of C∗(E), let
H = {v : pv ∈ I}, and let F = F (E \H). By Lemma 3.2, F 0 is a maximal tail,
and Theorem 4.1 (b) of [1] implies that C∗(F ) ∼= C∗(E)/IH .

Case 1. I = IH .
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Then IH is a primitive ideal, hence Lemma 3.6 implies that F has no circuits.
Using Lemma 3.5, let λ be a hereditary infinite path such that F 0 = λ

0
.

C∗(E)/IH
∼= C∗(F ) = Iλ = span{sαs∗β : α, β ∈ F ∗, such that t(α) = t(β) ∈

λ0}.
By Proposition 2.1 in [5], Iλ is Morita equivalent to C∗(λ) ∼= K(`2(α0)).

Therefore C∗(E) is liminal.
Case II. IH

⊂
=/ I.

We will first prove that F (E \ H) has a circuit. If F = F (E \ H) has no
circuits, then by Lemma 3.5 F 0 = λ

0
for some hereditary infinite path λ. Therefore

C∗(F ) is simple, implying that C∗(E)/IH is simple. But I/IH is a (proper) ideal
of C∗(E)/IH therefore I/IH = 0 implying that I = IH . A contradiction.

Hence F must have a circuit, say α. Lemma 3.4 implies that F 0 = α0.
Using Proposition 2.1 in [5], C∗(F ) is Morita equivalent to C∗(α) which is Morita
equivalent to C(T) which is liminal. Therefore C∗(E)/IH is liminal. Since I/IH

is a primitive ideal of C∗(E)/IH we get C∗(E)/I ∼= (C∗(E)/IH)
/
(I/IH) ∼= K.

Hence C∗(E) is liminal.
To prove the converse, suppose E does not satisfy Condition (M), i.e., there

exist an infinite path λ and a vλ ∈ E0 such that the number of representatives of
[λ] that begin with vλ is infinite.

Suppose that E has a non-terminal circuit, say α. Let v be a vertex of α
such that ∃e ∈ E1 which is not an edge of α and o(e) = v. Then pv = s∗αsα ∼
sαs∗α < sαs∗α + ses

∗
e 6 pv. Therefore pv is an infinite projection. Hence C∗(E)

cannot be liminal.
Suppose now that all circuits of E are terminal and that the number of

representatives of [λ] that begin with vλ is infinite. We might assume that vλ =
o(λ). We want to prove that C∗(E) is not liminal. If v is a vertex such that V (v)
does not intersect λ0, we can factor C∗(E) by the ideal generated by {v}. Hence
we might assume that ∀v ∈ E0, v > λ0. Moreover, this process gets rid of any
terminal circuits, and hence we may assume that E has no circuits.

Also, since V (vλ) is hereditary, by Proposition 2.1 in [5], IV (vλ) is Morita
equivalent to C∗(E(vλ)). Therefore it suffices to show that C∗(E(vλ)) is not
liminal. Hence we might assume that E = E(vλ).

If for every v ∈ λ0 there exists w ∈ λ0 such that v > w and |{e ∈ E1 : o(e) =
w}| > 2, then by Lemma 3.8 C∗(E) is not type I, therefore it is not liminal.

Suppose ∃u ∈ λ0 such that ∀w ∈ λ0 with u > w, |{e ∈ E1 : o(e) = w}| = 1.
Notice that there is exactly one representative of [λ] that begins with u.

By re-selecting vλ further along on λ, we might assume that ∀w ∈ λ0 \ {vλ}
the number of representatives of [λ] that begin with w is finite.

Thus E satisfies the following conditions:
(i) E has no circuits;
(ii) the number of representatives of [λ] that begin with vλ is infinite;
(iii) vλ is the only such vertex in λ0;
(iv) E = E(vλ); and
(v) ∀v ∈ E0 ∃w ∈ λ0 such that v > w (i.e., E0 > λ0).

Therefore by Lemma 3.9 we get:
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(a) {0} is a primitive ideal of C∗(E);
(b) C∗(E) is not simple.
If C∗(E) is liminal, by (a), since {0} is a primitive ideal of C∗(E), C∗(E) ∼=

C∗(E)/{0} is ∗-isomorphic to K. But from (b) C∗(E) cannot be ∗-isomorphic to
K because K is a simple C∗-algebra. Therefore C∗(E) cannot be liminal. This
concludes the proof of the theorem.

4. THE LARGEST LIMINAL IDEAL OF C∗-ALGEBRAS OF GRAPHS WITH NO SINGU-
LAR VERTICES

In this section we will investigate a method of extracting the largest liminal ideal
of the C∗-algebra of a row finite graph E with no sinks.

Before we state the proposition, we will extend the definition of the equiv-
alence ∼ from E∞ to E∗∗ = E∞ ∪ E∗, as it is done in Remark 1.10 in [8]. For
p, q ∈ E∗, we say p ∼ q if t(p) = t(q).

The proposition gives a method of extracting the largest liminal ideal of
C∗(E) of a graph E with no singular vertices by giving a characterization of
the set of vertices that generate the ideal. The first part of the proposition,
which will eventually be needed, can be proven for a general graph without much
complication. Therefore we state that part of the proposition for a general graph.

Proposition 4.1. Let E be a directed graph and H = {v ∈ E0 : ∀[λ] ∈
(E∞ ∪ Λ∗)/ ∼, the number of representatives of [λ] that begin with v is finite}.
Then:

(i) H is hereditary and saturated.
(ii) If E is row-finite with no sinks then IH is the largest liminal ideal of

C∗(E).

Proof. Suppose v ∈ H and v > w. Let p be a path from v to w and let
λ ∈ E∞ ∪ Λ∗. If β ∼ λ and o(β) = w then pβ ∼ λ and o(pβ) = v. Therefore
the number of representatives of [λ] that begin with w is less than or equal to the
number of representatives of [λ] that begin with v. Therefore w ∈ H. Thus H is
hereditary.

Suppose v ∈ E0 is not singular and {w ∈ E0 : v > w} ⊆ H. Let 4(v) =
{e ∈ E1 : o(e) = v}. Note that 4(v) is a finite set and ∀e ∈ 4(v), t(e) ∈ H.
Let λ ∈ E∞ ∪ Λ∗ and β ∼ λ where o(β) = v. Then the first edge of β is in
4(v). Therefore the number of representatives of [λ] that begin with v is equal
to the sum of the number of representatives of [λ] that begin with a vertex in
{t(e) : e ∈ 4(v)}, which is a finite sum of finite numbers. Therefore v ∈ H. Hence
H is saturated.

