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ABSTRACT. Our purpose is to investigate the asymptotic properties of an op-
erator T on an invariant subspace E ∈ Lat(T) and on E⊥ using the generalized
Toeplitz operators associated with T. We show how the relative properties
may be used in order to give a general result linking the behaviour of T on
E and on E⊥ with the possibility for T to be similar to a scalar multiple of a
contraction. Some applications are indicated. In particular, one of our results
implies that there is no hope to construct a power bounded operator of Foguel
type that is not similar to a contraction and such that for every x ∈ H\{0} the
sequence (Tn)n>0 does not converge to 0. We also study the asymptotic and
spectral properties of these operators of Foguel type.

KEYWORDS: Toeplitz operators, invariant subspaces, similarity problems.

MSC (2000): Primary 47A15, 47B35; Secondary 47C15.

1. INTRODUCTION AND PRELIMINARIES

Let H1, H2 be a separable complex Hilbert spaces and B(H1, H2) be the Ba-
nach space of all continuous, linear operators from H1 into H2; we abbreviate
B(H, H) to B(H). The ultra-weak topology of B(H) is the weak* topology (in
the sequel we will shorten weak* to w*) that comes from the well known dual-
ity B(H) = (C1(H))∗ where C1(H) is the Banach space of trace class operators
on H endowed with the trace norm (see [16]). We will denote by LI(H1, H2)
(respectively RI(H1, H2)) the set of left invertible (respectively right invertible)
operators from H1 to H2 and set LI(H) = LI(H, H) (respectively RI(H) =
RI(H, H)). Let us introduce the Moore-Penrose left inverse Tl and the Moore-
Penrose right inverse Tr of an operator T acting on H when of course they exist:
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(i) The Moore-Penrose left inverse of T, when of course it exists, is defined to
satisfy TlT = I and TTl = PImT where PImT is the orthogonal projection onto ImT
(which is necessarily closed in this case).

(ii) The Moore-Penrose right inverse of T, when of course it exists, is defined
by setting TTr = I and TrT = PImT∗ where PImT∗ is the orthogonal projection onto
ImT∗.

The reduced minimum modulus of a nonzero operator T ∈ B(H, H′) is de-
fined by γ(T) = inf{‖Tx‖ : x ∈ H, d(x, ker T) = 1}.

We say that two operators S and T are quasisimilar if there exists two injec-
tive operators A and B with dense ranges such that:

(1.1)
{ SA = AT (1)

TB = BS (2)
.

Recall also that an operator T is similar to an other operator R if there exists an
invertible operator A such that T = ARA−1. Let T be an operator similar to a
contraction. We will denote by Csim(T) the optimal constant of similarity to a
contraction, which is given by Csim(T) = inf{‖A‖‖A−1‖ : ‖ATA−1‖ 6 1}. An
operator T ∈ B(H)is said to be power bounded if the sequence (Tn)n>0 is bounded
in the algebra B(H) (notation T ∈ PWB(H)). We also recall that an operator
T ∈ B(H) is polynomially bounded (notation T ∈ PB(H)) if there exists M ∈ [1, +∞[
such that

(1.2) ‖p(T)‖ 6 M sup
|z|=1

|p(z)|

for every polynomial p ∈ C[X]. We will denote by MT the optimal constant in
(1.2). An operator T ∈ B(H) is said to be completely polynomially bounded if there
exists a real constant C > 1 such that:

(1.3) ‖[pi,j(T)]16i,j6n‖ 6 C sup{‖[pi,j(z)]16i,j6n‖ : |z| = 1}
for every positive integer n and for every n× n matrix of polynomials [pi,j]16i,j6n
∈ Mn,n(C[X]). Recall that [pi,j(T)]16i,j6n denotes the n × n matrix which, as
usual, acts on the direct sum of n copies of H and whose coefficients are some
operators. One of the main interest of the completely polynomially bounded op-
erators comes from Paulsen criterion [42] which asserts that:

T ∈ B(H) is similar to a contraction if and only if
T is completely polynomially bounded.

Moreover, if CT is the optimal constant in (1.3), then we have Csim(T) = CT .
A von Neumann algebra acting on H is by definition an ultra-weakly closed

*-subalgebra of B(H). Such a von Neumann algebra M is finite if it admits a
faithful normal trace τ, which means that τ is a ultra-weakly continuous linear
functional on M satisfying:

(1) τ(AB) = τ(BA) for any A, B ∈ M;



GENERALIZED TEOPLITZ OPERATORS 51

(2) for any positive element A in M, we have τ(A) > 0 and τ(A) = 0 ⇒
A = 0.

Let E and F be two Hilbert spaces; as usual [Ai,j]16i,j6n ∈ Mn,n(B(E, F))
denotes the n × n matrix which acts from the orthogonal sum of n copies of E
into the orthogonal sum of n copies of F (its entries are operators acting from E
into F) and its norm is the norm of the associated operator. Let Ψ be a linear
mapping from B(E, F) into itself; we define Ψn : Mn,n(B(E, F)) →Mn,n(B(E, F))
by Ψn([Ai,j]16i,j6n) = [Ψ(Ai,j)]16i,j6n. We call Ψ completely bounded (respec-
tively completely contractive) if sup

n>1
‖Ψn‖ < +∞ (respectively if sup

n>1
‖Ψn‖ 6 1).

If E = F, Mn,n(B(E)) inherits a unique structure of von Neumann algebra and a
map Ψ from B(E) into itself is called completely positive if Ψn is positive for all n.

In similarity problems, the idea of using limits in a Banach meaning comes
from B. Sz.-Nagy ([40]). In the sequel, we frequently use this idea. Recall that a
Banach limit L is a state (e.g. ‖L‖ = L(1) = 1) acting on the classical space l∞

of all complex bounded sequences and satisfying L((un+1)) = L((un)). We will
denote by B the weakly compact convex set of all Banach limits. If (un) ∈ l∞,
recall that we have L((un)) ∈ [q′((un)), q((un))] where the functionals q′ and q
are defined by

q′((un)) = sup
{

lim inf
k→+∞

( 1
m

m

∑
i=1

uni+k

)
: m ∈ N, n1, . . . , nm ∈ N

}

and

q((un)) = inf
{

lim sup
k→+∞

( 1
m

m

∑
i=1

uni+k

)
: m ∈ N, n1, . . . , nm ∈ N

}
.

A bounded sequence (un)n>0 is said to be almost convergent to a complex
number l if and only if

lim
n→+∞

sup
k∈N

∣∣∣ 1
n + 1

k+n

∑
i=k

ui − l
∣∣∣ = 0.

Lorentz ([38]), proved that (un)n>0 is almost convergent to l if and only if for
every Banach limit L we have l = L((un)) (notation: un

a−→ l). A sequence
(un)n>0 is strongly almost convergent to l if and only if the sequence (|un − l|)n>0

is almost convergent to 0 (notation: un
sa−→ l).

DEFINITION 1.1. A map p : N → ]0, +∞) is called a gauge if there exists
cp > 0 such that the sequence p(n + 1)/p(n) is strongly almost convergent to cp.
Moreover, if the sequence cn

p/p(n) strongly almost converges to 1, we say that p
is a regular gauge. We say that p is almost regular if q′((p(n)−2c2n

p )n>0) > 0.

We will say that a sequence (Tn)n>0, acting on a Banach space, is dominated
by a gauge p if there exists a positive number C > 1 such that the inequality
‖Tn‖ 6 Cp(n) holds for every positive integer n. We follow ([28]) in saying that
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(Tn)n>0 is compatible with a gauge p if in addition the sequence (‖Tn‖/p(n))n>0
does not almost converge to 0. An operator T is compatible with p if the sequence
(Tn)n>0 is compatible with p. For some recent contributions in this area, we refer
the reader to [8], [28], [29], [31], [30], [32], [33], [34], and [35].

One of the aim of this paper is to study the relationship between invari-
ant subspaces, asymptotic behaviour and similarity problems. To this aim, we
consider the following classes introduced by L. Kerchy ([28]). These are the fol-
lowing:

C1,·(p) = {T ∈ B(H) : ∀x ∈ H − {0}, ‖Tnx‖p(n)−1 a9 0}
and

C·,1(p) = {T ∈ B(H) : ∀x ∈ H − {0}, ‖T∗nx‖p(n)−1 a9 0}.

The class C1,1(p) is equal to C1,·(p) ∩ C·,1(p). Let us remind to the reader that an
operator T ∈ PWB(H) is called C1,·, in the well known terminology of B. Sz.-
Nagy and C. Foiaş, if inf

n>0
‖Tnx‖ > 0 for every non zero x ∈ H. Observe that,

for a power bounded operator T, the relation inf
n>0

‖Tnx‖ = 0 is equivalent to

lim
n→+∞

‖Tnx‖ = 0. It can easily seen that C1,·(1) coincides with the set of C1,·
power bounded operators.

The starting point of a large area in operator theory is a result obtained by
B. Sz.-Nagy in [40]. More precisely, he proved that an invertible operator T on
a Hilbert space is similar to a unitary if and only if the sequence (‖Tn‖n∈Z) is
bounded. This result leads to the following question: Is the boundedness of the
sequence (‖Tn‖)n>0 sufficient for the similarity of T to a contraction? Foguel
answered negatively. The operators constructed by Foguel have the following
matrix representation: [

S∗ R
0 S

]
,

where S is the usual shift on the Hardy space H2. Halmos refined the conjec-
ture by replacing the hypothesis of power boundedness for the operator T with
the stronger assumption that T is polynomially bounded. It was settled in the
negative by Pisier in [44]. In order to produce the first polynomially bounded
operators which are not similar to contractions, G. Pisier used operators which
have the above representation taking for S a shift of infinite multiplicity ([44]; see
also [15], [36]). Nevertheless Pisier’s counter-examples are not in the class C1,1
nor in the class C1,·. We refer also to [3] for related results.

Let F be a Hilbert space and denote by S the shift on the Hardy space H2(F).
In the sequel we denote by operators of Foguel type the operators whose matrix
representation has one of the following forms:

(I)
[

S∗ R
0 S

]
, (II)

[
S∗ R
0 S∗

]
, (III)

[
S R
0 S

]
, (IV)

[
S R
0 S∗

]
.

Remark that an operator of type (I) and (II) can not be in the class C1,·.
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A well known result of B. Sz.-Nagy asserts that if T is a power bounded
operator in the class C1,1 = C1,1(1), then T is quasi-similar to an unitary operator.
The above result leads to the following question (see [27]):

Is every power bounded operator in the class C1,1 similar to a contraction?
A result of B. Sz.-Nagy and C. Foiaş ([43]) asserts that two quasi-similar uni-

taries are necessarily unitarily similar. When T belongs to a finite von Neumann
algebra, it suffices that T satisfy (1) of (1.1) to insure that T is similar to a unitary
([11]; for stronger results see also [8]).

Now, let us mention an other result which show the deep relationships be-
tween invariant subspaces, asymptotic behaviour and similarity problems. Recall
that one of our first motivations goes back to the theorem in [10] (Theorem 8, p.
334) about the invariant subspace problem for operators in C1,·.

REMARK 1.2. We can easily check that if the same result ([10]) holds for
operators similar to a contraction T of class C1,· and belonging to the von Neu-
mann algebra generated by T then it would solve positively the invariant sub-
space problem for all contractions of class C1,· (for instance, see [33]). We refer the
reader to [12] and [33] for related results in this area. This theorem gives more
than the existence of non trivial invariant subspaces, it shows the importance of
the class of operators with an invariant subspace on which their compression is
similar to an isometry.

Let us now give some results which will be very useful in the sequel. We
first state the well known criterion of Douglas ([17]) about ranges and factorizations
of operators (see also [14] for more informations).

THEOREM 1.3 (Douglas criterion). Let A, B ∈ B(H). Then the following condi-
tions are equivalent:

(i) Im(B) ⊆ Im(A).
(ii) There exists Z ∈ B(H) such that B = AZ.
(iii) There exists a positive number δ such that BB∗ 6 δAA∗.
Moreover, in this case there exists a unique solution R of the equation AZ = B such

that ker Z = ker A, Im(Z) ⊆ Im(A∗) . This solution is called the reduced solution and
we have ‖Z‖2 = inf{δ : BB∗ 6 δAA∗}.

Secondly, we give a general operator Cauchy-Schwartz inequality (it seems
that the first kind of such inequality is due to U. Haagerup cf. [22]).

PROPOSITION 1.4. Let (Ω, µ) be a measurable space and Hi, i = 1, 2, be a separa-
ble Hilbert space. Assume that the applications t → At ∈ B(H1) and t → Bt ∈ B(H2)
are such that t → ‖Atx‖2 and t → ‖Bty‖2 are µ integrable for every pair (x, y) ∈
H1 × H2. Then we have the following operator Cauchy-Schwarz inequality:

(1.4)
∥∥∥

∫

Ω

A∗
t Btdµ(t)

∥∥∥ 6
√√√√

∥∥∥
∫

Ω

A∗
t Atdµ(t)

∥∥∥
√√√√

∥∥∥
∫

Ω

B∗t Btdµ(t)
∥∥∥
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(the operators defined by integrals are well defined in a Bochner sense).

