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ABSTRACT. We study actions of compact quantum groups on finite quantum
spaces. According to Woronowicz and to general C∗-algebra philosophy, these
correspond to certain coactions v : A → A⊗ H. Here A is a finite dimensional
C∗-algebra, and H is a certain special type of Hopf ∗-algebra. If v preserves
a positive linear form ϕ : A → C, a version of Jones’ basic construction ap-
plies. This produces a certain C∗-algebra structure on A⊗n, plus a coaction
vn : A⊗n → A⊗n ⊗ H, for every n. The elements x satisfying vn(x) = x ⊗ 1
are called fixed points of vn. They form a C∗-algebra Qn(v). We prove that
under suitable assumptions on v the graded union of the algebras Qn(v) is a
spherical C∗-planar algebra.
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INTRODUCTION

A major discovery of the eighties, due to Jones ([13]), is that an inclusion
of von Neumann algebras with trivial centers, also called subfactor, produces a
representation of the algebra of Temperley and Lieb ([27]). This can be used for
getting several unexpected results about von Neumann algebras. For instance
that subfactors of index < 4 are classified by ADE diagrams, and that their indices
must be of the form 4 cos2(π/n).

The classification program for subfactors, with many people involved over
the last 20 years, already reached a few final conclusions. Among them is an
axiomatization of a large class of quantum algebras, having positivity properties.
A first set of axioms, of algebraic nature, was found by Popa in [24]. A set of
topological axioms, leading to the notion of planar algebra, was found by Jones
in [16].

The colored planar operad P consists of certain planar diagrams called tan-
gles. Each tangle has several input discs and an output disc, connected by non-
crossing strings. The operad law is given by gluing of tangles. A planar alge-
bra is by definition an algebra over P . That is, we have a graded vector space
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Q = Q±0 , Q1, Q2, Q3, . . ., and for every tangle T we can put elements of Q in the
input discs of T and we get an element of Q on the output disc of T.

When the scalars are complex numbers and certain positivity and spherical
invariance properties hold, Q is said to be spherical C∗-planar algebra. Results
of Jones ([16]) and Popa ([24]) show that every subfactor produces such a planar
algebra, and vice versa. In the amenable case the correspondence is one-to-one, by
a result of Popa ([23]).

It is natural to ask about how these fundamental techniques from subfac-
tors work for compact quantum groups. According to Woronowicz ([31]) such
a quantum group is described by a certain special type of Hopf C∗-algebra. So,
let H be such a Hopf C∗-algebra, let A be a finite-dimensional C∗-algebra and let
v : A → A ⊗ H be a coaction. It is convenient to assume that v is co-faithful, in
the sense that its coefficients generate H as a C∗-algebra.

If v leaves invariant a linear form the basic construction produces coac-
tions vn : A⊗n → A⊗n ⊗ H for every n. Here the tensor powers A⊗n are given
the C∗-algebra structure coming from the basic construction. Consider the al-
gebras Qn(v) of fixed points under the coactions vn. That is, of elements satis-
fying vn(x) = x ⊗ 1. These form an increasing sequence of finite dimensional
C∗-algebras, and their union is a graded ∗-algebra, denoted Q(v).

In most cases of interest Q(v) is known to be a spherical C∗-planar alge-
bra. Moreover, Q(v) encodes important information about (H, v), and several
algebraic or analytic properties of (H, v) can be translated in terms of Q(v). In
fact, it is expected that a reconstruction map of type Q(v) → (H, v) exists, as a
modification of Woronowicz’s Tannakian duality ([30]).

When H is finite dimensional and v : H → H ⊗ H is its comultiplication,
this follows from Ocneanu’s depth 2 duality; see David ([10]), Longo ([21]) and
Szymanski ([26]). A direct proof is obtained by Kodiyalam, Landau and Sunder
in [18]. For more results on the depth 2 case see Das ([8]) and Das and Kodiyalam
([9]).

More generally, one can consider the case when H is a Kac type, meaning
that the square of its antipode S2 is the identity. Several explicit results, due to
Landau ([19]), Landau and Sunder ([20]), and Bhattacharyya and Landau ([5]) are
available here. In the general S2 = id case a subfactor is constructed in [2], and
its standard invariant is computed by using a method of Wassermann from [28].
By combining this with a result of Jones in [16], it follows that Q(v) is a planar
algebra.

In the S2 6= id case things are less explicit. When H = C(G)q corresponds to
a q-deformation with q > 0 of a compact Lie group and v comes from a projective
representation of G this follows from work of Sawin ([25]). More generally, when
A = Mn(C) and v is adjoint to a corepresentation of H, this follows from a many-
to-one Tannakian correspondence, established in [1].

The problem with most of the above results is that the planar algebra struc-
ture of Q(v) is not quite explicit, because it comes from a subfactor or a standard
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λ-lattice, via the fundamental results of Jones ([16]) and Popa ([24]). The other ob-
vious problem is that all these results certainly cover the most interesting cases,
but some cases are still left. And finally, a third problem is with the reconstruction
map, not available in most cases.

One may wonder about a very general correspondence of the form (H, A, v)
↔ Q(v), between triples (H, A, v) satisfying certain assumptions and certain pla-
nar algebras. Something like triples satisfying a Perron-Frobenius type condition are
in one-to-one correspondence with twisted C∗-subalgebras of depth 1 planar algebras.
Moreover, for this result to be ready to use, one would like to have a direct con-
struction of the correspondence, somehow in the spirit of Ocneanu’s depth 2 du-
ality and of Woronowicz’s Tannakian duality.

So far, the only fully satisfactory result in this sense seems to be the one in
the depth 2 case, where the enlightening paper of Kodiyalam, Landau and Sunder
([18]) is available.

The aim of the present work is to construct a general map of type (H, A, v)
→ Q(v).

In Section 1 and Section 2 we apply the basic construction, and we study the
equivariance properties of various annular tangles. In the planar algebra setting
it is convenient to use bases and indices and to do it right from the beginning.
This requires a normalisation of the coefficients of v. We choose the one which
makes the spin factor behave uniformly at even and odd levels.

