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1. INTRODUCTION

A continuous operator acting on a topological vector space X is called hypercyclic
provided there exists a vector x ∈ X such that its orbit {Tnx : n > 1} is dense
in X. Such a vector is called a hypercyclic vector for T . The set of hypercyclic
vectors will be denoted by HC(T ). The first example of hypercyclic operator was
given by Birkhoff in 1929 ([4]), who has shown that the operator of translation by
a non-zero complex number is hypercyclic on the space of all entire functions. For
a complete account on hypercyclicity, we refer to [9].

The main focus of our study is the hypercyclic behavior for composition
operators. Let us denote by H2(D) the Hardy space on the unit disk D, and by
Aut(D) the set of automorphisms of D. For ϕ in Aut(D), the hypercyclicity of the
composition operator Cϕ defined on H2(D) by Cϕ(f) = f ◦ ϕ is well understood
since the work of Bourdon and Shapiro ([6]).

Theorem 1.1. Cϕ is hypercyclic on H2(D) if and only if ϕ has no fixed
point in D.

This theorem strengthens a previous result of Seidel and Walsh ([14]), who
proved the same theorem for Cϕ acting on the space of holomorphic functions
on D.

We will concentrate on the common hypercyclicity of a family of operators.
Given a family (Tλ)λ∈Λ of hypercyclic operators onX, we ask whether it is possible
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to find a single vector x which is hypercyclic for each Tλ. Observe that if the family
is countable, and if X is an F -space, a Baire category argument implies that this is
always possible: indeed, it turns out that HC(T ) is either empty or a dense Gδ set.
For uncountable families, the first positive result was obtained by E. Abakumov
and J. Gordon ([1]), improving a theorem of Rolewicz, as follows.

Theorem 1.2. Let B be the backward shift acting on `2, defined by the
formula B(xi)i>0 = (xi+1)i>0. There exists a common hypercyclic vector for the
operators λB, λ > 1.

In Section 2, we will recall the construction made in the paper of Abakumov
and Gordon. We will deduce a criterion for common hypercyclicity of multiples
of a single operator, and we will apply this criterion to adjoints of multipliers.
Section 3 is devoted to some positive and negative results for the problem of
simultaneous hypercyclicity of composition operators. In particular, Theorem 3.3
below is a simultaneous version of a theorem of Seidel and Walsh. Let us mention
that the situation here is more complicated than in Birkhoff’s theorem, since you
have to handle not only translations, but also homotheties. Finally, in Section 4,
we provide some remarks and problems. In particular, we give a continuous analog
to some well-known theorems on weighted shifts.

2. ADJOINTS OF MULTIPLIERS

2.1. The size of the set of common hypercyclic vectors. We begin
by the following result, suggested by J. Saint-Raymond (a particular case of this
result was used in Section 3.4 of [1]).

Proposition 2.1. Let X be an F -space, A ⊂ L(X) such that A is a count-
able union of compact sets. Then

⋂
T∈A

HC(T ) is a Gδ set.

Proof. Define M =
{
(T, x) ∈ A × X : x /∈ HC(T )

}
, and let

(Bm

)
be a

countable basis of open sets in X. Then

M c =
{
(T, x) ∈ A×X : x ∈ HC(T )

}
=

⋂

m>1

⋃

n>0

{
(T, x) : Tnx ∈ Bm

}
.

In particular, M c is a Gδ set in A × X. Let us write M =
⋃

k>1

Fk (respectively

A =
⋃

p>1

Ap) where each Fk is closed in A×X (respectively each Ap is compact). If

π : L(X)×X → X denotes the projection of L(X)×X onto the second coordinate,
we deduce that

π(M) = π
( ⋃

k>1

Fk

)
=

⋃

k>1

⋃

p>1

π
(
Fk ∩ (Ap ×X)

)
.

Each set π
(
Fk ∩ (Ap ×X)

)
is closed in X since Ap is compact and Fk is closed.

Therefore, π(M) is Fσ. Now, π(M) =
[ ⋂

T∈A

HC(T )
]c, and this gives the result.
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The previous proposition does not ensure that
⋂

T∈A

HC(T ) is not empty. But

as soon as this is the case, we should control the size of this set.

Corollary 2.2. Let X be an F -space, A ⊂ L(X). Assume that:
(i) A is a countable union of compact sets;
(ii)

⋂
T∈A

HC(T ) 6= ∅;
(iii) there exists S ∈ A which commutes with all T ∈ A.

Then
⋂

T∈A

HC(T ) is residual.

Proof. Pick x ∈ ⋂
T∈A

HC(T ), and S as in (iii). It is straightforward to check

that the dense set {Skx : k > 1} is contained in
⋂

T∈A

HC(T ).

2.2. Abakumov-Gordon’s construction. Our proofs will be constructive
ones. We need the following approximation tool, which is the main construction
done in the paper of Abakumov and Gordon.