To prove (ii), suppose E is row-finite with no sinks. Let F = Graph(H).
Clearly F satisfies Condition (M). Hence Theorem 3.10 implies that C∗(F ) is
liminal. By Proposition 2.1 of [5], IH is Morita equivalent to C∗(F ). Hence IH is
a liminal ideal. What remains is to prove that IH is the largest liminal ideal of
C∗(E).

Let I be the largest liminal ideal of C∗(E). Thus IH ⊆ I. Since the largest
liminal ideal of a C∗-algebra is invariant under automorphisms, I is gauge invari-
ant, therefore I = IK for some saturated hereditary subset K of E0 which includes
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H. We will prove that K ⊆ H. Let G = Graph(K). Since IK is Morita equivalent
to C∗(G), C∗(G) is liminal hence, by Theorem 3.10, G satisfies Condition (M).
Let v ∈ K = G0. If β ∈ E∞ with o(β) = v, β0 ⊆ K because K is hereditary.
Therefore β ∈ G∞. Now let [λ] ∈ E∞/ ∼, and let γ be a representative of [λ] that
begins with v. (If no such γ exists then the number of representatives of [λ] is
zero.) Then {β ∈ E∞ : β ∼ λ, o(β) = v} = {β ∈ G∞ : β ∼ γ, o(β) = v}, i.e., the
set of representatives of [λ] that begin with v is subset of the set of representatives
of [γ] (as an equivalence class of G∞/ ∼) that begin with v. Since G satisfies
Condition (M) the second set is finite. Therefore v ∈ H, implying that K ⊆ H.
Therefore IH = IK .

5. LIMINAL C∗-ALGEBRAS OF GENERAL GRAPHS

In this section we will consider a general graph E and give the necessary and
sufficient conditions for C∗(E) to be liminal in terms of the properties of the
graph.

In [4] the authors gave a recipe on how to “desingularize a graph E”, that is,
obtain a graph F that has no singular vertices (by adding a tail at every singular
vertex of E) so that C∗(E) and C∗(F ) are Morita equivalent. Therefore, we will
use this idea of desingularizing E and use the results of the previous sections to
get the needed results.

We will begin by extending the definition of Condition (M) from row-finite
graphs with no sinks to general graphs:

Definition 5.1. A graph E is said to satisfy Condition (M) if ∀[p] ∈ (E∞∪
Λ∗)/ ∼ and any v ∈ E0, the number of representatives of [p] that begin with v is
finite.

Notice that when E is a row-finite graph with no sinks, Definition 3.3 and
Definition 5.1 say the same thing.

Since we need to use the results of the previous sections, it is important to
check that Condition (M) is preserved by the desingularization process. We will
do that in the next two lemmas.

Remark 5.2. Lemma 2.6 (i) of [4] states that if F is a desingularization of
a directed graph E then there are bijective maps:

ϕ : E∗ → {β ∈ F ∗ : o(β), t(β) ∈ E0} and ϕ∞ : E∞∪Λ∗ → {λ ∈ F∞ : o(λ) ∈ E0}.
The map ϕ preserves origin and terminus (and hence preserves circuits). The

map ϕ∞ preserves origin.

Lemma 5.3. The map ϕ∞ preserves the equivalence, in fact, for p, q ∈
E∞ ∪ Λ∗, p ∼ q if and only if ϕ∞(p) ∼ ϕ∞(q).

Proof. Observe that if µν ∈ E∞ ∪ Λ∗ where µ ∈ E∗ then ϕ∞(µν) =
ϕ(µ)ϕ∞(ν) and ϕ∞(ν) ∈ F∞.

Now let p = e1e2 · · ·, q = f1f2 · · · ∈ E∞ such that p ∼ q, ∃i, j such that
ei+r = fj+r ∀r ∈ N. Thus p = µ1ν and q = µ2ν where µ1 = e1e2 · · · ei, µ2 =
f1f2 · · · fj and ν = ei+1ei+2 · · · = fj+1fj+2 · · ·. Therefore ϕ∞(p) = ϕ(µ1)ϕ∞(ν)
and ϕ∞(q) = ϕ(µ2)ϕ∞(ν) implying ϕ∞(p) ∼ ϕ∞(q).
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If p, q ∈ Λ∗ such that p ∼ q then t(p) = t(q) is a singular vertex. Hence
ϕ∞(t(p)) = ϕ∞(t(q)). Moreover ϕ∞(p) = ϕ(p)ϕ∞(t(p)) and ϕ∞(q) = ϕ(q)ϕ∞(t(q))
implying ϕ∞(p) ∼ ϕ∞(q).

Hence ϕ∞(p) ∼ ϕ∞(q) whenever p ∼ q.
To prove the converse, suppose ϕ∞(p1) ∼ ϕ∞(p2) for p1, p2 ∈ E∞ ∪ Λ∗.
Claim. If p1 ∈ Λ∗ then p2 ∈ Λ∗. If p1 ∈ E∞ then p2 ∈ E∞.
We prove the claim. Suppose p1 ∈ Λ∗. Thus ϕ∞(p1) = ϕ(p1)e1e2 · · · where

e1e2 · · · is the tail added to t(p1) in the construction of F , i.e., t(p1) = o(e1e2 · · ·).
Therefore, ϕ∞(p1) ∼ e2e3 · · ·. Since ϕ∞(p1) ∼ ϕ∞(p2) we get ϕ∞(p2) ∼ e2e3 · · ·.
If p2 ∈ E∞ then p2 = f1f2 · · · for some f1, f2, . . . ∈ E1. Therefore ϕ∞(p2) =
ϕ(f1)ϕ(f2) · · ·. Implying that, so ϕ(f1)ϕ(f2) · · · ∼ e2e3 · · ·. But for each i >
1 we have o(ϕ(fi)), t(ϕ(fi)) ∈ E0 and by the construction of F , for each i >
2, o(ei), t(ei) /∈ E0. Therefore ϕ(f1)ϕ(f2) · · · cannot be equivalent to the path
e2e3 · · ·, which is a contradiction. Therefore p2 ∈ Λ∗. The second statement
follows from the contrapositive of the first statement by symmetry.