Proof. First, applying the Banach Steinhaus theorem we get that the oper-
ators defined by integrals are well defined in a Bochner sense. Letting (x, y) ∈
H1 × H2 we have

∣∣∣
∫

Ω

〈Bty | Atx〉dµ(t)
∣∣∣ 6

∫

Ω

‖Bty‖‖Atx‖dµ(t)

6
√√√√

∫

Ω

〈A∗
t Atx | x〉dµ(t)

√√√√
∫

Ω

〈B∗t Bty | y〉dµ(t)

=

√√√√
〈[ ∫

Ω

A∗
t Atdµ(t)

]
x | x

〉√√√√
〈[ ∫

Ω

B∗t Btdµ(t)
]
y | y

〉

6
√√√√

∥∥∥
∫

Ω

A∗
t Atdµ(t)

∥∥∥
√√√√

∥∥∥
∫

Ω

B∗t Btdµ(t)
∥∥∥‖x‖‖y‖.

The desired inequality follows immediately.

REMARK 1.5. (i) If Ω = {1, . . . , n} and µ =
n
∑

i=1
δn, we obtain the following

Cauchy Schwarz inequality:
∥∥∥

n

∑
k=1

A∗
k Bk

∥∥∥ 6
√∥∥∥

n

∑
k=1

A∗
k Ak

∥∥∥
√∥∥∥

n

∑
k=1

B∗k Bk

∥∥∥,

where A1, . . . ., An ∈ B(H3, H2) and B1, . . . ., Bn are in B(H1, H2).
(ii) When t → xt ∈ L2(Ω, H1) (respectively t → yt ∈ L2(Ω, H2)), we deduce

from (1.4) the useful inequality
∥∥∥

∫

Ω

xt ⊗ ytdµ(t)
∥∥∥ 6

√√√√
∥∥∥

∫

Ω

xt ⊗ xtdµ(t)
∥∥∥
√√√√

∥∥∥
∫

Ω

yt ⊗ ytdµ(t)
∥∥∥

(set At = 1⊗ xt ∈ B(H1, C) and Bt = 1⊗ yt ∈ B(H2, C)).

2. ASYMPTOTIC BEHAVIOUR AND GENERALIZED TOEPLITZ OPERATORS

2.1. GENERALIZED TOEPLITZ OPERATORS. Assume that T1 and T2 are two oper-
ators dominated by a gauge p, Ti ∈ B(Hi). If L is a Banach limit, let us introduce
the operator Epq

L,T1,T2
, acting on B(H2, H1), by

〈Epq
L,T1,T2

(X)x | y〉 = L({〈Tn
1 XTn

2 x | y〉p(n)−1q(n)−1}n>0)

for any (x, y) ∈ H2 × H1. The following proposition summarizes some useful
properties of this operator.
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PROPOSITION 2.1. Let (T1, T2) be a pair of operators acting on two separable
Hilbert spaces (respectively H1 and H2). Assume that T1 (respectively T2) is dominated
by a gauge p (respectively a gauge q). Then, for any Banach limit L, we have:

(i) Epq
L,T1,T2

is a completely bounded map. It is a completely contractive map when
sup
n>0

{‖Tn
1 ‖p(n)−1} sup

n>0
{‖Tn

2 ‖q(n)−1} 6 1 and it is a completely positive map when

T1 = T∗2 .
(ii) Epq

L,T1,T2
(T1XT2) = cpcqEpq

L,T1,T2
(X) for any X ∈ B(H2, H1).

(iii) If A (respectively B) commute T1 (respectively T2), then we have Epq
L,T1,T2

(AXB)

= AEpq
L,T1,T2

(X)B for any X ∈ B(H2, H1).
(iv) T1Epq

L,T1,T2
(X)T2 = cpcqEpq

L,T1,T2
(X) for any X ∈ B(H2, H1).

(v) If T1 (respectively T2) is compatible with p (respectively with q), there exists
ρL(p, q) ∈ [0, 1] such that Epq

L,T1,T2
◦ Epq

L,T1,T2
= ρL(p, q)Epq

L,T1,T2
. When p and q are two

regular gauges, we have ρL(p, q) = 1 (hence Epq
L,T1,T2

is a projection).
(vi) If T1 and T2 act on the same space H, then for any x, y ∈ H and any X, Y ∈

B(H) we have:

(2.1) |〈Epq
L,T1,T2

(XY)x | y〉| 6
√
〈Eq2

L,T∗2 ,T2
(Y∗Y)x | x〉

√
〈Ep2

L,T1,T∗1
(XX∗)y | y〉.

REMARK 2.2. (i) If T ∈ B(H) is compatible with a gauge p, then the spectral
radius r(T) satisfies r(T) = cp (see [28]).

(ii) Assume that there is no non zero solution X of the equation T∗1 XT1 =
c2

pX (T∗1 generalized Toeplitz operators) or a non zero solution of the equation
T2YT∗2 = Y, then using Proposition 2.1 (vi) we have necessarily Epq

L,T1,T2
= 0.

Proof of Proposition 2.1 (i). Let [Xi,j]16i,j6m be a m × m matrix whose coeffi-
cients are operators in B(H2, H1), x1, . . . , xn be vectors in H2 and y1, . . . , yn be
vectors in H1; we have

∣∣∣∣∣

〈



Epq
L,T1,T2

(X1,1) · · · Epq
L,T1,T2

(X1,m)
...

...
Epq
L,T1,T2

(Xm,1) · · · Epq
L,T1,T2

(Xm,m)







x1
...

xm


 |




y1
...

ym




〉 ∣∣∣∣∣

=
∣∣∣L

( m

∑
i,j=1

{〈Tn
1 Xi,jTn

2 xj | yi〉p(n)−1q(n)−1}n>0

)∣∣∣

6 ‖[Xi,j]16i,j6m‖L
(√√√√

m

∑
j=1
‖xj‖2‖Tn

2 ‖2q(n)−2

√√√√
m

∑
j=1
‖yj‖2‖T∗n

1 ‖2 p(n)−2

)

6 sup
n>0

{‖Tn
1 ‖p(n)−1} sup

n>0
{‖Tn

2 ‖q(n)−1}‖[Xi,j]16i,j6m‖
√√√√

m

∑
j=1
‖xj‖2

√√√√
m

∑
j=1
‖yj‖2.
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It follows that Epq
L,T1,T2

is a completely bounded map, it is completely contractive
when sup

n>0
{‖Tn

1 ‖p(n)−1} sup
n>0

{‖Tn
2 ‖q(n)−1} 6 1. The positivity of L implies im-

mediately that Ep2

L,T∗1 ,T1
is completely positive.

(ii) Given any pair (x, y) in H2 × H1, we have

〈Epq
L,T1,T2

(T1XT2)x | y〉 = L({〈Tn+1
1 XTn+1

2 x | y〉p(n)−1q(n)−1}n>0)

= L
({ 〈Tn+1

1 XTn+1
2 x | y〉

p(n + 1)q(n + 1)
p(n + 1)

p(n)
q(n + 1)

q(n)

}
n>0

)
.

Since p and q are two gauges, we see that the sequence (|p(n + 1)/p(n)q(n +
1)/q(n)− cpcq|)n>0 almost converges to 0. By the Lemma 1 from [28], we get

〈Epq
L,T1,T2

(T1XT2)x | y〉 = cpcqL({〈Tn+1
1 XTn+1

2 x | y〉p(n + 1)−1q(n + 1)−1}n>0)

= cpcq〈Epq
L,T1,T2

(X)x | y〉,
and (ii) follows.

(iii) Let A (respectively B) be an operator in B(H1) (respectively B(H2)) com-
muting with T1 (respectively T2). For any (x, y) ∈ H2 × H1, we have

〈Epq
L,T1,T2

(AXB)x | y〉 = L({〈Tn
1 AXBTn

2 x | y〉p(n)−1q(n)−1}n>0)

= L({〈Tn
1 XTn

2 Bx | A∗y〉p(n)−1q(n)−1}n>0)

= 〈Epq
L,T1,T2

(X)Bx | A∗y〉.
This establishes the formula.

(iv) follows immediately from (ii) and (iii).
(v) Let (x, y) ∈ H2 × H1, using (iv), we get

〈Epq
L,T1,T2

(Epq
L,T1,T2

(X))x | y〉 = L({〈Tn
1 Epq

L,T1,T2
(X)Tn

2 x | y〉p(n)−1q(n)−1}n>0)

= L([cn
pcn

q p(n)−1q(n)−1]n>0)〈Epq
L,T1,T2

(X)x | y〉
= ρL(p, q)〈Epq

L,T1,T2
(X)x | y〉,

by setting ρL(p, q) = L([cn
pcn

q p(n)−1q(n)−1]n>0). Since T1 (respectively T2) is com-
patible with p (respectively with q), the formulas cp = inf{p(n)1/n : n ∈ N} and
cq = inf{q(n)1/n : n ∈ N} are valid (see Proposition 1 of [28]), we immediately
deduce that ρL(p, q) ∈ [0, 1]. In particular, when p and q are two regular gauges
and H1 = H2, we get Epq

L,T1,T2
is a projection.

(vi) Since every Banach limit L is a positive state on l∞, we have the follow-
ing Cauchy-Schwarz inequality:

(2.2) |L({un}n>0{vn}n>0)| 6
√
L({u2

n}n>0)
√
L({v2

n}n>0) ,

where (un)n>0, (vn)n>0 ∈ l∞.
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Let X, Y be two operators in B(H) and (x, y) be a pair of elements in H.
Applying inequality (2.1), we obtain

|〈Epq
L,T1,T2

(XY)x | y〉|
= |L({〈Tn

1 XYTn
2 x | y〉p(n)−1q(n)−1}n>0)|

6 L({[‖YTn
2 x‖p(n)−1][‖X∗T∗n

1 y‖q(n)−1]}n>0)

6
√
L({〈T∗n

2 Y∗YTn
2 x | x〉q(n)−2}n>0)

√
L({〈Tn

1 XX∗T∗n
1 y | y〉p(n)−2}n>0)

=

√
〈Eq2

L,T∗2 ,T2
(Y∗Y)x | x〉

√
〈Ep2

L,T1,T∗1
(XX∗)y | y〉.

This completes the proof.

Let (H1, H2) be a pair of separable Hilbert spaces and (T1, T2) ∈ B(H1) ×
B(H2). Assume that T1 (respectivelyT2) is dominated by a gauge p (respectively
a gauge q). We define the set Tp,q(T1, T2) of (T1, T2, p, q)-Toeplitz operators by
setting

Tp,q(T1, T2) = {X ∈ B(H) : T1XT2 = cpcqX}
and we write Tp(T) = Tp,p(T∗, T) for short. We will denote by τp,q(T1, T2) the set
of canonical (T1, T2, p, q)-Toeplitz operators defined by

τp,q(T1, T2) = {Epq
L,T1,T2

(I) : L ∈ B}.

Note that τp,q(T1, T2) is a weak compact convex set. For simplicity, we write
τp(T) for τp,p(T∗, T). The next proposition summarizes some useful properties of
the set τp,q(T1, T2).

Mention first the following useful properties:

(i) The canonical (T∗, T, p2) Toeplitz operators are always positive.
(ii) Assume that p is almost regular, then an operator T belongs to the class

C1,·(p) if and only if there exists a one to one canonical (T∗, T, p2) Toeplitz opera-
tor (in this case they are all one to one).

(iii) An operator T is similar to a scalar multiple of an isometry if and only if
there exists an invertible canonical (T∗, T, p2) Toeplitz operator (in this case they
are all invertible).

PROPOSITION 2.3. Let T be an operator acting on a separable Hilbert space H.
Assume that T is dominated by an almost regular gauge p. Then we have:

(i) the range of
√

X is the same for all X ∈ τp(T), we will denote it by ET ;
(ii) the range of any positive (T∗, T, p2)-Toeplitz operator is included in ET .

REMARK 2.4. Let T be an operator satisfying the assumptions of the pre-
vious proposition and X, Y ∈ τp(T). Since

√
X and

√
Y have the same range,

applying Douglas criterion, we can see that there exists an invertible operator A
such that X = A∗YA.
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Proof. (i) Let X, Y ∈ τp(T) and L be a Banach limit such that X = Ep2

L,T∗ ,T(I).
By Proposition 2.1 (vi), we have

ρL(p, p)|〈Yx | y〉| = |〈Ep2

L,T∗ ,T(Y)x | y〉|

6
√
〈Ep2

L,T∗ ,T(I)x | x〉
√
〈Ep2

L,T∗ ,T(Y2)y | y〉 ,

for any x, y ∈ H. Since p is almost regular, we have ρL(p, p) 6= 0 (L(p(n)−2c2n
p ) ∈

[q′((p(n)−2c2n
p )n>0), q((p(n)−2c2n

p )n>0)]) and

‖
√

Yx‖2 6 ‖Ep2

L,T∗ ,T(Y2)‖‖
√

Xx‖2.