Lemma 2.3. There exist an integer k0 > 1 and a function j : {n ∈ N : n >
k0} → N such that, for any sequence (αl)l>1 of positive real numbers, there exists
a sequence (Mk)k>k0 of positive integers and a sequence (rk)k>k0 of positive real
numbers satisfying:

(i) (Mk) is increasing, Mk+1 −Mk → +∞;
(ii) (rk) is decreasing, rk+1

rk
→ 0;

(iii) for any l ∈ N, ε > 0, λ > 1, K > 0, there exists k > K such that

j(k) = l and |λMkrk − αl| < ε.

j is a choice function. This lemma can be seen as an uncountable Baire type
theorem. It is trivial that

∀λ > 1, ∃(Mk)k∈N ∈ N, (rk)k∈N ∈ R such that {λMkrk} is dense in R+.

Lemma 2.3 says

∃(Mk)k∈N ∈ N, (rk)k∈N ∈ R such that ∀λ > 1, {λMkrk} is dense in R+.

We will also need an additive version of this result, obtained by setting Xk =
− ln rk.

Lemma 2.4. There exist an integer k0 > 1, a function j : {n ∈ N : n >
k0} → N, a sequence (Mk)k>k0 of positive integers and a sequence (Xk)k>k0 of
real numbers such that:

(i) (Mk) is increasing, Mk+1 −Mk → +∞;
(ii) (Xk) is increasing, Xk+1 −Xk → +∞;
(iii) for any l ∈ N, ε > 0, a > 0, K > 0, there exists k > K such that

j(k) = l and
∣∣Mka−Xk

∣∣ < ε.

2.3. A criterion for common hypercyclicity. If one wants to show that
an operator T is hypercyclic, the most useful tool is the hypercyclicity criterion
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formulated first by C. Kitai (see [10] for the original statement, or Corollary 1.5
from [8] for a more general one). We give here a sufficient condition for the
existence of a common hypercyclic vector for all multiples of an operator with a
dense generalized kernel.

Theorem 2.5. Let X be a separable Banach space, and T ∈ L(X). Assume
that:

(i) V =
⋃
n

Ker(Tn) is dense in X;

(ii) there exists S : V → X with TS = IdV and ‖Sx‖ 6 ‖x‖ for all x in V .
Then

⋂
λ>1

HC(λT ) is a dense Gδ set.

Proof. By Corollary 2.2, it is enough to prove that
⋂

λ>1

HC(λT ) is non-empty.

Fix (vl) a dense sequence in V , and set αl = ‖vl‖. Lemma 2.3 gives a function j
and sequences (Mk) and (rk). For k > k0, let us set:

dk = rk − rk+1 > 0;

wk = vj(k) if TMk+1−Mkvj(k) = 0, wk = 0 otherwise;

yk =
dk

‖wk‖S
Mkwk if wk 6= 0, yk = 0 otherwise.

We claim that f =
∑

m>k0

ym is hypercyclic for each λT , with λ > 1. First, observe

that if m < k, TMkSMmwm = TMk−Mmwm = 0, which implies

‖TMkf‖ =
∥∥∥

∑

m>k

dm

‖wm‖T
MkSMmwm

∥∥∥ 6
∑

m>k

dk = rk.

Take now ε > 0 and l ∈ N. By Lemma 2.3, there exists k ∈ N such that j(k) = l
and wk = vl, |λMkrk − ‖vl‖| 6 ε, and rk+1

rk
(ε+ ‖vl‖) 6 ε. Then

‖(λT )Mkf − vl‖ 6
∥∥∥λMk

dk

‖vl‖vl − vl

∥∥∥ +
∥∥∥

∑

m>k

λMk
dm

‖wm‖T
MkSMmwm

∥∥∥

6 ‖vl‖
(∣∣∣λ

Mkrk
‖vl‖ − 1

∣∣∣ +
λMkrk+1

‖vl‖
)

+ λMkrk+1

6 ε+ 2λMkrk+1 6 ε+ 2(ε+ ‖vl‖)rk+1

rk
6 3ε.

This achieves to prove that f is hypercyclic for λT .

Hypercyclic operators are strongly connected with the existence of invariant
subspaces. The following corollary illustrates this link.

Corollary 2.6. Under the assumptions of Theorem 2.5, there exists a
dense subspace of X, invariant by T , whose elements, except 0, are hypercyclic
vectors for λT , with λ > 1.

Proof. Take x in
⋂

λ>1

HC(λT ). Then

M = {p(T )x : p is a polynomial}
answers the question: the proof given by P.S. Bourdon in [5] also works in this
setting.
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2.4. Application to adjoints of multipliers.

Corollary 2.7. Let ϕ be a nonconstant inner function, and Mϕ the asso-
ciated multiplier on H2(D) (defined by Mϕ(f) = ϕf). Then

⋂
λ>1

HC(λM∗
ϕ) is a

residual set.

By choosing ϕ(z) = z, we retrieve Theorem 1.2.

Proof. It is plain that ker(M∗
ϕ)n = (ϕnH2)⊥. Let us recall the following

result from pp. 34–35 of [11]: let E be a normed space, and (En) a sequence of
subspaces of E. We define:

lim En =
{
x ∈ E : lim

n
dist(x,En) = 0

}
.