Now suppose p1 ∈ Λ∗. By the above claim, p2 ∈ Λ∗. Thus ϕ∞(p2) =
ϕ(p2)g1g2 · · ·, where g1g2 · · · is the tail added to t(p2) in the construction of F .
Hence ϕ∞(p2) ∼ g1g2 · · ·. Since ϕ∞(p1) ∼ e1e2 · · ·, we get e1e2 · · · ∼ g1g2 · · ·.
Notice that (by the construction of F ) t(p1) is the only entrance of e1e2 · · · and
t(p2) is the only entrance to g1g2 · · ·. Therefore either t(p1) = o(gi) for some i or
t(p2) = o(ei) for some i. Without loss of generality suppose t(p1) = o(gi), thus
e1e2 · · · = gigi+1 · · ·. But t(p2) = o(g1) is the only vertex in the path g1g2 · · · that
belongs to E0 and t(p1) ∈ E0. Hence t(p1) = t(p2). Therefore p1 ∼ p2.

If p1 ∈ E∞ then, by the above claim, p2 ∈ E∞. Notice that ∀v ∈ ϕ∞(pi)0

either v ∈ E0 (hence in p0
i ) or ∃w ∈ p0

i such that v > w. Since ϕ∞(p1) ∼
ϕ∞(p2), ϕ∞(pi) = µiν, for some µ1, µ2 ∈ F ∗ and some ν ∈ F∞, and t(µ1) =
t(µ2) = o(ν). Extending µ1 and µ2 along ν, if needed, we may assume that
t(µi) ∈ E0, i.e., µ1, µ2 ∈ {β ∈ F ∗ : o(β), t(β) ∈ E0}, ν ∈ {β ∈ F∞ : o(β) ∈ E0}
and t(µ1) = t(µ2) = o(ν). Therefore µi = ϕ(δi), ν = ϕ∞(γ) for some δi ∈ E∗

and some γ ∈ E∞ ∪ Λ∗. Implying, so pi = ϕ−1
∞ (µiν) = ϕ−1

∞ (ϕ(δi)ϕ∞(γ)) =
ϕ−1
∞ (ϕ∞(δiγ)) = δiγ. Thus p1 ∼ p2.

Lemma 5.4. Let F be a desingularization of a directed graph E. Then E
satisfies Condition (M) if and only if F satisfies Condition (M).

Proof. We will prove the only if side. Recall that F has no singular vertices.
Suppose F does not satisfy Condition (M). Let v ∈ F 0 and [λ] ∈ F∞/ ∼ such that
the number of representatives of [λ] that begin with v is infinite.

If v /∈ E0 then v is on an added tail to a singular vertex v0 of E and there is
(only one) path from v0 to v. Then the number of representatives of [λ] that begin
with v (in the graph F ) is equal to the number of representatives of [λ] that begin
with v0 (in the graph F ). If the latter is finite then the first is finite, hence we
might assume that v ∈ E0. Moreover, every path in F∞ is equivalent to one whose
origin lies in E0. Therefore we might choose a representative λ with o(λ) ∈ E0.

The set of representatives of [λ] that begin with v is {β ∈ F∞ : o(β) =
v and λ ∼ β}. Since ϕ∞ is bijective, ϕ−1

∞ {β ∈ F∞ : o(β) = v and λ ∼ β}
is an infinite subset of E∞ ∪ Λ∗. As ϕ−1

∞ preserves origin and the equivalence,
ϕ−1
∞ {β ∈ F∞ : o(β) = v and β ∼ λ} = {ϕ−1

∞ (β) ∈ E∞ ∪ Λ∗ : o(ϕ−1
∞ (β)) =
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v and ϕ−1
∞ (β) ∼ ϕ−1

∞ (λ)}. Thus [ϕ−1
∞ (λ)] has infinite representatives that begin

with v. Therefore E does not satisfy Condition (M).
To prove the converse, suppose E does not satisfy Condition (M). Let v ∈ E0

and [p] ∈ (E∞ ∪ Λ∗)/ ∼ such that the number of representatives of [p] that
begin with v is infinite. The set of representatives of [p] that begin with v is
{q ∈ E∞ ∪ Λ∗ : o(q) = v and q ∼ p}. Since ϕ∞ is bijective, ϕ∞{q ∈ E∞ ∪ Λ∗ :
o(q) = v and q ∼ p} is an infinite subset of F∞. As ϕ∞ preserves origin and the
equivalence, ϕ∞{q ∈ E∞ ∪Λ∗ : o(q) = v and q ∼ p} = {ϕ∞(q) ∈ F∞ : o(ϕ∞(q) =
v and ϕ∞(q) ∼ ϕ∞(p)}. Thus [ϕ∞(p)] has infinitely many representatives that
begin with v. Therefore F does not satisfy Condition (M).

We can now write the main theorem in its full generalities.

Theorem 5.5. Let E be a directed graph. C∗(E) is liminal if and only if
E satisfies Condition (M).

Proof. Let F be a desingularization of E. Then E satisfies Condition (M)

⇔ F satisfies Condition (M)

⇔ C∗(F ) is liminal

⇔ C∗(E) is liminal.

6. THE LARGEST LIMINAL IDEAL OF C∗-ALGEBRAS OF GENERAL GRAPHS

In this section we will identify the largest liminal ideal of C∗(E) for a general
graph E.

We will, once again, follow the construction in [4]. For a hereditary saturated
subset H of E0, define:

BH := {v ∈ Λ : 0 < |o−1(v) ∩ t−1(E0 \H)| < ∞}.
Thus BH is the set of infinite emitters that point into H infinitely often and

out of H at least once but finitely often. In [4] it is proven that the set {(H, S) : H
is a hereditary saturated subset of E0 and S ⊆ BH} is a lattice with the lattice
structure (H,S) 6 (H ′, S′) if and only if H ⊆ H ′ and S ⊆ H ′ ∪ S′. Observe that,
since BH ∩H = ∅, (H, S) 6 (H,S′) if and only if S ⊆ S′.

Let E be a directed graph and F be a desingularization of E, let H be a
hereditary saturated subset of E0, and let S ⊆ BH . Following the construction in
[4], define:

H̃ := H ∪ {vn ∈ F 0 : vn is on a tail added to a vertex in H}.
Thus H̃ is the smallest hereditary saturated subset of F 0 containing H.
Let S ⊆ BH , and let v0 ∈ S. Let vi = t(ei), where e1e2 · · · is the tail added

to v0 in the construction of F . If Nv0 is the smallest non-negative integer such
that t(ej) ∈ H, ∀j > Nv0 , we have that ∀j > Nv0 , vj emits exactly two edges: one
pointing to vj+1 and one pointing to a vertex in H. Define

Tv0 := {vn ∈ F 0 : vn is on a tail added to v0 and n > Nv0}
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and
HS := H̃ ∪

⋃

v0∈S

Tv0 .