In Section 3 and Section 4 we prove that under suitable assumptions Q(v) is
a spherical C∗-planar algebra. When the square of the antipode S2 is the identity
this is a subalgebra of the depth 1 planar algebra P(A) constructed by Jones in
[14], by using a certain explicit statistical mechanical sum. In the general case
the inclusion Q(v) ⊂ P(A) appears to be twisted, and the partition function of
Q(v) comes here from a standard λ-lattice in the sense of Popa ([24]), by using
the bubblingconstruction of Jones ([16]).

As a conclusion, in the S2 = id case the map (H, A, v) → Q(v) is constructed
quite explicitely, and what is left is to do the converse construction. In the S2 6= id
case what we do is rather to compute the domain of (H, A, v) → Q(v), by a
method which is to be improved.

The first version of this paper was written in 2002. This version is the third
one, written in 2004, with new notations and many comments added, but basi-
cally containing the same material. So far, we have found no improvement in the
S2 6= id case.

In the recent paper [4] we obtain the duality for coactions on A = Cn. Here
the condition S2 = id is automatic. This duality restricts to a correspondence be-
tween Hopf C∗-algebras associated to colored graphs with n vertices and planar
subalgebras of the spin planar algebra P(Cn), generated by a self-adjoint 2-box.
This latter correspondence makes a link between Hopf C∗-algebras and the clas-
sification program initiated by Bisch and Jones in [6] and [7], and can be used for
explicit (numeric) computations of Poincaré series of such Hopf C∗-algebras.
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Some other possible applications of such dualities are discussed in Section 5
in [4].

1. FORMALISM

The formalism we need is that of a Hopf ∗-algebra with a positive integral.
However, it is more convenient to start with the more enlightening axioms

in Woronowicz’s paper ([31]). A good reference here is the paper [22] by Maes
and Van Daele, containing a short exposition of the subject, with several simplifi-
cations, and available at arxiv.org.

The terminology in the definition below is probably quite reasonable, but
not standard.

DEFINITION 1.1. A Hopf C∗-algebra with unit is a pair H = (H, ∆) consisting
of a C∗-algebra with unit H and a C∗-morphism ∆ : H → H⊗H, subject to the
following conditions:

(i) coassociativity condition (id⊗∆)∆ = (∆⊗ id)∆;
(ii) cocancellation law: the sets ∆(H)(1⊗H) and ∆(H)(H⊗ 1) are dense in

H⊗H.

The basic example is H = C(G), the algebra of continuous functions on a
compact group G, with ∆(ϕ) : (g, h) → ϕ(gh). Here coassociativity of ∆ follows
from associativity of the multiplication · of G, and cocancellation in (H, ∆) follows
from cancellation in (G, ·).

Conversely, assume that (H, ∆) is as in Definition 1.1, and that H is com-
mutative. The Gelfand transform gives an isomorphism H ' C(G), where G
is the spectrum of H. Now the coassociative map ∆ gives rise to an associative
map · : G × G → G. In other words, we have here a compact semigroup (G, ·),
which by (ii) follows to have cancellation. It is then well-known that G must be a
compact group.

As a conclusion, the construction (G, ·) → (C(G), ∆) is a contravariant equiv-
alence of categories between compact groups and commutative Hopf C∗-algebras
with unit. So, a pair (H, ∆) as in Definition 1.1 can be thought of as corresponding
to a compact quantum group.

Among main results of Woronowicz in [31] is the construction of a dense
subalgebra H ⊂ H, consisting of representative functions on the compact quantum
group. This has a counit ε : H → C and an antipode S : H → H, which satisfy the
usual Hopf algebra identities. It is convenient to denote by m : H ⊗ H → H and
u : C→ H its multiplication and unit maps.

DEFINITION 1.2. In this paper H = (H, m, u, ∆, ε, S, ∗) will denote the Hopf
∗-algebra of representative functions on a compact quantum group, in the sense that H
is the canonical dense subalgebra associated by Woronowicz to a Hopf C∗-algebra
with unit H.
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As already explained, H will come in fact together with a fundamental
corepresentation. So, we will feel free to refer to results of Woronowicz from
the fundamental paper [29].

The other piece of data we need is a pair (A, ϕ) consisting of a finite dimen-
sional C∗-algebra A and a positive linear form ϕ : A → C. It is well-known that
A must be isomorphic to a direct sum of matrix algebras, and ϕ must be of the
form a → tr(qa), with q ∈ A positive.

A basic example here is the algebra A = C(X) of functions on a finite set
X, with linear form ϕ( f ) = ∑ f (x)µ(x), where µ is a positive measure on X. It is
probably tempting to think of a general pair (A, ϕ) as corresponding to a measured
finite quantum space. But the other main example is A = Mn(C) with ϕ(a) =
tr(qa), where q is some positive matrix, and here this interpretation doesn’t quite
help.

DEFINITION 1.3. Let (A, ϕ) be a finite dimensional C∗-algebra together with
a positive faithful linear form. A coaction of H on (A, ϕ) is a morphism of ∗-
algebras v : A → A⊗ H, subject to the following conditions:

(i) coassociativity condition (v⊗ id)v = (id⊗∆)v;
(ii) counitality condition (id⊗ ε)v = id;
(iii) copreservation of ϕ condition (ϕ⊗ id)v = ϕ(·)1.

If (iii) is not satisfied we just say that v is a coaction of H on A.
The purpose of this section is to reformulate these axioms, for further use

in establishing results about propagation of v in the Jones tower for C ⊂ A. The
precise structure of the Jones tower for C ⊂ A is that of a spherical C∗-planar
algebra. The following are known.

(1) Bases and indices are needed so far in understanding this planar algebra
structure, meaning that an approach with global formulae is not available yet. In
fact, a planar algebra is quite an abstract notion, and the action of tangles on
tensors is best understood by keeping in mind rules like indices are allowed to travel
on strings or two different indices make the whole thing vanish when they meet etc. This
is why indices are necessary.

