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Abstract. A global notion of Glimm halving for C∗-algebras is considered
which implies that every nonzero quotient of an algebra with this property
is antiliminal. We prove subtriviality and selection results for Banach spaces
of sections vanishing at infinity of a continuous field of Banach spaces. We
use them to prove the global Glimm halving property for strictly antiliminal
C∗-algebras with Hausdorff primitive ideal space of finite dimension. This
implies that a C∗-algebra A with Hausdorff primitive ideal space of finite
dimension must be purely infinite if its simple quotients are purely infinite.
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1. INTRODUCTION

A natural generalization of the notion of pure infiniteness to non-simple C∗-
algebras is given in the following definition. It is equivalent in the case of simple
algebras to the one given by J. Cuntz in [8].

Definition 1.1. ([19]) A C∗-algebra A is said to be purely infinite (for short
p.i. ) if and only if

(i) for every pair of positive elements a, b ∈ A+ such that b lies in the
closed two-sided ideal span(AaA) generated by a and for every ε > 0, there exists
an element d ∈ A such that ‖b− d∗ad‖ < ε ;

(ii) there is no character on A.

By Proposition 3.3(ii) and Theorem 4.16 of [19] this is equivalent to the
property that for every ε > 0 and a ∈ A there are u, v ∈ aAa with u∗v = 0 and
u∗u = v∗v = (a− ε)+ . (Here (a− ε)+ ∈ A means the positive part of a− ε · 1 in
the multiplier algebra M(A) of A.) Thus b = uv∗ satisfies b ∈ aAa, b2 = 0 and
(a− ε)2+ = u∗bv ∈ AbA.
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The Glimm halving lemma (Lemma 6.7.1 of [24]) can be equivalently restated
as follows: Given any nonzero positive element a in a C∗-algebra A such that aAa
is not a commutative algebra, there exists a nonzero element b ∈ aAa with b2 = 0.
We put this local observation in a global setting by the following definition.

Definition 1.2. A C∗-algebra A is said to have the global Glimm halving
property if for every positive a ∈ A+ and every ε > 0, there exists b ∈ aAa such
that b2 = 0 and (a− ε)+ belongs to the closed (two-sided) ideal of A generated by
b.

(In this paper “ideal” will always mean “two-sided ideal”.)

Above we have seen that purely infinite C∗-algebras satisfy the global Glimm
halving property. If a C∗-algebra A has the global Glimm halving property then
A is strictly antiliminal, i.e. every quotient of A is antiliminal (or equivalently:
every hereditary C∗-subalgebra of A has only zero characters). In Section 4 we
show that a strictly antiliminal C∗-algebra A with Hausdorff primitive ideal space
of finite dimension satisfies the global Glimm halving property (Theorem 4.3).

In Section 5 we use the global Glimm halving property to derive that C∗-
algebras with Hausdorff primitive ideal space of finite dimension are purely infinite
if and only if all their simple quotients are purely infinite (Theorem 5.1).

To make the proofs concerning the global Glimm having property as transpar-
ent as possible we study in the preliminary Section 2 the Banach C0(X)-modules
(respectively C0(X)-algebras) of continuous sections vanishing at infinity of a con-
tinuous field of Banach spaces (respectively C∗-algebras). We call their axiomatic
characterizations as Banach C0(X)-modules “Banach bundles” and “C∗-bundles”
respectively. Among others we obtain simple proofs of the following result:

A Banach C0(X)-module B is a Banach bundle over a locally compact space
X if and only if B is a C0(X)-submodule of a commutative C∗-bundle over X
with nonzero commutative C∗-algebras as fibers (Theorem 2.7).

We get from Theorem 2.7 the following corollaries:
(i) Separable Banach bundles over compact metric spaces X are subtrivial,

i.e. are closed C(X)-submodules of C(X × [0, 1]) (Corollary 2.8).
(ii) Suppose that B is a separable Banach bundle over a second countable

locally compact space X. Then, for every linear functional ϕ of norm 6 1 on the
fiber By, there exists a contractive linear and C0(X)-module map ψ from B into
C0(X) such that ψ(a)(y) = ϕ(ay) for a ∈ B (Corollary 2.9).

We introduce a noncommutative (operator space) version of Banach bundles
over noncomutative C∗-algebras by these properties.

Another ingredient of our proofs is the notion of decomposition dimension.
In the case of Hausdorff spaces it coincides with the usual covering dimension, cf.
Lemma 3.2. (The covering dimension can be strictly smaller than the decompo-
sition dimension for general T0 spaces, like primitive ideal spaces.) It allows to
construct in some cases in a controlled way classical subbundles of finite dimension
of some Banach subbundles of C∗-bundles in the proofs of Theorems 4.3 and 5.1.

Suppose that A is a unital C∗-algebra with primitive ideal space Prim(A)
isomorphic to the Hilbert cube [0, 1]∞ and simple quotients isomorphic to O2. Is A
purely infinite ? We have the feeling that this question is related to the observation
that there are nonstable separable C∗-algebras with the Hilbert cube as primitive
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ideal space and with simple quotients isomorphic to the compact operators on
`2(N), cf. Corollary 3.7. We study some related questions in Sections 3 and 6.

2. PRELIMINARIES

We recall in this section a few basic results of the theory of (not necessarily locally
trivial) continuous fields of C∗-algebras, of “Banach bundles” and on represen-
tations of C0((0, 1],Mn). Since we need later to work also with Banach bundles
(i.e. with those Banach C0(X)sa-modules which are Banach spaces of continuous
sections vanishing at infinity of a continuous field over X of Banach spaces), we
also list some basic results on them and outline how the reader can modify the
corresponding arguments of [9], [10], [2], [1], [3] and [20] to get elementary proofs
of these results. It requires that some of our formulas in the case of C∗-bundles
look more complicate than in the cited papers, but this is necessary to obtain suf-
ficient generality also working in the case of Banach bundles. (In the subsection
on Banach bundles we give detailed proofs of these general formulas.)

2.1. C(X)-algebras and C∗-bundles. Let Y be a not necessarily separated
topological space. By Cb(Y ) we denote the C∗-algebra of bounded continuous
functions on Y with values in the complex numbers C. Given a Hausdorff locally
compact space X, let C0(X) denote the C∗-algebra of continuous functions on X
with values in C and which vanish at infinity. Then we naturally identify Cb(X)
with the multiplier C∗-algebra of C0(X).

Definition 2.1. ([15]) A C(X)-algebra is a C∗-algebra A endowed with a
nondegenerate ∗-morphism from C0(X) in the center Z(M(A)) of the multiplier
C∗-algebra M(A) of A.

Here “nondegenerate” means that C0(X)A is dense in A. Thus A is nothing
else but a quotient of C0(X,A) by a closed ideal and the C0(X)-module structure
is defined by this epimorphism. The homomorphism from C0(X) to Z(M(A))
need not to be faithful.

The Cohen factorization theorem ([6], [12]), or the description of a C(X)-
algebra A as a quotient of C0(X,A) shows that the set of products C0(Ω)A =
{fa : f ∈ C0(Ω), a ∈ A} is a closed ideal of A if Ω is an open subset of X. In
particular A = C0(X)+A.

If F ⊂ X is a closed subset we denote by A|F the quotient of A by the closed
ideal C0(X \F )A. Note that C0(Ω)A is also a Cb(Ω)-algebra if Ω is an open subset
of X and that A|F is also a Cb(F )-algebra, because C0(X \ F ) ⊂ C0(X) is the
kernel of the restriction map C0(X) → C0(F ) and C0(X \ F ) is contained in the
kernel of the quotient-action of C0(X) on A|F .

If y is a point of the Hausdorff space X, we write Ay for A|{y}, and we call
Ay the fiber of A at y ∈ X.

Given an element a ∈ A, let ay be the image of a in the fiber Ay, y ∈ X.
Since C0(X)+A = A (and since C0(X) →M(A) is contractive), we can natu-

rally and uniquely extend the action C0(X) →M(A) to a unital ∗-homomorphism
from Cb(X) ∼= C(βX) into the center of M(A). This yields (fa)y = f(y)ay for
f ∈ Cb(X), a ∈ A and y ∈ X, because (f − f(y))C0(X) ⊂ C0(X \ {y}).
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Thus, the function N(a) : y 7→ ‖ay‖ := ‖a+ C0(X \ {y})A‖ satisfies

(2.1) N(fa) = |f |N(a)

for a ∈ A and f ∈ Cb(X).
M. Rieffel ([26]) has remarked that N(a) is also given by

(2.2) N(a) : y ∈ X 7→ ‖ay‖ = inf{‖[1− f(y)]a+ fa‖ : f ∈ C0(X)sa},
and is always upper semicontinuous, because the function y ∈ X 7→ ‖[1− f(y)]a+
fa‖ is continuous for fixed f ∈ C0(X)sa.

Let Prim(A) denote the primitive ideal space of A, cf. Example 2.2.2. Since,
by the Dauns–Hofmann theorem (Corollary 4.4.8 in [24]), there is a natural iso-
morphism from Cb(Prim(A)) onto the center of M(A), we can equivalently define
a C(X)-algebra A by a continuous map η from Prim(A) into the Stone-Čech com-
pactification βX ofX such that ‖fa+J‖ = |f(η(J))|·‖a+J‖ for f ∈ C(βX), a ∈ A
and every primitive ideal J of A. The nondegeneracy condition A = C0(X)A in
our definition implies that η(Prim(A)) ⊂ X. Thus, ‖a‖ = sup{N(a)(y) : y ∈ X},
and for x ∈ Im(η) (and with the convention sup ∅ := 0), we have

(2.3) N(a)(x) = ‖ax‖ = sup{‖a+ J‖ : J ∈ Prim(A), η(J) = x}.
Obviously, this implies for a ∈ A and t ∈ [0,∞) that η maps the open

set U(a, t) := {J ∈ Prim(A) : ‖a + J‖ > t} onto the set N(a)−1(t,∞) ⊂ X.
Since the open sets U(a, t) build a base of the (Jacobson) topology of Prim(A)
(cf. 2.2.2.) and since, by (2.2), the functions N(a) are upper semicontinuous, we
get: The above introduced continuous map η : Prim(A) → X is open if and only
if the functions N(a) on X are continuous for all a ∈ A. (If η is open then
η(Prim(A)) is an open subset of X, but e.g. the map η : (0, 1] → [0, 1], induced by
C([0, 1]) →M(C0((0, 1])), has not a closed image.)

Definition 2.2. We say that the C(X)-algebra A is a C∗-bundle over X
if the function N(a) is moreover continuous for every a ∈ A ([20], [2]).

Sometimes we write continuous C∗-bundle if we want to underline that the
functions N(a) are continuous.

Since we have assumed that C0(X)A is dense in A, we get A = C0(X)+A
and then, from (2.1) and (C0(X)+)2 = C0(X)+, that N(a) is even in C0(X)+ for
a ∈ A.

It is well-known that A is a C∗-bundle over X if and only if A is the C∗-
algebra of continuous sections vanishing at infinity of a continuous field of C∗-
algebras over X in the sense of Definition 10.3.1 of [9], such that the fibers are the
Ax and the ∗-morphism from C0(X) into M(A) coincides with the multiplication
of continuous sections with functions ([2]; see also Subsections 2.6.3 and 2.6.4).

2.2. Examples of C∗-bundles.

2.2.1. If C is a C(X)-algebra and D is a C∗-algebra, the spatial tensor
product B = C⊗D is endowed with a structure of C(X)-algebra through the map
f ∈ C0(X) 7→ f ⊗ 1M(D) ∈ M(C ⊗ D). This C(X)-algebra is not in general a
C∗-bundle over X.
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If C = C0(X), the tensor product B = C0(X)⊗D ' C0(X,D) is a “trivial”
C∗-bundle over X with constant fiber Bx ∼= D. Thus, if A ⊂ B is a closed C0(X)-
submodule and A is a C∗-subalgebra of B then A is a C∗-bundle over X. If A
is only a closed C0(X)- or C0(X)sa-submodule of B, then A is a complex or real
Banach bundle over X in the sense of the below given Definition 2.6; see 2.4.3 and
Remark 2.5.

Let A be a separable C∗-bundle over X with exact fibers Ax. If O2 is the
unital Cuntz algebra generated by two isometries s1, s2 satisfying the relation
1O2 = s1s

∗
1 + s2s

∗
2 ([7]), then there exists a C(X)-linear ∗-monomorphism A ↪→

C(X)⊗O2 if and only if A is itself exact as a C∗-algebra, and this happens if and
only if for every C∗-algebra D, the C(X)-algebra A⊗D is again a C∗-bundle over
X (Theorem A.1 in [3] and [20]). There exists a separable continuous C∗-bundle
A over {0} ∪ {1/n : n ∈ N} ⊂ [0, 1] with exact fibers, such that A is not exact
([20]).

2.2.2. Given a C∗-algebra A, one calls primitive ideal space of A the space
Prim(A) of kernels of irreducible representations of A. It is a T0-space for the
Jacobson topology (kernel-hull topology). A base of this topology is given by the
open sets of the form {K ∈ Prim(A) : ‖a + K‖ > 0} for some a ∈ A+. Since
‖(a − t)+ + K‖ = (‖a + K‖ − t)+ for t > 0 and a ∈ A+, this means that the
Jacobson topology is the coarsest topology on Prim(A) such that for every a ∈ A,
the function K ∈ Prim(A) 7→ ‖a+K‖ is lower semicontinuous.

On the other hand, for a ∈ A and t > 0, the Gδ-subset {K ∈ Prim(A) :
‖a+K‖ > t } of Prim(A) is quasicompact, (Proposition 3.3.7 in [9]).

If the space Prim(A) is in addition Hausdorff, then this yields that Prim(A)
is locally compact and that the functions N(a) : K ∈ Prim(A) 7→ ‖a + K‖ are
continuous functions on Prim(A) which vanish at infinity (Corollary 3.3.9 of [9]).
Then the Dauns-Hofmann theorem (Corollary 4.4.8 of [24]) implies that A is nat-
urally a C∗-bundle over Prim(A) with simple fiber AK = A/K at K ∈ Prim(A);
see also 2.6.3.

Note that the non-Hausdorff space Prim(A) is not always locally compact in
the sense that points have closed (!) quasicompact neighborhoods: There exists a
separable (non unital) C∗-algebra A with Prim(A) isomorphic to (0, 1] as a set, but
with the T0-topology defined by the system of open subsets {(x, 1] : x ∈ (0, 1]},
which have all the closure (0, 1] (cf. [29]). (0, 1] with this topology is locally
quasicompact but is not locally compact.