Lemma 3.2 in [4] states that the above construction defines a lattice isomor-
phism from the lattice {(H, S) : H is a hereditary saturated subset of E0 and
S ⊆ BH} onto the lattice of hereditary saturated subsets of F 0.

Let {te, qv} be a generating Cuntz-Krieger F -family and {se, pv} be the
canonical generating Cuntz-Krieger E-family. Let p =

∑
v∈E0

qv. Since C∗(E) and

C∗(F ) are Morita equivalent via the imprimitivity bimodule pC∗(F ), it follows
that the Rieffel correspondence between ideals in C∗(F ) and ideals in C∗(E) is
given by the map I 7→ pIp.

Let H be a hereditary saturated subset of E0 and S ⊆ BH . For v0 ∈ S,
define

pH
v0

:= pv0 −
∑

o(e)=v0

t(e)/∈H

ses
∗
e

and

I(H,S) := the ideal generated by {pv : v ∈ H} ∪ {pH
v : v0 ∈ S}.

Proposition 3.3 in [4] states that if E satisfies Condition (K): every vertex of E lies
on either no circuits or at least two circuits, then pIHS p = I(H,S). The assumption
that E satisfies Condition (K) was only used to make sure that all the ideals of
F are gauge invariant. Therefore whenever I is a gauge invariant ideal of C∗(F )
and HS = {v ∈ F 0 : pv ∈ I}, since I = IHS

, we have pIp = pIHS
p = I(H,S).

Moreover, Theorem 3.5 in [4] states that if E satisfies Condition (K) then the
map (H,S) 7→ I(H,S) is a bijection from the lattice {(H,S) : H is a hereditary
saturated subset of E0 and S ⊆ H} onto the lattice of ideals in C∗(E). Without
the assumption that E satisfies Condition (K) the bijection will be from the lattice
{(H,S) : H is a hereditary saturated subset of E0 and S ⊆ H} onto the lattice of
gauge invariant ideals in C∗(E). Hence the gauge invariant ideals of E are of the
form I(H,S) for some hereditary saturated subset H of E0 and for some S ⊆ BH .

To identify the largest liminal ideal of C∗(E), first recall that the largest
liminal ideal of a C∗-algebra is invariant under automorphisms. Therefore the
largest liminal ideal of C∗(E) has to be of the form I(H,S) for some hereditary
saturated subset H of E0 and a subset S of BH . We set Hl = {v ∈ E0 : ∀[λ] ∈
(E∞ ∪ Λ∗E)/ ∼, the number of representatives of [λ] that begin with v is finite}.
Since Graph(Hl) satisfies Condition (M), we see that the ideal IHl

= I(Hl,∅) is a
subset of the largest liminal ideal of C∗(E). While it is true that H = Hl, as
illustrated in the following example, it is not automatically clear what S can be.

Example 6.1. Consider the following graphs:
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Let I(Hi,Si) denote the largest liminal ideal of C∗(Ei). It is not hard to
see that H1 = {u2, u3, . . .}, H2 = {v2, v3, . . .} ∪ {v}, H3 = {w2, w3, . . .} ∪ {w},
BH1 = {u0}, BH2 = {v0}, and BH3 = {w0}. A careful computation shows that
S1 = {u0}, S2 = {v0}, while S3 = ∅. Notice that we can reach from v0 to v in an
infinite number of ways, but not through H. We can reach from w0 to w through
H in an infinite number of ways.

For a hereditary and saturated subset H of E0 and v ∈ BH , we define
D(v,H) := {e ∈ ∆(v) : t(e) /∈ H}, that is, D(v,H) is the set of all edges that begin
with v and point outside of H. Notice that D(v,H) is a non empty finite set.

Proposition 6.2. Let E be a directed graph and H = {v ∈ E0 : ∀[λ] ∈
(E∞ ∪ Λ∗E)/ ∼, the number of representatives of [λ] that begin with v is finite}.
Let S = {v ∈ BH : E(v; D(v,H)) satisfies Condition (M). Then I(H,S) is the largest
liminal ideal of C∗(E).

Proof. That H is hereditary and saturated was proved in Proposition 4.1.
Let I(H′,S′) be the largest liminal ideal of C∗(E) and let F be a desingularization
of E. In what follows, we will prove that I(H,S) = I(H′,S′). To do that we will
prove: H ⊆ H ′, H ′ ⊆ H, S ⊆ S′ and S′ ⊆ S, in that order.

We will prove that H ⊆ H ′. Notice that IH′
S′ is the largest liminal ideal of

C∗(F ). Using Proposition 4.1 we get that H ′
S′ = {v ∈ F 0 : ∀[λ] ∈ F∞/ ∼, the

number of representatives of [λ] that begin with v is finite}.
Let GH = Graph(H). Notice that by Proposition 2.1 of [5], IH is Morita

equivalent to C∗(GH). Since GH satisfies Condition (M), by Theorem 3.10,
C∗(GH) is liminal. Therefore IH = I(H,∅) is liminal. By the maximality of
I(H′,S′), I(H,∅) ⊆ I(H′,S′), implying that H ⊆ H ′. We will prove that H ′ ⊆ H.
Let GH′ = Graph(H ′). Then IH′ = I(H′,∅) ⊆ I(H′,S′). Hence IH′ is liminal. By
Proposition 2.1 of [5], IH′ is Morita equivalent to C∗(GH′). Therefore GH′ satisfies
Condition (M).

Let v ∈ H ′. If β ∈ E∗∗ with o(β) = v then, since H ′ is hereditary, β ∈ GH′ .
Now let [λ] ∈ (E∞ ∪ Λ∗)/ ∼ . If γ is a representative of [λ] with o(γ) = v then
γ ∈ G∞H′ ∪ Λ∗GH′

. Therefore the set of representatives of [λ] that begin with v is
{β ∈ E∞ ∪ Λ∗ : o(β) = v, β ∼ γ} = {β ∈ G∞H′ ∪ Λ∗GH′

: o(β) = v, β ∼ γ} which is
finite, since GH′ satisfies Condition (M). Therefore v ∈ H, hence H ′ ⊆ H.
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Next we will prove that S ⊆ S′. Let v0 ∈ S. To show that v0 ∈ S′ we will
show that vn ∈ HS′ whenever n > Nv0 , i.e., ∀n > Nv0 , and ∀[λ] ∈ F∞/ ∼, the
number of representatives of [λ] beginning with vn is finite.