(2) Some quite unobvious choices of bases, normalisations, notations etc. are
needed as well. See e.g. the comments of Jones in [16] and [14]. The idea here is
that the planar meaning of various deformation parameters is very unclear. The
spin vector used by Jones in [14], which already requires a tricky normalisation,
turns to have a quite clear planar interpretation, in terms of horizontal structure.
In this paper the set of parameters will be even bigger. This will require several
careful normalisations, and the problem of finding a reasonable planar interpre-
tation of these parameters will be eventually left open in the general case.

Now (1) tells us to look for a reformulation of Definition 1.3, in terms of
coefficients of v, with respect to some basis of A. This is an a priori quite standard
task: coassociativity corresponds to the well-known condition ∆(vij) = ∑ vik⊗ vkj
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and so on. However, because of (2), we have be extremely careful in the choice of
the basis and coefficients.

We will use a normalisation which may seem a bit strange, but which does
work, in the sense that formulae in the Jones tower will look quite similar at even
and odd levels. Of course, this choice of simplifying things in higher formulae to
come might cause the very first formulae — in statements and proofs — to look
more complicated than needed. This will be indeed the case.

DEFINITION 1.4. Let (A, ϕ) be as above. Choose a system of matrix units
X ⊂ A making ϕ diagonal, with the following multiplication convention:

(
j
i

) (
l
k

)
= δjk

(
l
i

)
.

We denote by qi the fourth roots of the weights of ϕ, chosen positive:

ϕ

(
j
i

)
= δijq4

i qi > 0.

Any linear map v : A → A⊗ H will be written in the following form:

v
(

j
i

)
= ∑

(
l
k

)
⊗ q−1

k qiqjq−1
l V

(
l j
k i

)
.

This is, to any linear map v we associate in this way a matrix V, and vice
versa.

It is convenient to define the coefficients V(l
k

j
i) for all indices i, j, k, l, by say-

ing that they are equal to zero if (j
i) or (l

k) do not exist. In fact, best here would
be to use the groupoid structure of X, but since we do not have results for more
general groupoids, we do not do it.

As for the sum sign in Definition 1.4, this is by definition over all elements
(l

k) ∈ X. More generally, in any formula of type A = ∑ B or ∑ B = A with
A, B ∈ H the sum will be over all indices which appear in B and don’t appear in
A.

The normalisation in Definition 1.4 is the one which will appear to work
well in the Jones tower. For, we must first do the above-mentioned reformulation
of Definition 1.3.

PROPOSITION 1.5. A linear map v : A → A⊗ H is a coaction of H on A if and
only if V satisfies the following Conditions:

εV
(

l j
k i

)
= δkiδl j1 , ∆V

(
l j
k i

)
= ∑ V

(
l h
k g

)
⊗V

(
h j
g i

)
,

V
(

l j
k i

)∗
= V

(
k i
l j

)
, ∑ q2

i V
(

l i
k i

)
= δklq

2
k ,

∑ q−2
s V

(
s h
k g

)
V

(
l j
s i

)
= δhiq

−2
i V

(
l j
k g

)
.
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This sequence of five Conditions will be denoted (ε), (∆), (∗), (u◦), ( ◦m).

Proof. This is well-known, modulo our normalisations for V, so the only
thing to check is that all q values in the statement are the good ones. It is possible
to prove this either by using global formulae, or with a direct matrix computation.
We prefer to present this latter approach, as a warm-up for more involved compu-
tations to come, where bases and matrix computations seem to be unavoidable,
cf. Considerations (1) and (2) at page 123.

By using the defining formula of v we get

(id⊗ ε)v
(

j
i

)
= ∑

(
l
k

)
⊗ q−1

k qiqjq−1
l εV

(
l j
k i

)
,

so the condition (id⊗ ε)v = id holds if and only if V satisfies

εV
(

l j
k i

)
= qkq−1

i q−1
j qlδkiδl j,

for any i, j, k, l, i.e. if and only if V satisfies (ε). We have

(v⊗ id)v
(

j
i

)
= ∑ v

(
l
k

)
⊗ q−1

k qiqjq−1
l V

(
l j
k i

)

= ∑
(

h
g

)
⊗ q−1

g qkqlq
−1
h V

(
h l
g k

)
⊗ q−1

k qiqjq−1
l V

(
l j
k i

)

= ∑
(

h
g

)
⊗ q−1

g q−1
h qiqjV

(
h l
g k

)
⊗V

(
l j
k i

)

= ∑
(

l
k

)
⊗ q−1

k q−1
l qiqjV

(
l h
k g

)
⊗V

(
h j
g i

)
,

so (v⊗ id)v = (id⊗∆)v is equivalent to (∆). We have

v(1) = ∑ v
(

i
i

)
= ∑

(
l
k

)
⊗ q−1

k q2
i q−1

l V
(

l i
k i

)

so v(1) = 1⊗ 1 is equivalent to (u◦). Also, from the formulae

v
(

h
g

)
v

(
j
i

)
= ∑

(
s
k

) (
l
S

)
⊗ q−1

k qgqhq−1
s q−1

S qiqjq−1
l V

(
s h
k g

)
V

(
l j
S i

)

= ∑
(

l
k

)
⊗ (q2

i q−2
s )(qhq−1

i )q−1
k qgqjq−1

l V
(

s h
k g

)
V

(
l j
s i

)
,

v
((

h
g

) (
j
i

))
= ∑

(
l
k

)
⊗ δhiq

−1
k qgqjq−1

l V
(

l j
k g

)
,

we get that v is multiplicative if and only if ( ◦m) holds. We have

v
(

i
j

)
= ∑

(
k
l

)
⊗ q−1

l qjqiq−1
k V

(
k i
l j

)

so v is involutive if and only if (∗) holds.
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PROPOSITION 1.6. Assume that v is a coaction of H on A. Then the following
three Conditions (S), ( ◦u) and (m◦)

SV
(

l j
k i

)
= q2

kq−2
i q2

j q−2
l V

(
i k
j l

)
, ∑ q2

i V
(

i l
i k

)
= δklq

2
k ,

∑ q−2
s V

(
h s
k g

)
V

(
l j
i s

)
= δhiq

−2
i V

(
l j
k g

)
,

are equivalent, and are satisfied if and only if v preserves ϕ.