2.2.3. Suppose that A is a C(X)-algebra and let π : C0(X,A) → A denote
the C∗-epimorphism which corresponds to the nondegenerate ∗-homomorphism L
from C0(X) into the center of M(A) (and satisfies π(f ⊗a) = L(f)a). Then π de-
fines a homeomorphism κ from Prim(A) onto a closed subset Z of Prim(C0(X,A)) ∼=
X × Prim(A). Obviously, the above described continuous map η : Prim(A) → X
is the same as p1 ◦ κ, where p1 is defined by p1(x, y) := x.

Thus A is a C∗-bundle over X if and only if the restriction of p1 to Z ⊂
X × Prim(A) is an open map from Z to X.

In the case of a commutative C∗-bundle A over a locally compact space X
with nonzero fibers Ax this yields the following observation:

Let Y := Prim(A) be the locally compact space of its maximal ideals. The
natural epimorphism from C0(X,A) ∼= C0(X × Y ) onto A is (as well-known) in
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one-to-one correspondence with a homeomorphism κ from Y onto a closed subset
Z of X × Y .

The subset Z ⊂ X × Y satisfies:
(i) Z is closed,
(ii) for every x ∈ X, there exists y ∈ Y such that (x, y) ∈ Z,
(iii) the map p1 : (x, y) ∈ Z 7→ x ∈ X is open (with respect to Z).
Conversely, a subset Z of a Tychonoff product X × Y of (arbitrary) locally

compact spaces X and Y defines in a natural way a commutative C∗-bundle A :=
C0(Z) over X with nonzero fibres if Z satisfies conditions (i)–(iii) above. The
action is given by the epimorphism C0(X)⊗C0(Y ) → C0(Z) with f 7→ f|Z coming
from (i). (Indeed, the natural embedding κ : z 7→ (p1(z), z) from Z into X × Z ⊂
X ×X × Y shows that here η = (p1)|Z for Prim(C0(Z)) ∼= Z.)

We use this example in Subsection 2.4.4 to derive subtriviality of all separable
Banach bundles.

2.3. Banach C0(X)-modules. Let us now collect some basic properties of
general Banach C0(X)-modules, which we need for our (“commutative”) general-
izations of C∗-bundles to “Banach bundles”. The Banach bundles (Definition 2.6)
are defined by four requirements on Banach C0(X)-modules which allow to work
completely in the framework of Banach modules, if we need later some proper-
ties of the Banach C0(X)-modules of continuous sections vanishing at infinity of
continuous fields of Banach spaces over X.

In the following, denote X and Y locally compact spaces and A, B, E Banach
spaces.

Recall that a Banach C0(X)-module is a Banach space A with a bounded
algebra homomorphism L : C0(X) → L(A) (cf. e.g. Definition I Section 9.12 of
[5]). Sometimes we call L the action of C0(X) on A and we write fa for L(f)(a) if
a ∈ A and f ∈ C0(X). We say that the Banach C0(X)-module A is nondegenerate
if the action L of C0(X) on A is nondegenerate, i.e. if A is the closed linear span
of C0(X)+A.

The C0(X)-module A is countably generated, if there is a countable subset
C of A, such that the C0(X)-submodule generated by C is dense in A.

In the sequel, we call the action L of C0(X) on A contractive if L is a con-
traction, i.e. if ‖fa‖ 6 ‖f‖‖a‖ for a ∈ A and f ∈ C0(X). Clearly the contractivity
passes to the restrictions f 7→ L(f)|B of the action of C0(X) on L(C0(X)+)-
invariant closed linear subspaces B of A. The restrictions provide B with the
structure of a Banach C0(X)-module. Such a closed vector subspace B with
f 7→ L(f)|B is called a Banach C0(X)-submodule of A.

The action of C0(X) on A/B given by [L](f) : πB(a) 7→ πB(fa) is also con-
tractive and has the closed ideal M(L,A,B) := {f ∈ C0(X) : L(f)(A) ⊂ B} as
its kernel. Thus there is an open subset Ωmax of X with C0(Ωmax) = M(L,A,B)
such that A/B is naturally a Banach C0(F )-module for every closed subset F ⊃
X \ Ωmax of X.

If Ω is an open subset of X, then the set C0(Ω)+A := {fa : f ∈ C0(Ω)+, a ∈
A} is a closed linear subspace of A. In fact, if B is a Banach algebra with a bounded
approximate unit and if E is a Banach B-module, then Cohen factorization theo-
rem yields that the product B ·XSE = {be : b ∈ B and e ∈ E} is a closed linear
subspace of E ([6], [12], Theorem I Section 11.10 in [5], Proposition 1.8 in [2]).
Now note that C0(Ω)+ · C0(Ω) = C0(Ω).
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Thus we can define “restrictions” A|F := A/C0(X\F )+ ·A of A to closed sub-
sets F of X, i.e. we can use the same definition as in the case of C(X)-algebras A.

Note that C0(Ω)+A is a C0(X)-submodule of A. It is the biggest nondegen-
erate C0(Ω)-submodule of A, and M(L,C0(Ω)+A,A) = C0(Ωmax) contains C0(Ω).
In particular A|F is in a natural way a Banach C0(F )-module.

As in the case of C(X)-algebras, we use the notations a|F for the element
a+C0(X \ F )+A ∈ A|F , Ay for A|{y} and ay for a|{y}, if y ∈ A. Further we define
again the function N(a) by y ∈ X 7→ ‖ay‖, which can be everywhere zero, but
plays an important role in the sequel.

The Cohen factorization, the identities C0(U)+C0(V ) = C0(U ∪V ), C0(U) ·
C0(V ) = C0(U ∩ V ) and the inclusion C0(U) ⊂ C0(W ) imply the formulas
C0(U)A+C0(V )A = C0(U∪V )A, C0(U)A∩C0(V )A = C0(U∩V )A and C0(U)A ⊂
C0(W )A for open subsets U, V,W ⊂ X with U ⊂W . Consider now closed subsets
G ⊂ F ⊂ X and an open subset Ω ⊂ X. Let U := X \F , W := X \G and V := Ω.
Then, this formulas and the definitions give the following observations (a)–(f) and
equations (2.4), (2.5) and (2.6):

(a) The natural map πF,G : A|F → A|G, given by πF,G(a|F ) := a|G, maps the
open unit ball of A|F onto the open unit ball of A|G for closed subsets G ⊂ F (i.e. is
the quotient map) and thus defines an isometric isomorphism (A|F )|G ∼= A|G.

(b) If we take here G = {y} for a point y ∈ F , we get Ay ∼= (A|F )y and thus

(2.4) N(a|F ) = N(a)|F .

(c) The epimorphism πF : A → A|F maps C0(Ω)A onto C0(F ∩ Ω)A|F if Ω
is open and F is closed, because fb, with b ∈ A|F and f ∈ C0(F ∩ Ω), is the
image of ga where a ∈ A, g ∈ C0(Ω), b = a|F and g|F∩Ω = f (it exists by Tietze
extension). Its kernel is C0(Ω)A ∩ C0(X \ F )A = C0(Ω \ F )A. Thus it defines a
natural isomorphism

(2.5) (C0(Ω)A)|Ω∩F ∼= C0(Ω ∩ F ) · (A|F ) .

(d) If the action of C0(X) is contractive, then the isomorphism (2.5) is isomet-
ric and NA(a)|Ω = NC0(Ω)A(a) for a ∈ C0(Ω)A, because then ‖a+C0(Ω \F )A‖ =
‖a+ C0(X \ F )A‖ for a ∈ C0(Ω)A (where C0(∅) := 0, A|∅ := 0 etc.).

(e) Consider the natural extension Le of L : C0(X) → L(A) to C(X̂) = C1+
C0(X) with Le(1) = idA, and let κ(L) := sup{‖Le(1− f)‖ : f ∈ C0(X)+, ‖f‖ 6
1}. Then for a ∈ A and every closed F ⊂ X one has directly from the definition
of a|F that

(2.6) ‖a|F ‖ 6 inf{‖a− fa‖ : f ∈ C0(X \ F )+, ‖f‖ 6 1} 6 κ(L) · ‖a|F ‖,
(cf. Lemma 1.10 of [2]). It implies that every closed C0(X)-submodule B of A is
nondegenerate Banach C0(X)-module, if A is nondegenerate. In particular, then
B is a vector subspace of A.

The inequalities (2.6) become equalities if the natural extension Le of L to
C(X̂) = C1+C0(X) is contractive. Then the norms ‖a|F ‖ in B|F are equal to the
norms ‖a|F ‖ in A|F for a ∈ B if B is a Banach C0(X)-submodule of A. Thus, for
a ∈ B the function N(a) is then the same with respect to B as the function N(a)
build with respect to A, and the natural algebraic monomorphism B|F → A|F is
an isometric isomorphism onto πF (B) ⊂ AF . We get:
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(f) The C(βX)-linear map A→ A|F with kernel C0(X \F )A ⊃ C0(X \F )B
induces a linear isometry from B|F into A|F , which is a C0(F )-module morphism, if
the action on A is nondegenerate and contractive. In particular, then πx(B) ⊂ Ax
is isometrically isomorphic to Bx.

Lemma 2.3. Suppose that A is a Banach C0(X)-module. The following
properties of A are equivalent:

(i) The action L of C0(X) on A is contractive and nondegenerate, i.e.
satisfies ‖L‖ 6 1 and C0(X)+A = A.

(ii) A is the quotient of the Banach C0(X)-module D := C0(X)⊗̂`1(Z) for
a suitable set Z by some Banach submodule B of D.

(iii) There is a unital, contractive and strongly continuous algebra-morphism
Lβ from C(βX) ∼= Cb(X) = M(C0(X)) ⊂ L(C0(X)) into L(A) which extends the
given algebra morphism from L : C0(X) → L(A).

Proof. Here ⊗̂ means the projective tensor product (=maximal uniform ten-
sor product) of Banach spaces, Z is a dense subset of the open unit ball of A,
and the nondegenerate and contractive action L : C0(X) → L(D) is given by
L(f)(g ⊗ h) := (fg) ⊗ h. The submodule B is the kernel of the natural Banach
C0(X)-module epimorphism onto A which maps the open unit ball onto the open
unit ball of A. Note that D = C0(X)+Dβ , where Dβ := C(βX)⊗̂`1(Z). This im-
plies that each C0(X)-invariant closed subspace B of D is also a C(βX)-invariant
subspace of the C(βX)-invariant subspace C0(X)Dβ : by (2.6) every element a of
B must be in the closure of Cc(X)+a ⊂ B.

It follows from part (iii) of Lemma 2.3 that the formulas (fa)y = f(y)ay,
(2.1) and (2.2) still apply in this context, and that all the above formulas of this
subsection hold, because the identity C0(βX \ {y})+C0(X)+ = C0(X \ {y}) and
the inequalities ‖(1 − f)b‖ 6 ‖b‖ for b ∈ A, 0 6 f 6 1 in C(βX) can be used
for the proofs as in the case of C(X)-algebras. So the function N(a) is upper
semicontinuous for all a ∈ A by formula (2.2).

Let us summarize some of the later needed facts:

Lemma 2.4. Suppose that A is a Banach C0(X)-module with nondegenerate
and contractive action of C0(X), and that B, C are closed C0(X)-submodules of
A with C ⊂ B. Then:

(i) B and C are vector subspaces of A, i.e. B and C are a Banach C0(X)-
submodules of A;

(ii) the actions of C0(X) on B, C, A/C and B/C are nondegenerate and
contractive;

(iii) Bx is isometrically isomorphic to the image of B in Ax for x ∈ X, i.e.
NB(b) = NA(b) for b ∈ B;

(iv) (A/C)x is isometrically isomorphic to Ax/Cx and thus, by (ii), (B/C)x
⊂ Ax/Cx in a natural way;

(v) dist(ax, πx(C)) = NB/C(a+ C)(x) = NA/C(a+ C)(x) for a ∈ B.

Proof. We have already seen everything but (iv) and (v). Clearly B/C is a
Banach C0(X)-submodule of A/C, and (B/C)x is a Banach subspace of (A/C)x
by (iii).
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Let M denote the closure of C + C0(X \ {x})A (in fact it is closed), and
let N denote C0(X \ {x})A. Then πC(N) = C0(X \ {x})(A/C), e.g. by Co-
hen factorization. Since πC(N) is closed, we get πC(N) = πC(M) and, thus,
dist(a,M) = ‖(πC(a))x‖. On the other hand, πx(C) is closed by (iii) and thus,
πx(C) = πx(M), dist(πx(a), πx(C)) = dist(a,M).

If we now identify πx(C) and Cx naturally by (iii), then we get natural
isometric isomorphisms from (A/C)x onto Ax/Cx, and, in the same way, from
(B/C)x onto Bx/Cx.

This implies (v) by (iii).

Remark 2.5. To simplify the notations, we have only considered complex
Banach C0(X)-modules. Later (in Sections 3 and [4]) we use also the corresponding
results on real Banach C0(X,R)-modules.

Indeed, one can also work with real Banach C0(X,R)-modules i.e. real Ba-
nach spaces A with a bounded algebra homomorphism L : C0(X,R) = C(X)sa →
L(A). The results in Section 2 remain valid if we replace in the statements
and proofs of Subsections 2.3–2.6 C by R, C0(X) (= C0(X,C)) by C0(X,R)
(= C0(X)sa), and read “Banach spaces” as “real Banach spaces”.

In particular, every complex Banach C0(X)-module A defines a real Banach
C0(X,R)-module if we restrict L to C0(X)sa and if we consider A only as a real
Banach space. As the sets C0(Ω)A, C0(Ω)saA and C0(Ω)+A coincide for all Ω, we
get the same real vector subspace C0(Ω)A, the same norms ‖a|F ‖ and the same
function N(a), if we consider a complex Banach C0(X)-module A with action L
as a real Banach C0(X)sa-module A with action L restricted to C0(X)sa.

If a (complex) Banach C0(X)-module A is a continuous real Banach bundle
(cf. Definition 2.6 read with our “real-case” convention), then A is also a continuous
complex Banach bundle, as assertion 2.4.5 shows.

2.4. Banach bundles. We generalize the (commutative) C∗-bundles as follows:

Definition 2.6. A Banach bundle over a locally compact space X is a
Banach space A together with an algebra homomorphism L from C0(X) into the
bounded linear operators L(A) on A, the action of C0(X) on A, such that, for
every a ∈ A:

(i) ‖f · a‖ 6 ‖f‖ ‖a‖ for f ∈ C0(X);
(ii) C0(X)+A is dense in A;
(iii) the function

N(a) : y ∈ X 7→ ‖ay‖ := ‖a+ C0(X \ {y})+A‖
is a continuous function on X;

(iv)

(2.7) ‖a‖ = sup{N(a)(y) : y ∈ X}.
Note that the Banach bundles correspond to continuous fields of Banach

spaces introduced by Dixmier in [9], as will be made clear in 2.6.4. But we prefer
to use in this paper the Banach-module picture.
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Examples of Banach bundles are e.g. the C∗-bundles introduced in Defini-
tion 2.2: the formula ‖a‖ = supN(a) was derived in Subsection 2.1 from formula
(2.3). Clearly, for every Banach space B, the C0(X)-module C0(X,B) is a Banach
bundle over X. It easily follows from (ii) and equation 2.7, that a Banach bundle
A is a quotient Banach C0(X)-module of C0(X,A).