Let n > Nv0 and let [λ] ∈ F∞/ ∼. If [λ] has no representative that begins
with vn then there is nothing to prove. Let γ be a representative of [λ] o(γ) = vn.

First suppose that γ0 = {vn, vn+1, . . .}, i.e., γ is the part of the tail added to
v0 in the construction of F . Then {β ∈ F∞ : o(β) = vn, β ∼ γ} = {γ} since γ has
no entry other than vn. Therefore the number of representatives of [λ] beginning
with vn is 1.

Now suppose γ0 contains a vertex not in {vn, vn+1, . . .}. Recalling that ∀k >
Nv0 , vk emits exactly two edges, one pointing to vk+1 and one pointing to a vertex
in H, let w ∈ H be the first such vertex, i.e., w ∈ H ∩ γ0 is chosen so that
whenever v > w and v ∈ {vn, vn+1, . . .} then v /∈ H. If p is the (only) path from
v0 to vn and q is the path from vn to w along γ, then γ = qµ for some µ ∈ F∞
with o(µ) = w. Moreover, ϕ−1

∞ (pγ) = ϕ−1
∞ (pqµ) = ϕ−1(pq)ϕ−1

∞ (µ) and ϕ−1(pq)
is an edge in E1 with o(ϕ−1(pq)) = v0 and t(ϕ−1(pq)) = w ∈ H. Therefore
ϕ−1
∞ (pγ) ∈ E(v0; D(v0,H))∞ ∪ Λ∗E(v0;D(v0,H))

. The set of representatives of [λ] that
begin with vn is {β ∈ F∞ : o(β) = vn, β ∼ pγ}. If β ∈ F∞ is any representative
of [λ] that begins with vn then β ∼ pγ ∼ µ. Hence β0 has to contain a vertex
in H. Applying the same argument to β we see that pβ is a representative of
[λ], o(pβ) = v and ϕ−1

∞ (pβ) ∈ E(v0; D(v0,H))∞ ∪ Λ∗E(v0;D(v0,H))
.

Hence |{β ∈ F∞ : o(β) = vn, β ∼ pγ}| = |{pβ ∈ F∞ : pβ ∼ pγ}| =
|{ϕ−1

∞ (pβ) ∈ E(v0; D(v0,H))∞ ∪ Λ∗E(v0;D(v0,H))
: ϕ−1

∞ (pβ) ∼ ϕ−1
∞ (pγ)}| which is

finite, since E(v0; D(v0,H)) satisfies Condition (M).
In each case, the number of representatives of [λ] beginning with vn is finite,

implying that vn ∈ HS′ . Therefore v0 ∈ S′.
Finally, we will prove that S′ ⊆ S. Let v0 ∈ S′. We will show that

E(v0;D(v0,H)) satisfies Condition (M). Let λ ∈ E(v0; D(v0,H))∞ ∪ Λ∗E(v0;D(v0,H))
.

If a vertex v 6= v0 is in E(v0; D(v0,H))0 then it is in H, hence, by the definition of
H, the number of representatives of [λ] beginning with v is finite. What remains
is to show that the number of representatives of [λ] beginning with v0 is finite.
Noting that vNv0

∈ HS′ , for any γ ∈ F∞ the set {µ ∈ F∞ : o(µ) = vNv0
, µ ∼ γ}

is finite. In particular, the set {µ ∈ F∞ : o(µ) = vNv0
, µ ∼ ϕ∞(λ)} is finite.

Let β = e1e2 · · · ∈ E(v0; D(v0,H))∞ ∪ Λ∗E(v0;D(v0,H))
with o(β) = v0. Then

ϕ∞(β) = ϕ(e1)ϕ∞(e2e3 · · ·) ∈ F∞ and o(ϕ(e1)) = v0, t(ϕ(e1)) = o(ϕ∞(e2e3 · · ·)) ∈
H. Let p be the path from v0 to vNv0

.
We will first show that the set {β = e1e2 · · · ∈ E(v0; D(v0,H))∞∪Λ∗E(v0;D(v0,H))

: e1e2 · · · ∼ λ and vNv0
∈ ϕ(e1)0} is finite.

If vNv0
∈ ϕ(e1)0 then ϕ∞(β) = pµ for some µ ∈ F∞ with o(µ) = vNv0

. Hence
|{e1e2 · · · ∈ E(v0; D(v0,H))∞ ∪ Λ∗E(v0;D(v0,H))

: e1e2 · · · ∼ λ and vNv0
∈ ϕ(e1)0}| =

|{ϕ∞(e1e2 · · ·) ∈ F∞ : ϕ∞(e1e2 · · ·) ∼ ϕ∞(λ), o(e1) = v0, t(e1) ∈ H and vNv0
∈

ϕ(e1)0}| = |{pµ ∈ F∞ : pµ ∼ ϕ∞(λ)}| = |{µ ∈ F∞ : o(µ) = vNv0
and µ ∼

ϕ∞(λ)}| which is finite.
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We will next show that the set {e1e2 · · · ∈ E(v0;D(v0,H))∞ ∪ Λ∗E(v0;D(v0,H))
:

e1e2 · · · ∼ λ and vNv0
/∈ ϕ(e1)0} is finite.

Observe that the set E := {e ∈ ∆ : t(e) ∈ H and vNv0
/∈ ϕ(e)} is finite.

Moreover, ∀e ∈ E the set {β ∈ E∞ ∪ Λ∗E : o(β) = t(e), β ∼ λ} is finite, since
{t(e) : e ∈ E} ⊆ H. Hence |{e1e2 · · · ∈ E(v0; D(v0,H))∞∪Λ∗E(v0;D(v0,H))

: e1e2 · · · ∼
λ, vNv0

/∈ ϕ(e1)0}| = |{e1e2 · · · ∈ E∞ ∪ Λ∗E : e1e2 · · · ∼ λ, t(e1) ∈ K}| = |{β ∈
E∞ ∩ Λ∗E : o(β) ∈ K, β ∼ λ}| which is finite, as the set is a finite union of finite
sets.