If E = H2, and if En = (θnH
2)⊥, where (θn) is a sequence of inner functions, then

the following equivalence holds

lim
(
θnH

2(D))⊥ = H2(D) ⇔ ∀z ∈ D, lim
n
θn(z) = 0.

In our context, θn = ϕn, and (ϕnH2)⊥ ⊂ (ϕn+1H2)⊥. So, lim(ϕnH2)⊥ ⊂⋃
n
(ϕnH2)⊥. Now, since ϕ is not constant, for each z in D, ϕn(z) → 0, and

then
H2(D) ⊂

⋃
n

Ker
(
(M∗

ϕ)n
)
.

Thus (i) of Theorem 2.5 is satisfied.
If f ∈ V , and g ∈ H2(D), then one has

〈g,M∗
ϕMϕf〉 = 〈Mϕg,Mϕf〉 = 〈g, f〉 since ϕ is inner.

So we can take S = Mϕ in part (ii) of Theorem 2.5.

3. COMPOSITION OPERATORS

3.1. Geometry of the disk. For details on the background material of this
section, we refer to [15]. The automorphisms of D can be classified in function of
their fixed points. ϕ ∈ Aut(D) is called:

• parabolic if ϕ has a single (attractive) fixed point on T = ∂D;
• hyperbolic if ϕ has an attractive fixed point on T, and a second fixed point

on T;
• elliptic if ϕ has an attractive fixed point in D.

We are concerned by parabolic and hyperbolic automorphisms. It is easier to
describe their action on the right half-plane C+. Denote by σ : D → C+, σ(z) =
1+z
1−z the Cayley map from D onto C+. For ϕ ∈ Aut(D) with +1 as attractive fixed
point, set ψ = σ ◦ ϕ ◦ σ−1. Then one has:

• ψ(z) = z + ia where a ∈ R, a 6= 0, if ϕ is parabolic (a parabolic automor-
phism of D is conjugated to a translation);
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• ψ(z) = λ(z−ib)+ib, where λ > 1 and b ∈ R, if ϕ is hyperbolic (a hyperbolic
automorphism of D is conjugated to a positive dilation).

3.2. Main statements. In view of Theorem 1.1, a natural question appears:

Does there exist a common hypercyclic vector for all composition operators
Cϕ on H2(D), where ϕ ∈ Aut(D) has no fixed point in D?

Here, you can play with two parameters: you can choose the attractive fixed
point, and its attractivity (the scalars λ, a and b of the previous paragraph). The
following result shows that it is impossible to have a wide set of attractive fixed
points.

Theorem 3.1. Let A be a subset of Aut(D) such that, for any ϕ in A, ϕ
has no fixed point in D. Let B be the set of attractive fixed points of elements of A

B = {ω ∈ T : ∃ϕ ∈ A such that ω is the attractive fixed point of ϕ}.
If B has positive Lebesgue measure, then

⋂
ϕ∈A

HC(Cϕ) = ∅.

Here, Cϕ is considered as a composition operator on H2(D).

Proof. The theorem is a direct consequence of the following lemma, since a
function of H2(D) admits angular limits almost everywhere on the boundary.

Lemma 3.2. Suppose that ϕ ∈ Aut(D), and that ω ∈ T is the attractive fixed
point of ϕ. If f ∈ H2(D) is a hypercyclic vector for Cϕ, then f has no angular
limit at ω.

Proof. We denote ϕn = ϕ ◦ · · · ◦ ϕ (n times). By Denjoy-Wolff’s Theorem,
(ϕn(0)) converges non-tangentially to ω. Now, evaluation at 0 is continuous on
H2(D), and by hypercyclicity of f , there exist integers m and n, as large as
necessary, such that:

|f ◦ ϕm(0)− 0| < 1
4

and |f ◦ ϕn(0)− 1| < 1
4
.

In particular, f does not admit any non-tangential limit at ω.

So, essentially we have to fix the attractive fixed point, say +1, and the
question becomes:

Does there exist a common hypercyclic vector for all composition operators
Cϕ on H2(D), where ϕ ∈ Aut(D) has +1 as attractive fixed point?

We are not able to give a positive or a negative answer to this question. But
if we relax the conditions on the space, this will be the case. On the one hand,
we can forget the growth condition: if ϕ ∈ Aut(D), Cϕ is a composition operator
on H(D), the F -space of holomorphic functions on D. By the Seidel and Walsh
Theorem, we know that such a composition operator is hypercyclic. Under these
assumptions, there exists a common hypercyclic vector.
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Theorem 3.3. Let ω ∈ T. There exists a common hypercyclic vector for
all composition operators Cϕ acting on H(D), where ϕ ∈ Aut(D) admits ω as
attractive fixed point. Moreover, the set of common hypercyclic vectors is a residual
set.

On the other hand, we can ignore the regularity condition: by results of
Nordgren ([12]), Cϕ is also a composition operator on L2(T). An application of
Kitai’s criterion should prove its hypercyclicity. We directly prove a simultaneous
hypercyclicity theorem.