We prove (at the end of Subsection 2.4.4) the following Theorem 2.7, which
explains a lot of the general structure, and which might be implicitly contained in
other papers:

Theorem 2.7. A Banach C0(X)-module B is a Banach bundle over a lo-
cally compact space X if and only if B is C0(X)-submodule of a commutative
C∗-bundle over X (with nonzero commutative fibers).

Since separable commutative C∗-bundles A over a compact metric space X
are C(X)-C∗-subalgebras of C(X,O2), cf. [3], and since every separable Banach
space is isometrically isomorphic to a closed subspace of C([0, 1]), we immediately
get from Theorem 2.7 the following corollary.

Corollary 2.8. Separable Banach bundles over compact metric spaces X
are subtrivial, i.e. are closed C(X)-submodules of C(X × [0, 1]).

This and (classical) Hahn-Banach extension yield directly the following:

Corollary 2.9. Suppose that B is a separable Banach bundle over a sec-
ond countable locally compact space X. Then for every linear functional ϕ of norm
6 1 on the fiber By, there exist a contractive linear and a C0(X)-module map ψ
from B into C0(X) such that ψ(a)(y) = ϕ(ay) for a ∈ B.

Equation (2.1) and the nondegeneracy of the action of C0(X) on A imply
that even N(a) ∈ C0(X)+ if N(a) is continuous (by requirements (ii) and (iii) in
Definition 2.6).

The convex span of {N(a) : a ∈ A} is dense in the positive part of an ideal
J ∼= C0(Ω) of C0(X), where Ω is the open subset of points y ∈ X with nonzero
quotient spaces Ay. We do not require in Definition 2.6 that Ay 6= 0 for every
y ∈ X, or that the algebra morphism from C0(X) into L(A) is faithful.

The algebra morphism from C0(X) into L(A) is an isometry if and only if Ω
is dense in X.

Next we list some later used properties of Banach bundles A over a locally
compact space X.

2.4.1. The Banach module C0(Ω)A (respectively A|F ) is a Banach bundle
over Ω (respectively over F ), and its fiber-norm function N is given by the restric-
tion of the fiber-norm function on A, if Ω ⊂ X is open (respectively F ⊂ X is
closed).

Moreover, the quotient map from A|F onto A|G maps the closed unit ball of
A|F onto the closed unit ball of A|G, if G ⊂ F ⊂ X are closed.
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Proof. Suppose, more generally, that C0(X) acts contractively on A, that
the span of C0(X) · A is dense in A, and that the A satisfies ‖a‖ = supN(a) for
every a ∈ A. Then, for every closed subset F of X and a ∈ A,
(2.8) ‖a|F ‖ = sup{N(a)(y) : y ∈ F}.

Indeed, we have C0(X) · A = A. So there are h ∈ C0(X)+ and b ∈ A with
a = hb. Then g := N(b) is a bounded upper semicontinuous function by equation
(2.2) and N(a) = hg by (2.1). Formulas (2.1) and (2.6) imply that

‖a|F ‖ = inf{sup((1− f)hg)(X) : f ∈ C0(X \ F )+, f 6 1}.
The right side is just sup(hg)(F ) by an (obvious) application of Tietze extension
theorem, which shows (2.8).

The nondegeneracy and the contractivity of the action of C0(F ) on A|F follow
from these properties of the action of C0(X) on A, as we have explained above.
The formula (2.8) for the norms ‖a|F ‖ and the identity (2.4) imply that, for every
closed subset F ⊂ X, the restriction A|F is a Banach bundle over F , if we now
suppose in addition that A is a Banach bundle over X.

The action of C0(Ω) on the Banach space C0(Ω)A is always a nondegenerate
action, i.e. C0(Ω)+C0(Ω)A = C0(Ω)A. Moreover C0(Ω)A satisfies the contractivity
condition (i) for C0(Ω), because A satisfies (i) for C0(X). Thus the norm function
of a ∈ C0(Ω)A with respect to C0(Ω)A is just the restriction to Ω of the norm
function N(a) with respect to A, as we have explained below formula (2.5). Since
formula (2.1) holds for the nondegenerate and contractive action of C0(X) on A,
we get that N(a) = hN(b) for suitable h ∈ C0(Ω)+ and b ∈ A. Thus ‖a‖ =
sup
X
N(a) = sup

Ω
N(a) and the properties (iii) and (iv) for the action of C0(Ω) on

C0(Ω)A follow from (i), (iii) and (iv) of Definition 2.6.
The natural epimorphism from A|F onto A|G maps the closed unit ball of

A|F onto the closed unit ball of A|G, because, by the nondegeneracy and the
contractivity of the action and by (iii) of Lemma 2.3, we can multiply a ∈ A with
elements of Cb(X): Let b ∈ A|G, ‖b‖ 6 1, and a ∈ A with a|G = b. Consider
the bounded continuous function f(x) = g(N(a)(x)), where g(t) = 1 on [0, 1] and
g(t) = t−1 for t > 1. Then (fa)|G = b and ‖fa‖ = sup fN(a) 6 1 by (2.1) and
(2.7).

2.4.2. Let F and G be closed subsets of X. The natural epimorphism
A|(F∪G) → A|F and A|(F∪G) → A|G defines A|(F∪G) as the pullback of the epimor-
phism A|F → A|(F∩G) and A|G → A|(F∩G).

Proof. Let Ω := X \G. In Subsection 2.3 we have seen that the epimorphism
A → A|F maps C0(Ω)A onto C0(F ∩ Ω)A|F , that there is a natural isometric
isomorphism (A|F )|(F∩G)

∼= A|(F∩G), and that a|F and a|G have the same image
a|(F∩G) in A|(F∩G) by definition of the “restrictions”.

By formula (2.8), the map a|(F∪G) 7→ (a|F , a|G) defines a linear isometry
from A|(F∪G) to the Banach space sum A|F ⊕∞ A|G with supremum norm.

Now let a ∈ A|F and b ∈ A|G be such that a|(F∩G) = b|(F∩G). We take c ∈ A
with c|G = b. Then d := c|F − a is in the kernel C0(F ∩Ω)A|F of the epimorphism
A|F → A|(F∩G). Therefore, we can find e ∈ C0(Ω)A such that e|F = d. Let
f := c − e, then f|F = a and f|G = b. Thus (a, b) is in the image of the natural
isometry from A|(F∪G) into A|F ⊕∞ A|G.
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2.4.3. If A is a Banach bundle over X and B is a closed C0(X)-submodule
of A, then B is again a Banach bundle over X, NB(b) = NA(b) for b ∈ B, and
B|F is a closed C0(F )-submodule of A|F for every closed subset F of X.

Moreover, B = A if and only if Bx = Ax for every x ∈ X.
We call B a Banach subbundle of A.

Proof. Since A is a nondegenerate and contractive Banach C0(X)-module,
we get from Lemma 2.4 that B is a Banach C0(X)-submodule of A, that the
action of C0(X) on B is nondegenerate and that NB(b) = NA(b) for b ∈ B. Thus
‖a‖ = supNB(a) for a ∈ B by (2.7), and the Banach C0(X)-module B satisfies
the conditions of Definition 2.6. We have seen below the inequalities (2.6) that the
natural linear C0(F )-module map from B|F into A|F is an isometry, if the action
of C0(X) on A is nondegenerate and contractive.

Suppose that B is a Banach subbundle of A such that Bx = Ax for every
x ∈ X, and let a ∈ A, ε > 0. Then for every y ∈ X, there exists by ∈ B with
N(a − by)(y) = 0. By continuity of x 7→ N(a − by)(x) there is a neighborhood
U(y) of y such that N(a− by)(x) < ε for x ∈ U(y).

Since N(a) ∈ C0(X), the set F := {x ∈ X : ε 6 N(a)(x)} is compact,
and we can find open subsets U1, . . . , Un of X and b1, . . . , bn ∈ B such that F ⊂
U1 ∪ · · · ∪ Un and N(a− bj)(x) < ε for x ∈ Uj . There exist e1, . . . , en ∈ C0(X)+,
such that ej ∈ C0(Uj)+ and e :=

∑
ej satisfies 0 6 e 6 1, e|F = 1. Then

N(a − ea)(x) = (1 − e(x))N(a)((x) < ε and N(ea − b)(x) 6 ε for x ∈ X, with
b :=

∑
ejbj , by (2.1). Thus ‖a− b‖ 6 2ε.

2.4.4. Suppose that B is a Banach C0(X)-module with a nondegenerate and
contractive action of C0(X) on B. Then there is a commutative C0(X)-algebra
A with nonzero fibers and a C0(X)-module homomorphism ψ : B → A such that
‖ψ(b)x‖ = ‖bx‖ for x ∈ X and b ∈ B. (Thus ‖ψ(b)‖ = supN(b).)

If B is a Banach bundle, then A can be chosen as a C∗-bundle with commu-
tative fibers, and such that ψ is isometric.

Proof. Consider the map γ : x ∈ X 7→ Ex := {y ∈ E : y(C0(X\{x})B) = 0}
from X into the set of weakly closed convex sets of the unit ball E of the dual
space of B, where Ex is (naturally isomorphic to) the unit ball of the dual spaces
of Bx. Then E with the σ(B∗, B)-topology is a compact space. The subset
Z := {(x, y) : y ∈ Ex} of X ×E contains X ×{0} and is closed in X ×E: indeed,
Z is the intersection of all the sets Zb := {(x, y) ∈ X × E : |y(b)| 6 N(b)(x)},
where b ∈ B. Since N(b) is lower semicontinuous, Zb is closed in X × E.

Let b ∈ B 7→ b̂ ∈ C(E) be given by the evaluation maps b̂(y) := y(b).
This defines a natural isometry from C0(X,B) ∼= C0(X)⊗̌B into C0(X)⊗̌C(E) ∼=
C0(X×E). The restriction map f 7→ f|Z defines an epimorphism ϕ : C0(X×E) →
C0(Z), which induces a C0(X)-algebra structure on C0(Z), because the kernel is
a closed ideal, which is automatically C0(X)⊗ 1-invariant.

For f, g ∈ C0(X), x ∈ X, y ∈ Ex and b ∈ B we have (f ⊗ ĝ · b)(x, y) =
((fg)⊗ b̂)(x, y), because f(x)y(g · b) = f(x)g(x)y(b). Thus

(f ⊗ ĝ · b)|Z = ((fg)⊗ b̂)Z .
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Since Cohen factorization applies to the nondegenerate C0(X)-module B, we get
a well-defined C0(X)-module homomorphism ψ from B into C0(Z) by ψ(b) =
ϕ(f ⊗ â) for a factorization b = fa, with a ∈ B, f ∈ C0(X).

The fiber maps f 7→ fx on C0(Z) are given by the restrictions to Z ∩ ({x}×
E) = {x} × Ex. Thus ‖ψ(b)x‖ = |f(x)| sup{|y(a)| : y ∈ Ex}, which means
N(ψ(b)) = N(b).

Now, suppose that N(a) is continuous for every a ∈ B. We show that the
map p1 : (x, y) ∈ Z 7→ x ∈ X is open. Then Z ⊂ X ×E satisfies the requirements
of (i)–(iii) of Example 2.2.3 and C0(Z) is a C∗-bundle over X.

Let (s, t) ∈ Z and U ×V a neighborhood of (s, t). Suppose that p1(Z ∩ (U ×
V )) does not contain a neighborhood of s. Then there exists a net (xβ) in U such
that xβ converges to s, but Exβ

∩ V = ∅.
Upon replacing V by a smaller neighborhood of t, we may assume that V is

the set
{
y ∈ E :

n∑
j=1

|y(bj)− t(bj)|2 < 1
}

for suitable b1, . . . , bn ∈ B.

Since Exβ
is compact and convex, for each β there is wβ = (w1,β , . . . , wn,β) ∈

Cn such that ‖wβ‖2 = 1 and Re(y(cβ)) 6 1 + Re(t(cβ)) 6 1 + N(cβ)(s) for all
y ∈ Exβ

, where cβ :=
∑
wj,βbj . On the other hand, N(cβ)(xβ) = sup{Re(y(cβ)) :

y ∈ Exβ
}.

We can pass to suitable subnets (xα), (wα) such that (wα) converges to a
vector w0 = (w1,0, . . . , wn,0), because the unit sphere in Cn is compact. Then cα
converges in B (in norm) to a :=

∑
wj,0bj . Thus N(cα) converges uniformly to

N(a). It follows that lim supN(a)(xα) < 1/2 + N(a)(s), which contradicts the
continuity of N(a).

Proof of Theorem 2.7. If B is a Banach C0(X)-submodule of a C∗-bundle
A over X, then B is a Banach bundle over X, by 2.4.3. Conversely, B is isomor-
phic to a Banach C0(X)-submodule of the commutative C∗-bundle C0(Z) over X
constructed in the proof of assertion 2.4.4.

2.4.5. Suppose that Y is a locally compact Hausdorff space, that B is a com-
plex vector space which is an algebraic C0(Y )-module, and that P : B → C0(Y )+
is a subadditive map from B into C0(Y )+, which satisfies P (fa) = |f |P (a) and
P (za) = |z|P (a) for a ∈ B, f ∈ C0(Y )sa and z ∈ C.

Then ‖a‖P = supP (a) is a seminorm on B.
If ‖ · ‖P is a norm and if B is complete with respect to this norm, then P is

equal to the fiberwise norm function N , i.e. P (a)(y) = ‖a+C0(Y \ {y})+B‖P for
a ∈ B and y ∈ Y , and B is a Banach bundle over Y .

Proof. The map a ∈ B 7→ ‖a‖P := sup
x∈Y

P (a)(x) is subadditive and satisfies

‖za‖ = |z|‖a‖P for z ∈ C, because P is subadditive and C-homogeneous. It also
satisfies ‖fa‖P 6 ‖f‖ ‖a‖P for f ∈ C0(Y )sa and so ‖ga‖P 6

√
2‖g‖ ‖a‖P for

g ∈ C0(Y ).
Let us now assume that ‖ · ‖P is a norm on B. First we show that the

action of C0(Y ) on B is nondegenerate (with respect to ‖ · ‖P ). Let ε > 0. Since
P (a) ∈ C0(Y )+, we can find a compact subset F ⊂ Y such that P (a)(x) 6 ε for
x ∈ Y \ F . Take a function g ∈ C0(Y )+ with g 6 1 and g(x) = 1 for x ∈ F .
Given any y ∈ Y , there is f ∈ C0(Y )+ with f(y) = 1, f 6 1. Then the identities
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P (a − ga)(y) = f(y)P (a − ga)(y) = P ((f(1 − g)a)(y) and (1 − g)(y)P (a)(y) =
(|f(1−g)|P (a))(y) imply that P (a−ga)(y) 6 ε, because f(1−g) ∈ C0(Y )+. Thus
‖a− ga‖P 6 ε, which means that the action of C0(Y ) on B is nondegenerate.