Therefore the set {β ∈ E(v0; D(v0,H))∞ ∪ Λ∗E(v0;D(v0,H))
: β ∼ λ} is a union

of two finite sets, hence is finite. Thus v0 ∈ S. It follows that S ⊆ S′ concluding
the proof.

7. TYPE I GRAPH C∗-ALGEBRAS

In this section we will characterize type I graph C∗-algebras.
We say that an edge e reaches a path p if t(e) reaches p, i.e. if there is a path

q such that o(q) = t(e) and q ∼ p.
If v is a sink then we regard {v} as a tree.
For an infinite path λ, we use Nλ to denote the number of vertices of λ that

emit multiple edges that get back to λ.

Lemma 7.1. Let E be a directed graph with:
(i) every circuit in E is either terminal or transitory;
(ii) for any λ ∈ E∞, Nλ is finite.

Then there exists v ∈ E0 such that E(v) is either a terminal circuit or a tree.

Proof. Let z1 ∈ E0. If E(z1) is neither a terminal circuit nor a tree, then
there exists z2 6= z1 such that z1 and z2 do not belong to a common circuit, and
there are (at least) two paths from z1 to z2.

Notice that ∃w1 ∈ E0 such that z1 > w1 > z2 and w1 emits multiple edges
that reach z2 (perhaps is z1 itself). Observe that, by construction, z2 >/ z1.

Inductively: if E(zi) is neither a terminal circuit nor a tree, then there exists
zi+1 6= zi such that zi and zi+1 do not belong to a common circuit, and there are
(at least) two paths from zi to zi+1. Again ∃wi ∈ E0 such that zi > wi > zi+1

and wi emits multiple edges that reach zi+1. Observe also that zi+1 >/ zi and hence
wi+1 >/wi.

This process has to end, for otherwise, let λ ∈ E∞ be such that zi, wi ∈
λ0, ∀i. Then λ has infinite number of vertices that emit multiple edges that reach
λ, namely w1, w2, . . . contradicting the assumption.
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Remark 7.2. Let λ, γ ∈ E∞. If λ = pγ, for some p ∈ E∗, then Nγ 6 Nλ 6
Nγ + |p0|, where |p0| = the number of vertices in p, which is finite since p is a finite
path. Therefore, Nλ is finite if and only if Nγ is finite. Moreover, if λ ∼ µ then
λ = pγ, µ = qγ for some p, q ∈ E∗ and some γ ∈ E∞. Hence Nλ is finite if and
only if Nγ is finite if and only if Nµ is finite.

Theorem 7.3. Let E be a graph. C∗(E) is type I if and only if:
(i) every circuit in E is either terminal or transitory;
(ii) for any λ ∈ E∞, Nλ is finite.

We will first prove the following lemma.

Lemma 7.4. Let E be a directed graph and F be a desingularization of E.
E satisfies (i) and (ii) of Theorem 7.3 if and only if F satisfies (i) and (ii) of
Theorem 7.3.

Proof. That E satisfies (i) if and only if F satisfies (i) follows from the fact
that the map ϕ of Remark 5.2 preserves circuits.

Now we suppose that E satisfies (i), equivalently F satisfies (i).
Suppose E fails to satisfy (ii). Let λ ∈ E∞ such that Nλ is infinite. Suppose

v ∈ λ0 and p is a path such that o(p) = v, t(p) ∈ λ0. Let q be the path along λ such
that o(q) = v, t(q) = t(p), then ∃β ∈ E∗ and µ ∈ E∞ such that λ = βqµ. Since
ϕ preserves origins and termina, o(ϕ(p)) = v = o(ϕ(q)) and t(ϕ(p)) = t(ϕ(q)).
Moreover, ϕ∞(λ) = ϕ∞(βqµ) = ϕ(β)ϕ(q)ϕ∞(µ). Since ϕ is bijective, ϕ(p) = ϕ(q)
if and only if p = q. Therefore, if v (as a vertex in E) emits multiple edges that
get back to λ then it (as a vertex in F ) emits multiple edges that get back to ϕ(λ),
implying that Nϕ∞(λ) is infinite. Hence F does not satisfy (ii).

To prove the converse, suppose E satisfies (ii). Let λ ∈ F∞. If o(λ) /∈ E0,
then o(λ) is on a path extended from a singular vertex. Using Remark 7.2, we may
extend λ (backwards) and assume that o(λ) ∈ E0. Let γ = ϕ∞−1(λ) ∈ E∞ ∪ Λ∗.

First suppose γ ∈ Λ∗. Then v0 := t(γ) ∼ γ. Hence ϕ∞(v0) ∼ ϕ∞(γ) = λ.
Using Remark 7.2, we may assume that λ = ϕ∞(v0), that is, λ is the path added
to vo in the construction of F . Thus each vertex of λ emits exactly two edges: one
pointing to a vertex in λ (the next vertex) and one pointing to a vertex in E0.
Since v0 is the only entry to λ, if a vertex v of λ emits multiple edges that get
back to λ then v > v0. And since F satisfies (i), there could be at most one such
vector, for otherwise v0 would be on multiple circuits. Hence Nλ is at most 1.

Now suppose γ ∈ E∞. Since E satisfies (ii), Nγ is finite. Going far enough on
γ, let w ∈ γ0 be such that no vertex of γ that w can reach to emits multiple edges
that get back to γ. Let µ ∈ E∗, β ∈ E∞ be such that γ = µβ and t(µ) = w = o(β),
then λ = ϕ(µ)ϕ∞(β). Hence λ ∼ ϕ∞(β). Moreover, each v ∈ β0 emits exactly
one edge that gets to β, which, in fact, is an edge of β.

Let v ∈ β0 and p ∈ F ∗ be such that o(p) = v, t(p) ∈ λ0. Extending p, if
needed, we may assume that t(p) ∈ β0. Let q ∈ F ∗ be the path along λ such
that o(q) = v and t(q) = t(p). Since ϕ is bijective, ϕ−1(p) = ϕ−1(q) if and only if
p = q. But v can get to β in only one way, therefore ϕ−1(p) = ϕ−1(q), implying
that p = q. Thus v emits (in the graph F ) only one edge that gets to λ. Hence,
for each vertex v ∈ ϕ∞(β), if v ∈ E0 then v emits only one edge that gets to λ.