Applying Douglas criterion, we see that Im(
√

Y) ⊆ Im(
√

X) and interchanging
X and Y we obtain the equality.

(ii) is proved in a similar way.

2.2. LOWER AND UPPER T-TOEPLITZ OPERATORS. In order to work with power
bounded operators it is interesting to study the operators satisfying

(2.3) T∗XT 6 X

where X is a positive operator acting on H. More generally, if T ∈ B(H), we will
say that a positive operator X satisfying (2.3) is a lower T-Toeplitz operator and we
will denote by Tinf(T) the set of all such operators. For instance, notice that T is
similar to a contraction if and only if there exists an invertible element in Tinf(T).
Observe also that a non zero lower T-Toeplitz which is not injective produces a
non trivial invariant subspace for T, that is ker X. Analogously, we will say that
a positive operator X is a upper T-Toeplitz operator if it satisfies

(2.4) T∗XT > X.

We will denote by Tsup(T) the set of solutions of (2.4). Concerning lower T-Toeplitz
operators, we have the following proposition of stability.

PROPOSITION 2.5. Let T ∈ PWB(H) and X be a lower T-Toeplitz operator.

Then, for any absolutely converging series f (z) =
+∞
∑

n=0
anzn with

+∞
∑

n=0
|an| < +∞ map-

ping the closed unit disc into itself, we have X ∈ Tinf( f (T)). Moreover, if T ∈ PB(H)
(respectively an absolutely continuous polynomially bounded operator), then the asser-
tion X ∈ Tinf( f (T)) is valid for any f in the unit ball of the disc algebra A(D) (respec-
tively in the unit ball of the Hardy algebra H∞).

Proof. (i) Applying Douglas criterion, we get a contraction C such that
√

XT
= C

√
X. It follows that we have

√
X f (T) = f (C)

√
X. Hence,

f (T∗)X f (T) 6
√

X f (C)∗ f (C)
√

X 6 X.

The last inequality comes from the classical von Neumann one for a contraction.
Using the A(D) functional calculus for a polynomially bounded operator and
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taking into account the H∞ functional calculus for absolutely continuous polyno-
mially bounded operators ([39]), we get the remaining assertions.

The following proposition shows the usefulness of upper T-Toeplitz opera-
tors for similarity to an isometry.

PROPOSITION 2.6. Let T ∈ PWB(H). If there exists an invertible upper T-
Toeplitz operator X, then T is similar to an isometry.

Proof. Let X be an invertible upper T-Toeplitz operator. We first observe
that we have T∗nXTn > X for any non negative integer n. Therefore, we ob-
tain E1

L,T∗ ,T(X) > X for any Banach limit L. Let L be a Banach limit and con-
sider the generalized T-Toeplitz operator Y = E1

L,T∗ ,T(X), then we see clearly that
Y1/2TY−(1/2) is an isometry. This ends the proof.

2.3. ABEL TYPE SUMMABILITY AND GENERALIZED TOEPLITZ OPERATORS. The
following result, which is of independent interest, enables us to link resolvent
properties to generalized Toeplitz operators.

THEOREM 2.7 (Abel type characterization of almost convergence). Consider
(un)n>0 a bounded sequence of complex numbers. Then the following assertions are
equivalent:

(i) (un)n>0 is almost convergent to a number l;
(ii) we have

lim
r→1

sup
k>0

∣∣∣(1− r)r−k
+∞

∑
n=k

rnun − l
∣∣∣ = 0.

Proof. (i)⇒(ii) Assume that (ii) is not satisfied, then there exists a sequence
(rp)p>0 increasing to 1 and a sequence of integers (np)p>0 such that

∣∣∣(1− rp)r
−np
p ·

+∞
∑

k=np

rk
puk − l

∣∣∣ > ρ for a strictly positive number ρ. For instance, we may assume

that

(2.5) (1− rp)r
−np
p

+∞

∑
k=np

rk
puk > l + ρ

for any p. Let us consider a non trivial ultrafilter U on N. We define a linear
functional L on the space l∞ by setting

L((vn)n>0) = lim
U

(
(1− rp)r

−np
p

+∞

∑
k=np

rk
pvk

)
.

Let us verify that L is a Banach limit. It is obvious that L is well defined, positive
and such that L(1l∞ ) = 1. It remains to prove that L((vn+1)n>0) = L((vn)n>0)
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for any sequence (vn)n>0 in l∞. It follows from the following inequality:
∣∣∣(1− rp)r

−np
p

+∞

∑
k=np

rk
pvk+1 − (1− rp)r

−np
p

+∞

∑
k=np

rk
pvk

∣∣∣ 6 2(1− rp)‖(vn)n>0‖∞ .

On the one hand, we get from (2.5) that L((un)n>0) > l + ρ > l. On the other
hand, since (un)n>0 is almost convergent to a number l we have obviously
L((un)n>0) = l. Therefore, we get a contradiction and the implication (i)⇒(ii)
is proved.

(ii)⇒(i) Given ε > 0, we get from (ii) that there exists r0 > 0 such that for
any r > r0, we have

l − ε

2
6 (1− r)

+∞

∑
k=0

rkuk+n 6 l +
ε

2

for any n > 0. Since the sequence (un)n>0 is bounded, we can find N such that

(2.6) l − ε 6 (1− r)
N

∑
n=0

rkuk+n 6 l + ε.

Let L be a Banach limit, it follows from (2.6) that

−ε 6 (1− r)
N

∑
n=0

rkL((uk+n)n>0) = (1− rN+1)L((un)n>0) 6 l + ε.

If r goes to 1, we obtain l − ε 6 L((un)n>0) 6 l + ε. Since ε is arbitrary, it gives
L((un)n>0) = l and the proof of the Theorem 2.7 is complete.

REMARK 2.8. In the same manner we can give a short proof of Lorentz’s
result ([38]).

In particular, we get

COROLLARY 2.9. Let (un)n>0 be a bounded sequence which is almost convergent
to a number l, then we have

lim
r→1

(1− r)r−n
+∞

∑
k=n

rkuk = l

for any positive integer n.

Let T be an operator dominated by a gauge p. We define the function ΦT,p
on D by setting

ΦT,p(z) =
+∞

∑
n=0

zn p(n)−1Tn.

Notice that we have ΦT,1(z) = (I − zT)−1 when p(n) = 1 for any n.
The next result links the function ΦT,p (hence the resolvent when p(n) = 1

for any n) to the generalized Toeplitz operators.
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PROPOSITION 2.10. Let T be an operator dominated by a gauge p. Then all weak
limit points of the operators

Xr = (1− r2)

2π∫

0

ΦT,p(reit)∗ΦT,p(reit)dm(t)

are generalized Toeplitz operators when r goes to 1. In particular, for every power bounded
operator T the weak limit points of

(1− r2)

2π∫

0

(I − reitT∗)−1(I − re−itT)−1dm(t)

satisfy the equation T∗XT = X.

Proof. Since T is dominated by the gauge p, there exists positive number M
such that ‖Tn‖ 6 Mp(n). Observe that

c2
pXr − T∗XrT

= c2
p(1− r2)p(0)−2 + (1− r2)

[ +∞

∑
n=0

(c2
p − r−2 p(n)2 p(n− 1)−2)r2n T∗nTn

p(n)2

]
.

Hence

‖c2
pXr − T∗XrT‖

6 c2
p(1− r2)p(0)−2 + (1− r2)M

+∞

∑
n=0

|c2
p − r−2 p(n)2 p(n− 1)−2|r2n

6(1− r2)
[
c2

p p(0)−2+M
+∞

∑
n=0

∣∣∣c2
p −

p(n)2

p(n− 1)2

∣∣∣r2n+
M
r2 (1− r2)2

+∞

∑
n=0

p(n)2

p(n− 1)2 r2n
]

6 (1− r2)[c2
p p(0)−2 + Mr−2 sup{(p(n)2 p(n− 1)−2) : n > 0}]

+M(sup{(p(n)2 p(n− 1)−2) : n > 0}+cp)(1− r2)
+∞

∑
n=0

|cp − p(n)p(n− 1)−1|r2n.

Since p is a gauge, we know that the sequence
(∣∣∣cp − p(n)

p(n−1)

∣∣∣
)

n>0
is almost con-

vergent to 0 and using the previous corollary we obtain

lim
r→1

(c2
pXr − T∗XrT) = 0.

The desired result follows immediately.

2.4. DECOMPOSITION AND FACTORIZATION OF A CANONICAL TOEPLITZ OPER-
ATOR. The next step in our study consists in the decomposition and in the factor-
ization of a canonical Toeplitz operator X associated with an operator T and with
respect to an invariant subspace of T. This factorization, which is of independent
interest, is crucial for the sequel. Let T be an operator dominated by a regular
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gauge p and X ∈ τp(T). The polar decomposition of
√

XT provides a unique
partial isometry U whose support coincides with the one of X and which satisfies

(2.7)
√

XT = cpU
√

X.

We will denote by PX = I −UU∗ the orthogonal projection of H onto ker U∗.

THEOREM 2.11. Let T be an operator dominated by a gauge p. If E ∈ Lat(T),
we write T1 = PETPE and T2 = PE⊥TPE⊥ where PE (respectively PE⊥ ) denotes the
orthogonal projection of H onto E (respectively PE⊥ ).

(i) Every operator X ∈ τp(T) can be uniquely decomposed, with respect to the
orthogonal decomposition H = E⊕ E⊥, under the following form:

(2.8) X =
( √

X1 0
0 I

) (
I A

A∗ B

) ( √
X1 0
0 I

)

where X1 ∈ τp(T1) and with the condition ImA ⊆ Im(
√

X1). Moreover, the operator

RX,L =

(
I A

A∗ B− Ep2

L,T∗2 ,T2
(I)

)

is positive for any Banach limit L such that X = Ep2

L,T,T(I).
(ii) The operator ∆T(X) = B− A∗A can be uniquely decomposed in the following

way:
∆T(X) = ∆T(X)1 + ∆T(X)2

where ∆T(X)1 is a c2
p generalized T2 Toeplitz and ∆T(X)2 is a c2

p generalized lower T2

Toeplitz such that c−2n
p T∗n

2 ∆T(X)2Tn
2 strongly converge to 0.

(iii) Every operator Y ∈ τp(T∗) can be uniquely decomposed, with respect to the
orthogonal decomposition H = E⊕ E⊥, in the following form:

(2.9) Y =
(

I 0
0

√
Y2

) (
D C
C∗ I

) (
I 0
0

√
Y2

)

where Y2 ∈ τp(T∗2 ) and with the condition ImC ⊆ Im(
√

Y2). Moreover the operator

R′Y,L =

(
B− Ep2

L,T1,T∗1
(I) C

C∗ I

)

is positive for any Banach limit L such that Y = Ep2

L,T∗ ,T(I).
(iv) The operator ∆′T(Y) = D− CC∗ can be uniquely decomposed in the following

way:
∆′T(Y) = ∆′T(Y)1 + ∆′T(Y)2

where ∆′T(Y)1 is a c2
p generalized T∗1 Toeplitz and ∆′T(Y)2 is a c2

p generalized lower T∗1
Toeplitz such that c−2n

p T∗n
2 ∆T(X)2Tn

2 strongly converges to 0.
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REMARK 2.12. (i) The operator ∆T(X)1 belongs to τp(T2). There exists LT(X)
∈ B(E⊥, E) such that the operator L0 = X1R + A0T2 can be factorized in L0 =√

X1LT(X) and such that

∆T(X)2 =
+∞

∑
n=0

c−2n
p T∗n

2 LT(X)∗PX1 LT(X)Tn
2 (strong convergence).

(ii) The operator ∆′T(Y)1 belongs to τp(T∗1 ). There exists L′T(Y) ∈ B(E⊥, E)
such that the operator L

′
0 = T1C0 + RY2 can be factorized in L

′
0 = L′T(Y)

√
Y2 and

such that

∆′T(Y)2 =
+∞

∑
n=0

c−2n
p Tn

1 L′T(Y)PY2 L
′
T(Y)∗T∗n

1 (strong convergence).

Proof of Theorem 2.11. (i) With respect to the orthogonal decomposition H =

E⊕ E⊥, we have Tn =
[ Tn

1 Rn
0 Tn

2

]
.