Theorem 3.4. Let ω ∈ T. There exists a common hypercyclic vector for all
composition operators Cϕ acting on L2(T), where ϕ ∈ Aut(D) admits ω as attrac-
tive fixed point. Moreover, the set of common hypercyclic vectors is a residual set.

The remaining part of this section is devoted to the proof of the previous
theorems. We will assume that ω = +1.

3.3. Proof of the holomorphic case. We take the model of the half-plane.
Define Ta and Sλ,b by

Ta(f)(z) = f(z + ia),

Sλ,b(f)(z) = f(λ(z − ib) + ib).

It suffices to show that
⋂

a 6=0

HC(Ta) and
⋂

λ>1
b∈R

HC(Sλ,b) are dense Gδ sets. Until the

end of this section, we fix (δk), 0 < δk < 1, a sequence which converges to 0, and
(Pl) a sequence in H(C+) such that, for any µ > 1 and any τ ∈ R,

(
Pl(µz−µiτ)

)
is

dense in H(C+) (for example, (Pl) could be the sequence of all polynomials with
coefficients in Q + iQ). We handle separately the parabolic and the hyperbolic
case.

3.3.1. Parabolic automorphisms. By Corollary 2.2, it is enough to prove
for instance that

⋂
a>0

HC(Ta) is not empty. We fix sequences (Mk) and (Xk) as in

Lemma 2.4. For k > k0 + 1, let us set

Rk = min
(Xk+1 −Xk

2
,
Xk −Xk−1

2

)
.

We build by induction rectangles Ck, Dk and Γk, for k > k0 + 1, beginning by
the initialization Γk0 = {(1, 0)}. For k > k0 + 1, fix Ck the square whose center
is (Rk/2, 0) and whose side has length Rk − δk. Observe that, for any compact
subset K of C+, for k large enough, K is contained in Ck. Set Dk = Ck +iXk. The
squares (Dk) are disjoint. Moreover, there exists a rectangle Γk which contains
Γk−1, Dk, but which has empty intersection with Dk+1.

We then define a sequence (πk)k>k0 of polynomials. First, we set πk0(z) = 1.
Next, for k > k0, Runge’s Theorem gives a polynomial πk satisfying:

|πk(z)− Pl(z − iXk)| 6 1
2k

if z ∈ Dk and j(k) = l;

|πk(z)− πk−1(z)| 6 1
2k

if z ∈ Γk−1.
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The sequence (πk) converges uniformly on each compact subset of C+. Let
us denote by f its limit. Observe that, for each z ∈ Γk, we have

|f(z)− πk(z)| 6 |πk(z)− πk+1(z)|+ |πk+1(z)− πk+2(z)|+ · · · 6 1
2k
.

We claim that f is hypercyclic for each Ta, with a > 0. Indeed, fix l ∈ N, K a
compact subset of C+, and η > 0 such that K1 = K+B(0, η) ⊂ C+. Let 0 < δ < η

with

z1, z2 ∈ K1 ∧ |z1 − z2| 6 δ ⇒ |Pl(z1)− Pl(z2)| 6 ε.

There exists an integer k such that j(k) = l, 1
2k 6 ε, K1 ⊂ Ck, and |aMk−Xk| 6 δ.

Then, for z ∈ K, z + iMka− iXk ∈ K1 ⊂ Ck, and therefore z + iMka ∈ Dk. This
implies that

|[Ta(f)]Mk(z)− Pl(z)| 6 ε+ |πk(z + iMka)− Pl(z)|
6 2ε+ |Pl(z + iMka− iXk)− Pl(z)| 6 3ε.

3.3.2. Hyperbolic automorphisms. Here, dilations do not commute, and
we need to prove that

⋂
λ,b

HC(Sλ,b) is dense. First, by applying Lemma 2.3 to the

sequence (αl) identically one, one gets sequences (Mk) and (rk). For k > k0 + 1,
we set

Rk = δk min

(√
rk−1
rk

− 1
√

rk−1
rk

+ 1
,
1−

√
rk+1
rk√

rk+1
rk

+ 1

)
.

We always fix Γk0 = {(1, 0)}, and for k > k0, let Ck be the hyperbolic disk whose
center is (1, 0) and whose radius is Rk

Ck =
{
z ∈ C+ :

|z − 1|
|z + 1| 6 Rk

}
.

LetDk be the image of Ck by the homothety of center 0 and of ratio 1
rk

. Then (Dk)
are disjoint sets, and by construction there exists a rectangle Γk which contains
Γk−1 and Dk, but whose intersection with Dk+1 is empty (see Figure 1).

Finally, we set πk0(z) = 1, and if k > k0, l = j(k), Runge’s Theorem gives
us a polynomial πk which satisfies:

|πk(z)− Pl(rkz)| 6 1
2k

if z ∈ Dk,

|πk(z)− πk−1(z)| 6 1
2k

if z ∈ Γk−1.
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Γk−1

Dk

1

rk−1

1

rk

1
√

rk−1rk

Figure 1. The hyperbolic construction

As previously, (πk) converges uniformly on each compact of C+ to a function f ,
with

|f(z)− πk(z)| 6 1
2k

if z ∈ Γk.