Now suppose such that B is complete with respect to the norm ‖ · ‖P . Since
C0(Y )+B is dense in B, the contractive algebra morphism from C0(Y )sa into
L(B, ‖ · ‖P ) extends to a contractive algebra morphism from Cb(Y )sa into L(B)
by the real variant of Lemma 2.3 (cf. Remark 2.5 for this).

Thus formula (2.6) applies and ‖a+C0(Y \{x})B‖P = ‖a+C0(Y \{x})+B‖P
is the same as inf{sup(1 − f)P (a) : f ∈ C0(Y \ {x})+, f 6 1}. Since P (a) ∈
C0(Y )+, the latter is equal to P (a)(x), and so P = N , ‖a‖P = supN(a), and
(fa)y = f(y)ay for every f ∈ C0(Y ) and a ∈ B, because the map a 7→ ay is
complex linear and the equality (ha)y = h(y)ay holds for h ∈ C0(Y )sa. Thus
N(fa) = |f |N(a) and ‖fa‖P 6 ‖f‖‖a‖ for a ∈ B and every f ∈ C0(X), which
implies that the (complex) Banach C0(Y )-module (B, ‖·‖P ) satisfies all conditions
of Definition 2.6.

2.4.6. Suppose that A and B are Banach bundles over a compact space X,
that ψ is a C(X)-module map from A into B, and that ψ is bounded (as linear
map). Then for every x ∈ X, there is a unique linear map ψx from Ax into Bx,
such that ‖ψx‖ 6 ‖ψ‖ and ψx(ax) = (ψ(a))x for a ∈ A.

Suppose moreover, that the kernel of ψ is trivial and ψ(A) is dense in B.
Then ψ(A) = B holds if and only if there is γ <∞ such that ‖a‖ 6 γ‖ψx(a)‖ for
all x ∈ X and a ∈ Ax (Then ψx is an isomorphism from Ax onto Bx for x ∈ X.)

Proof. The image ψ(a+C0(X \ {x})A) is contained in ψ(a)+C0(X \ {x})B
because ψ is a C(X)-module map. Thus ψx : Ax → Bx is well-defined and satisfies
‖ψx‖ 6 ‖ψ‖.

If, moreover, ψ is faithful and surjective, then ψ has a bounded linear inverse
ϕ : B → A by the inverse mapping theorem. It is necessarily a C(X)-module map.
Since ψx(Ax) is dense in Bx (because ψ(A) is dense in B), ϕx is the inverse of ψx,
and γ := ‖ϕ‖ is the desired bound.

Conversely, by (2.7), γ‖ψ(a)‖ > ‖a‖ for all a ∈ A, if the uniform bound is
given on the fibers of A and B. Thus ψ(A) = B.

2.4.7. We generalize Theorem 3.3 of [2] in Lemma 2.10 below to countably
generated C(X)-bundles. In order to do so, we need the following statements:

Suppose that G is a separable subset of A, and let B denote the Banach
subbundle of A which is (topologically) generated by G. Then there are

(i) a σ-compact open subset Ω of X,
(ii) a locally compact separable and metrizable space Y ,
(iii) a continuous (not necessarily open) map ψ from Ω onto Y , such that

the inverse images of compact subsets of Y are compact subsets of X (i.e. ψ is
proper: ψ∗(C0(Y )) ⊂ C0(Ω)),

(iv) a separable closed linear subspace D of B, with G ⊂ D,
such that D is the closure of ψ∗(C0(Y )+)D and, for every d ∈ D and x ∈ Ω,
N(d) ∈ ψ∗(C0(Y )+) and ‖dx‖B = ‖dψ(x)‖D.

Then D is in a natural way a Banach bundle over Y , B is the closed
linear span of C0(X)+D in A, and there are natural isomorphisms B|ψ−1(z)

∼=
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C(ψ−1(z), Dz) for z ∈ Y . The natural map πx : D → Bx defines an isomorphism
Bx ∼= Dψ(x) if x ∈ Ω, and Bx = 0 for x ∈ X \ Ω. If Bx 6= 0 for every x ∈ X,
then ψ∗(C0(Y ))C0(X) = C0(X). (But in general C0(Ω) is not a C∗-bundle over
Y , because ψ is not open.)

Moreover, D is the closed linear span of ψ∗(C0(Y ))G, D is a separable C∗-
bundle over Y with nonzero fibers, and B is the closed linear span of C0(X)D,
if (in addition) A is a complex C∗-bundle and if G is a separable C∗-subalgebra
of A.

Proof. We can find separable C∗-subalgebras C1 ⊂ C2 ⊂ · · · ⊂ C0(X), and
separable closed linear subspaces G ⊂ D1 ⊂ D2 ⊂ · · · ⊂ B such that N(Dn) ⊂ Cn,
CnDn ⊂ Dn+1, for n = 1, 2, . . .. Then the closure D of the union of the Dn, the
character space Y of the closure C of the union of the Cn, the union Ω of the
supports of the functions in C and the natural epimorphism ψ from Ω onto Y are
as desired, as one can easily check.

Suppose that A is a C∗-bundle and G is a separable C∗-subalgebra of A. The
closed linear subspace E (respectively F ) generated by ψ∗(C0(Y ))G (respectively
C0(X)G) is a C∗-subalgebra of A, which is a C0(Y )-submodule of D (respectively
a C0(X)-submodule of B) and which contains the generating set G of B. Thus
Fx = Bx for x ∈ X and Ey = Dy for y ∈ Y . This implies F = B and E = D by
2.4.3.

Lemma 2.10. Let A be a countably generated C∗-bundle over a compact
space X, such that every fiber Ax is nonzero.

Then there is a positive C(X)-module map ψ from A into C(X) such that
the positive linear functionals ψx on Ax given by ψx(ax) = ψ(a)(x) for a ∈ A, are
faithful for every x ∈ X.

Proof. Let a1, a2, . . . be a generating sequence of A as a Banach C(X)-
module, and let G be the C∗-algebra which is generated by this sequence. We
consider D ⊂ B := A, Y , ψ : Ω → Y as in 2.4.7. Since Ax 6= 0 for every x ∈ X,
here Ω = X and Y = ψ(X) is compact, as observed in 2.4.7. Thus D is a separable
C∗-bundle over a metrizable compact space Y , and A is the closed linear span of
C(X)D.

There exists a unital C(Y )-linear positive map µ from D to C(Y ) such that
for every y ∈ Y , the induced state µy : Dy → C is faithful on the fiber Dy ([2],
Theorem 3.3).

Let ν be the C(X)-linear positive map from C(X) ⊗ D into C(X), which
is the composition of the min-tensor product idC(X) ⊗min µ with the adjoint of
the map x 7→ (x, ψ(x)). Then ν maps the elementary tensor g ⊗ d ∈ C(X) ⊗ D
to g · (µ(d)ψ) ∈ C(X). Hence ν is zero on the linear span I of the elements
(g ⊗ fd)− (fg ⊗ d), with f ∈ C(Y ), g ∈ C(X), d ∈ D.

The reader can easily check that I is a ∗-ideal of the algebraic tensor product
C(X)¯D. Thus the closure K of I is a closed ideal of C(X)⊗D with ν(K) = 0.

It is shown in [1] that K is the intersection of the kernels of the natural
epimorphisms C(X) ⊗ D → C(X)y ⊗ Dy. Since C(X)y ⊗ Dy is isomorphic to
C(ψ−1(y), Ax) for x ∈ X with ψ(x) = x (cf. 2.4.7), it follows that the natural
C∗-algebra epimorphism λ from C(X) ⊗D onto A with λ(g ⊗ d) = gd has K as
its kernel. Thus ν is zero on the kernel of λ, and therefore ν = ϕλ for a (unique)
positive C(X)-linear map ϕ : A→ C(X).
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For every x ∈ X the induced state ϕx : Ax → C is faithful, because for ax ∈
(Ax)+\{0} there is d ∈ D with dψ(x) = ax, if we identify Ax = πx(A) = πx(D) and
πψ(x)(D) = Dψ(x) naturally, and note that ϕx(ax) = µψ(x)(dψ(x)) > 0, cf. 2.4.7.

2.5. Quotients of Banach bundles by everywhere nonzero sections. If
A is a Banach C0(X)-module and B ⊂ A is a closed C0(X)-submodule of A such
that A/B is a (continuous) Banach bundle over X, then, for every d ∈ A/B and
ε > 0, there is a ∈ A with ‖ax‖ 6 ‖dx‖+ε for all x ∈ X. (Indeed, a := (ε+N(d))e
is as desired for some e in the open unit ball of A with e+B = (ε+N(d))−1d.)

Unfortunately, quotients of Banach bundles over X by Banach subbundles
are not always Banach bundles (see also Remark 6.6 ). But one of the later needed
good cases is the following result.

Lemma 2.11. Suppose that X is compact, A is a Banach bundle over X
and that a ∈ A satisfies that N(a) is everywhere (strictly) positive on X.

Then the submodule C(X)a is closed in A, is module-isomorphic to C(X),
and the quotient Banach module A/C(X)a is a (continuous) Banach bundle over
X.

Proof. Step 1: The submodule generated by a is closed in A and is isometri-
cally module-isomorphic to C(X).

Indeed, C(X)a is a Banach subbundle of A and ‖ay‖C(X)a = ‖ay‖A for y ∈ X
by 2.4.3. Since X is compact, we have inf N(a) > 0. Thus an isometric module
isomorphism from C(X) onto C(X)a is given by h 7→ hc, where c := N(a)−1a.

Step 2: The action of C(X) on the quotient Banach C(X)-module A/C(X)a
is nondegenerate and contractive, the fibers of A/C(X)a are naturally isomorphic
to Ay/Cay, and

‖dy‖ = inf{‖tay + by‖ : t ∈ C , |t| 6 2‖by‖/‖ay‖ }
for y ∈ X and d = b+ C(X)a, with b ∈ A.

Indeed, by Lemma 2.4, the quotient E := A/C(X)a is a Banach C(X)-
module with a contractive and nondegenerate action of C(X), with fibers Ex
isomorphic to Ax/(C · ax) by an isometry which maps dx ∈ Ex to bx + C · ax
for d = b + C(X)a. The norm of dx = bx + C · ax in Ax/(C · ax) is given by
inf{‖bx + tax‖ : t ∈ C}.

The convex continuous function t ∈ C 7→ ‖tay + by‖ takes its minimum
dist(by,Cay) at a point ty ∈ C with |ty| 6 2‖by‖/‖ay‖, as the triangle inequality
shows.

Step 3: The map y ∈ X 7→ ‖dy‖ is continuous for d ∈ A/C(X)a, and for
b ∈ A, ε > 0, there exists f ∈ C(X) such that

N(fa+ b)(y) 6 ε+ inf{‖tay + by‖ : t ∈ C}
and |f(y)| 6 (2‖by‖+ ε)/‖ay‖ for every y ∈ X.

Indeed, let b ∈ A, define the compact set F := {t ∈ C : |t| 6 2‖b‖/ inf N(a)},
and let E := A/C(X)a. Then, by Step 2, the function NE(b + C(X)a) satisfies,
for y ∈ X, that

NE(b+ C(X)a)(y) = inf{‖by + t ay‖ : t ∈ F}.
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Moreover, this function is continuous with respect to y: Indeed the function (t, y) ∈
(F × X) 7→ N(a + tb)(y) is continuous, because the map (c, y) 7→ N(c)(y) is
continuous. Since F is compact, it also follows that y 7→ inf{N(a+ tb)(y) : t ∈ F}
is continuous on X.

Now we use Step 2 and the continuity of NE(d) and of y 7→ N(ta+ b)(y) to
construct the function f ∈ C(X) with the desired properties.

Given b ∈ A and ε > 0 (fixed), we define g := N(a)−1N(b) and r :=
N(a)−1(N(b) + ε). For x ∈ X, there exists tx ∈ C and a neighborhood U(x) of x
such that |tx| 6 2g(x), N(txa+b)(x) = NE(d)(x), g(x) < r(y) and N(txa+b)(y) <
ε+NE(d)(y) for y ∈ U(x).

Since X is compact, we find x1, . . . , xn ∈ X, t1, . . . , tn ∈ C and neigh-
borhoods U1, . . . , Un of the xi, such that U = {U1, . . . , Un} is a covering of
X with |ti| < 2r(x) and N(tia + b)(x) < NE(d)(x) + ε for x ∈ Ui. Further
let e1, . . . , en ∈ C(X)+ be a decomposition of 1 which is subordinate to U ,
i.e.

∑
ei = 1 and ei(x) > 0 implies x ∈ Ui. Then f :=

∑
tiei ∈ C(X) satis-

fies |f(x)| < 2r(x) and N(fa+ b) 6 ε+NE(d).
Step 4: Let ε > 0. With f as in Step 3 we get

‖d‖ = ‖b+ C(X)a‖ 6 ‖fa+ b‖ = supN(fa+ b) 6 ε+ supNE(d).

Since NE(d)(y) = ‖dy‖ 6 ‖d‖, it follows ‖d‖ = supNE(d). We have seen in Step 3,
that NE(d) : y ∈ X 7→ ‖dy‖ is continuous for d ∈ A/C(X)a. Thus A/C(X)a
satisfies (i)-(iv) of Definition 2.6.

Lemma 2.12. Suppose that X is compact and that the elements a1, . . . , an ∈
A are such that (a1)x, . . . , (an)x are linearly independent for every x ∈ X.

Then the C(X)-submodule D of A which is algebraically generated by {a1, . . . ,
an} is closed, and the quotient A/D is a Banach bundle.

The Banach bundle D is naturally (but not necessarily isometrically) isomor-
phic to C(X)n as a Banach C(X)-module.

Moreover, for b ∈ A and ε > 0, there exists d ∈ D such that NA(d + b) 6
ε+NA/D(b+D).

For every closed subset F of X, (A/D)|F is naturally isometrically isomor-
phic to (A|F )/(D|F ), and the natural epimorphism from A|F onto (A/D)|F maps
the open unit ball onto the open unit ball (i.e. is the quotient map of the underlying
normed spaces).

Proof. (Cf. also the proof of Proposition 12 of [10] for a different argument.)
For n = 1 this follows from Lemma 2.11 and from Step 3 in its proof.
The general case follows by induction, because A/(D + C(X)an+1) is nat-

urally isomorphic to (A/D)/(C(X)(an+1 + D)) if (an+1)x is not in Dx for every
x ∈ X.