Let X ∈ τp(T) and L be a Banach limit such that X = Ep2

L,T∗ ,T(I). Then we
have

(2.10) X =
[

X1 A0
A∗

0 B

]

with X1 = Ep2

L,T∗1 ,T1
(I) ∈ τp(T1), A0 = L({T∗n

1 Rn p(n)−2}n>0) and B = L({[R∗nRn

+ T∗n
2 Tn

2 ]p(n)−2}n>0). Using (2.7), we can write
√

X1T1 = cpU1
√

X1 where U1 is
a partial isometry whose support coincide with the one of X1.

Since T is an operator dominated by a gauge p, we see that ‖Rn‖ 6 p(n).
Hence we obtain

|〈A∗
0x | y〉| = |L({〈R∗nTn

1 x | y〉p(n)−2}n>0)| 6 |L({‖Tn
1 x‖‖Rny‖p(n)−2}n>0)|

6
√
L({‖Tn

1 x‖2 p(n)−2}n>0

√
L({‖Rnx‖2 p(n)−2}n>0 (using (2.1)),

and so

(2.11) |〈A∗
0x | y〉|2 6 〈X1x | x〉〈(B− Ep2

L,T∗2 ,T2
(I))y | y〉.

Consequently, there exists γ > 0 such that A0 A∗
0 6 γX1. Applying Douglas crite-

rion, we see that there exists a unique operator A ∈ B(H) such that

(2.12) A0 =
√

X1 A, ker A = ker A0, ImA ⊆ Im(
√

X1) and A0 =
√

X1 A.

Now carrying the equation (2.12) in the equality (2.10) proves the decom-
position (2.8) of the theorem. The unicity of this decomposition is immediate. By

virtue of (2.11) and (2.12), we get |〈√X1x | Ay〉|2 6 ‖√X1x‖2〈(B− Ep2

L,T∗2 ,T2
(I))y |

y〉. Since the image of A is included in Im(
√

X1), the previous inequality yields
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‖Ay‖2 6
√
〈(B− Ep2

L,T∗2 ,T2
(I))y | y〉. The above inequality proves that the operator

RX,L is also positive.
(ii) Since X ∈ τp(T), obviously we have T∗XT = cpX. The translation of the

previous equality with respect to E ∈ Lat(T) and E⊥ gives

(2.13) c2
p A0 = T∗1 X1R + T∗1 A0T2, c2

pB = R∗X1R + R∗A0T2 + T∗2 A∗
0R + T∗2 BT2.

The first equality of (2.13) implies that c2
p A0 = T∗1 L0 with L0 = X1R + A0T2.

Hence we obtain:

(2.14) X1R = L0 − c−2
p T∗1 L0T2.

Observe that the equation (2.14) implies that for any integer n

L0 − c−(2n+2)
p T∗n+1

1 L0Tn+1
2 =

n

∑
k=0

c−2k
p T∗k

1 X1RTk
2 .

Therefore, in the case where τpq(T1, T2) = {0} (for instance when T1 ∈ C·,0(p) or

T2 ∈ C0,·(p)), the operator L0 is entirely determined by (2.14). Indeed,
n
∑

k=0
(1/c2k

p )

· T∗k
1 X0RTk

2 almost weakly converges to L0.
To study the general case, it may be seen that the operator L0 can be factor-

ized in the following way:

(2.15) L0 = X1R + A0T2 = X1R +
√

X1 AT2 =
√

X1LT(X)

with

(2.16) LT(X) =
√

X1R + AT2.

If we carry the equations (2.15) and (2.16) in the first equality of (2.13) we obtain:

(2.17) c2
p
√

X1 A = cp
√

X1U∗
1

√
X1R + cp

√
X1U∗

1 AT2.

Since the range of cp A − U∗
1
√

X1R − U∗
1 AT2 is included in Im(

√
X1), it follows

from (2.17) that

(2.18) cp A = U∗
1

√
X1R−U∗

1 AT2 = U∗
1 LT(X).

Using the second equality of (2.13) we get:

(2.19) c2
p(B− A∗A) = T∗2 (B− A∗A)T2 + LT(X)∗PX1 LT(X)



GENERALIZED TEOPLITZ OPERATORS 65

where PX1 denotes the operator I −U1U∗
1 and hence is the orthogonal projection

of H1 onto ker(U∗
1 ). Indeed we have

c2
p(B− A∗A)

= R∗X1R + R∗
√

X1 AT2 + T∗2 A∗√X1R + T∗2 BT2 − LT(X)∗U1U∗
1 LT(X)

= R∗X1R + R∗
√

X1 AT2 + T∗2 A∗√X1R + T∗2 BT2

− (R∗
√

X1 + T∗2 A∗)(I − PX1)(
√

X1R + AT2)

= T∗2 (B− A∗A)T2 + LT(X)∗PX1 LT(X).

Therefore, for any integer n, we have:

B− A∗A

= c−(2n+2)
p T∗n+1

2 (B− A∗A)Tn+1
2 +

n

∑
k=0

c−2k
p T∗k

2 LT(X)∗PX1 LT(X)Tk
2 .(2.20)

Since the operator ∆T(X) = B − A∗A is positive (since X is positive, it follows

from (i)), that
( n

∑
k=0

(1/c2k
p )T∗k

2 LT(X)∗PX1 LT(X)Tk
2

)
n>0

is strongly convergent. Let

us denote by 4T(X)2 the sum of the previous series, it is easily seen that T∗k
2 4T

(X)2Tk
2 6 c2

p 4T (X)2 and that c−2n
p T∗n

2 ∆T(X)2Tn
2 strongly converges to 0. Hence,

we deduce that c−2n−2
p T∗n+1

2 (B− A∗A)Tn+1
2 is also strongly convergent to an op-

erator belonging to Tp(T) which will be denoted by 4T(X)1. The uniqueness of
a such decomposition ∆T(X) = 4T(X)1 +4T(X)2 follows immediately. In the
same manner we can prove (iii) and (iv). This ends the proof of the theorem.

We are now ready to look more closely at the links between the asymptotic
behaviour of the sequence (Tn)n>0 in regards with the invariant subspace E of T.

COROLLARY 2.13. Let T be an operator dominated by an almost regular gauge p.
If E ∈ Lat(T), we write T1 = PETPE and T2 = PE⊥TPE⊥ , where PE (respectively PE⊥ )
denotes the orthogonal projection of H onto E (respectively E⊥).

(i) Let X ∈ τp(T) and Y ∈ τp(T∗). The following equivalences hold:
(i1) T ∈ C1,·(p) ⇔ T1 ∈ C1,·(p) and ker(∆T(X)) ∩ A−1(Im(

√
X1)) = {0};

(i2) T ∈ C·,1(p) ⇔ T∗2 ∈ C·,1(p) and ker(∆′T(Y)) ∩ C∗(−1)(Im(
√

Y2)) = {0}.
Moreover if p is almost regular, we have

(i’1) T ∈ C1,·(p) ⇔ T1 ∈ C1,·(p) and ker(∆T(X)) ∩ A−1(ET1) = {0};
(i’2) T ∈ C·,1(p) ⇔ T∗2 ∈ C·,1(p) and ker(∆′T(Y)) ∩ C∗(−1)(ET∗2 ) = {0}.

In particular, we have:
(i”1) T1 ∈ C1,·(p) and ker(∆T(X)) = {0} ⇒ T ∈ C1,·(p);
(i”2) T∗2 ∈ C·,1(p), and ker(∆

′
T(Y)) = {0} ⇒ T ∈ C·,1(p).

(ii) If T1 and T2 belong to the class C1,·(p), then the operator T belongs to the class
C1,·(p).
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(iii) If T1 and T2 belong to the class C·,1(p), then the operator T belongs to the class
C·,1(p).

Proof. (i) Assume that T ∈ C1,·(p). It is clear that this forces T1 to belong to
the class C1,·(p). Let y be an element of the space ker(∆T(X)) ∩ A−1(Im(

√
X1),

then there exists x ∈ H such that Ay =
√

X1(−x). It follows that

X
(

x
y

)
=

(
X1x +

√
X1 Ay

A∗√X1x + By

)
=

( √
X1(

√
X1x + Ay)

(B− A∗A)y

)
=

(
0
0

)
.

Consequently we have y = 0.
Conversely, assume that T1 ∈ C1,·(p) and ker(∆T(X)) ∩ A−1(Im(

√
X1) =

{0}. If x⊕ y ∈ ker(X), we have

X1x +
√

X1 Ay = 0(2.21)

A∗√X1x + By = 0.(2.22)

Since T1 ∈ C1,·(p), we deduce from (2.21) that
√

X1x + Ay = 0 and carrying
this equality in the equation (2.22) we obtain 0 = (B − A∗A)y = ∆T(X)y. It
follows that the vector y belongs to the subspace ker(∆T(X)) ∩ A−1(Im(

√
X1),

and hence y = 0. As X1 is a positive and injective, we get that x = 0 which ends
the proof of the first part of (i). In the same manner we can prove (i2). If p is
almost regular, we have Im(

√
X1) = ET1 and Im(

√
Y2) = ET∗2 and the assertion

(i’1) (respectively (i’2)) follows immediately. The assertion (i"1) (respectively (i”2)
comes from (i1) (respectively from (i2)).

(ii) Let L be a Banach limit such that X = Ep2

L,T∗ ,T(I). By Theorem 2.11, the

operator RX,L is positive, it implies that the operator (B − A∗A) − Ep2

L,T∗2 ,T2
(I) is

positive. Since T2 belongs to the class C1,·(p), Ep2

L,T∗2 ,T2
(I) is injective, we get that

(B− A∗A) = ∆T(X) is injective and we get the desired result from (i’1). The proof
of (iii) runs as before. This completes the proof of Corollary 2.13.

REMARK 2.14. Let T be an operator satisfying the assumptions of the pre-
vious corollary, then ker(∆T(X)1) and ker(∆T(X)2) are invariant subspaces for T2
and ker(∆T(X)2) is precisely the orthogonal complement of the subspace∨{T∗k

2 L∗(ker T∗1 ) : k > 0}.

3. SIMILARITY PROBLEMS AND INVARIANT SUBSPACES

The main result of this section (Theorem 3.3) sheds some light on how the
similarity of T ∈ B(H) to a ”nice operator” restricted to an invariant subspace
E ⊆ H can ”propagate” so that T is similar to a scalar multiple of a contraction
to the whole space H. It takes also into account the asymptotic behaviour of
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the restriction of T to E. Before giving this result, first begin with two useful
propositions.

PROPOSITION 3.1. Let T ∈ B(H) be an operator acting on a Hilbert space H and
let E ∈ Lat(T) be such that T1 = T|E ∈ LI(E). Assume that T1 admits a left inverse S1
such that sup

n>0
(‖Sn

1‖‖Tn
2 ‖) < +∞. Then the following assertions are equivalent:

(i) sup
n>0

(‖Sn
1 Rn+1‖) < +∞;

(ii) sup
n>0

(∥∥∥
n
∑

k=0
Sk

1RTk
2

∥∥∥
)

< +∞;

(iii) there exists an operator K in B(E⊥, E)such that R = K − S1KT2.

Proof. (i)⇒(ii) We have

Sn
1 Rn+1 =

n

∑
k=0

Sn−k
1 Sk

1Tk
1 RTn−k

2 =
n

∑
k=0

Sn−k
1 RTn−k

2 .

The desired implication follows immediately.

(ii)⇒(iii) Assume that we have sup
n>0

(∥∥∥
n
∑

k=0
Sk

1RTk
2

∥∥∥
)

< +∞. Considering a

Banach limitL, we define an operator K ∈ B(E⊥, E) by setting K = L
( n

∑
k=0

Sk
1RTk

2

)
.

Then we have

S1KT2 = L
( n

∑
k=0

Sk+1
1 RTk+1

2

)
= L

( n+1

∑
k=0

Sk
1RTk

2 − R
)

= K − R

and the desired equality is obtained.
(iii)⇒(i) If there exists an operator K such that R = K− S1KT2, then we have

Sn
1 Rn+1 = ∑n

k=0 Sk
1RTk

2 = K − Sn+1
1 KTn+1

2 . Thus, we get that

sup
n>0

(∥∥∥
n

∑
k=0

Sk
1RTk

2

∥∥∥
)

< ‖K‖
(

1 + sup
k>0

(‖Sk
1‖‖Tk

2‖)
)

< +∞.

This ends the proof.

For any f in the algebra A(T) of absolutely convergent series on T = {z ∈
C : |z| = 1}, denote by f̃ the function defined by z f̃ (z) = f (z) − f (0) where z
belongs to the closed unit disc D. Let T ∈ PWB(H) and let E ∈ Lat(T), with
respect to the orthogonal decomposition H = E ⊕ E⊥ the operator f (T) has the
following form

f (T) =
[

f (T1) R( f )
0 f (T2)

]
.