For µ > 1, we claim that g(z) = f(µz) is hypercyclic for each Sλ,b, λ > 1,
b ∈ R. Indeed, fix l ∈ N, ε > 0, K a compact subset of C+ and η > 0 such that
K1 = K +B(0, η) ⊂ C+. Let 0 < δ < η with

z1, z2 ∈ K1 ∧ |z1 − z2| 6 δ ⇒ |Pl(µz1 − µib)− Pl(µz2 − µib)| 6 ε.

By Lemma 2.3, there exists an integer k such that j(k) = l, 1
2k 6 ε, µλMkrk(K −

ib) + µrkib ⊂ Ck, and, moreover, if M is such that z ∈ K ⇒ |z| 6 M , then

µ|λMkrk − 1|(M + |b|) + µrk|b| < δ.

Then, if z ∈ K, one has µλMk(z − ib) + µib ∈ Dk ⊂ Γk, and so

|[Sλ,b(g)]Mk(z)− Pl(µz − µib)| = |f(
µλMk(z − ib) + µib

)− Pl(µz − µib)|
6 ε+ |πk(µλMk(z − ib) + µib)− Pl(µz − µib)|
6 2ε+ |Pl(µλMkrk(z − ib) + µrkib)− Pl(µz − µib)| 6 3ε,

where the last inequality comes from

|µλMkrk(z − ib) + µrkib− µz − µib| 6 µ|λMkrk − 1|(|z|+ |b|) + µrk|b| < δ.

Therefore, {f(µz) : µ > 1} ⊂ ⋂
λ>1
b∈R

HC(Sλ,b), and {f(µz) : µ > 1} is dense in

H(C+) since f is hypercyclic for S2,0.
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3.4. Proof of the L2-case. Let λi be the probability measure on R defined by
dλi(t) = π−1(1 + t2)−1 dt (λi is the image of the Lebesgue measure on T by σ).
Notice that f ∈ L2(T) ⇔ f ◦ σ−1 ∈ L2(R, dλi), and that

+∞∫

−∞
|f ◦ σ−1(it)|2 dλi(t) =

1
2π

π∫

−π

|f(eiθ)|2 dθ.

Let us change the notation to avoid the integration on iR. For λ > 1, a ∈ R,
a 6= 0, and b ∈ R, we now set

Ta(f)(x) = f(x+ a),

Sλ,b(f)(x) = f(λ(x− b) + b).

We prove a slightly more precise result.

Theorem 3.5. Let p > 1, α > 1
2 , and consider Ta and Sλ,b as operators

on Lp
(
R, dt

(1+t2)α

)
. Then

⋂
a 6=0

HC(Ta) and
⋂

λ>1
b∈R

HC(Sλ,b) are dense Gδ sets in

Lp
(
R, dt

(1+t2)α

)
.

Taking p = 2 and α = 1 gives exactly Theorem 3.4. The following lemma
will be useful for our purpose.

Lemma 3.6. Let (vk)k>1 be a non-decreasing sequence of positive numbers,
which tends to +∞. Then there exists a non-decreasing sequence (uk)k>1 of posi-
tive numbers which tends to +∞, and such that:

(i)
∑
k>1

uk

k3 < +∞;

(ii) uk

v3
k

→ 0 for k → +∞;
(iii)

∑
m>k

um

((m−k)+vm)3 → 0 for k → +∞.

Proof. For k > 1, we set u′k = inf(k, v[k/2], v[k/2]+1, . . . , vk), and uk = inf
l>k

u′l.

Assertions (i) and (ii) are trivial. For (iii)
∑

m>2k

um

((m− k) + vm)3
=

∑

m>k

um+k

(m+ vm+k)3
6

∑

m>k

1
m2

→ 0;

∑

k<m62k

um

((m− k) + vm)3
6 vk

∑

m6k

1
(m+ vk)3

6 C

vk
→ 0.

3.4.1. Parabolic automorphisms. First, we prove that
⋂

a>0
HC(Ta) is

not empty (and therefore is a dense Gδ set) for α = 2. We set dµ = dt
(1+t2)2 ,

and let C > 0 be a constant such that, for x > 0,
+∞∫
x

dµ 6 C
x3 . We consider

sequences (Mk), (Xk) as in Lemma 2.4. In particular, we will assume that Xk > k.
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For k > k0, let us define Rk = inf
(

Xk+1−Xk

2 , Xk−Xk−1
2 , Xk

2

)
. Without lost of

generality, we can always assume that (Rk) is increasing. Next, (uk) is defined
by applying Lemma 3.6 to the sequence (vk) with vk = Rk − 2. We fix (fl)
a dense sequence in Lp(R,dµ) of compactly supported bounded functions, with
‖fl‖p

∞ 6 ul. For k > k0 and l = j(k), let us set:

wk = fl if supp fl ⊂ [−Rk;Rk], wk = 0 otherwise;

hk(x) = wk(x−Xk).

Then (hk) have mutually disjoint supports, and we define finally f =
∑

k>k0

hk.