Now let v ∈ ϕ∞(β) \ E0. Then v is on a path extended from a singular
vertex, say v0. Since w > v0, by the previous paragraph, v0 emits only one edge
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that gets to λ. Let p be the (only) path from v0 to v. Let µ, ν ∈ F ∗ be such
that t(µ), t(ν) ∈ λ0 and o(µ) = o(ν) = v. Extending µ or ν along λ, if needed,
we can assume that t(µ) = t(ν). Again extending them along λ we can assume
that t(µ) = t(ν) ∈ β0. Observe that o(pµ) = o(pν) = v0 and t(pµ) = t(pν) ∈ β0.
Therefore o(ϕ−1(pµ)) = o(ϕ−1(pν)) = v0 and t(ϕ−1(pµ)) = t(ϕ−1(pν)) ∈ β0. But
each vertex in β emits exactly one edge that gets to β, i.e., there is exactly one
path from v0 to t(ϕ−1(pµ)) hence pµ = pν. Therefore, µ = ν. That is, v emits
only one edge that gets to λ. Therefore Nϕ∞(β) = 0. By Remark 7.2, we get that
Nλ is finite.

Remark 7.5. The fact that E satisfies (ii) of Theorem 7.3 does not im-
ply that its desingularization F satisfies (ii) of Theorem 7.3 as illustrated by the
following example.

Example 7.6. If E is the O∞ graph (one vertex with infinitely many loops),
which clearly satisfies (ii) of Theorem 7.3, then its desingularization does not
satisfy (ii) of Theorem 7.3. The desingularization looks like this:

.

;;
// . //

PP
. //

QQ
. //

RR
. . .

SS

Proof of Theorem 7.3. We first prove the “if” side. We will first assume that
E is a row-finite graph with no sinks. Let (Iρ)06ρ6α be an increasing family of
ideals of C∗(E) such that:

(i) I0 = {0}, C∗(E)/Iα is antiliminal;
(ii) if ρ 6 α is a limit ordinal, Iρ =

⋃
β<ρ

Iβ ;

(iii) if ρ < α, Iρ+1/Iρ is a liminal ideal of C∗(E)/Iρ and is non zero.
We prove that Iα = C∗(E). Since Iα is the largest type I ideal of C∗(E),

it is gauge invariant. Let H be a hereditary saturated subset of E0 such that
Iα = IH . If H 6= E0 then let F = F (E \H). Clearly F satisfies (i) and (ii) of the
theorem. Using Lemma 7.1 let v0 ∈ F 0 be such that K = {v ∈ F 0 : v0 > v} is
the set of vertices of either a terminal circuit or a tree. Let G = Graph(K), thus
G is either a terminal circuit or a tree. By Proposition 2.1 of [5], IK is Morita
equivalent to C∗(G). Moreover G satisfies Condition (M), hence by Theorem 3.10,
C∗(G) is liminal. And, so IK is an ideal of C∗(F ) ∼= C∗(E)/Iα contradicting the
assumption that C∗(E)/Iα is antiliminal. It follows that Iα = C∗(E). Therefore
C∗(E) is type I.

For an arbitrary graph E, let F be a desingularization of E. By Lemma 7.4,
F satisfies (i) and (ii) of the theorem. By the above argument, C∗(F ) is type I.
Therefore C∗(E) is type I.

To prove the converse, suppose E has a non-terminal non-transitory circuit,
that is, E has a vertex that is on (at least) two circuits. Let v0 be a vertex on
two circuits, say α and β. Let F be the subgraph containing (only) the edges and
vertices of α and β.

A := span{sµs∗ν : µ, ν are paths made by α and β or just v0} is a C∗-
subalgebra of C∗(F ). But A ∼= O2 which is not type I. Hence C∗(F ) is not type
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I. By Remark 3.7, C∗(E) has a sub-algebra whose quotient is not type I therefore
C∗(E) is not type I.

Suppose now that each circuit in E is either terminal or transitory and
∃λ ∈ E∞ such that Nλ is infinite. Let vλ = o(λ). Let G = E(v). If v is a vertex
such that V (v) does not intersect λ0, we can factor C∗(G) by the ideal generated
by {v}. This process gets rid of any terminal circuits of G. By Lemma 3.8, C∗(G)
is not type I, implying that C∗(E) is not type I.

Next we will identify the largest type I ideal of the C∗-algebra of a graph E.
For a vertex v of E (respectively F ), recall that E(v) (respectively F (v)) denotes
the subgraph of E (respectively F ) that v can ‘see’.

We begin with the following lemma.

Lemma 7.7. Let E be a directed graph, F a desingularization of E and
v ∈ E0. Then F (v) is a desingularization of E(v).

Proof. Let u ∈ E(v)0 = {w ∈ E : v > w}. Let p be a path in E with o(p) = v,
and t(p) = u, then ϕ(p) is a path in F with o(ϕ(p)) = v, and t(ϕ(p)) = u. Hence
u ∈ F (v)0, implying that E(v)0 ⊆ F (v)0. Clearly F (v) has no singular vertices.
Let v0 ∈ E(v)0 be a singular vertex. If vn is a vertex on the path added to v0 in the
construction of F , since F (v)0 is hereditary and v0 ∈ F (v)0, we get vn ∈ F (v)0.
Therefore the path added to v0 is in the graph F (v). To show that F (v) has exactly
the vertices needed to desingularize E(v), let w ∈ F (v)0. Let p be a path in F (v)
with o(p) = v and t(p) = w. If w ∈ E0 then ϕ−1(p) ∈ E∗ and o(ϕ−1(p)) = v and
t(ϕ−1(p)) = w. Therefore v > w in the graph E. Hence w ∈ E(v)0. If w /∈ E0

then there is a singular vertex, say v0 ∈ E0, such that w is on the path added to
v0 in the construction of F . Since the path from v0 to w has no other entry than
v0 and since v > w, we must have v > v0. Hence w is on the the graph obtained
when E(v) is desingularized. Therefore F (v) is a desingularization of E(v).

The following corollary follows from Lemma 7.7 and Lemma 7.4.

Corollary 7.8. Let E be a directed graph, F a desingularization of E and
v ∈ E0. Then E(v) satisfies (i) and (ii) of Theorem 7.3 if and only if F (v) satisfies
(i) and (ii) of Theorem 7.3.

The next proposition identifies the largest type I ideal of the C∗-algebra of
a row-finite graph E with no sinks. The first part of the proposition, which will
be needed later, is written for a general graph as it is proven without the need of
the property that E is row-finite and has no sinks.