The next proposition shows how to compute R( f ) from f̃ (T1), f̃ (T2) and R. It
will be very useful, for instance it will enable us to apply Paulsen criterion in the
sequel.
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PROPOSITION 3.2. Let T ∈ PWB(H) and let E ∈ Lat(T) be such that T1 =
T|E ∈ LI(E). Assume that

(i) sup
n>0

(‖Sn
1 Rn‖) < +∞;

(ii) sup
n>0

(‖Sn
1‖‖Tn

2 ‖) < +∞,

where S1 denotes the Moore Penrose left inverse of T1. Then, for any f ∈ A(T), the

partial sums
n
∑

k=0
Sk

1[ f̃ (T1)R− S1RT2 f̃ (T2)]Tk
2 almost weakly converge to R( f ).

Proof. (i)⇒(ii) First notice that R( f ) satisfies the equation

(3.1) T1R( f )− R( f )T2 = f (T1)R− R f (T2)

which is linear and continuous with respect to f . In fact it suffices to prove (3.1)
for f (z) = zn, which is clear from the expression of Rn = R(zn). It follows from
the equality (3.1) that

(3.2) R( f )− S1R( f )T2 = f̃ (T1)R− S1RT2 f̃ (T2).

If n ∈ N, the equation (3.2) yields to:

(3.3) R( f ) = Sn+1
1 R( f )Tn+1

2 +
n

∑
k=0

Sk
1[ f̃ (T1)R− S1RT2 f̃ (T2)]Tk

2 .

To prove the lemma it is then sufficient to show that the sequence Sn
1 R( f )Tn

2 is
almost weakly convergent to 0 when n tends to ∞. Assume that it is not the
case. Then, by Lorentz’s result ([38]), we see that there exists a Banach limit L
for which we have L(Sn

1 R( f )Tn
2 ) 6= 0. Consider the operator EM

L,S1,T2
acting on

B(H2, H1) where M = sup
n>0

(‖Sn
1‖‖Tn

2 ‖). Since sup
n>0

(‖Sn
1 Rn‖) < +∞, we know

by Proposition 3.1 that there exists an operator K in B(H2, H1) such that R =
K − S1KT2. Thus, we obtain

EM
L,S1,T2

(R) = EM
L,S1,T2

(K)− EM
L,S1,T2

(S1KT2) = EM
L,S1,T2

(K)− EM
L,S1,T2

(K) = 0.

If there exists p > 1 such that EM
L,S1,T2

(Rp) = 0, we observe that

EM
L,S1,T2

(Rp+1) = EM
L,S1,T2

(Tp
1 R + RpT2)

= EM
L,S1,T2

(Tp
1 R) + EM

L,S1,T2
(Rp)T2 = EM

L,S1,T2
(Tp

1 R).

Using Proposition 2.1 (ii) and (iv), we see that

EM
L,S1,T2

(Tp
1 R) = EM

L,S1,T2
(Sp

1 (Tp
1 R)Tp

2 ) = EM
L,S1,T2

(RTp
2 ) = EM

L,S1,T2
(R)Tp

2 = 0.

Consequently, one can prove by induction that EM
L,S1,T2

(Rn) = 0 for every integer
n, which obviously implies that EM

L,S1,T2
(R( f )) = 0 and which is absurd. This

ends the proof of the proposition.

We can now formulate the strongest result of this section. This theorem will
enable us to prove the main result of Section 4.
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THEOREM 3.3. Let T ∈ B(H) be an operator which is dominated by a gauge p
satisfying sup

n>0
{c−n

p p(n)} < +∞ and let E ∈ Lat(T) such that c−1
p T1 = c−1

p T|E ∈

LI(E) and such that c−1
p T∗2 = c−1

p T∗|E⊥ is a contraction. Assume that there exists X1 ∈
τp(T1) such that

√
X1 ∈ LI(ker S1, E) and that

(i) M1 = sup
n>0

(‖Sn
1 PETnPE⊥‖) < +∞;

(ii) M2 = sup
n>0

(‖Sn
1‖‖Tn

2 ‖) < +∞;

(iii) M3 = ∑
k 6=l

‖Pker(T∗1 )T∗k
1 Tl

1Pker(T∗1 )‖c−(k+l)
p < +∞;

where S1 denotes the Moore-Penrose left inverse of T1. Then there exists an invertible
operator J in B(H) such that ‖J−1TJ‖ 6 cp.

Before giving the proof of Theorem 3.3, first begin with a few comments on
the hypothesis of the theorem.

REMARK 3.4. (i) The hypothesis c−1
p T∗|E⊥ is similar to a contraction is minimal.

Indeed if it is not the case, then there exists an operator A of Foguel type such that
c−1

p T∗|E⊥ = A and thus, obviously, c−1
p T can not be similar to a contraction.

(ii) The existence of X1 ∈ τp(T1) such that
√

X1 ∈ LI(ker S1, E) is automat-
ically fulfilled when ker S1 is finite dimensional.

(iii) The condition c−1
p T|E is similar to an injective contraction with closed range

cannot be relaxed. Indeed if we suppose that is no so longer so, we can show that
c−1

p T is not necessarily similar to a contraction, given that the counterexample
introduced by Foguel, says T̃, is such that its restriction to one of its invariant
subspace is a coisometry.

(iv) When T is compatible with a gauge p, we have cp = r(T) (see [28]).
(v) The proof gives an estimate of the constant ‖J‖‖J−1‖.

Proof of Theorem 3.3. Since sup
n>0

{c−n
p p(n)} < +∞, we observe that replacing

T if necessary by c−1
p T we may assume that T is power bounded. We first show

that the assumptions of our theorem are stable under similarity. Assume that
T′1 = AT1 A−1 where A is an invertible operator in B(E). We easily see that the
operator S′1 = AS1 A−1 is a left inverse of T′1. Choose a Banach limit L such that

X1 = Ep2

L,T1,T1
(I). Since

√
X1 ∈ LI(ker S1, E), we know that there exists a positive

number ρ such that 〈X1x | x〉 > ρ‖x‖2 for every x ∈ ker S1. Let us consider the

operator X′
1 = Ep2

L,T′1,T′1
(I), then for any y = Ax ∈ ker S′1 = A(ker S1) we have

〈X′
1y | y〉 = 〈A−1Ep2

L,T1,T1
(A2)A−1 Ax | Ax〉 > ‖A−1‖−2〈Ep2

L,T1,T1
(I)x | x〉

> ‖A−1‖−2ρ‖x‖2 > ρ‖A−1‖−2‖A‖−2‖y‖2.
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It follows immediately that
√

X′
1 ∈ LI(ker S′1, E). It is clear that the other hy-

potheses are fulfilled by T′1. It is easy to check that the hypotheses are still fulfilled
if we replace T2 by an operator similar to T2. Hence, from now on we will assume
that T1 and T2 are two contractions.

We now consider the operators Yn( f ) (which appear in Proposition 3.2) de-
fined by:

(3.4) Yn( f ) =
n

∑
k=0

Sk
1[ f̃ (T1)R− S1RT2 f̃ (T2)]Tk

2 .

Recall that it follows from Proposition 3.1 that R = K− S1KT2. Thus we can
rewrite the first sum of (3.4) as follows

n

∑
k=0

Sk
1 f̃ (T1)RTk

2 =
n

∑
k=0

Sk
1 f̃ (T1)KTk

2 −
n

∑
k=0

Sk+1
1 f̃ (T1)T1S1KTk+1

2

= f̃ (T1)K − Sn+1
1 f̃ (T1)KTn+1

2 +
n+1

∑
k=1

Sk
1 f̃ (T1)PKTk

2 ,

where P denotes the orthogonal projection on ker(T∗1 ). In the same way we can
rewrite the second sum of (3.4)

n

∑
k=0

Sk+1
1 R f̃ (T2)Tk+1

2 = S1K f̃ (T2)T2 − Sn+2
1 K f̃ (T2)Tn+2

2 .

Therefore, we obtain

Yn( f ) = f̃ (T1)K − S1K f̃ (T2)T2 − Sn+1
1 f̃ (T1)KTn+1

2

+ Sn+2
1 K f̃ (T2)Tn+2

2 +
n+1

∑
k=1

Sk
1 f̃ (T1)PKTk

2 .(3.5)

The next step is to define the right context in which we will be able to apply
Paulsen criterion. Let N be a positive integer. If F is a Hilbert space, denote by FN
the N-amplification of F, that is

FN = F⊕ · · · ⊕ F︸ ︷︷ ︸
(N copies)

.

If F, G are some Hilbert spaces and B ∈ B(F, G), we shall denote by BN the oper-
ator of B(FN , GN) defined by:

BN = B⊕ · · · ⊕ B︸ ︷︷ ︸
(N copies)

.

Now consider a matrix AN = [ fi,j]16i,j6N which belongs to the algebra MN of all
the N × N matrices with coefficients in A(T) and equipped with its unique norm
of C∗-algebra. Denote by AN(T) = [ fi,j(T)]16i,j6N the matrix associated with AN



GENERALIZED TEOPLITZ OPERATORS 71

via the functional calculus in T. Clearly AN(T) belongs to B(HN). With respect
to the orthogonal decomposition H = E⊕ E⊥, notice that

N

∑
i=0

N

∑
j=0

〈
fi,j(T)

[
xj
yj

]
|
[

x′i
y′i

]〉

=
N

∑
i=0

N

∑
j=0
〈 fi,j(T1)xj | x′i〉+

N

∑
i=0

N

∑
j=0
〈R( fi,j)yj | x

′
i〉+

N

∑
i=0

N

∑
j=0
〈 fi,j(T2)yj | y′i〉.

We can then easily deduce that:

(3.6) ‖AN(T)‖B(HN) 6 2‖[ fi,j]‖MN(A(T)) + ‖[R( fi,j)]‖B(E⊥N :EN).

Therefore the control of the norm of AN(T) depends on the control of the norm
of the matrices [R( fi,j)]. It follows from Proposition 3.2, that the control of the
norm of the matrices [Yn( fi,j)] will give an estimate of the norm of [R( fi,j)]. The
equation (3.5) implies that:

‖[Yn( fi,j)]‖B(E⊥N ;EN) = ‖[ f̃i,j(T1)]KN + (S1)n+1
N KN [ f̃i,j(T2)](T2)n+1

N

− (S1)NKN [ f̃i,j(T2)](T2)N − (S1)n+1
N [ f̃i,j(T1)]KN(T2)n+1

N

+
n+1

∑
k=1

(S1)k
N [ f̃i,j(T2)i,j(T1)]‖.

It follows that

‖[Yn( fi,j)]‖B(E⊥N ;EN)

6 (1 + 3 sup ‖Sn
1‖‖Tn

2 ‖)‖K‖‖[ f̃i,j]‖MN(A(T)) + ‖[Zn( fi,j)]‖B(E⊥N ;EN)

6 2(1 + 3 sup ‖Sn
1‖‖Tn

2 ‖)‖K‖‖[ fi,j]‖MN(A(T)) + ‖[Zn( fi,j)]‖B(E⊥N ;EN),

where Zn( f ) =
n+1
∑

k=1
Sk

1 f̃ (T1)PKTk
2 .

Applying the operator Cauchy-Schwartz inequality (Proposition 1.4 and Re-
mark 1.5 (i)), we obtain

‖[Zn( fi,j)]‖B(E⊥N ;EN)

6

√√√√‖
n+1

∑
k=1

(S1)k
N [ f̃i,j(T1)]PN [ f̃i,j(T1)]∗(S∗1)k

N‖B(EN)(3.7)

×
√√√√‖

n+1

∑
k=1

(T∗2 )k
NK∗N PNKN(T2)k

N‖B(E⊥N).

In order to estimate the first square root of the right member of (3.7), we
need the next lemma.
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LEMMA 3.5. Let [ fi,j]16i,j6N be a N × N matrix with coefficients in A(T) with
N ∈ N∗, T1 ∈ LI(E, E) and S1 a left inverse of T1. For every n, we have the following
estimate

(3.8)
∥∥∥

n

∑
k=0

(S1)k
N [ fi,j(T1)]PN [ fi,j(T1)]∗(S∗1)k

N

∥∥∥
B(EN)

6 ‖[ fi,j]‖2
MN(A(T))

where P is the orthogonal projection on the kernel of T∗1 .

Proof. Using if necessary a straightforward passage to the limit, we are re-
duced to proving the lemma when all fi,j are polynomials.

Let p be a polynomial of degree m. Consider the operator

Wn(p) =
n

∑
k=0

Sk
1 p(T1)Pp(T1)∗S∗k

1 ,

then for any n > m, we have

Wn(p) =
n

∑
k=0

m

∑
i=0

m

∑
j=0

aiajSk
1Ti

1PT∗j
1 S∗k

1

=
n

∑
k=0

m

∑
i=k

m

∑
j=k

aiajri+jSk
1Ti

1PT∗j
1 S∗k

1 (Sl
1P = 0 = PS∗l

1 for any l > 1)(3.9)

=
n

∑
k=0

pk(T1)Ppk(T1)∗

where pk(z) =
m
∑

i=k
aizi−k. If r ∈ ]0, 1[, we will denote by pr the polynomial p(rz).