First of all, f ∈ Lp(R,dµ). Indeed,

‖f‖p
p 6

∑

k>k0

+∞∫

Xk/2

|wk(x−Xk)|p dµ 6 C
∑

k>k0

23uk

X3
k

< +∞.

We claim that f is hypercyclic for Ta, with a > 0. Indeed, let l ∈ N, ε > 0
and 0 < δ < 1 whose value will be precised later. There exists k > k0, as large
as necessary, such that j(k) = l, supp fl ⊂ [−Rk, Rk], |Mka − Xk| 6 δ, and
Xm+1 −Xm > 1 for m > k. Then

∥∥TMk
a f − fl

∥∥
p

6
∥∥TMk

a hk − fl

∥∥
p

+
∥∥∥

∑

m>k

TMk
a hm

∥∥∥
p

+
∥∥∥

∑

m<k

TMk
a hm

∥∥∥
p
.

We estimate now the three terms in the right hand side. First,

‖TMk
a hk − fl‖p = ‖TMka−Xk

fl − fl‖p 6 ε

as soon as δ is small enough.
Secondly,

∥∥∥
∑

m>k

TMk
a hm

∥∥∥
p

p
6

∑

m>k

+∞∫

Xm−Rm−Mka

|hm(x+Mka)|p dµ

6 C
∑

m>k

um

(Xm −Xk −Rm − 1)3
.

Observe that

Xm −Xk > Xm −Xm−1 + · · ·+Xk+1 −Xk > 2Rm +m− k − 1.

We deduce that
∥∥∥

∑

m>k

TMk
a hm

∥∥∥
p

p
6 C

∑

m>k

um

((m− k) +Rm − 2)3
,

and this last quantity is smaller than ε if k is large enough.
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Thirdly,

∥∥∥
∑

m<k

TMkahm

∥∥∥
p

p
6

∑

m<k

uk

−Mka+Xm+Rm∫

−Mka+Xm−Rm

dµ

6 C
uk

(Mka−Xk−1 −Rk−1)3
(disjoint supports)

6 C
uk

(Xk −Xk−1 −Rk−1 − 1)3

6 C
uk

(Rk − 1)3
→ 0 for k → +∞.

It remains to prove the case α 6= 2. We use a slightly modified classical
lemma (see p. 111, “The hypercyclic comparison principle” from [15]), whose proof
is straightforward.

Lemma 3.7. Let X ⊂ Y be topological vector spaces, (ϕλ)λ∈Λ a family of
continuous operators on X and Y . Assume that:

(i) the inclusion is continuous;
(ii) X is dense in Y ,
(iii) f ∈ X is a common hypercyclic vector for the family (ϕλ)λ∈Λ, considered

as operators on X.
Then f is a common hypercyclic vector for the family (ϕλ)λ∈Λ, considered

as operators on Y .

So, if α > 2, we apply the lemma with

X = Lp
(
R,

dt
(1 + t2)2

)
, Y = Lp

(
R,

dt
(1 + t2)α

)
.

If 1
2 < α < 2, set ε = α− 1

2 . If f ∈ Lp
(
R, dt

(1+t2)α

)
, Hölder’s inequality gives

( ∫

R

|f |p
(1 + t2)1/4+3ε/4

dt
(1 + t2)1/4+ε/4

)1/p

6 C

( ∫

R

|f |2p

(1 + t2)1/2+3ε/2
dt

)1/2p

.

Repeated applications of this inequality show that

∃q > 1, ∃β > 2 such that Lq
(
R,

dt
(1 + t2)β

)
⊂ Lp

(
R,

dt
(1 + t2)α

)
,

and the lemma works.

3.4.2. Hyperbolic automorphisms. We just prove the case α = 2. First,
apply Lemma 2.3 with the sequence (αl) identically one, to obtain sequences (Mk)
and (rk). A variant of Lemma 3.6 gives a nondecreasing sequence (uk), tending
to +∞, and such that:

(i)
∑

k>k0

uk

k3 < +∞;

(ii) uk

√
rk

rk−1
→ 0 for k → +∞;



Common hypercyclic vectors for composition operators 365

(iii) for all b ∈ R,
∑

m>k

um(
2m−k

√
rk

rk−1
−rkb+b

)3 → 0 for k → +∞.

We fix (fl)l>1 a sequence of continuous functions, with supp fl ⊂
[− l;− 1

l

]∪[
1
l ; l

]
, ‖fl‖p

∞ 6 ul, and such that, for any y in R and any µ > 1, (fl(µx+ µy))l>1

is dense in Lp(R, dµ).
For k > k0, let us set Ik =

]
1√

rkrk−1
; 1√

rkrk+1

[
, and Jk = −Ik; (Ik) and

(Jk) are two families of mutually disjoint intervals. We define the function f by
f(x) = fj(k)(rkx) if x belongs to Ik ∪ Jk, and f(x) = 0 if x is outside

⋃
k

Ik ∪ Jk.