The natural map from (A/D)|F into (A|F )/(D|F ) is isometric, because this
is true for F = {y}.

2.5.1. If y ∈ X, e1, . . . , ek ∈ A and the dimension of the span of (e1)y, . . . ,
(ek)y has dimension > n, then there exists a neighborhood U of y such that for
x ∈ U , the dimension of the span of (e1)x, . . . , (ek)x is > n.
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Proof. By the (vector) basis extension theorem, we may assume that k = n.
Then (e1)y, . . . , (en)y are linearly independent. For n = 1, the result follows from
the continuity of N(e1). By induction the result follows from Lemma 2.12 and the
case n = 1.

2.5.2. We say that a compact subset F of X has the sphere-section extension
property (for short s.e.p.) with respect to A, if for every closed subset G ⊂ F and
every b ∈ A with N(b)(x) = 1 for x ∈ G, there exists c ∈ A such that N(c)(x) = 1
for x ∈ F and c|G = b|G. Note that the condition N(c)(x) = 1 on F can be
softened to N(c)(x) > 0 on F . Take indeed f ∈ C(X)+ with f|F = (N(c)|F )−1.
Then d := fc satisfies d|G = b|G and N(d)(x) = 1 for x ∈ F . Note also that the
empty set has obviously the s.e.p.

Let F0 ⊂ F be compact subsets of X, such that F0 has the sphere-section
extension property and for every x ∈ F \ F0, there exists a compact neighborhood
K of x in the locally compact space F \ F0, such that K has the sphere-section
extension property.

Then F has the sphere-section extension property.

Proof. Obviously, the s.e.p. passes to closed subsets of a compact set with
s.e.p. The pull-back Property 2.4.2 of Banach bundles allows the reader to check
that F1∪F2 has the s.e.p. if F1 and F2 have the s.e.p. It follows that every compact
subset H of F \ F0 has the s.e.p.

Let now G be a closed subset of F and let b ∈ A satisfy N(b)|G = 1. As F0

has the s.e.p., there exists c ∈ A with N(c)|F0 = 1 and c|(F0∩G) = b|(F0∩G). By
Property 2.4.2, there exists d ∈ A such that d|F0 = c|F0 and d|G = b|G. It follows
N(d)(x) = 1 for x ∈ F0 ∪G.

Consider the compact subsetH := {x ∈ F : N(d)(x) 6 1/2} in F\(F0∪G) ⊂
F \ F0. On the boundary ∂H of H the function N(d) takes the value 1/2. Since
H has the s.e.p. , there exists e ∈ A such that N(e)|H = 1/2 and e|∂H = d|∂H .
Let M denote the closure of F \ H. Then M ∩ H = ∂H. There exists f ∈ A,
such that f|H = e|H and f|M = d|M (by Property 2.4.2). Thus N(f)|F > 1/2 and
f|G = b|G.

2.6. Examples of Banach bundles.

2.6.1. Hilbert C0(X)-modules (or real Hilbert C0(X)sa-modules) A in the
sense of Kasparov ([14]) are exactly the complex (or real) Banach bundles A over
X where the fiber-norm function N : A→ C0(X)+ satisfies the parallelogram law

N(a+ b)2 +N(a− b)2 = 2(N(a)2 +N(b)2),

i.e. where the quotient spaces Ax = A/C0(X \ {x}) are Hilbert spaces with the
quotient norms.

To see this, apply for the Banach bundle A the standard (real or complex)
polar formula to the quadratic form βN : a ∈ A 7→ N(a)2 ∈ C0(X) to get the
desired Cb(X)-hermitian form (a, b) 7→ 〈a, b〉 on A× A with values in C0(X) and
with ‖a‖2 = ‖〈a, a〉‖∞.

Conversely, if A is a Hilbert module, let P (a) := (〈a, a〉)1/2 and use 2.4.5 to
see that A is a Banach bundle with N(a) = P (a).
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2.6.2. Suppose that B is a (real or complex) Banach space (respectively
a C∗-algebra) and that Y is a set. We consider Y as discrete locally compact
space and let Z := βY denote the Stone-Čech compactification of Y . Note that
C(Z) ∼= `∞(Y ).

Then the Banach `∞(Y )-module A := `∞(Y,B) is a Banach bundle (respec-
tively C∗-bundle) over Z. (This follows from 2.4.5 if one considers the map N
from `∞(Y,B) into `∞(Y ) which is given by (by) 7→ (‖by‖).)

If Y = N, then we write `∞(B). For the Banach bundle A := `∞(B) over
β(N) we have the natural fibers An ∼= B if n ∈ N and Aω is the “ultrapowers”
Bω := `∞(B)/Jω if ω ∈ β(N) \N. Here Jω is the closed space (respectively closed
ideal) of bounded sequences (bn) in B with lim

ω
(‖bn‖) = 0.

One can also consider closed subspaces (respectively C∗-subalgebras) By of
B for every y ∈ Y and the closed subspace

∏
y∈Y

By is a `∞(Y )-submodule of A and

hence is also a Banach bundle (respectively C∗-bundle) over Z := βY . (One can
also directly apply 2.4.5 to see that for any family (By)y∈Y of Banach spaces the
direct product of Banach space A :=

∏
y∈Y

By is a Banach bundle over Z.)

2.6.3. Suppose that X is locally compact. Let Y := Xd be the set X with
discrete topology and assume that to each y ∈ X is attached a Banach space
(respectively a C∗-algebra) By. Let A =

∏
y∈X

By denote the Banach space of

bounded maps b : y ∈ X → by ∈ By. As pointed out in Example 2.6.2 it is a
Banach bundle (respectively a C∗-bundle) over Z = βY .

Now consider a linear subspace D of A which is a C0(X)-submodule of A
and satisfies that N(d) ∈ C0(X)+ for d ∈ D, where we consider C0(X) naturally
as a subalgebra of `∞(X) ∼= C(Z).

Then the closure E of D (in A) is a Banach bundle over X, because the
C0(X)-module E, and P := N satisfy the requirements of 2.4.5.

If, moreover, the By are Hilbert spaces, then the closure E of D is a Hilbert
bundle, i.e. a Hilbert C0(X)-module in the sense of Kasparov, ([14]), by example
2.6.1, because the parallelogram law holds for the norm of Bx an thus for N on A.

2.6.4. A Banach C0(X)-module A is a Banach bundle over X if and only if
A is the Banach space of continuous sections vanishing at infinity of a continuous
field of Banach spaces over X, cf. Definition 10.1.2 in [9], such that the fibers
are the Ax and the algebra morphism from C0(X) into L(A) coincides with the
multiplication of continuous sections by functions.

Proof. It follows from 2.6.3 that the algebras of continuous sections vanishing
at infinity of a continuous field of Banach spaces over X is a Banach bundle in the
sense of our Definition 2.6.

Conversely, if A is a Banach bundle over X, then we can consider A as a
vector subspace of the (unbounded) Cartesian product

∏
y∈X

Ax and can multiply

there the elements of A with unbounded continuous functions f on X (where it is
possible). We get a subspace Γ of

∏
y∈X

Ax.
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It is easy to check with the help of Section 10.2 of [9] that Γ ⊂ ∏
y∈X

Ax is

a continuous field of Banach spaces over X with fibers Ax in the sense of Defi-
nition 10.1.2 of [9] (more precisely: it is the set of all continuous sections of this
field), and that A is just the Banach space of continuous sections vanishing at
infinity.

2.7. Projectivity of Mn(C0(0, 1]). Let {ei,j}i,j∈N denote the canonical system
of matrix units of the C∗-algebra K := K(`2(N)) of compact operators acting on
the separable infinite dimensional Hilbert space `2(N). These operators satisfy the
relations ei,jek,l = δj,kei,l and e∗i,j = ej,i.

As the function h0 : t ∈ (0, 1] 7→ t ∈ C generates C0((0, 1]), one gets that
for n > 1, C0((0, 1]) ⊗ Mn(C) is the universal C∗-algebra generated by n − 1
contractions f2, . . . , fn satisfying the relations

(2.9) fifj = 0 and f∗i fj = δi,j f
∗
2 f2 for 2 6 i, j 6 n .

The natural C∗-algebra epimorphism Φ from C0((0, 1])⊗Mn(C) onto C∗(f2, . . . , fn)
is uniquely determined by

Ψ : h0 ⊗ ej,1 7→ fj for 1 < j 6 n.

Note that fj := gj(g1)∗, 1 < j 6 n satisfy (2.9) if g1, . . . , gn just satisfy g∗i gj =
δi,j g

∗
1g1.

The C∗-algebra C0((0, 1],Mn(C)) is projective, i.e. for every closed ideal J ⊂
A and every ∗-homomorphism of C∗-algebras ψ : C0((0, 1],Mn(C)) → A/J there is
a ∗-homomorphism ϕ : C0((0, 1],Mn(C)) → A with πJϕ = ψ (cf. Theorem 10.2.1
of [21] and [22]).

3. FINITE DIMENSIONAL HAUSDORFF SPACES

We recall here some properties of finite dimensional compact spaces, prove that
the ordinary covering-dimension is the same as the later used decomposition-
dimension, and we study a counter-example, originally due to Dixmier and Douady,
for global stability of a Banach bundle in the case when the locally compact Haus-
dorff base space is not finite dimensional (Corollary 3.7).

Recall that a compact Hausdorff space X has (covering-) dimension Dim(X)
6 n ∈ N if for every finite open covering of X there is another covering of X by
open subsets which refines the given covering and is such that the intersection of
every n + 2 distinct sets of this covering is always empty, i.e. a given finite open
covering admits a refinement whose nerve is a simplicial complex of dimension
6 n.

Here an open covering V of X is a refinement of an open covering U of X if
for every V ∈ V there exists U ∈ U such that V ⊂ U .

The typical example of a metrizable finite dimensional space is a closed subset
of the Euclidean space Rn = R×· · ·×R, n <∞, which is (at most) n-dimensional as
topological product of n copies of the 1-dimensional space R ([13], Theorem III.4).
This also happens for (affinely) n-dimensional polyhedra.

Let us define open cubes as follows:
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(i) Or =]r − (2/3), r + (2/3)[⊂ O′r =]r − 1, r + 1[⊂ R for r ∈ Z,
(ii) Os = Os1×· · ·×Osn

⊂ O′s = O′s1×· · ·×O′sn
⊂ Rn for s = (s1, . . . , sn) ∈

Zn.
If r 7→ ṙ is the quotient map Zn → (Z/2Z)n, then Rn =

⋃ {Zt : t ∈
(Z/2Z)n}, where each open set Zt =

⋃ {Os : ṡ = t} ⊂ Rn is the disjoint union of
the cubes Os, ṡ = t, and these cubes have moreover disjoint closures Os ⊂ O′s.

Since we can scale this construction by ε > 0, we get that, for any finite open
covering X =

⋃
i

Ωi of a compact subset X ⊂ Rn, there is a covering of X which

refines this covering and consists of intersections of X with open cubes holding
the above disjointness properties.

Hurewicz and Wallman have shown that every metrizable compact space X
of finite dimension n is homeomorphic to a closed subset of [0, 1]2n+1 ([13], Theo-
rem V.3). As a consequence, there is a monotonous function n 7→ Ψ(n) on N, e.g.
Ψ(n) = 22n+1, such that every n-dimensional compact space has decomposition-
dimension 6 m = Ψ(n)− 1 in the sense of the following definition:

Definition 3.1. We say that a topological space X has the decomposition-
dimension 6 m if for every finite covering O of the topological space X, there is a
finite open covering U = {U1, . . . , Uq} which refines O and for which there exists
a map ι : {1, . . . , q} → {1, . . . ,m+ 1}, such that for each 1 6 k 6 m+ 1, the open
set Zk =

⋃
j∈ι−1(k)

Uj is the disjoint union of the open sets Uj , j ∈ ι−1(k).

3.1 We shall later use that one can actually take Ψ(n) = n + 1 in the previ-
ous statement (and this is the best possible choice, because it is obvious that X
has covering-dimension 6 n if X has decomposition-dimension 6 n). We could
however not find explicit references for this. But it is likely that a proof of the
following lemma is implicitly contained in the proof of Theorem V.1 of [13]. For
completeness we add a proof which is our elementary reformulation of an idea of
W. Winter.

Lemma 3.2. Let X be a compact Hausdorff space of topological dimension
6 n, let O = {O1, . . . , Op} be an open covering of X and let U = {U1, . . . , Uq} be
an open covering of X which is an refinement of O such that every intersection of
n+ 2 different elements of U is empty.

Then there is a finite open covering V of X which is a refinement of U (and
thus of O) and is such that the set V can be partitioned into n+1 subsets, consisting
of elements with pairwise disjoint closures.

The lemma says that a compact Hausdorff space X has covering-dimension
6 n if and only if it has decomposition-dimension 6 n.

In general the covering U itself cannot be partitioned in the desired way,
i.e. there is no pure combinatorial proof of Lemma 3.2, as a study of the covering
U1 of P in the below given proof can show. (In fact our proof only needs X to
be normal.) There are T0-spaces, e.g. primitive ideal spaces Prim(A) of separa-
ble C∗-algebras A, having covering-dimension which is strictly smaller than its
decomposition dimension, cf. remark before Proposition 3.4 in [18].
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Proof. Note that the covering U exists by definition of the topological di-
mension n. Note also that it is enough to construct a finite refinement W :=
{W1, . . . ,Wr} of U and a partition of the set W into n+1 subsets such that the el-
ements of the partition consist of pairwise disjoint elements: Let f1, . . . , fr ∈ C(X)
be a partition of unity subordinate to W, i.e. fi ∈ C0(Wi)+ and

∑
fi = 1 in C(X).

Then V = {V1, . . . , Vr}, with Vi := f−1
i ((1/(n + 2), 1]) ⊂ Wi, is a covering of X

and has a partition into n+1 subsets, consisting of elements with pairwise disjoint
closures.

By Tietze extension, we find a partition of unity η1, . . . , ηq subordinate to
U . Let ψ(x) := (η1(x), . . . , ηq(x)), which is in the q − 1-dimensional standard
simplex σq−1 ⊂ Rq, i.e. the the convex span of standard basis elements of Rq.
Each value ψ(x) of ψ has at most n+ 1 coordinates different from zero. It follows
that the image is in the union P of the q!/((n + 1)!(q − n − 1)!) simplices σS of
affine dimension n, which are the intersections of σq−1 with the n+ 1-dimensional
subspaces of Rq spanned by a subset S of n + 1 different elements of the natural
basis of Rq. Thus the image of ψ is contained in the polyhedron P (of affine
dimension n).