Write m = max(d◦( fi,j)). Let n > m and r ∈ ]0, 1[ , using (3.9) we get

Wn,r =
n

∑
k=0

(S1)k
N [ fi,j(rT1)]PN [ fi,j(rT1)]∗(S1)k∗

N

= [Wn(( fi,j)r)]16i,j6N =
m

∑
k=0

[( fi,j)k(rT1)P][( fi,j)k(rT1)P]∗.

We now consider the operator kernel Kα(T1), α < 1, defined by

Kα(T1) = (I − αT1)−1 + (I − αT∗1 )−1 − I = (I − αT1)−1(I − r2T1T∗1 )(I − αT∗1 )−1.

Let us denote by DT∗1 (r) the operator
√

I − r2T1T∗1 , 0 < r < 1. Choose an or-
thonormal basis (el)l∈Λ in ker(T∗1 ), then for every x = (x1, . . . , xN), we have

〈Wn,rx | x〉 =
m

∑
q=0

‖[( fk,l)q(rT1)P]∗x‖2 =
m

∑
q=0

‖P[( fk,l)q(rT1)]∗x‖2

=
m

∑
q=0

N

∑
l=1

∑
j∈Λ

∣∣∣
N

∑
k=1
〈( fk,l)q(rT1)∗xk | ej〉

∣∣∣
2
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=
m

∑
q=0

N

∑
l=1

∑
j∈Λ

∣∣∣
N

∑
k=1

2π∫

0

( fk,l)q(eit)〈Kreit (T1)ej | xk〉
∣∣∣
2

=
m

∑
q=0

N

∑
l=1

∑
j∈Λ

∣∣∣
N

∑
k=1

2π∫

0

( fk,l)q(eit)〈(I − re−itT1)−1ej | xk〉dm(t)
∣∣∣
2

=
m

∑
q=0

N

∑
l=1

∑
j∈Λ

∣∣∣
N

∑
k=1

2π∫

0

e−iqt fk,l(eit)〈(I − re−itT1)−1ej | xk〉dm(t)
∣∣∣
2

=
m

∑
q=0

N

∑
l=1

∑
j∈Λ

∣∣∣
N

∑
k=1

2π∫

0

e−iqt fk,l(eit)〈(I − re−itT1)−1DT∗1 (r)ej | xk〉dm(t)
∣∣∣
2

=
m

∑
q=0

N

∑
l=1

∑
j∈Λ

∣∣∣
2π∫

0

e−iqt
〈

ej |
N

∑
k=1

fk,l(eit)DT∗1 (r)(I − reitT∗1 )−1xk

〉
dm(t)

∣∣∣
2

6
N

∑
l=1

∑
j∈Λ

2π∫

0

∣∣∣
〈

ej |
N

∑
k=1

fk,l(eit)DT∗1 (r)(I − reitT∗1 )−1xk

〉∣∣∣
2
dm(t)

6
2π∫

0

N

∑
l=1

∥∥∥
N

∑
k=1

fk,l(eit)DT∗1 (r)(I − reitT∗1 )−1xk

∥∥∥
2
dm(t)

=

2π∫

0

∥∥∥∥∥[ fk,l(eit)]16k,l6N




√
I − r2T1T∗1 (I − reitT∗1 )−1x1

...√
I − r2T1T∗1 (I − reitT∗1 )−1xN




∥∥∥∥∥
2

dm(t)

6 ‖[ fk,l ]16k,l6N‖2
MN(A(slT))

2π∫

0

N

∑
k=1
〈Kreit (T1)xk | xk〉dm(t)

= ‖[ fk,l ]16k,l6N‖2
MN(A(T))‖x‖2.

We get the estimate (3.8) by letting r → 1. It ends the proof of Lemma 3.5.

Given that the operator
n+1
∑

k=1
(T∗2 )k

NK∗N PNKN(T2)k
N is diagonal, it follows that:

(3.10)
∥∥∥

n+1

∑
k=1

(T∗2 )k
NK∗N PNKN(T2)k

N

∥∥∥
B(E⊥N)

=
∥∥∥

n+1

∑
k=1

T∗2
kK∗PKTk

2

∥∥∥
B(E⊥)

.
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We have

Rn+1 =
n

∑
k=0

Tn−k
1 RTk

2 =
n

∑
k=0

Tn−k
1 (K − S1KT2)Tk

2

= Tn
1 K − S1KTn+1

2 +
n

∑
k=1

Tn−k
1 PKTk

2 .(3.11)

We denote by X1 = strong lim(T∗k
1 Tk

1 ). Note that we have
n

∑
k=1

T∗k
2 K∗PX1PKTk

2

6
n

∑
k=1

T∗k
2 K∗PT∗n−k

1 Tn−k
1 PKTk

2

=
∣∣∣

n

∑
k=1

Tn−k
1 PKTk

2

∣∣∣
2
− ∑

16k 6=l6n
T∗k

2 K∗PT∗n−k
1 Tn−l

1 PKTl
2(3.12)

6 [(‖K‖+ ‖S1K‖+ sup{‖Rn‖})2 + ‖K‖2M3]I (using (3.11) and (iii)).

Since
√

X1 ∈ LI(ker S1, E) and Im(Q) = ker S1, we see that γ(
√

X1 |E) > 0.
Hence we get from (3.10) and (3.12)

∥∥∥
n+1

∑
k=1

(T∗2 )k
NK∗N PNKN(T2)k

N

∥∥∥
B(E⊥N)

6 [γ(
√

X1 |E)]−1[(‖K‖+ ‖S1K‖+ sup{‖Rn‖})2 + ‖K‖2M3](3.13)

6 [γ(
√

X1 |E)]−1[(2 + ‖S1‖)2M2
1 + M2

1 M3].

Finally, using Lemma 3.5 and the above inequality (3.13) we obtain

‖[R( fi,j)]‖B(E⊥N ;EN) 6 2‖[ fi,j]‖MN(A(T))M1

[
(1 + 3M2) +

√
(2 + ‖S1‖)2 + M3

γ(
√

X1 |E)

]
.

The above estimate in the equation (3.6), gives:

‖[ fi,j(T)]‖B(HN)

62‖[ fi,j]‖MN(A(T))

[
1+ M1

[
(1+ 3M2) +

√
γ(

√
X1 |E)−1[(2 + ‖S1‖)2+M3]

]]
.

The Paulsen criterion implies the existence of a contraction T̃ and an invertible
positive operator J satisfying

T = JT̃ J−1

with the following estimate

‖J‖‖J−1‖ 6 2
[
1 + M1

[
(1 + 3M2) +

√
γ(

√
X1 |E)−1[(2 + ‖S1‖)2 + M3]

]]
.

The proof of Theorem 3.3 is complete.
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THEOREM 3.6. Let T ∈ B(H) be an operator and let E ∈ Lat(T) be such that
both r(T)−1T1 = r(T)−1T|E and r(T)−1T∗2 = r(T)−1T∗|E⊥ are similar to contractions.

Assume that T1 admit a left inverse S1 and that
+∞
∑

n=0
‖Sn

1‖‖Tn
2 ‖ < +∞. Then there exists

an invertible operator J in M such that ‖JTJ−1‖ 6 r(T).

Proof. First observe that the convergence of the series
+∞
∑

n=0
‖Sn

1‖‖Tn
2 ‖ implies

that the assumptions of Propositions 3.1 and 3.2 are satisfied. Therefore, the
first part of the proof runs as before, the only difference being in the estimate
of ‖[Zn( fi,j)]‖B(E⊥N ;EN). Here , we obtain

‖[Zn( fi,j)]‖B(E⊥N ;EN) 6
[ +∞

∑
n=0

‖Sn
1‖‖Tn

2 ‖
]
‖K‖,

where K =
+∞
∑

k=0
Sk

1RTk
2 . Applying again Paulsen criterion we get the desired re-

sult.

The following result may be proved in the same way as Theorem 3.3. It takes
also into account the asymptotic behaviour of the restriction of T to an invariant
subspace E.

THEOREM 3.7. Let T ∈ B(H) be an operator which is dominated by a gauge p
satisfying sup

n>0
{c−n

p p(n)} < +∞. Assume that c−1
p T1 = c−1

p T|E ∈ LI(E) is similar to

a contraction and that c−1
p T∗2 = c−1

p T∗|E⊥ ∈ PB(H). If there exists X1 ∈ τp(T1) such
that

√
X1 ∈ LI(ker S1, E) and that
(i) M1 = sup

n>0
(‖Sn

1 PETnPE⊥‖) < +∞;

(ii) M2 = sup
n>0

(‖Sn
1‖‖Tn

2 ‖) < +∞;

(iii) M3 = ∑
k 6=l

‖Pker(T∗1 )T∗k
1 Tl

1Pker(T∗1 )‖p(k)−1 p(l)−1 < +∞;

where S1 denotes the Moore-Penrose left inverse of T1, then the operator r(T)−1T is
polynomially bounded and we have

Mr(T)−1T 6 Csim(T1)
[
1 + MT2

+ 2M1

[
1 + M2 + 2M2MT2 + 2

√
γ(

√
X1 |E)−1[(2 + ‖S1‖)2 + M3]

]]
.

4. SEVERAL APPLICATIONS

We present now several applications of the previous results.
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4.1. AN IMPORTANT PARTICULAR CASE. When the compression of the operator
to an invariant subspace is a scalar multiple of an isometry Corollary 2.13 gives a
useful criterion for T being in the class C1,·.

COROLLARY 4.1. Let T ∈ B(H) be an operator which is dominated by a gauge p
and let E ∈ Lat(T) be such that c−1

p T1 = c−1
p T|E is similar to an isometry and such that

c−1
p T∗2 = c−1

p T∗|E⊥ is a contraction. Let X ∈ τp(T), then we have

T ∈ C1,·(p) ⇔ T1 ∈ C1,·(p) and ker(∆T(X) = {0}.

Proof. Since c−1
p T1 is similar to an isometry, we see that X1 is invertible. Thus

we have Im(
√

X1) = H and we obtain the desired result by Corollary 2.13 (i1).

At the start, the following result was the main motivation in similarity prob-
lems for operators of Foguel type ([7], [9]).

COROLLARY 4.2. Let T ∈ B(H) be an operator which is dominated by a gauge
p satisfying sup

n>0
{c−n

p p(n)} < +∞. Let E ∈ Lat(T) be such that c−1
p T1 = c−1

p T|E is

similar to an isometry and such that c−1
p T∗2 = c−1

p T∗|E⊥ is similar to a contraction. Then

there exists an invertible operator A in B(H) such that c−1
p T is similar to a contraction.

In particular, if c−1
p T1 = V is an isometry and c−1

p T∗2 is a contraction, we can find an
invertible operator J such that

‖J−1TJ‖ 6 cp and ‖J‖‖J−1‖ 6 2 + inf
X∈τp(T)

{4‖LT(X)‖+
√
‖∆T(X)2‖}.

Before giving the proof of Corollary 4.2, first begin with a few comments on
the hypothesis of the theorem.

REMARK 4.3. (i) Observe that, in this situation, the similarity problem does
not depend on the multiplicity of the isometry V although the multiplicity is very
important when T1 = V∗ is a coisometry (See Pisier counterexample! ([44])).

(ii) The hypothesis c−1
p T∗|E⊥ is similar to a contraction is minimal. Indeed if it is

not the case, then there exists an operator A of Foguel type such that c−1
p T∗|E⊥ = A

and thus, obviously, c−1
p T can not be similar to a contraction.

(iii) When p is a constant gauge (i.e. T ∈ PWB(H)) the similarity to a con-
traction was given in [7] and [9]. See also [19] (with different technics) where T
is assumed to be polynomially bounded and the isometry V to be of multiplicity
one.

(iv) Observe that the previous result gives more details about the similarity
to a scalar multiple of a contraction, it provides an estimate of the constant of
similarity involving operators naturally associated with T. These operators lead
to various connections with function theory in [13].
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Poof of Corollary 4.2. By similarity, we may assume that c−1
p T1 = V is a isom-

etry and c−1
p T∗2 is a contraction. Then we have S1 = c−1

p V∗. If k > l, we have

Pker(T∗1 )T∗k
1 Tl

1Pker(T∗1 ) = (I −VV∗)c2
p(V∗k−l −V∗k−lVV∗) = 0.

The same conclusion can be drawn for the case k > l, finally we get M3 = 0. On
the other hand, we have

‖Sn
1 PETnPE⊥‖ 6 c−n

p ‖Tn‖ 6 Cc−n
p p(n) 6 C sup

n>0
{c−n

p p(n)} < +∞.