We claim that f belongs to Lp(R, dµ). Indeed, the following inequalities
hold:

+∞∫

0

|f(x)|p dµ 6
∑

k>k0

+∞∫

1√
rkrk−1

|fj(k)|p dµ

6
∑

k>k0

ukµ
([ 1√

rkrk−1
; +∞

[)
< +∞.

Fix λ > 1, b ∈ R. We now prove that f is hypercyclic for Sλ,b. Let l ∈ N,
ε > 0, and 0 < δ < 1

2 whose precise value will be determined later. There exists

k > k0 such that j(k) = l, |λMkrk − 1| < δ, and, for m > k,
√

rm−1
rm

> 2. Then

+∞∫

−∞
|SMk

λ,b (f)(x)− fl(x− b)|p dµ

6
∑

m<k

∫

λMk (x−b)+b∈Im

|fj(m)(λMkrm(x− b) + rmb)− fl(x− b)|p dµ

+
∫

λMk (x−b)+b∈Ik

|fl(λMkrk(x− b) + rkb)− fl(x− b)|p dµ

+
∑

m>k

∫

λMk (x−b)+b∈Im

|fj(m)(λMkrm(x− b)+rmb)−fl(x− b)|p dµ+S′1+S′2+S′3

6 S1 + S2 + S3 + S′1 + S′2 + S′3,

where S′i is the same as Si, replacing Im by Jm. Now:

(1) S1 6 2pukµ
( ⋃

m<k

Im−b
λMk

+ b
)
. Since

⋃

m<k

Im − b

λMk
+ b ⊂

[
b− b

λMk
; b+

1
λMk

√
rkrk−1

− b

λMk

]
,

we obtain that

S1 6 2puk
1

λMk
√
rkrk−1

6 2p+1uk

√
rk
rk−1

.
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For k large enough, |S1| 6 ε.

(2) We have |λMkrk(x − b) + rkb − (x − b)| 6 δ|x − b| + rk|b|. By uniform
continuity of fl, if δ is small enough, and k is large enough, |S2| 6 ε.

(3) We have

S3 6 2p
∑

m>k

umµ
(Im − b

λMk
+ b

)
6 A1

∑

m>k

um
1(

rk√
rmrm−1

− rkb+ b
)3

6 A2

∑

m>k

um(
2m−k

√
rk

rk−1
− rkb+ b

)3 ,

where this last inequality comes from

rk√
rmrm−1

=
√

rk
rk+1

× · · · ×
√
rm−1

rm
×

√
rk
rm−1

> 2m−k

√
rk
rk−1

.

For k large enough, S3 is smaller than ε.
S′i can be treated by the same method as Si. Therefore, f is hypercyclic for

Sλ,b. Now, as in the holomorphic case, it is not difficult to prove that in fact, for
each µ > 1, g(x) = f(µx) is hypercyclic for all Sλ,b. This achieves to prove that
the set of common hypercyclic vectors is dense.

4. FINAL REMARKS

4.1. Our interest on hypercyclicity originates from the following question: in
[7], J. Gordon and H. Hedenmalm characterized the composition operators on
the Hilbert space of square summable Dirichlet series H =

{
f(s) =

∑
n>1

ann
−s :

‖f‖2 :=
∑ |an|2 < +∞

}
. In [2] and [3], we began a comparison between the

properties of the operator Cφ and of its symbol φ. Pursuing this project, we
wanted to characterize the hypercyclic composition operators on H. The answer
is very simple.

Proposition 4.1. No composition operator on H is hypercyclic.

Proof. Let Cφ be such a composition operator, induced by φ(s) = c0s+ϕ(s),
c0 being an integer, and ϕ a Dirichlet series. If c0 = 1, Cφ is a contraction, and
therefore is never hypercyclic. If c0 = 0, by Lemma 11 of [2], φ2(C+) ⊂ C1/2+ε.
Now, take f in H2. Then

|f ◦ φn(+∞)|2 6 ‖f‖2ζ(2Reφn(+∞)) 6 ‖f‖2 max
(
ζ(1 + 2ε), ζ(2Reφ(+∞))

)
.

In particular, (Cn
φ (f)) cannot be dense in H.
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We do not know if there exists a supercyclic composition operator on H.

4.2. In [8], G. Godefroy and J. Shapiro proved that if ϕ is a holomorphic bounded
function on D, then M∗

ϕ is hypercyclic on H2(D) if and only if ϕ(D) ∩ T 6= ∅. In
view of Corollary 2.7, we ask whether there exists a common hypercyclic vector
for all λMϕ∗ , where λϕ(D) ∩ T 6= ∅.

4.3. We have proved that if the set B of fixed points of symbols has positive
measure, then there is no common hypercyclic vectors for composition operators
on H2(D), and that if the set is a single point, or even if it is countable, common
hypercylic vectors exist for composition operators on L2(T) or H(D). It could be
interesting to consider an intermediate case, like B = a zero measure Cantor set.

4.4. In view of Theorem 3.5, one may study the weights ω on R for which the
translation operator Tf(x) = f(x+1) and the homothety operator Sf(x) = f(2x)
are hypercyclic on L1(R, ω).