Proposition 7.9. Let E be a directed graph and

H = {v ∈ E0 : E(v) satisfies (i) and (ii) of Theorem 7 .3}.
Then

(i) H is a hereditary saturated subset of E0.
(ii) If E is a row-finite graph with no sinks then IH is the largest type I

ideal of C∗(E).

Proof. We first prove (i). That H is hereditary follows from v > w ⇒ E(v) ⊇
E(w). We prove now that H is saturated. Suppose v ∈ E0 and {w ∈ E0 : v >
w} ⊆ H. Let 4(v) = {e ∈ E1 : o(e) = v}. Note that ∀e ∈ 4(v), t(e) ∈ H. If
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there is a circuit at v, i.e., v is a vertex of some circuit, then v > v, implying that
v ∈ H. Suppose there are no circuits at v. If there is a vertex w ∈ E(v)0 on a
circuit, then it is in E(t(e))0 for some e ∈ 4(v). But t(e) ∈ H, hence w cannot
be on multiple circuits, i.e, E(v) has no non-terminal and non-transitory circuits.
Hence E(v) satisfies (i) of Theorem 7.3. Let λ ∈ E(v)∞, then ∃e ∈ 4(v) and
β ∈ E(t(e)) such that λ ∼ β. Since t(e) ∈ H, Nβ is finite. Using Remark 7.2 we
get that Nλ is finite. Therefore v ∈ H. Hence H is saturated.

To prove (ii), suppose E is row-finite with no sinks. Let F = Graph(H).
Clearly F satisfies (i) and (ii) of Theorem 7.3, hence by Theorem 7.3, C∗(F ) is
type I. Moreover, by Proposition 2.1 of [5], IH is Morita equivalent to C∗(F ).
Hence IH is type I. Let I be the largest type I ideal of C∗(E), then IH ⊆ I. Since
I is gauge invariant, I = IK for some hereditary saturated subset K of E0 that
includes H. We will prove that K ⊆ H. Let G = Graph(K). Since IK is Morita
equivalent to C∗(G), C∗(G) is type I, hence G satisfies (i) and (ii) of Theorem 7.3.
Let v ∈ K; since E(v) ⊆ G, E(v) satisfies (i) and (ii) of Theorem 7.3. Therefore
v ∈ H, hence K ⊆ H.

The next proposition generalizes Proposition 7.9.

Proposition 7.10. Let E be a directed graph and

H = {v ∈ E0 : E(v) satisfies (i) and (ii) of Theorem 7 .3}.
Then I(H,BH) is the largest type I ideal of C∗(E).

Proof. Let I(H′,S′) be the largest type I ideal of C∗(E) and let F be a desin-
gularization of E; then IH′

S′ is the largest type I ideal of C∗(F ). From (ii) of
Proposition 7.9, we get that H ′

S′ = {v ∈ F 0 : F (v) satisfies (i) and (ii) of Theo-
rem 7.3}.

We will prove that H ⊆ H ′. Let GH = Graph(H). Clearly GH satisfies (i)
and (ii) of Theorem 7.3, hence C∗(GH) is type I. By Proposition 2.1 of [5], IH is
Morita equivalent to C∗(GH). Therefore IH = I(H,∅) is type I. By the maximality
of I(H′,S′), I(H,∅) ⊆ I(H′,S′), implying that H ⊆ H ′.

We will prove that H ′ ⊆ H. Let GH′ = Graph(H ′). Then IH′ = I(H′,∅) ⊆
I(H′,S′). Hence IH′ is liminal. By Proposition 2.1 of [5], IH′ is Morita equivalent
to C∗(GH′), implying that C∗(GH′) is liminal. Hence GH′ satisfies (i) and (ii) of
Theorem 7.3.

Let v ∈ H ′. Since H ′ is hereditary and E(v)0 ⊆ H ′ it follows that E(v) is
a subgraph of GH′ . Thus E(v) satisfies (i) and (ii) of Theorem 7.3. Therefore
v ∈ H, hence H ′ ⊆ H.

Since S′ ⊆ BH , as H = H ′, it remains to prove that BH ⊆ S′. Let v0 ∈ BH .
To show that v0 ∈ S′ we will show that ∀n > Nv0 , vn ∈ HS′ i.e., F (vn) satisfies
(i) and (ii) of Theorem 7.3. Let n > Nv0 and suppose F (vn) does not satisfy (i)
of Theorem 7.3. Let α be a non-terminal and non-transitory circuit in F (vn), and
let v ∈ α0.

If v is on the infinite path added to v0 in the construction of F then v0 is in
the circuit α. Notice that vn > v > v0. Recall that ∀k > Nv0 , vk emits exactly two
edges, one pointing to vk+1 and one pointing to a vertex in H. Following along
α, we get that v > w for some vertex w ∈ H of α. But H is hereditary, therefore
v0 ∈ H, which contradicts to the fact that H ∩BH = ∅.
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Suppose now that v is not on the infinite path added to v0. Let p be a path
from vn to v. Then p must contain a vertex, say w, in H. Notice that w > v
which implies that v ∈ F (w). Since F (w)0 is hereditary, α is in the graph F (w).
Hence F (w) contains a non-terminal and non-transitory circuit. Since w ∈ H,
E(w) satisfies (i) and (ii) of Theorem 7.3. But this contradicts to Corollary 7.8.
Therefore F (vn) satisfies (i) of Theorem 7.3.

To prove that F (vn) satisfies (ii) of Theorem 7.3, let λ ∈ F (vn)∞. Either λ
is on the tail added to v0 on the construction of F or λ0 contains a vertex in H.

If λ is on the tail added to v0 then Nλ = 0. Otherwise let w ∈ λ0 ∩H. Then
λ = pµ for some p ∈ F (vn)∗ and some µ ∈ F (vn)∞ with o(p) = vn, t(p) = w =
o(µ), implying that λ ∼ µ. Since w ∈ H, E(w) satisfies (i) and (ii) of Theorem 7.3.
By Corollary 7.8, we get that F (w) satisfies (i) and (ii) of Theorem 7.3. Hence Nµ

is finite and Remark 7.2 implies that Nλ is finite. Therefore F (vn) satisfies (ii) of
Theorem 7.3.

We have established that F (vn) satisfies (i) and (ii) of Theorem 7.3. There-
fore vn ∈ HS′ and hence BH ⊆ S′. This concludes the proof.
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