Hence we get M1 = sup
n>0

(‖Sn
1 PETnPE⊥‖) < +∞. Analysis similar to the previous

one shows that M1 = sup
n>0

(‖Sn
1‖‖Tn

2 ‖) < +∞. Note that τp(T1) = {I} and obvi-

ously I ∈ LI(ker V∗, E). Hence, we may apply Theorem 3.3 to obtain that c−1
p T

is similar to a contraction.
In order to get the estimate, we proceed as in the proof of Theorem 3.3. We

observe that we can choose K = LT(X) for any X in τp(T) and we apply the
operator Cauchy-Schwartz inequality in a such way that we have

‖[Zn( fi,j)]‖B(E⊥N ;EN)

6

√√√√∥∥∥
n+1

∑
k=1

r(T)2k(S1)k
N [ fi,j(T1)]PN [ fi,j(T1)]∗(S∗1)k

N

∥∥∥
B(EN)

×
√√√√∥∥∥

n+1

∑
k=1

1
c2k

p
(T∗2 )k

N LT(X)∗N PN LT(X)N(T2)k
N

∥∥∥
B(E⊥N)

6

√√√√∥∥∥
n+1

∑
k=1

V∗
N

k[ fi,j(T1)]PN [ fi,j(T1)]∗Vk
N

∥∥∥
B(EN)

√
‖∆T(X)‖ (use Remark 2.12 (i))

=
√
‖V∗

N
n+1[ fi,j(T1)][ fi,j(T1)]∗Vn+1

N − [ fi,j(T1)][ fi,j(T1)]∗‖B(EN)
√
‖∆T(X)‖

6 ‖[ fi,j]‖MN(A(T))
√
‖∆T(X)‖.

It ends the proof of Corollary 4.2.

COROLLARY 4.4. Let T ∈ B(H) be an operator which is compatible with a regular
gauge p satisfying sup

n>0
{c−n

p p(n)} < +∞. Let E ∈ Lat(T) such that VN(T1) is a finite

von Neumann algebra, T1 is a C1,·(p) and c−1
p T∗2 = c−1

p T∗|E⊥ is similar to a contraction,

then there exists an invertible operator J such that ‖J−1TJ‖ 6 cp.

Proof. Since the von Neumann algebra is finite and T1 ∈ C1,·(p), we know
by [8] that c−1

p T1 is similar to a unitary operator (T1 ∈ C1,·(p) → r(T) = r(T1) =
cp; see [28]). Therefore, we may assume (up to a similarity) that c−1

p T1 is a unitary
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operator and that c−1
p T∗2 is a contraction and we can apply the previous corol-

lary.

COROLLARY 4.5 (B. Sz.-Nagy [41]). Let T ∈ PWB(H) be a compact operator,
then T is similar to a contraction.

Proof. We consider the invariant subspace E associated with the spectrum
which lies on the torus. It is clear that VN(T1) is a finite von Neumann algebra (E
is finite dimensional), T1 ∈ C1,·. On the other hand, we easily see that r(T2) < 1,
and thus that T2 is similar to a contraction, by Rota’s theorem. Now, it suffices to
apply the previous corollary in order to obtain the desired result.

COROLLARY 4.6. Let T ∈ B(H) be an operator which is dominated by a gauge
p satisfying sup

n>0
{c−n

p p(n)} < +∞. Let E ∈ Lat(T) be such that c−1
p T1 = V is an

isometry and such that c−1
p T∗2 = c−1

p T∗|E⊥ ∈ PB(H). Then the following conditions are
equivalent:

(i) c−1
p T ∈ PWB(H);

(ii) c−1
p T ∈ PB(H).

Moreover, if one of the above conditions is satisfied, we have the following estimate

Mc−1
p T 6 3 +

[
1 + sup

n>0
(‖Tn

2 ‖)
]

MT2 +
(

1 + sup
n>0

(‖Tn
2 ‖

)

+ 2 sup
n>0

((‖Tn
2 ‖)MT2) sup

n>0
(‖PETnPE⊥‖).

REMARK 4.7. If p is constant and V = S is the usual shift of multiplicity
one, the above equivalence of (i) and (ii) is contained in [20] and the former result
is attributed to C. Foiaş and J.P. Williams.

4.2. COMPRESSION AND SIMILARITY. The next result is concerned with a simi-
larity result about the sequence of powers of T.

COROLLARY 4.8. (i) Let T ∈ B(H) be an injective operator with closed range.
Assume that R ∈ B(H) is such that there exists ρ ∈ ]0, 1[ such that

(4.1) lim‖Rn − Tn‖1/nρ−(1/n)〈sup{r(S)−1 : S ∈ B(H) and ST = I}.

Then there exists a sequence (Pn)n>0, where each Pn is a projection on the range of Tn

and an invertible operator A such that Pn ARn A−1 = Tn. In particular, if ker T∗ is of
dimension 1, then R is similar to a rank one perturbation of T.

(ii) Let T be an isometry and R ∈ B(H) satisfying the following inequality

(4.2) lim‖Rn − Tn‖1/nρ−(1/n) < 1

where ρ ∈ ]0, 1[ . Then R is similar to an isometry.
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Proof. (i) By assumption, we can choose a left inverse S of T satisfying the
following inequality

lim‖Rn − Tn‖1/nρ−(1/n) < r(S)−1.

By the above result, we see that there exists a strictly increasing sequence of inte-
gers (nk)k>0 such that

‖Rnk − Tnk‖‖Snk‖ 6 ρ < 1.

Replacing if necessary (nk)k>0 by a subsequence, we may assume that

lim
k→+∞

‖Rnk − Tnk‖‖Snk‖ = l < 1.

Let us choose an ultrafilter U containing the Frechet filter associated with (nk)k>0.
We can define a Banach limit L by setting

L((un)n>0) = lim
U

(u0 + · · ·+ un

n + 1

)
.

Considering the operator A = E1
L,S,R(I), we can see that

‖A− I‖ 6 L(‖Rn − Tn‖‖Sn‖) = l < 1.

From the above it follows that A is an invertible operator satisfying the equation
SAR = A (Proposition 2.1 (iv)). Set Pn = TnSn, since S is a left inverse of T, it
is easy to check that Pn is a projection (not necessarily orthogonal) on the range
of Tn. To deduce the desired conclusion, observe that we have by construction
Pn ARn = Tn A.

(ii) We first observe that the condition (4.2) implies that R is power bounded.
The first part of the proof follows by the same method as in (i), the only difference
being that we can take precisely for S the adjoint of the isometry T. Consequently,
we note that P1 is the orthogonal projection on the range of T. Now, we deduce
that

A∗A = R∗A∗P1 AR 6 R∗A∗AR.

It follows that A∗A is an upper R Toeplitz operator which is invertible. Applying
Proposition 2.6, we conclude that R is similar to an isometry. This ends the proof
of the corollary.

REMARK 4.9. (i) When T ∈ LI(H) is a Fredholm operator we know from
[2] that lim γ(Tn)1/n = sup{r(S)−1 : ST = I}.

(ii) If we take for T the usual shift on the Hardy space H2, we see that R is
similar to a rank one perturbation of T which is similar to T. For a recent account
of the treatment of rank one perturbation of the usual shift we refer the reader to
[13].

(iii) We mention that Corollary 3.1 in [1] is actually a consequence of the
assertion (ii).
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4.3. CRITERION FOR SIMILARITY TO AN ISOMETRY. The next result relies the
properties of ΦT,p with the possibility to be similar to a scalar multiple of an
isometry.

COROLLARY 4.10. Let T ∈ B(H) be a operator which is compatible with a regular
gauge p. Then the following conditions are equivalent:

(i) there exists ρ > 0 such that (1− r2)
2π∫
0
‖ΦT,p(reit)x‖2dm(t) > ρ‖x‖2 for any

x ∈ H;
(ii) the operator T is similar to some scalar multiple of an isometry in B(H).
In particular, when T ∈ PWB(H), we get that T is similar to an isometry in B(H)

if and only if there exists ρ > 0 such that

(1− r2)

2π∫

0

‖(I − re−itT)−1x‖2dm(t) > ρ‖x‖2

for any x ∈ H.

Proof. (i)⇒(ii) Considering any weak limit point of the operators Xr in
Proposition 2.10, we see that there exists a generalized T-Toeplitz operator X such
that

〈Xx | x〉 > ρ‖x‖2

for any x ∈ H. Hence, X is invertible and satisfies the equation T∗XT = c2
pX.

Clearly, we obtain that the operator c−1
p X−(1/2)RX1/2 is an isometry in B(H).

(i)⇒(ii) Conversely, assume that T = αAUA−1 where A is an invertible
operator, U is an isometry in B(H) and α is a non zero complex number. We first
note that we have necessarily α = r(T)eiθ for some θ ∈ R. Therefore, without lost
of generality we may assume that α = r(T). For any x ∈ H we have

(1− r2)

2π∫

0

‖ΦT,p(reit)x‖2dm(t)

= (1− r2)
+∞

∑
n=0

r2n p(n)−2〈T∗nTnx | x〉

= (1− r2)
+∞

∑
n=0

r2n p(n)−2〈r(T)2n A∗−1U∗n A∗AUn A−1x | x〉(4.3)

> ‖A‖2‖A−1‖2(1− r2)‖x‖2
+∞

∑
n=0

r2n p(n)−2r(T)2n.
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Since T is compatible with the regular gauge p, we know that we have necessarily
r(T) = cp. Now applying Theorem 2.7, we see that there exists r0 such that

(1− r2)
+∞

∑
n=0

r2n p(n)−2r(T)2n > 1
2

for any r > r0. With (4.3) we get easily the desired condition. This ends the proof
of the proposition.

4.4. ABEL TYPE SUMMABILITY AND AN OPERATOR KERNEL FOR C0,· OPERATORS

OF CLASS Cρ . Let T be an operator dominated by a regular gauge with its spec-
trum included in the closed unit disc. For any r with 0 6 r < 1 and t > 0, we
consider the operator kernel

K0,·
r,t(T) = (I − reitT∗)−1(I − T∗T)(I − re−itT)−1.

We denote by E0,·(T) the subspace of H where the iterates of T converge to 0.
When T is of class Cρ, ρ > 0, so that it has a unitary ρ dilation on some Hilbert
space H ⊇ H, then there exists a sesquilinear map (x, y) → µx,y, from H × H into
the Banach space ca(T) of all complex measures on T, which gives spectral scalar
measures for T (with |µx,y| 6 (2ρ− 1)‖x‖‖y‖) that satisfy

(4.4) 〈p(T)x | y〉 =

2π∫

0

p(eit)dµx,y(t)

for any x, y ∈ H and any polynomial p. If T is absolutely continuous, then there
exists a functional calculus ΦT : H∞ → B(H), ΦT( f ) = f (T), f ∈ H∞, which
extends the polynomial functional calculus. The map ΦT is a weak*-continuous
algebra homomorphism (norm-decreasing when T is an absolutely continuous
contraction).

COROLLARY 4.11. Let T be an operator belonging to a finite von Neumann alge-
bra. Assume that T is dominated by a regular gauge p with its spectrum included in the
closed unit disc. Then there exists a unique canonical generalized Toeplitz operator ST ,
ker ST = E0,·(T), and the integrals

(1− r2)

2π∫

0

〈ΦT,p(reit)x | ΦT,p(reit)y〉dm(t)

almost converge to 〈STx | y〉 for any (x, y) ∈ H2. In particular, when T ∈ PWB(H),
we have

lim
r→1

(1− r2)

2π∫

0

‖(I − re−itT)−1x‖2dm(t) = 〈STx | x〉

for any x ∈ H.
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Proof. (i) We define the functional φn, n ∈ N, acting on the finite von Neu-
mann algebra M generated by T as follows

φn(X) = T∗nXTn

for any X ∈ M. Since p is regular, the sequence c2n
p p(n)−2 is almost convergent to

1. By Theorem 2.4 (iii) of [8], we obtain φn(X)p(n)−2 is weakly almost convergent
for any X ∈ M. In particular, it implies that φn(I)p(n)−2 is weakly almost con-
vergent to an operator ST . We immediately deduce that τp(T) = {ST}. Applying
Proposition 2.10, we get the other desired results.

COROLLARY 4.12. Let T ∈ B(H) be an absolutely continuous operator of class
Cρ. For any (x, y) ∈ E0,·(T)2 the one parameter family of functions t → 〈K0,·

r,t(T)x
| y〉 converge in L1(T, dm) to the function t → dµx,y/dm when r goes to 1. In particu-
lar, when T is of class C0,· we can use the kernel K0,·

r,t(T) instead of the kernel Kr,t(T).