Definition 4.2. A positive continuous bounded function ω on R is called
a weight admissible for translation provided there exists C > 0 such that, for all
a ∈ R,

a∫

a−1

ω(x) dx 6 C

a+1∫

a

ω(x) dx.

It is called admissible for homothety if there exists C > 0 such that, for each
x, y ∈ R with 0 6 x 6 y or x 6 y 6 0,

y/2∫

x/2

ω(x) dx 6 C

y∫

x

ω(x) dx.

If ω is admissible for translation (respectively admissible for homothety), the
translation operator T (respectively the homothety operator S) is continuous on
L1(R, ω).

Theorem 4.3. Let ω be a continuous bounded positive function on R.
(i) If ω is admissible for translation, then T is hypercyclic on L1(R, ω) if

and only if there exists a sequence of integers (nk)k∈N such that
nk+q∫

nk−q

ω(x) dx→ 0 and

−nk+q∫

−nk−q

ω(x) dx→ 0 for k → +∞

for each q > 0.
(ii) If ω is admissible for homothety, S is hypercyclic on L1(R, ω) if and only

if there exists (nk)k∈N a sequence of integers such that

2nk b∫

2nk a

ω(x) dx→ 0 and

−2nk a∫

−2nk b

ω(x) dx→ 0 for k → +∞
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for each 0 < a 6 b.

This statement is the continuous version of Salas Theorem ([13]) on weighted
shifts.

Proof. (i) The condition is sufficient: we apply the hypercyclicity criterion,
as it is formulated in [9]. Let (Pj) be a dense sequence in L1(R, ω) of compactly
supported bounded functions. If suppPj ⊂ [−q, q], then

‖TnkPj‖ =

−nk+q∫

−nk−q

|Pj(x+ nk)|ω(x) dx 6 ‖Pj‖∞
−nk+q∫

−nk−q

ω(x) dx→ 0

for k → +∞. Take Af(x) = f(x − 1). A is a (possibly unbounded) right inverse
of T . It is straightforward that ‖AnkPj‖ → 0 when k → +∞.

The condition is necessary: by a diagonal argument, it suffices to prove that,
for all ε > 0 and all q > 0, there exists N arbitrarily large such that

N+q∫

N−q

ω(x) dx 6 ε and

−N+q∫

−N−q

ω(x) dx 6 ε.

We set A1 = inf
[−q,q]

ω, A2 = sup
R
ω. Since the set of hypercyclic vectors for T is

dense, there is a hypercyclic vector f ∈ L1(R, ω) such that

(4.1) ‖f − 1[−q,q]‖ 6 εA1

2A2
.

We can also find N arbitrarily large, N > 2q, such that

(4.2) ‖TNf − 1[−q,q]‖ 6 εA1

2A2
.

Since N > 2q, inequality (4.1) implies
N+q∫
N−q

|f(x)|ω(x) dx 6 ε
2 , whereas inequality

(4.2) gives
q∫
−q

|f(x + N) − 1|ω(x) dx 6 εA1
2A2

, which in turn proves
N+q∫
N−q

|f(x) −
1|ω(x) dx 6 ε

2 . Thus,
N+q∫

N−q

ω(x) dx 6 ε.

We proceed with the same method for the other inequality.
(ii) We prove that the condition is sufficient by using again Kitai’s crite-

rion, now with continuous functions whose supports are contained in intervals like
[−A,−δ] ∪ [δ,A], with 0 < δ 6 A. For the necessity, we fix 0 < a 6 b, and
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A1 = inf
[a,b]

ω, A2 = sup
R
ω. There exists f ∈ L1(R, ω) and N arbitrarily large (in

particular, 2Na > b) with

‖f − 1[a,b]‖ 6 εA1

2A2
,(4.3)

‖SNf − 1[a,b]‖ 6 εA1

2A2
.(4.4)

As previously, (4.3) gives
2N b∫
2N a

|f(x)|ω(x) dx 6 ε
2 , and (4.4) implies

2N b∫
2N a

|f(x) −
1|ω(x) dx 6 ε

2 . This in turn implies

2N b∫

2N a

ω(x) dx 6 ε.

Example 4.4. For the weight ω(x) = 1
1+|x| , the translation operator T is

hypercyclic, whereas the homothety operator S is not.

Now, suppose that the weight ω is symmetric (ω(−x) = −ω(x)), that it
decreases to 0 at infinity, and that 1 ∈ L1(R, ω). If (Ta)a>0 denotes the semi-
group of translations and (Sλ) the semigroup of homotheties, each Ta or Sλ acts
boundedly on L1(R, ω), and by Theorem 4.3 above, it is individually hypercyclic.
Minor modifications of the proof of Theorem 3.5 actually prove that there exists a
common hypercyclic vector for the whole family (Ta)a>0 ∪ (Sλ)λ>1. For instance,
in the course of the proof of the parabolic case, one should now impose that the
sequence (ul) goes to infinity and that it satisfies

∑

k>k0

uk

Xk+Rk∫

Xk−Rk

ω(t) dt < +∞.

Details are left to the reader.
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et de Géométrie
UMR 5467, Université Bordeaux 1
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