Let Hi := {(y1, . . . , yq) ∈ P : yi > 0}. Then ψ−1(Hi) = {x ∈ X : ηi(x) >
0}, is contained in Ui.

The (relatively) open subsets Hi∩P define a covering U1, which we are going
to refine to a covering W1 of P , which has a map ι : W1 → {1, . . . , n + 1} such
that Y ∩ Z = ∅ if Y, Z ∈ W1, Y 6= Z and ι(Y ) = ι(Z). Such a map ι is called a
(n+ 1)-coloring (of the covering W1).

Then W := {ψ−1(Y ) : Y ∈ W1} is the desired refinement of U with a
(n+ 1)-coloring.

The construction of W1 is very simple (following an idea of W. Winter):
W1 consists of the open stars (of the new vertices = old barycentres) of the first
barycentric subdivision of the (affine) n-dimensional polyhedron P together with
its standard (n+ 1)-coloring.

This is the complete proof. But since the reader is possibly not familiar with
this terminology, we finish the proof with an elementary description of W1 and
ι : W1 → {1, . . . , n+ 1}.

Let from now on ej := (δi,j), i, j = 1, . . . , q denote the standard basis of Rq.
For any subset S of {1, . . . , q} with cardinality |S| 6 n+1, let e(S) := |S|−1

∑
j∈S

ej ∈
Rq. (This is the barycentre corresponding to the first barycentric subdivision of
P .) Then e(S) = e(T ) if and only if S = T . Further, let σ(S1, . . . , Sn+1) denote
the convex span of e(S1), . . . , e(Sn+1), and if |S| = n + 1, let σS denote the
convex span of {ej : j ∈ S}. The above defined polyhedron P is the union of
the simplices σS and every simplex σS is the union of the (affine) n-dimensional
simplices σ(S1, . . . , Sn+1), with S1 ⊂ S2 ⊂ · · · ⊂ Sn+1, |Sk| = k and Sn+1 = S.

If we define Σ as the collection (i.e. finite set) of the simplices σ(S1, . . . , Sn+1)
with S1 ⊂ S2 ⊂ · · · ⊂ Sn+1 and |Sk| = k (k = 1, . . . , n+ 1), then P =

⋃
Σ.

The star st(y) of a point y ∈ P is defined as the subset

st(y) := P \
⋃
{σ ∈ Σ : y 6∈ σ}.

Then st(y) is a (relatively) open subset of P and contains y, because the simplices
σ ∈ Σ are compact.
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Now the reader is ready to check the following properties (i)–(vii) step by
step:

(i) y ∈ σ ∈ Σ if and only if e(T ) ∈ σ ∈ Σ for the support T ⊂ {1, . . . , q} of
y, considered as a function on {1, . . . , q}.

(ii) σS is covered by the stars st(e(T )) for T ⊂ S, because st(y) = st(e(T ))
if y ∈ σS has T as its support, by (i).

(iii) st(y) is (in our special situation) the union those half-open rays (inter-
vals) [y, z) beginning in y and ending in z ∈ P which are contained in P . Here
[y, z) := {y + t(z − y) : t ∈ [0, 1)}.

(iv) st(e(S)) ⊂ Hk for every k ∈ S, by (iii).
(v) S = T if st(e(S)) = st(e(T )), by (iv), because if e.g. k ∈ S \ T then

e(S) ⊂ Hk but e(T ) 6∈ Hk.
(vi) If e(S) and e(T ) are both contained in the same (n-dimensional) simplex

σ of Σ, then S = T , or |S| 6= |T | and S ⊂ T or T ⊂ S.
(vii) If S 6= T but |S| = |T |, then st(e(S)) and st(e(T )) are disjoint by (vi).
Summing up, we get that τ : S 7→ st(e(S)) defines a one-to-one map from

the subsets S ⊂ {1, . . . , n+ 1} of cardinality |S| 6 n+ 1 into the open subsets of
P , such that W1 := Im(τ) is an open covering of P which is a refinement of U1

and the map
ι : Y ∈ U1 7→ |τ−1(Y )| ∈ {1, . . . , n+ 1}

is an (n+ 1)-coloring of the covering U1.

Remark 3.3. Suppose that X is compact and at most n-dimensional, that
k > n, that Y ⊂ X is closed, and that ϕ : Y → Rk \ {0} is a continuous map.

Then there exists a continuous map ϕ : X → Rk \ {0} with ϕ|Y = ϕ.

(Indeed, since Rk \ {0} is homeomorphic to Sk−1 × R, this follows from
Theorem VI.4 of [13] and the Tietze extension theorem.)

3.2. Corollary 3.5 below is a reformulation of a result of Dixmier and Douady ([10],
Theorem 5 and [9], Lemma 10.8.7) in our terminology. A generalization of it will
be one of the key ingredients for our constructions in the next section. The original
paper [10] considers continuous fields of Hilbert spaces over paracompact spaces
and use different methods for the proofs. We deduce it from a more refined result
on Banach bundles (in the case of a compact base-space). We note that the Weyl–
von Neumann theorem of [25] (in conjunction with the Kasparov stabilization
theorem) also induces Corollary 3.5. (We discuss some of this aspects at the end
of this subsection.)

Let us give here a similar result with an elementary proof which is more qual-
itative and is more near to the corresponding results on locally trivial topological
vector bundles.
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Proposition 3.4. Suppose that X is a compact Hausdorff space of dimen-
sion 6 n and that E is a real (respectively complex) Banach bundle over X, such
that every fiber of E has real dimension > n+k−1 (respectively complex dimension
> [n/2] + k).

Then for every integer 1 6 l 6 k, for every sequence 1 > ε1 > ε2 > · · · >
εl > 0 and every l sections ζ1, . . . , ζl in E there exist sections ξ1, . . . , ξl in E such
that, for all x ∈ X, and j = 1, . . . , l:

(i) 1 6 ‖(ξj)x‖ < 1 + εj;
(ii) the distance from (ζj)x to the span of (ξ1)x, . . . , (ξj)x is smaller than

εj;
(iii) (ξj)x has distance = 1 from the span of (ξ1)x, . . . , (ξj−1)x for 1 6 j 6 n

(in particular the ξj are linearly independent).

Proof. We consider the real case. The proof of the complex case is similar.
It suffices to consider the case j = 1, because if ξ1, . . . , ξj have been found

with the desired properties, then the quotient E/Fj of E by the C(X)-linear span
Fj of ξ1, . . . , ξj defines a Banach bundle overX with fibers Ex/(Fj)x of dimension>
n+(k−j)−1, cf. Lemma 2.12. If j < l 6 k, we can consider ζj+1+Fj in E/Fj and
solve the problem there for this single section. The solution in E/Fj can be lifted
afterwards to an element ξj+1 ∈ E with 1 6 N(ξj+1) < 1 + εj+1; see Lemma 2.12.

We consider the case k = l = j = 1. For x ∈ X, we find n + 1 elements
e1, . . . , en+1 in E such that their image in the fiber Ex spans an (n+1)-dimensional
subspace. By 2.5.1, the linear independence of the (e1)y, . . . , (en+1)y must also
happen for y in a neighborhood of x. Since X is compact, this shows that we can
find g1, . . . , gm ∈ E such that, for every x ∈ X the linear span of (g1)x, . . . , (gm)x is
a subspace of Ex of dimension > n+1. Let F denote the closed C(X)sa-submodule
of E which is generated by {g1, . . . , gm}. Then every fiber Fx has dimension nx
with n < nx 6 m. By 2.5.1, the function x 7→ nx is lower semicontinuous.
Thus we get closed subspaces X0 := ∅ ⊂ X1 ⊂ X2 ⊂ · · · ⊂ Xl = X, such
that the dimension of Fx is ni > n for x in the locally compact spaces Yi :=
Xi+1 \ Xi, 0 6 i < l. By 2.5.1 and Lemma 2.12, every point x of Yi has a
closed neighborhood U (with relatively open interior in Yi containing x), such
that F|U ∼= C(U,Rni). Therefore, it follows from Remark 3.3 that F and U have
the sphere-section extension (cf. 2.5.2), because U has dimension 6 n < ni. By
induction we get from assertion 2.5.2 that X has the sphere-section extension
property with respect to F .

In the following we omit the subscript 1, i.e. we write ζ, ξ, ε for ζ1, ξ1, ε1.
Let Z := {x ∈ X : ‖(ζ)x‖ < ε/2}. Take G := X \Z and let f ∈ C(X)+ with

f|G = (N(ζ)|G)−1. Then N(fζ)|G = 1. Since F and X have the sphere-section
extension Property 2.5.2, we find ξ ∈ F ⊂ E with N(ξ) = 1 and (fζ)|G = ξ|G.

Then (N(ζ)ξ)|G = ζ|G and N(N(ζ)ξ − ζ)(x) < ε for x ∈ Z, thus ‖ζ +
C(X)ξ‖ < ε.
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Corollary 3.5. Let X be a compact space of finite dimension, and let E
be a real Hilbert bundle which is countably generated as Banach C(X,R)-module
and which has fibers Ex of infinite dimension. Then there exists a C(X,R)-linear
isometric isomorphism α from E onto C(X, `2(N; R)).

The same proof applies in the complex case and gives a C(X)-module iso-
morphism E ∼= C(X, `2(N; C)) ).

The proof of Dixmier and Douady uses a subtriviality result (which trans-
lates in our terminology to a special case of the Kasparov stabilization theorem)
and relies on a selection construction of Michael for special continuous fiber bun-
dles over a finite dimensional space, ([23], Theorem 2.1). We use the inductive
argument in the proof of Proposition 3.4 for a proof of Corollary 3.5. One can
imagine that the proof cannot be essentially simpler than that given below, by the
fact mentioned in Remark 6.9.

Proof of Corollary 3.5. Let (ζj)j∈N be a sequence in the unit ball of E, which
generates E topologically as a Banach C(X,R)-module, such that every element in
the sequence appears infinitely often in the sequence. Now let εj := 4−j . Then the
induction procedure in the proof of Proposition 3.4 does not stop, because all fibers
of E are of infinite dimension. We obtain a sequence of elements ξj ∈ E, which
satisfy (i)–(iii) of Proposition 3.4. Thus also (ξj)j∈N generates E as a Banach
C(X,R)-module by (ii) and by our choice of the sequences ζj and εj .

By (i), (iii) and by our choice of εj , the Gram–Schmidt orthonormalization
process for (ξj) works well, and defines a fiberwise orthonormal sequence (ej) in
E, which generates E as Banach C(X,R)-module. The sequence (ej) defines the
desired isometric C(X,R)-module isomorphism from C(X, `2(R)) onto E.

3.3. The above assertion does not hold in full generality, as was proved by Dixmier
and Douady ([10], Paragraph II.17). We remind here the simplest example for this
phenomenon: Let K := C or R, H0 := `2(K), H := `2(K) ⊕2 K ∼= H0, and let
X be the unit ball of H0 endowed with the weak topology. By a theorem of
Keller ([16]), the norm-compact convex sets of infinite dimension in a Hilbert
space are all homeomorphic to the Hilbert cube [0, 1]∞. Since the compact linear
map (α1, α2, . . .) 7→ (2−1α1, 2−2α2, . . .) maps X homeomorphically onto a norm-
compact subset of H0, we get the well-known fact that X is homeomorphic to the
Hilbert cube.

We consider the map

η : x ∈ X 7→ η(x) := (x ,
√

(1− ‖x‖2) ) ∈ H
as an element η of `∞(X, H). (The interesting idea of this construction is that η is
not in C(X,H).) Then we can define a C(X,K)-module map T from C(X,H0)⊕
C(X,K) into `∞(X,H) which assigns to (ξ, f) ∈ C(X,H0)⊕ C(X,K) the map

T (ξ, f) : x ∈ X 7→ (ξ(x) + f(x)x, f(x)
√

(1− ‖x‖2) ) ∈ H
i.e. T (ξ, f) = ξ + fη ∈ `∞(X,H) under the natural embedding of C(X,K) into
`∞(X,K) and of C(X,H0) into `∞(X,H0 ⊕ 0) ⊂ `∞(X,H).
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The function x 7→ N(ζ)(x) := ‖ζ(x)‖ is continuous for ζ = T (ξ, f), because
‖ζ(x)‖ = ‖(ξ(x) + f(x)x, f(x)

√
1− ‖x‖2)‖ and the function

x ∈ X 7→ ‖ξ(x)‖2 + 2Re(f(x) 〈ξ(x), x〉) + |f(x)|2

is continuous for the weak topology on X.
Thus assertions 2.4.5 and 2.6.1 apply, and the norm-closure D of (C(X,H0)⊕

0)+C(X,K)η in `∞(X,H) is a Hilbert bundle (Hilbert C(X,K)-module), and we
have ‖ζ(x)‖H = ‖ζx‖Dx

for ζ ∈ D. Note that η ∈ D, but η is not contained in
C(X,H).

Proposition 3.6. (Reformulation of Lemma 15, Proposition 19 of [10])
Each section ζ in the orthocomplement E ⊂ D of the section η ∈ D satisfies
ζ(x) = 0 for at least one point x ∈ X.

Proof. (Proof of Lemma 14 of [10] transferred to our terminology.) Suppose
that the section ζ ′ ∈ E is everywhere nonzero. Let δ := inf N(ζ ′)/3. Since ζ ′ ∈ D,
N(ζ ′) is continuous and δ > 0. By definitions of D and E, we find ξ ∈ C(X,H0)
and g ∈ C(X,K), such that ‖ζ ′ − T (ξ, g)‖ < δ. Let f = −〈ξ, η〉 ∈ C(X,K). Then
ζ := T (ξ, f) is in E and ‖ζ ′ − ζ‖ < 2δ. Thus, the continuous function N(ζ)(x) is
everywhere nonzero. The equality 0 = 〈ζ, η〉 (x) = f(x) + 〈ξ(x), x〉 then implies
that ξ(x) 6= 0 for all x ∈ X and so the map x ∈ X 7→ ξ(x)/‖ξ(x)‖ ∈ H0 is a well
defined continuous map fromX with weak topology toX with norm topology. The
Schauder fixed point theorem applied to the convex compact set X and this map
yields the existence of a fixed point x0 = ξ(x0)/‖ξ(x0)‖, whence η(x0) = (x0, 0).
But this contradicts the two hypotheses ζ(x0) = ξ(x0) + f(x0) η(x0) 6= 0 and
〈ζ, η〉(x0) = 〈ξ(x0), x0〉+ f(x0) = 0.

3.4. Let us focus on the involved problem in the complex case. Let L(E) be the
C∗-algebra of C(X)-linear operators acting on E, which admit an adjoint. For
x ∈ X, denote by θx the quotient map L(E) → L(Ex) ∼= L(`2(C)). The above
given example has the following properties:

Corollary 3.7. With the above notations,
(i) the unit e ∈ L(E) is not properly infinite but has properly infinite images

θx(e) in L(Ex);
(ii) K(E) is a separable C∗-bundle over the Hilbert cube with stable fibers;

but K(E) is not a stable C∗-algebra.