Proof. We keep proving things by performing matrix computations. We
have

(ϕ⊗ id)v
(

l
k

)
= ∑ ϕ

(
j
i

)
q−1

i qkqlq
−1
j V

(
j l
i k

)
= qkql ∑ q2

i V
(

i l
i k

)

so the condition (ϕ ⊗ id)v = ϕ(·)1 holds if and only if V satisfies ( ◦u). It re-
mains to prove that if (ε), (∆), (u◦), ( ◦m) are satisfied, then (S), (m◦) and ( ◦u) are
equivalent. First, by applying S to (u◦) we get that (S) implies ( ◦u):

δklq
2
k = ∑ q2

i SV
(

l i
k i

)
= ∑ q2

i q2
kq−2

l V
(

i l
i k

)
.

Assume that ( ◦u) holds. By combining it with ( ◦m) we get

∑ q2
i q−2

j V
(

j l
i k

)
V

(
i h
j g

)
= ∑ q2

i δlgq−2
g V

(
i h
i k

)
= δlgq−2

g δkhq2
k

and this can be rewritten in the following form:

∑ q2
i q−2

k q2
l q−2

j V
(

j l
i k

)
V

(
i h
j g

)
= δlgδkh1 .

If exy with x, y ∈ X is the system of matrix units in L(A) we get
(

∑ e(k
l )(

i
j)
⊗ q2

i q−2
k q2

l q−2
j V

(
j l
i k

)) (
∑ e(i

j)(
h
g) ⊗V

(
i h
j g

))
= 1⊗ 1 .

On the other hand, Conditions (ε) and (∆) say that V ∈ L(A)⊗ H is a corep-
resentation, i.e. that it satisfies

(id⊗∆)V = V12V13 , (id⊗ ε)V = 1 ,

so by considering (id⊗ E)V with E given by the Hopf algebra axiom

E = m(S⊗ id)∆ = m(id⊗ S)∆ = ε(·)1

we get that (id⊗ S)V is an inverse for V. Thus the above formula gives (id⊗ S)V,
and by identifying coefficients we get (S). Thus ( ◦u) implies (S). It remains to
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prove that (S) is equivalent to (m◦). Assume that (S) is satisfied. Then

S
(
∑ q−2

s V
(

s h
k g

)
V

(
l j
s i

))

= ∑ q−2
s SV

(
l j
s i

)
SV

(
s h
k g

)

= ∑ q−2
s q2

s q−2
i q2

j q−2
l q2

kq−2
g q2

hq−2
s V

(
i s
j l

)
V

(
g k
h s

)
.

On the other hand by applying S to the right term of ( ◦m) we get

S
(

δhiq
−2
i V

(
l j
k g

))
= δhiq

−2
i q2

kq−2
g q2

j q−2
l V

(
g k
j l

)
.

By using ( ◦m) we get after cancelling q’s that

δhiV
(

g k
j l

)
= ∑ q2

hq−2
s V

(
i s
j l

)
V

(
g k
h s

)

and this is (m◦). Finally, the proof of (m◦) implies (S) is similar to the proof of
( ◦u) implies (S). Indeed, by combining (m◦) and (u◦) we get

∑ q2
i q−2

k q2
l q−2

j V
(

j l
i k

)
V

(
i h
j g

)
= δlgδkh1

and this gives a right inverse for V, hence the Formula (S) for the antipode.

2. BASIC CONSTRUCTION, EQUIVARIANCE RESULTS, AND THE UNTWISTED CASE

For any n the set Xn is a basis of the linear space A⊗n. With loop notations
(

j1
i1

)
⊗

(
j2
i2

)
⊗ . . .⊗

(
j2s
i2s

)
=

(
j2s i2s . . . is+1
i1 j1 . . . js

)

(
j1
i1

)
⊗

(
j2
i2

)
⊗ . . .⊗

(
j2s−1
i2s−1

)
=

(
j2s−1 i2s−1 . . . js

i1 j1 . . . is

)

for this basis, depending on the parity of n, the linear extension of
(

j1 . . . jn
i1 . . . in

) (
l1 . . . ln
k1 . . . kn

)
= δj1k1

. . . δjnkn

(
l1 . . . ln
i1 . . . in

)

is an associative multiplication on A⊗n. Together with the antilinear extension of
(

j1 . . . jn
i1 . . . in

)∗
=

(
i1 . . . in
j1 . . . jn

)

this gives a finite dimensional C∗-algebra structure on A⊗n. Note that A⊗1 = A
and that A⊗2 is a matrix algebra. In fact the algebras A⊗n are obtained from A
by performing the basic construction to the inclusion C ⊂ A. See the book of
Goodman, de la Harpe and Jones ([11]).
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We use for A⊗n the same conventions for sums etc. as those for A.
Conditions (ε) and (∆) show that the matrix

u = ∑ e
(l

k)(
j
i )
⊗V

(
l j
k i

)
∈ L(A)⊗ H

is a corepresentation, so we can consider its tensor powers:

u⊗n = u1,n+1u2,n+1 . . . un,n+1 ∈ L(A⊗n)⊗ H.

Let Vn be the matrix of coefficients of u⊗n, defined by

u⊗n = ∑ e
(

l1...ln
k1...kn

)(
j1...jn
i1...in

)
⊗Vn

(
l1 . . . ln j1 . . . jn
k1 . . . kn i1 . . . in

)
.