Proof. Since T is of class Cρ, we have Kr,t(T) + (ρ− 1)I > 0 ([10]). Using the
properties of radial limits of positive harmonic functions (see for instance [26])
and (4.4) we see that

lim
r→1

2π∫

0

∣∣∣dµx,y

dm
(t)− 〈Kr,t(T)x | y〉

∣∣∣dm(t) = 0.

Thus, it remains to prove that

(4.5) lim
r→1

2π∫

0

|〈K0,·
r,t(T)x | y〉 − 〈Kr,t(T)x | y〉|dm(t) = 0

for any (x, y) ∈ E0,·(T)2. Now, observe that

2π∫

0

|〈K0,·
r,t(T)x | y〉 − 〈Kr,t(T)x | y〉|dm(t)

= (1− r2)

2π∫

0

|〈(I − reitT∗)−1T∗T(I − re−itT)−1x | y〉|dm(t)

6(1− r2)

√√√√√
2π∫

0

‖(I − re−itT)−1Tx‖2dm(t)

√√√√√
2π∫

0

‖(I − re−itT)−1Ty‖2dm(t).(4.6)

By Proposition 2.10, we know that every point limit of

(1− r2)

2π∫

0

‖(I − re−itT)−1Tx‖2dm(t)
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is of the form 〈Xx | x〉 where X satisfies the equation T∗XT = X. Consequently,
we have

|〈Xx | x〉| 6 ‖X‖‖Tnx‖2.

Since T is of class Cρ, the sequence ‖Tnx‖ is convergent ([18]) and the limit is
necessarily 0 because x ∈ E0,·(T). Combining this fact with (4.6), we obtain the
desired property (4.5). The rest of the proof is then an immediate consequence.

REMARK 4.13. When T is a contraction the spectral scalar measure is posi-
tive, that is µx,x is a positive measure for any x ∈ H.

5. OPERATORS OF FOGUEL TYPE AND OPERATORS IN THE CLASS C1,·

The remainder of this section is devoted to the study of the iterates of the
operators of Foguel type. First we study the particular case where the restriction
of T∗ is similar to an isometry giving a similarity result. Second we state some
properties which are of inner interest and which exceed the context of operator
of Foguel type. If T ∈ PB(H) and E ∈ Lat(T) we study the asymptotic and
spectral properties of the components of T with respect to the orthogonal sum
H = E⊕ E⊥. Third, we show how to use the informations we obtain in order to
study the operators of Foguel type and we attempt to motiving that the notions
we have introduced are, in a sense, the best adapted to our problem.

5.1. SIMILARITY. The next result precise the similarity when the restriction of T∗

is similar to an isometry.

PROPOSITION 5.1. Let T ∈ PWB(H) and E ∈ Lat(T) such that T | E is similar
to an isometry and T∗ | E⊥ is similar to a coisometry. Then the operator T is similar to
an isometry.

REMARK 5.2. Proposition 5.1 implies in particular that Foguel operators of
type (III) are similar to isometries. Notice that the adjoint of an operator of type
(II) is in fact conjugate by means of the involution J : x1 ⊕ x2 → x2 ⊕ x1 to an op-
erator of type (III). Thus, we deduce that Foguel operators of type (II) are similar
to coisometries.

Proof of Proposition 5.1. Once more, with respect to the orthogonal decom-
position H = E ⊕ E⊥ the operator T can be decomposed under the following
form:

T =
[

T1 R
0 T2

]
.

Given a Banach limit L, we consider the T-Toeplitz operator X = Ep2

L,T∗ ,T(I).
Since T1 is similar to an isometry the associated canonical Toeplitz operator X1 =
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Ep2

L,T∗1 ,T1
(I) is invertible. Then the operator J = X−(1/2)

1 ⊕ I is well defined. Under
the notations of Section 3, we obtain

J−1XJ =
[

I A
A∗ B

]
.

It follows from Theorem 3.3, that the operator B − Ep2

L,T∗2 ,T2
(I) is positive. More-

over, since the operator T2 is similar to an isometry, the T2 Toeplitz Ep2

L,T∗2 ,T2
(I) is

positive and invertible. An immediate consequence is that the operator B− A∗A
is invertible. Therefore the operator X is invertible and moreover we get an ex-
plicit formula for the inverse of X, namely:

X−1 =

(
X−1

1 + X−(1/2)
1 A(B− A∗A)A∗X−(1/2)

1 −X−(1/2)
1 A(B− A∗A)

−(B− A∗A)A∗X−(1/2)
1 (B− A∗A)−1

)
.

Since X is a T-Toeplitz operator, the operator W = X1/2TX−(1/2) is an isome-
try.

5.2. LINKS WITH THE OPERATORS OF FOGUEL TYPE. As it was already observed
the operators which are the analogous of the operators of Foguel type and which
can produce operators in class C1,· are operators of type (III) and (IV). The opera-
tor of type (III) are similar to isometries as shown in the previous section. There-
fore we will concentrate our study to the operators of type (IV) which belong
to PWB(H). This study reveals that such operators are really relevant. Indeed,
we prove that those operators can be expressed by means of an operator valued
function.

We first study the membership of the operator of type (IV) to the set of
power bounded operators. First notice that for operator of type (IV), the opera-
tor LT(X) (respectively L′T(Y)) which appears in Remark 2.12 is uniquely deter-
mined. Moreover, T is uniquely determined by R in this case, therefore we will
denote this operator defined on H2(F) by L(R) (respectively L′(R)); observe that
the link between L(R) and L′(R) is given by the relation L′(R) = L(R∗)∗. Con-
versely, given an operator L, consider the operator of type (IV) which is associated
with L, taking for R the operator L− S∗LS∗. It follows that:

T =
[

Sn Rn
0 S∗n

]

where Rn is defined by the formula Rn = Sn−1L(R) − S∗L(R)S∗n−1 +
n−1
∑

i=1
Si−1

· PL(R)S∗n−i. If Yn denotes the operator
n
∑

i=0
SiPLS∗n−i, an easy calculus yields:

(5.1) Y∗n Yn =
n

∑
k=0

SkL(R)∗PL(R)S∗k
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where P denotes the orthogonal projection on ker(S∗). It may be seen that T is
a power-bounded operator if and only if the above series is weak convergent in
B(H), then it implies its strong convergence. Now observe that

(B− A∗A)− S(B− A∗A)S∗ = L(R)∗PL(R) = J J∗

with J ∈ B(H, F). Theorem 1.14 in [45] enables us to factorize the operator B −
A∗A = ZZ∗ where Z ∈ {S}′. Since Z commutes with S, it can be identified with
an operator field of H∞(D, B(F)). In our case Z can be explicitly defined (up to

an isometry of B(F)) by Z =
+∞
∑

k=0
SkL(R)∗PS∗k. If (εn)n∈Λ is an orthonormal basis

of F, we can write, a.e.
Z = ∑

n∈Λ

(L(R)∗εn)⊗ εn

In the same way we obtain:

D− CC∗ = Z′Z′∗ with Z′ =
+∞

∑
k=0

SkL(R∗)∗PS∗k.

If n is a positive integer, set

Zn =
n

∑
k=0

SkL(R)∗PS∗k and Z′n =
n

∑
k=0

SkL(R∗)∗PS∗k.

The next proposition summarizes the above statements.

PROPOSITION 5.3. Let T be an operator of Foguel type (IV) and X be a canoni-
cal T-Toeplitz operator. Then the operator T is power-bounded if and only if one of the
sequences (Zn)n>0 or (Z′n)n>0 is bounded in H∞(D, B(F)).

REMARK 5.4. (i) Similar result occurs in a different context [6].
(ii) The boundedness of the sequence (Zn)n>0 is equivalent to the bounded-

ness of the sequence (Z′n)n>0.

Let (εk)k∈Λ be an orthonormal sequence of F. A simple calculus shows that
the series given by (5.1) strongly converges if and only if there exists a constant
M > 0 and a set N of Lebesgue measure equal to 0 such that:

(5.2)
∥∥∥ ∑

k∈Λ

αkL∗εk(z)
∥∥∥ 6 M

√
∑
k∈Λ

|αk|2 , ∀z ∈ T\N , ∀α = (αk) ∈ l2(Λ).

In the particular case where F is of finite dimension, the inequality (5.2)
yields a simple characterization of the membership of T to PWB(H) in terms of
L directly.

PROPOSITION 5.5. If F is of finite dimension, then T ∈ PWB(H) if and only if
the image by L∗ of the unit ball of F is a bounded set of H∞(F).

REMARK 5.6. In the particular case where V is the usual shift on H2, Propo-
sition 5.5 implies that T ∈ PWB(H) if and only if L∗(1) ∈ H∞.
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We can now give a complete characterization of the operators of type (IV)
which belong to the class C1,· (respectively C·,1). For this purpose, we use our last
statement and Corollary 4.1.

PROPOSITION 5.7. Let T be an operator of type (IV) whose powers are bounded.
Then T belongs to the class C1,· (respectively C·,1) if and only if Z (respectively Z′) is an
outer function and the closure of Z(eit)H2(F) is equal to H2(F) (respectively the closure
of Z′(eit)H2(F) is equal).

REMARK 5.8. Notice that B− A∗A = D− CC∗ if R is selfadjoint. Therefore,
in this case, T ∈ C1,1 as soon as T ∈ C1,·.

Proof of Proposition 5.7. The identity B− A∗A = ZZ∗ implies that:

f ∈ ker(B− A∗A) ⇔ Z(eit)∗ f (eit) = 0 a.e ⇔ f (eit) ∈ (Z(eit)H2(F))⊥.

Using Corollary 4.1, we obtain T ∈ C1,· if and only if Z is an outer function which
verifies Z(eit)H2(F) = H2(F).

5.3. SPECTRAL PROPERTIES OF OPERATORS OF FOGUEL TYPE (IV). This section
is devoted to the study of the spectrum of operators of Foguel type (IV). If S is
the usual shift on H2(F) and if λ is a point of the open unit disc D, we denote by
Eλ the kernel of S∗ − λI and by Pλ the orthogonal projection of H onto Eλ.

PROPOSITION 5.9. Let T be an operator of type (IV). The spectrum of T, σ(T), is
contained in the unit disc. Moreover, a point λ of the open unit disc belongs to σ(T) if
and only if PλRPλ /∈ GL(Eλ, Eλ).

The proof of Proposition 5.9 relies essentially on the next lemma. Let E ∈
Lat(T) and let

(5.3) T =
[

A X
0 B

]

be the matrix of T with respect to the orthogonal decomposition H = E⊕ E⊥. It
is of interest to clarify the links between σ(T) and σ(A), σ(B). Let us recall the
following notations:

(i) We will use the symbol Al to denote the Moore-Penrose left inverse of A
when of course it exists.

(ii) We will use the symbol Br to denote the Moore-Penrose right inverse of B
when of course it exists.

LEMMA 5.10. Let T be an operator of type (5.3). Then T is invertible if and only
if:

(i) the operator A∗ is surjective;
(ii) the operator B is surjective;
(iii) dim ker A∗ = dim ker B = d.



GENERALIZED TEOPLITZ OPERATORS 87

Moreover, if d 6= 0, the compression Q1XQ2 of X, defined on ker B and whose
image is a subset of ker A∗, must be invertible. Finally if R denotes the operator defined
in an obvious way by R = 0 if d = 0 and R = [Q1XQ2]−1 if d 6= 0, the inverse of T is
given by the matrix

T−1 =
[

Al − AlXR AlXRXBr − AlXBr
R Br − RXBr

]
.

Proof. We can derive the first part of Lemma 5.10 from [25], the second part
is left to the reader (for more details see [7]).

REMARK 5.11. In the particular case where T is an operator of Foguel of
type (IV) with S the usual shift on H2, it may be seen that

PλRPλ = h(λ)(1− |λ|2)(1− λz)−1 ⊗ (1− λz)−1

with h = L∗(1). In this context, Proposition 5.9 implies that a point λ of the open
unit disc belongs to the spectrum of T if and only if h(λ) = 0. Once more, we see
that the function h = L∗(1) parameterizes the operators of Foguel type (IV) (see
also Remark 5.6).
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(Workshop, October 6–11, 1997). We wish to thank all these institutions.

REFERENCES

[1] C. BADEA, Operators near completely polynomially dominated ones and similarity
problems, J. Operator Theory 49(2003), 3–23.

[2] C. BADEA, M. MBEKHTA, Generalized inverses and the maximal radius of regularity
of a Fredholm operator, Integral Equations Operator Theory 28(1997), 133–146.

[3] C. BADEA, V.I. PAULSEN, Schur multipliers and operator-valued Foguel-Hankel op-
erators, Indiana Univ. Math. J. 50(2001), 1509–1522.

[4] B. BEAUZAMY, Introduction in Operator Theory and Invariant Subspaces, North-Holland,
Amsterdam 1988.

[5] J. BOURGAIN, On the similarity problem for polynomially bounded operators on
Hilbert space, Israel Math. J. 54(1986), 227–241.
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