Proof. (i) Given x ∈ X and ζ ∈ E, the relation ζx 6= 0 implies by continuity
that ‖ζ(y)‖ > 0 for y in a neighborhood of x. Thus, there exists by compactness
a finite family ξ1, . . . , ξm ∈ E such that f := N(ξ1)2 + · · · + N(ξm)2 ∈ C(X)+
is strictly positive. Suppose now that e is properly infinite. Then one can find
isometries s1, s2, . . . , sm ∈ L(E) which commute with C(X) and with mutually
orthogonal ranges. Thus f = N(ξ)2 with ξ = s1ξ1 + · · · + smξm ∈ E, but this
contradicts Proposition 3.6.

(ii) follows from (i): Indeed, if K(E) is stable, then the unit element e of
L(E) ∼= M(K(E)) is properly infinite.
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Questions 3.8. (i) Is the unit e ∈ L(E) a finite projection?
(ii) Does there exists a positive integer n such that L(E ⊕ · · · ⊕ E) =

L(E ⊗Cn) has a properly infinite unit? (The point is here that the base space X
is contractible.) Note that this (together with (i)) is the case with n = 2 for certain
“Bott-type” examples of Hilbert bundles E over the highly non-contractible space
(S2)∞, which have been constructed by Dixmier and Douady ([10]) or Rørdam
([27], [28]). Rørdam ([28]) defines a sequence of projectionsQn inM(C((S2)∞,K))
such that En := Qn(C((S2)∞, `2)) does not have non-singular sections, that En⊕
En ∼= C((S2)∞, `2) and (eventually) Qn0 must be finite for sufficiently large n0.

(iii) One can show that each fiber T (Ex) of the (by Pimsner) generalized
Fock-Toeplitz C(X)-algebra T (E) built over E is isomorphic to the C∗-algebra
O∞.

Does there exist an isomorphism of C(X)-algebras T (E) ∼= C(X)⊗O∞?
(It would be also interesting to know the answer of the same question for the

space X := S2×S2× · · · and the generalized Fock-Toeplitz C(X)-algebra T (En0)
built over the C(X)-Hilbert module En0 of Rørdam in [28], cf. (ii).)

4. A GLOBAL GLIMM HALVING FOR C∗-BUNDLES

We study in this section a global version of the Glimm halving (see end of Sub-
section 2.7, Lemma 4.6.6 of [30], Lemma 6.7.1 of [24]) for non-simple C∗-algebras
(Definition 1.2), and prove that this property holds for C∗-algebras with Hausdorff
finite dimensional primitive ideal space and which do not admit any nonzero type I
quotient (Theorem 4.3).

Remark 4.1. The global Glimm halving property (Definition 1.2) of a C∗-
algebra A implies by induction that for all a ∈ A+, ε > 0 and n > 2, there
exists a ∗-morphism πn : C0 ((0, 1]) ⊗Mn(C) → aAa such that (a − ε)+ is in the
ideal generated by the image of πn. (In particular A can not have any irreducible
representation which contains the compact operators in its image, hence A is
strictly antiliminal, i.e. every nonzero quotient of A is antiliminal.)

Indeed, let δ := ε/3 and let f2, . . . , fn be n−1 contractions in aAa satisfying
(2.9) and such that (a − δ)+ is in the ideal generated by f1 := (f∗2 f2)

1/2. Then
there exists ν > 0 such that (a − 2δ)+ is in the ideal generated by (f1 − 2ν)+.
Take a contraction b of (f1 − ν)+A(f1 − ν)+ such that (f1 − 2ν)+ is in the ideal
generated by b and such that b2 = 0. Then (a − ε)+ is in the ideal generated by
g2, . . . , gn+1 where g2 := b, g1+j := fjh(f1)b for j > 1 and h ∈ C0((0, 1]) is the
function with h|(0,ν/2] = 0, h(t) = t−1 for t ∈ [ν, 1], linear on [ν/2, ν]. Note that
gigj = 0 and g∗i gj = δi,j b

∗b for 1 < i, j 6 n+ 1 and that (a− 3δ)+ is in the ideal
generated by b∗b.

Proposition 4.2. A C∗-algebra A satisfies the global Glimm halving prop-
erty in the following cases:

(i) A is simple and not isomorphic to the compact operators on a Hilbert
space.
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(ii) The commutant A′ ∩M(A)ω contains for every a ∈ A+ elements d, e
with 0 6 e 6 1, ea = a, d2 = 0 and e is in the ideal of A′ ∩M(A)ω generated by
d.

(iii) A is approximately divisible, i.e. for all n ∈ N, there is a sequence of
unital ∗-homomorphism ϕk : Mn(C) ⊕Mn+1(C) → M(A) such that ‖ϕk(e)a −
aϕk(e)‖ → 0 for all e in Mn(C)⊕Mn+1(C) and all a ∈ A ([19], Definition 5.5).

(iv) A is an infinite tensor product A ∼= A0 ⊗ B1 ⊗ B2 ⊗ · · · with simple
unital C∗-algebras Bn 6= C. for n = 1, 2, . . ..

We do not know whether C([0, 1]∞)⊗C∗r (F2)⊗C∗r (F2)⊗· · · is approximately
divisible. It is an open question whether strictly antiliminal algebras of real rank
zero have the global Glimm halving property.

Proof. (i) follows from the Glimm halving lemma and the simplicity of A.
(ii) is stronger than the global Glimm halving property: let a ∈ A+, ε > 0 and let
d, e ∈M(A)ω be as in (ii). Then b := da satisfies b2 = 0 and a = ea is in the ideal
of M(A)ω generated by b. Thus (a− ε)+ belongs to the ideal of A generated by b.

Further (iii) or (iv) implies (ii).

Theorem 4.3. Let A be a continuous C∗-bundle over a finite dimensional
locally compact Hausdorff space X and assume that each fiber Ax is simple and
not of type I.

Then the global Glimm halving Property 1.2 holds for A.

In conjunction with Remark 4.1 this says that a C∗-algebra A with Hausdorff
primitive ideal space of finite dimension satisfies the global Glimm halving property
if and only if A has no simple quotient of type I.

We shall use two lemmas in order to prove this theorem.

Lemma 4.4. Let X be a finite dimensional compact space and let A be a
C∗-bundle over X, whose fibers Ax have (complex) dimension > 1 + Dim(X).

Then there exist elements a, b ∈ A+ such that ab = 0, but ay 6= 0 and by 6= 0
for every y ∈ X.

Proof. Let n := Dim(X). For each fiber, Ay one can find n + 2 elements
e1, . . . , en+2 of Asa, such that the span of (e1)y, . . . , (en+2)y is of dimension n+ 2.
This linear independence also happens in a neighborhood of y ∈ X by 2.5.1. By
compactness of X, we find a finite subset E of Asa, with the property that the
images Ex of E in the fibers of A generate real linear subspaces of (Ax)sa of
dimension > n + 1. Let G ⊂ A be the separable C∗-subalgebra of A which is
generated by E. By 2.4.3, 2.4.7 and Lemma 2.10, the closure B of the span of
C(X)G is a countably generated C∗-subbundle of A and there is a positive C(X)-
module morphism ψ from B into C(X) such that the positive functionals ψy on
By are faithful for y ∈ X, where ψy is defined by ψy(ay) := ψ(a)(y).

As the C∗-norm is monotonous on (By)+ and each fiber By has complex
dimension > n + 1, there is b ∈ B+ such that N(b)(y) > 0 and thus, ψ(b)(y) > 0
for every y ∈ X.

Let e := ψ(b)−1b. Then the map a 7→ P (a) := a−ψ(a)e is a bounded C(X)-
module projection from B onto the kernel of ψ, which satisfies P (a∗) = P (a)∗
and P (a)y = ay − ψy(ay)ey. Thus the intersection of Bsa with the kernel of ψ
is a real Banach subbundle C of Bsa, and the fibers of C have real dimension
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> n. Accordingly, by Proposition 3.4, there exists d ∈ C such that dy 6= 0 and
ψy(dy) = 0 for every y ∈ X. Let a := d+ and b := d− be the polar decomposition of
d in B. Then a, b ∈ B+ ⊂ A+, ab = 0 and dy = ay − by is the polar decomposition
of dy in By.

The elements ay and by must be nonzero for every y ∈ X, because ψy(dy) = 0,
dy 6= 0 and ψy is faithful.

Lemma 4.5. Let A be a continuous C∗-bundle over a finite dimensional
compact Hausdorff space X such that for every y ∈ X, Ay is nonzero and does not
contain any hereditary C∗-subalgebra of (linear) dimension 1.

Then there exists a sequence of mutually orthogonal elements (an)n∈N in A+

satisfying (an)x 6= 0 for every pair (n, x) ∈ N×X .

Proof. The assumptions imply that every nonzero hereditary C∗-subalgebra
Dy of Ay is of infinite linear dimension (in fact this is even equivalent to the
conditions on the fibers of A). Thus we can use Lemma 4.4 for an induction
argument as follows.

If we have already found mutually orthogonal elements a1, a2, . . . , an, bn in
A+ which have nonzero values (aj)y, (bn)y in every fiber Ay of A, then we can
consider the hereditary C∗-subalgebra Dn := bnAbn of A. By Lemma 4.4 we find
orthogonal an+1, bn+1 ∈ Dn which have nonzero values in every fiber Ay of A.
Then a1, . . . , an, an+1, bn+1 are mutually orthogonal and have nonzero values in
each fiber.

Proof of Theorem 4.3. Fix a nonzero positive element a ∈ A+, a constant
0 < ε < ‖a‖, and let us construct an element b ∈ aAa such that b2 = 0 and
(a− ε)+ ∈ AbA .

Let δ := ε/3, m := Dim(X) + 1 and let Y be the closure of the support of
(N(a)− δ)+.

Notice that Y is a compact subset of X of dimension < m, that for x ∈ Y ,
ax 6= 0 and there is no projection p in Ax with pAxp ∼= Cp, because otherwise
the simple C∗-algebra Ax would be of type I. Thus, by Lemma 4.5, there are
pairwise orthogonal positive elements a0, . . . , am in the hereditary C∗-subalgebra
B := aAa |Y of A|Y which satisfy the relation (aj)x 6= 0 for x ∈ Y , 0 6 j 6 m.

Since B is a continuous C∗-bundle over Y with nonzero simple fibers, one
can find for every x ∈ Y an open neighborhood U of x ∈ Y and elements
d(1, U), . . . , d(m,U) in B such that, for all 1 6 k 6 m, one has

(4.1) d(k, U) ∈ a0Bak and ∀ y ∈ U , ‖d(k, U)y‖ = 1 .

The compactness of Y leads to a finite open covering U = {U1, . . . , Un} of Y
and elements d(k, Uj) satisfying (4.1) for 1 6 k 6 m and 1 6 j 6 n (with Uj in
places of U). By Lemma 3.2, one can moreover assume, up to taking a suitable
refinement of U , that there exists a map ι : {1, . . . , n} → {1, . . . ,m} such that for
each 1 6 k 6 m, the open set

Yk =
⋃

j∈ι−1(k)

Uj

is the disjoint union of the open sets Uj , j ∈ ι−1(k).
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Take a partition of unity 1C(Y ) =
∑

06j6n
ηj subordinate to the open covering

U , and set for k ∈ {1, . . . ,m}
dk :=

∑

j∈ι−1(k)

ηj d(k, Uj) ∈ (a0A|Y ak) .

Then ‖(dk)x‖ = max{ηj(x) : j ∈ ι−1(k)} for x ∈ Y , and the sum d =
∑
k

dk ∈ B
satisfies the desired equality

d2 =
∑

i,j

didj = 0,

because aia0 = 0 for all i > 1. Moreover, for any point x ∈ Y ,

‖dx‖2 =
∥∥∥
( ∑

k

dkd
∗
k

)
x

∥∥∥ > max
j
ηj(x)2 > 0 .

We multiply d ∈ A|Y by (N(a)−2δ)+, to get an element b of aAa with b2 = 0
such that (a− ε)+ is in the ideal generated by b.

5. AN APPLICATION TO PURELY INFINITE C∗-ALGEBRAS

Recall that a C∗-algebra A is purely infinite if A has no nonzero character and for
a, b ∈ A+, ε > 0 with b in the closed ideal of A generated by a, there exists d ∈ A
with ‖b− d∗ad‖ < ε.

Theorem 5.1. Suppose that Prim(A) is a Hausdorff space of finite topo-
logical dimension. Then A is purely infinite if and only if every simple quotient of
A is purely infinite.

Proof. The simple quotients of A are purely infinite if A is purely infinite by
Proposition 4.3 of [19].

Conversely, suppose that all simple quotients of A are purely infinite. The
compact operators on a Hilbert space are not purely infinite ([19], Proposition 4.4).
Thus A satisfies the assumptions of Theorem 4.3 and has the global Glimm halving
property.

Let X := Prim(A), n := Dim(X) < ∞, and let a, b ∈ A+ be positive
elements, where b is in the closed ideal of A generated by a. For ε > 0, there
are η > 0 and g1, . . . , gm ∈ A such that ‖b − c‖ < ε for c :=

∑
k

g∗k(a − 3η)+gk,

because (b− ε/2)1/2+ is in the minimal dense ideal of the closure of the linear span
of {g(a− 4η)+h : η > 0, g, h ∈ A}.

Since A has the global Glimm halving property, we find a2, . . . , an+1 in (a−
η)+A(a − η)+ which satisfy the relations (2.9) and such that (a − 2η)+ is in the
ideal generated by a1 := (a∗2a2)1/2. Let a0 := a2

1. Then cx is in the ideal generated
by (a0)x for every x ∈ X. Let gη(t) := (1/η)[(max(t− η, 0)−max(t− 2η, 0)] then
gη(a)ai = ai for 1 6 i 6 n+ 1.

The function p(x) := gε(‖cx‖)1/2 is a continuous function on X with compact
support and satisfies ‖p2c − c‖ = sup(1 − p2)N(c) < ε, because the fiber norm
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function x 7→ N(c)(x) := ‖cx‖ is in C0(X)+. One can find for each point x in
the compact closure F of {x ∈ X : p(x) > 0} an element d(x) ∈ A such that
‖[c− d(x)∗a0d(x)]x‖ < ε, whence by upper semi-continuity of the norm-functions,
there is an open neighborhood Ux 3 x on which ‖[c− d(x)∗a0d(x)]y‖ < ε for all y
in Ux.