Define a linear form ϕ̃n by

ϕ̃n

(
j1 . . . jn
i1 . . . in

)
= δ(i1 ...in)(j1 ...jn)q

4
(i1 ...in)

where the weights are given by the function

q(i1 ...in) = qi1 q−1
i2

qi3 . . . q∓1
in ,

where ±1 = (−1)n. Note that q(i) = qi, so ϕ̃1 = ϕ on A⊗1 = A.

PROPOSITION 2.1. If v : A → A⊗ H is a coaction of H on A which preserves ϕ
then the linear map vn : A⊗n → A⊗n ⊗ H given by

vn

(
j1 . . . jn
i1 . . . in

)
= ∑

(
l1 . . . ln
k1 . . . kn

)
⊗ q−1

(k1 ...kn)q(i1 ...in)q(j1 ...jn)q
−1
(l1 ...ln)

· Vn

(
l1 . . . ln j1 . . . jn
k1 . . . kn i1 . . . in

)

is a coaction of H on A⊗n which preserves ϕ̃n.

Proof. The tensor powers of u are given by

u⊗n = ∑ e
(

l1
k1

)(
j1
i1

)
⊗ . . .⊗ e

(ln
kn

)(jn
in

)
⊗V

(
l1 j1
k1 i1

)
. . . V

(
ln jn
kn in

)

= ∑ e
(

l1
k1

)⊗...⊗(ln
kn

), (
j1
i1

)⊗...⊗(jn
in

)
⊗V

(
l1 j1
k1 i1

)
. . . V

(
ln jn
kn in

)

= ∑ e
(

k2
k1

)⊗...⊗(
l1
l2

), (
i2
i1

)⊗...⊗(
j1
j2

)
⊗V

(
k2 i2
k1 i1

)
. . . V

(
l1 j1
l2 j2

)

= ∑ e
(

l1...ln
k1...kn

)(
j1...jn
i1...in

)
⊗V

(
k2 i2
k1 i1

)
. . . V

(
l1 j1
l2 j2

)
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and this gives the formula of Vn. More precisely, we have V1 = V and

V2

(
l1 l2 j1 j2
k1 k2 i1 i2

)
= V

(
k2 i2
k1 i1

)
V

(
l1 j1
l2 j2

)

V3

(
l1 l2 l3 j1 j2 j3
k1 k2 k3 i1 i2 i3

)
= V

(
k2 i2
k1 i1

)
V

(
l3 j3
k3 i3

)
V

(
l1 j1
l2 j2

)

V4

(
l1 l2 l3 l4 j1 j2 j3 j4

k1 k2 k3 k4 i1 i2 i3 i4

)
= V

(
k2 i2
k1 i1

)
V

(
k4 i4
k3 i3

)
V

(
l3 j3
l4 j4

)
V

(
l1 j1
l2 j2

)

· · ·
Since ε and ∆ are multiplicative, (ε) and (∆) for V imply (ε) and (∆) for V2:

εV2

(
l1 l2 j1 j2
k1 k2 i1 i2

)
= εV

(
k2 i2
k1 i1

)
εV

(
l1 j1
l2 j2

)

= δk1i1 δk2i2 δl2 j2 δl1 j1 1 = δ(k1k2)(i1i2)δ(l1l2)(j1 j2)1 ,

∆V2

(
l1 l2 j1 j2
k1 k2 i1 i2

)
= ∆V

(
k2 i2
k1 i1

)
∆V

(
l1 j1
l2 j2

)

= ∑ V
(

k2 h1
k1 g1

)
V

(
l1 h2
l2 g2

)
⊗V

(
h1 i2
g1 i1

)
V

(
h2 j1
g2 j2

)

= ∑ V2

(
l1 l2 h2 g2
k1 k2 g1 h1

)
⊗V2

(
h2 g2 j1 j2
g1 h1 i1 i2

)
.

Since S and ∗ are antimultiplicative, (S) and (∗) for V imply (S) and (∗)
for V2:

SV2

(
l1 l2 j1 j2
k1 k2 i1 i2

)
= SV

(
l1 j1
l2 j2

)
SV

(
k2 i2
k1 i1

)

= q2
l2 q−2

j2
q2

j1 q−2
l1

q2
k1

q−2
i1

q2
i2 q−2

k2
V

(
j2 l2
j1 l1

)
V

(
i1 k1
i2 k2

)

= q2
(k1k2)q

−2
(i1i2)q

2
(j1 j2)q

−2
(l1l2)V2

(
i1 i2 k1 k2
j1 j2 l1 l2

)
,

V2

(
l1 l2 j1 j2
k1 k2 i1 i2

)∗
= V

(
l1 j1
l2 j2

)∗
V

(
k2 i2
k1 i1

)∗

= V
(

l2 j2
l1 j1

)
V

(
k1 i1
k2 i2

)
= V2

(
k1 k2 i1 i2
l1 l2 j1 j2

)
.

By using (m◦) and (u◦) for V we get (u◦) for V2:

∑ q2
(i1i2)V2

(
l1 l2 i1 i2
k1 k2 i1 i2

)
= ∑ q2

i1 q−2
i2

V
(

k2 i2
k1 i1

)
V

(
l1 i1
l2 i2

)

= ∑ q2
i1 δk2l2 q−2

l2
V

(
l1 i1
k1 i1

)

= δk2l2 q−2
l2

δk1l1 q2
k1

= δ(k1k2)(l1l2)q
2
(k1k2).
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By using ( ◦m) and ( ◦u) for V we get ( ◦m) for V2:

∑ q−2
(s1s2)V2

(
s1 s2 h1 h2
k1 k2 g1 g2

)
V2

(
l1 l2 j1 j2
s1 s2 i1 i2

)

= ∑ q−2
s1

q2
s2

V
(

k2 g2
k1 g1

)
V

(
s1 h1
s2 h2

)
V

(
s2 i2
s1 i1

)
V

(
l1 j1
l2 j2

)

= ∑ δh1i1 q−2
i1

q2
s2

V
(

k2 g2
k1 g1

)
V

(
s2 i2
s2 h2

)
V

(
l1 j1
l2 j2

)

= δh2i2 q2
i2 δh1i1 q−2

i1
V

(
k2 g2
k1 g1

)
V

(
l1 j1
l2 j2

)

= δ(h1h2)(i1i2)q
−2
(i1i2)V2

(
l1 l2 j1 j2
k1 k2 g1 g2

)
.