There is a finite open covering U = {U1, . . . , Up} of F and elements d(1), . . . ,

d(p) ∈ A satisfying ‖[b − (d(j))∗a0d
(j)]y‖ < ε for all 1 6 j 6 p and y in Uj . By

Lemma 3.2, one can moreover assume, up to taking a suitable refinement of U , that
there exits a map ι : {1, . . . , p} → {1, . . . , n+ 1} such that for each 1 6 i 6 n+ 1,
the open set

Yi =
⋃

j∈ι−1(i)

Uj

is the disjoint union of the open sets Uj , j ∈ ι−1(i), because F has dimension 6 n.
Now take ej ∈ C0(Uj)+ ⊂ C(X)+ with

∑
16j6p

ej 6 1 and (
∑
ej)|F = 1, and define,

for i ∈ {1, . . . , n+ 1}, ηi :=
∑

j∈ι−1(i)

ej and

di :=
∑

j∈ι−1(i)

(ej)1/2 d(j) ∈ A.

Then ‖ [ηic− d∗i a0di]y‖ < ηi(y)ε if ηi(y) > 0 and 1 6 i 6 n+ 1.

Since
( ∑

16i6n+1

ηi

)
|F

= 1, we get N(c−f∗(a0⊗1n+1)f)|F 6 ε for the column

f = (d1, . . . , dn+1)T ∈Mn+1,1(A).
Let h(t) := (gη(t)/t)1/2 and d :=

∑
16i6n+1

p · h(a)aidi. Then

N(p2c− d∗ad) = p2N(c− f∗(a0 ⊗ 1n+1)f) 6 ε,

because d∗i a
∗
i h(a)ah(a)akdk = δikd

∗
i a0di. Thus ‖b− d∗ad‖ < 3ε.

6. MORE ON BANACH BUNDLES AND ITS NONCOMMUTATIVE VERSION

Since we did not want to interrupt the stream of arguments in Sections 2 and 3,
we have transferred a few additional observations and remarks to this section.

Remark 6.1. For the validity of formulas (2.1) and (2.2) it is very impor-
tant that we assume the action of C0(X) on A to be nondegenerate, because their
proofs (implicitly) need the formula C0(βX \ {y})C0(X) = C0(X̂ \ {y})C0(X) =
C0(X \ {y}), where X̂ is the one-point compactification of X. Here is an example
where (2.1) and (2.2) do not hold, but ‖a‖ = ‖N(a)‖ for a ∈ A: If we consider
A := C([0, 1]), X := (0, 1] with action given by C0((0, 1]) ⊂ C([0, 1]) then for y = 1,
f ∈ C0((0, 1]) with f(t) = t, a ∈ A with a(t) = 1−t, we get Ay ∼= C⊕C, ay = (1, 0),
(fa)y = (0, 0) 6= f(y)ay, N(a)(y) = ‖ay‖ = 1, N(fa)(y) = 0 6= f(y)N(a)(y) = 1.
The right side of equation (2.2) is equal to |a(1)| = 0 6= 1 = ‖ay‖.

Remark 6.2. To understand the difference between continuous fields in the
sense of Chapter 10 of [9] and our definition of C∗-bundles (or Banach bundles),
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let us consider A := C0(R) as a C∗-bundle over the space R. Then At = C for
t ∈ R and the corresponding continuous field is E = ((At)t∈R, C(R)) where the
unbounded continuous functions in C(R) are considered as elements of

∏
t∈R

At.

Remark 6.3. (Concerning assertion (e) in Subsection 2.3.) There are ex-
amples of degenerate Banach C0((0, 1])-modules A with dimensions of fibers 6 2
and contractive action L : C0((0, 1]) → L(A), such that ‖a|F ‖ is strictly bigger
than inf{‖a − fa‖ : f ∈ C0(X \ F )+, ‖f‖ 6 1} for suitable a ∈ A and suitable
closed F ⊂ (0, 1] (cf. Remark 6.1). Thus κ(L) > 1 and the contractivity of L does
not imply the contractivity of Le in general. This phenomenon can not happen if
the action is also nondegenerate; see Lemma 2.3.

Remark 6.4. A “bounded” modification of Lemma 2.3 shows that the non-
degeneracy of the action L : C0(X) → L(A) is the crucial point for the proof of
the formulas (fa)y = f(y)ay, (2.1) and (2.2), see Remark 6.1.

Remark 6.5. The closed subgroup B := Z{1} ∪ C0((0, 1]) is a closed
C0((0, 1])-submodule of (the degenerate Banach C0((0, 1])-module) A := C([0, 1])
in the sense of the algebraic definition of modules of given rings, but B is not a
vector subspace of A! For nondegenerate Banach C0(X)-modules A, every closed
algebraic C0(X)-submodule B of A is automatically also a vector subspace by the
inequalities (2.6).

Remark 6.6. (i) Continuity of all the functions N(a) does not imply in
general equation (2.7), even if the action of C0(X) on A is contractive and nonde-
generate: For instance, the C([0, 1])-module L2(0, 1) satisfies N(a) = 0 for every
a ∈ L2(0, 1). (Thus (i),(ii) and (iii) do not imply (iv) of Definition 2.6.)

(ii) One can show that (i) of Definition 2.6 is implied by (ii), (iii) and (iv)
(cf. the arguments in the proof of assertion 2.4.5).

(iii) If a Banach C0(X)-module A satisfies only the conditions (i), (ii) and
(iv) of Definition 2.6 then A is a quotient of a (continuous) Banach bundle over X,
because these conditions imply that the linear map

∑
j

fj ⊗ aj →
∑
fjaj extends

to a contraction π : C0(X,A) ∼= C0(X) ⊗min A → A and defines an isometric
isomorphism from C0(X,A)/D onto A for D := ker(π).

Conversely, for every Banach space B and every closed C0(X)-submodule D
of C0(X,B) the quotient Banach C0(X)-module A := C0(X,B)/D satisfies (i),
(ii) and (iv) of Definition 2.6. (Indeed, an obvious modification of the arguments
in the last part of the proof of assertion 2.4.3 and Lemma 2.4(v) shows that for
f ∈ C0(X,B) holds: NA(f +D)(x) = dist(f(x), Dx), and dist(f(x), Dx) < 1 for
all x ∈ X implies the existence of d ∈ D with ‖f − d‖ 6 1.)

Remark 6.7. It is known that the continuous fields of Banach spaces (re-
spectively of C∗-algebras) are in natural correspondence to the bundles π : P → X
of Banach spaces (respectively C∗-algebras) over X in the ordinary sense of topol-
ogy. Those are the topological spaces P together with an open and continuous
map π from P onto X (i.e. P is a general topological bundle over X with fibers
Px := π−1(x)) and continuous maps C × P 7→ P , (a, b) ∈ P ×π P 7→ a + b ∈ P ,
a ∈ P 7→ ‖a‖ ∈ R+ (and maps a ∈ P 7→ a∗ ∈ P , (a, b) ∈ P ×π P 7→ ab ∈ P in the
case of C∗-bundles), which map the fibers C×Px of C×P (respectively the fibers
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Px × Px of the fiber product P ×π P := {(a, b) : a, b ∈ P, π(a) = π(b)}) into Px
for every x ∈ X, and which define on Px the structure of a Banach space (respec-
tively of a C∗-algebra). We require that the continuous map (a, b) ∈ P ×π P 7→
(π(a), ‖b‖) ∈ X × R+ is open. Then our requirements on P are equivalent to
Definition 13.4 of [11].

By a result of A. Douady and L. dal Soglio-Hérault for every a ∈ P there
exists a continuous cross section f : X → P with f(π(a)) = a such that the
function x ∈ X 7→ ‖f(x)‖ is in C0(X)+ if X is locally compact (cf. [11], Appendix
C).

The continuous cross sections f : X → P with N(f) : x ∈ X → ‖f(x)‖ in
C0(X)+ build a Banach C0(X)-module B with norm ‖f‖ := sup

x∈X
‖f(x)‖. It is a

Banach bundle in the sense of Definition 2.6 by Subsection 2.4.5.
Conversely, given a Banach bundle B in the sense of 2.6, one finds on the

set P :=
⋃
x∈X

Bx (disjoint union of fibers) a unique topology such that π : P → X

becomes a continuous bundle of Banach spaces in the above described sense, such
that B is naturally isomorphic to the Banach C0(X)-module of continuous sections
f : X → P vanishing at infinity (cf. Section 13.18 of [11]).

It is this correspondence which justifies our terminology “Banach bundle”
over X in Definition 2.6. We use the picture of C0(X)-modules, because there are
ideas for quantizations of this kind of “Bundles” over noncommutative “spaces”
as e.g. defined in the following remark.

Remark 6.8. The considerations in Section 2 (in particular in assertion
2.4.4) suggest that the following definition of separable “quantized” bundles over
noncommutative C∗-algebras should be the right one: suppose that A is a separa-
ble C∗-algebra and B is a separable operator space which is a Banach A-module
with a nondegenerate and completely contractive action of A on B.

We call B an operator space bundle over A, if there exist:
(i) a separable C∗-algebra C and a closed ideal J of A⊗ C;
(ii) a completely isometric A-module map from B into (A⊗ C)/J ;
(iii) a completely isometric A-module isomorphism from (A ⊗ C)/J into

M(A⊗K).
Above we have shown, that in the case of a commutative C∗-algebra A this

characterizes separable C∗-bundles over X = Prim(A), if the Banach space B
in question is considered as an operator space with its minimal operator space
structure, which is e.g. given by the embedding B ⊂ C(E), as considered in the
proof of 2.4.4.

We say that an operator space bundle B is subtrivial if there exists a com-
pletely isometric linear A-module map from B into A⊗ L(H).

Is B subtrivial if A is exact and B has exactness constant one?
The question has a positive answer if A is commutative (by a generalization

of [3]).

Remark 6.9. Let X be a metrizable compact space X, which is not finite
as a set, and let E be a real Hilbert bundle over X, which is countably generated
as Banach C(X,R)-module and has fibers of infinite dimension. Then for every
non-isolated point y of X, there is a section ζ ∈ E such that ζy = 0, but, for every
section η ∈ E in the orthogonal complement of ζ, ηy = 0. This can be deduced
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from the special case where X is the one-point compactification N ∪ {+∞} of the
positive integers N. There it is easy to see. Thus the Michael selection does not
work for orthogonal complements of sections with a singularity, and the Gram–
Schmidt orthonormalization anyway is not defined for them. (This argument also
works in the complex case.)

Remark 6.10. Let X ∼= [0, 1]∞ and let T : C(X,H0) ⊕ C(X) → D ⊂
`∞(X,H) be the C(X)-module map constructed above Proposition 3.6. Then the
image (C(X,H0) ⊕ 0) + C(X)η of C(X,H0) ⊕ C(X) in D is not closed. This
results from assertion 2.4.6, because the C(X)-module map T : (ξ, f) 7→ T (ξ, f)
is injective and has norm 6

√
2 (where we identify the algebraic sum C(X,H0)⊕

C(X) naturally with C(X,H)): The implication {T (ξ, f) = 0 ⇒ f = 0 } follows
here from the density in X of the y ∈ X with ‖y‖ < 1. Further ‖T‖ 6

√
2,

because s + t 6
√

2(s2 + t2), for s, t ∈ R+. If x ∈ X and ‖x‖ = 1, then the
map Tx from C(X,H)x ∼= H to Dx

∼= H0 ⊕ 0 ⊂ H of 2.4.6 is explicitly given by
(ξ, α) 7→ (ξ − αx, 0), and is not injective. Thus the image of T can not be closed
by 2.4.6.

Remark 6.11. Let E be the Hilbert C(X)-module, for X = [0, 1]∞, as
defined above in Proposition 3.6, i.e. the orthogonal complement of η in D. Since
E ⊕ C(X, `2) ∼= C(X, `2) by the Kasparov stabilization theorem [14] (or by the
more special of Theorem 4 in [10]) we get that K(E) is isomorphic to a full cor-
ner of C(X,K) which is given by eC(X,K)e, where e = 1 − SS∗ for an isometry
S ∈ M(C(X,K)). In particular, K(E) satisfies the condition of Fell (see Defini-
tion 10.5.7 of [9]) and E ∼= eC0(X, `2).

Note that the C(X)-module map ψ : ξ ∈ C(X,H0) 7→ T (ξ, fξ) ∈ E ⊂
C(X, `2), where fξ(x) := −〈ξ(x), x〉, has fiberwise image equal to Ex and de-
fines for x ∈ X on H0

∼= `2 the quadratic form ‖y‖2 > qx(y) = ‖y‖2 − |〈y, x〉|2 =
‖ψx(y)‖2 (the latter norm taken in Ex ⊂ Dx). Thus (by Halmos-Nagy dilation)
there are a ∗-strongly continuous map x ∈ X 7→ Sx ∈ L(`2) and a strongly (but
not ∗-strongly) continuous map x ∈ X 7→ Ix ∈ L(`2) into the isometries of `2, such
that 〈(1−SxS∗x)Ix(y), Ix(y)〉 = qx(y) and (1−SxS∗x)Ix(`2) is dense in (1−SxS∗x)`2.
It would be desirable to have explicit formulas for minimal realizations of these
maps.

Question 6.12. (“Locally of infinite dimension” versus “locally trivial”)
Let Y denote a compact metric space such that every neighborhood of every

point of Y has infinite dimension. Does there exist:
(i) A (separable) Hilbert bundle Fa over Y such that Fa contains a trivial

Hilbert bundle with fibers of infinite dimension, but Fa is not itself trivial (and,
thus, the trivial bundle is not complemented in Fa by Kasparov stable isomorphism
theorem)?

(ii) A Hilbert bundle Fb over Y with fibers of infinite dimension, such that
Fb has no non-singular section?

(iii) A full projection in M(C(Y,K)) which is finite (respectively is infinite
but is not properly infinite, respectively such that, in addition, the corresponding
Hilbert bundles satisfy likewise (i) or (ii))?

(An example Fa for (i) in the case of the Hilbert cube [0, 1]∞ ∼= X was
introduced in [10]. We have used this Fa to define the example E for (ii) in the
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case of X (cf. Proposition 3.6). Clearly, this applies for every Y which contains
the Hilbert cube as a subspace, because the Hilbert cube is an abstract retract.)

More generally, one can consider full corners D of a stable separable C∗-
algebra A, such that D has no unital quotient and no finite 2-quasitrace, but D
has one of the following properties:

(iv) D contains a stable full hereditary C∗-subalgebra, but is not stable and
the support projection e of D in M(A) is not full in M(A).

(v) There is a ∈ A+, such that D does not contain an element which is Cuntz
equivalent to a.

(vi) The support projection e of D in M(A) is full in M(A) but is not
properly infinite, i.e. D is not stable.

(vii) e is properly infinite, but is not full in M(A).
Which C∗-algebras A have the property that one of the cases (iv)–(vii) can

not appear for every full corner of D?
Is there a C∗-algebra A in which one of the cases (iv)–(vii) appears and not

all of them?
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