Since ε and ∆ are multiplicative, (ε) and (∆) for V imply (ε) and (∆) for V3:

εV3

(
l1 l2 l3 j1 j2 j3
k1 k2 k3 i1 i2 i3

)
= εV

(
k2 i2
k1 i1

)
εV

(
l3 j3
k3 i3

)
εV

(
l1 j1
l2 j2

)

= δk1i1 δk2i2 δk3i3 δl3 j3 δl2 j2 δl1 j11

= δ(k1k2k3)(i1i2i3)δ(l1l2l3)(j1 j2 j3)1 ,

∆V3

(
l1 l2 l3 j1 j2 j3
k1 k2 k3 i1 i2 i3

)

= ∆V
(

k2 i2
k1 i1

)
∆V

(
l3 j3
k3 i3

)
∆V

(
l1 j1
l2 j2

)

= ∑ V
(

k2 h1
k1 g1

)
V
(

l3 h2
k3 g2

)
V
(

l1 h3
l2 g3

)
⊗V

(
h1 i2
g1 i1

)
V
(

h2 j3
g2 i3

)
V
(

h3 j1
g3 j2

)

= ∑ V3

(
l1 l2 l3 h3 g3 h2
k1 k2 k3 g1 h1 g2

)
⊗V3

(
h3 g3 h2 j1 j2 j3
g1 h1 g2 i1 i2 i3

)
.

Since S and ∗ are antimultiplicative, (S) and (∗) for V imply (S) and (∗) for
V3:

SV3

(
l1 l2 l3 j1 j2 j3
k1 k2 k3 i1 i2 i3

)

= SV
(

l1 j1
l2 j2

)
SV

(
l3 j3
k3 i3

)
SV

(
k2 i2
k1 i1

)

= q2
l2 q−2

j2
q2

j1 q−2
l1

q2
k3

q−2
i3

q2
j3 q−2

l3
q2

k1
q−2

i1
q2

i2 q−2
k2

V
(

j2 l2
j1 l1

)
V

(
i3 k3
j3 l3

)
V

(
i1 k1
i2 k2

)

= q2
(k1k2k3)q

−2
(i1i2i3)q

2
(j1 j2 j3)q

−2
(l1l2l3)V3

(
i1 i2 i3 k1 k2 k3
j1 j2 j3 l1 l2 l3

)
,
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V3

(
l1 l2 l3 j1 j2 j3
k1 k2 k3 i1 i2 i3

)∗
= V

(
l1 j1
l2 j2

)∗
V

(
l3 j3
k3 i3

)∗
V

(
k2 i2
k1 i1

)∗

= V
(

l2 j2
l1 j1

)
V

(
k3 i3
l3 j3

)
V

(
k1 i1
k2 i2

)

= V3

(
k1 k2 k3 i1 i2 i3
l1 l2 l3 j1 j2 j3

)
.

By using (u◦), (m◦) and (u◦) again for V we get (u◦) for V3:

∑ q2
(i1i2i3)V3

(
l1 l2 l3 i1 i2 i3
k1 k2 k3 i1 i2 i3

)

= ∑ q2
i1 q−2

i2
q2

i3 V
(

k2 i2
k1 i1

)
V

(
l3 i3
k3 i3

)
V

(
l1 i1
l2 i2

)

= ∑ q2
i1 q−2

i2
δk3l3 q2

k3
V

(
k2 i2
k1 i1

)
V

(
l1 i1
l2 i2

)

= ∑ q2
i1 δk3l3 q2

k3
δk2l2 q−2

l2
V

(
l1 i1
k1 i1

)

= δk3l3 q2
k3

δk2l2 q−2
l2

δk1l1 q2
k1

= δ(k1k2k3)(l1l2l3)q
2
(k1k2k3) .

By using ( ◦m), ( ◦u) and ( ◦m) again for V we get ( ◦m) for V3:

∑q−2
(s1s2s3)V3

(
s1 s2 s3 h1 h2 h3
k1 k2 k3 g1 g2 g3

)
V3

(
l1 l2 l3 j1 j2 j3
s1 s2 s3 i1 i2 i3

)

= ∑ q−2
s1

q2
s2

q−2
s3

· V
(

k2 g2
k1 g1

)
V

(
s3 h3
k3 g3

)
V

(
s1 h1
s2 h2

)
V

(
s2 i2
s1 i1

)
V

(
l3 j3
s3 i3

)
V

(
l1 j1
l2 j2

)

= ∑ q2
s2

q−2
s3

δh1i1 q−2
i1

V
(

k2 g2
k1 g1

)
V

(
s3 h3
k3 g3

)
V

(
s2 i2
s2 h2

)
V

(
l3 j3
s3 i3

)
V

(
l1 j1
l2 j2

)

= ∑ q−2
s3

δh1i1 q−2
i1

δh2i2 q2
i2 V

(
k2 g2
k1 g1

)
V

(
s3 h3
k3 g3

)
V

(
l3 j3
s3 i3

)
V

(
l1 j1
l2 j2

)

= δh1i1 q−2
i1

δh2i2 q2
i2 δh3i3 q−2

i3
V

(
k2 g2
k1 g1

)
V

(
l3 j3
k3 g3

)
V

(
l1 j1
l2 j2

)

= δ(h1h2h3)(i1i2i3)q
−2
(i1i2i3)V3

(
l1 l2 l3 j1 j2 j3
k1 k2 k3 g1 g2 g3

)
.

The proof for arbitrary n even is similar to the proof for n = 2 and for
arbitrary n odd, to the proof for n = 3.
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A linear map T : A⊗n → A⊗m is v∞-equivariant if the following diagram
commutes:

A⊗n T−→ A⊗m

vn ↓ ↓ vm

A⊗n ⊗ H T⊗id−→ A⊗m ⊗ H

.

For n = 0 a map T is v∞-equivariant if and only if T(1) is fixed by vm.

LEMMA 2.2. The following linear maps

In

(
j1 . . . jn−1
i1 . . . in−1

)
= ∑

(
j1 . . . jn−1 l
i1 . . . in−1 l

)
,

ẽn = ∑ q±2
i q±2

j

(
g1 . . . gn−2 j j
g1 . . . gn−2 i i

)
,

Ẽn

(
j1 . . . jn
i1 . . . in

)
= δin jn q∓4

in

(
j1 . . . jn−1
i1 . . . in−1

)
,

where ±1 = (−1)n, are v∞-equivariant.

Proof. The coactions v2 and v3 are given by the following formulae:

v2

(
j1 j2
i1 i2

)
= ∑

(
l1 l2
k1 k2

)
⊗ q−1

k1
qk2 qi1 q−1

i2
qj1 q−1

j2
q−1

l1
ql2 V

(
k2 i2
k1 i1

)
V
(

l1 j1
l2 j2

)
,

v3

(
j1 j2 j3
i1 i2 i3

)
= ∑

(
l1 l2 l3
k1 k2 k3

)
⊗V

(
k2 i2
k1 i1

)
V

(
l3 j3
k3 i3

)
V

(
l1 j1
l2 j2

)

· q−1
k1

qk2 q−1
k3

qi1 q−1
i2

qi3 qj1 q−1
j2

qj3 q−1
l1

ql2 q−1
l3

.

By using (m◦) we get that I2 is v∞-equivariant:

v2 I2

(
j1
i1

)
= ∑

(
l1 l2
k1 k2

)
⊗ q−1

k1
qk2 qi1 qj1 q−1

l1
ql2 q−2

l V
(

k2 l
k1 i1

)
V

(
l1 j1
l2 l

)

= ∑
(

l1 l2
k1 k2

)
⊗ δk2l2 q−2

k2
q−1

k1
qk2 qi1 qj1 q−1

l1
ql2 V

(
l1 j1
k1 i1

)

= ∑
(

l1 l
k1 l

)
⊗ q−1

k1
qi1 qj1 q−1

l1
V

(
l1 j1
k1 i1

)
= (I2 ⊗ id)v

(
j1
i1

)
.

By using (u◦) we get that I3 is v∞-equivariant:

v3 I3

(
j1 j2
i1 i2

)
= ∑

(
l1 l2 l3
k1 k2 k3

)
⊗V

(
k2 i2
k1 i1

)
V

(
l3 l
k3 l

)
V

(
l1 j1
l2 j2

)

· q−1
k1

qk2 q−1
k3

qi1 q−1
i2

qj1 q−1
j2

q−1
l1

ql2 q−1
l3

q2
l
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= ∑
(

l1 l2 l3
k1 k2 k3

)
⊗V

(
k2 i2
k1 i1

)
V

(
l1 j1
l2 j2

)

· δl3k3 q2
k3

q−1
k1

qk2 q−1
k3

qi1 q−1
i2

qj1 q−1
j2

q−1
l1

ql2 q−1
l3

q2
l

= ∑
(

l1 l2 l
k1 k2 l

)
⊗V

(
k2 i2
k1 i1

)
V

(
l1 j1
l2 j2

)

· q−1
k1

qk2 qi1 q−1
i2

qj1 q−1
j2

q−1
l1

ql2 q2
l

= (I3 ⊗ id)v2

(
j1 j2
i1 i2

)
.

By using (u◦) twice we get that ẽ2 is v∞-equivariant:

v2(ẽ2) = ∑
(

l1 l2
k1 k2

)
⊗ q2

i q2
j q−1

k1
qk2 q−1

l1
ql2 V

(
k2 i
k1 i

)
V

(
l1 j
l2 j

)

= ∑
(

l1 l2
k1 k2

)
⊗ δk1k2 δl1l2 q2

k1
q2

l1 = ẽ2 ⊗ 1.

By using (m◦) twice and (u◦) we get that ẽ3 is v∞-equivariant:

v3(ẽ3) = ∑
(

l1 l2 l3
k1 k2 k3

)
⊗V

(
k2 i
k1 g1

)
V

(
l3 j
k3 i

)
V

(
l1 g1
l2 j

)

· q−2
i q−2

j q−1
k1

qk2 q−1
k3

q2
g1

q−1
l1

ql2 q−1
l3

= ∑
(

l1 l2 l3
k1 k2 k3

)
⊗ δl2l3 q−2

i q−2
l2

q−1
k1

qk2 q−1
k3

q2
g1

q−1
l1

V
(

k2 i
k1 g1

)
V

(
l1 g1
k3 i

)

= ∑
(

l1 l2 l3
k1 k2 k3

)
⊗ δl2l3 δk2k3 q−2

k2
q−2

l2
q−1

k1
q2

g1
q−1

l1
V

(
l1 g1
k1 g1

)

= ∑
(

l1 l2 l3
k1 k2 k3

)
⊗ δk1l1 δl2l3 δk2k3 q−2

k2
q−2

l2
= ẽ3 ⊗ 1.

By using ( ◦m) we get that Ẽ2 is v∞-equivariant:

(Ẽ2 ⊗ id)v2

(
j1 j2
i1 i2

)
= ∑

(
l1
k1

)
⊗ q−2

g q−1
k1

qi1 q−1
i2

qj1 q−1
j2

q−1
l1

V
(

g i2
k1 i1

)
V

(
l1 j1
g j2

)

= ∑
(

l1
k1

)
⊗ δi2 j2 q−4

i2
q−1

k1
qi1 qj1 q−1

l1
V

(
l1 j1
k1 i1

)

= vẼ2

(
j1 j2
i1 i2

)
.

By using ( ◦u) we get that Ẽ3 is v∞-equivariant:

(Ẽ3 ⊗ id)v3

(
j1 j2 j3
i1 i2 i3

)
= ∑

(
l1 l2
k1 k2

)
⊗V

(
k2 i2
k1 i1

)
V

(
g j3
g i3

)
V

(
l1 j1
l2 j2

)

· q2
gq−1

k1
qk2 qi1 q−1

i2
qi3 qj1 q−1

j2
qj3 q−1

l1
ql2
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= ∑
(

l1 l2
k1 k2

)
⊗V

(
k2 i2
k1 i1

)
V

(
l1 j1
l2 j2

)

· δi3 j3 q4
i3 q−1

k1
qk2 qi1 q−1

i2
qj1 q−1

j2
q−1

l1
ql2

= v2Ẽ3

(
j1 j2 j3
i1 i2 i3

)
.

The proof for arbitrary n even is similar to the proof for n = 2 and for
arbitrary n odd, to the proof for n = 3.

Let h : H → C be the Haar integral constructed by Woronowicz in [29]. This
is a unital linear form having the following bi-invariance Property:

(h⊗ id)∆ = (id⊗ h)∆ = h(·)1.

If v : A → A ⊗ H is a coaction then Γn = (id ⊗ h)vn is an idempotent of
L(A⊗n) and its image are the fixed points of vn. This follows from the computa-
tion

vnΓn(x) = vn(id⊗ h)vn(x) = (id⊗ id⊗ h)(id⊗∆)vn(x) = Γn(x)⊗ 1.

A pair of linear maps (T, Tq) : A⊗n → A⊗m is called weakly v∞-equivariant if
the following diagram commutes:

A⊗n Tq−→ A⊗m

Γn ↓ ↓ Γm

A⊗n T−→ A⊗m

.

The interest in this notion is that it makes the following diagram factor:

A⊗n T−→ A⊗m

∪ ∪
Im(Γn) −→ Im(Γm)

.

We say that an operator T is weakly v∞-equivariant if the pair (T, T) is weakly
v∞-equivariant. This happens for instance if T is v∞-equivariant, because we can
glue the v∞-equivariance diagram of T to the following trivial diagram:

A⊗n ⊗ H T⊗id−→ A⊗m ⊗ H
id⊗ h ↓ ↓ id⊗ h

A⊗n T−→ A⊗m

.

The following linear map, called modular map of ϕ

θ

(
j
i

)
= q4

i q−4
j

(
j
i

)

is the unique linear map θ : A → A such that ϕ(ab) = ϕ(bθ(a)) for any a, b ∈ A.
Consider the automorphism σ : H → H constructed by Woronowicz in [29],

which satisfies h(ab) = h(bσ(a)) for any a, b.
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LEMMA 2.3. Assume that the following modularity Condition is satisfied:

(θ ⊗ id)vθ = (id⊗ σ)v.

(i) The following pair of maps is weakly v∞-equivariant:

Jn

(
j3 . . . jn+1
i3 . . . in+1

)
= ∑

(
l k j3 . . . jn+1
l k i3 . . . in+1

)
,

Jq
n

(
j3 . . . jn+1
i3 . . . in+1

)
= ∑ q−8

l q8
k

(
l k j3 . . . jn+1
l k i3 . . . in+1

)
.

(ii) If ϕ has the trace property ϕ(ab) = ϕ(ba) then Jn is weakly v∞-equivariant.
(iii) If H is commutative then Jn is v∞-equivariant.

Proof. (i) By using the formulae of v and θ we get

(θ ⊗ id)vθ

(
j
i

)
= ∑

(
l
k

)
⊗ q4

kq−4
l q4

i q−4
j · q−1

k qiqjq−1
l V

(
l j
k i

)

so the modularity condition is equivalent to the following Condition (σ):

σV
(

l j
k i

)
= q4

kq−4
l q4

i q−4
j V

(
l j
k i

)
.

By using the formula of Jq
n we get

vn+1 Jq
n

(
j3 . . . jn+1
i3 . . . in+1

)
= vn+1 ∑ q−8

l q8
k

(
l k j3 . . . jn+1
l k i3 . . . in+1

)

= ∑
(

l1 l2 l3 . . . ln+1
k1 k2 k3 . . . kn+1

)

⊗ q−1
(k3 ...kn+1)q(i3 ...in+1)q(j3 ...jn+1)q

−1
(l3 ...ln+1)Z

with Z given by the following formula:

Z = ∑ q−6
l q6

kq−1
k1

qk2 q−1
l1

ql2 V
(

k2 k
k1 l

)
V

(
k4 i4
k3 i3

)
. . . V

(
l3 j3
l4 j4

)
V

(
l1 l
l2 k

)
.

By applying the Haar integral to Z we get

h(Z) = h
(

V
(

k4 i4
k3 i3

)
. . . V

(
l3 j3
l4 j4

)
T
)

with T given by the following formula:

T = ∑ q−6
l q6

kq−1
k1

qk2 q−1
l1

ql2 V
(

l1 l
l2 k

)
σV

(
k2 k
k1 l

)
.
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By using (σ), (m◦) and (u◦) we can compute T:

T = ∑ q−6
l q6

kq−1
k1

qk2 q−1
l1

ql2 · q4
k1

q4
l q−4

k q−4
k2

V
(

l1 l
l2 k

)
V

(
k2 k
k1 l

)

= ∑ q−2
l q2

kq3
k1

q−3
k2

q−1
l1

ql2 V
(

l1 l
l2 k

)
V

(
k2 k
k1 l

)

= ∑ δk1l1 q−2
l1

q2
kq3

k1
q−3

k2
q−1

l1
ql2 V

(
l2 k
k2 k

)

= δk1l1 q−2
l1

δk2l2 q2
k2

q3
k1

q−3
k2

q−1
l1

ql2 = δk1l1 δk2l2 .

Thus by applying id⊗ h to the formula of vn+1 Jq
n we get

(id⊗ h)vn+1 Jq
n

(
j3 . . . jn+1
i3 . . . in+1

)

= ∑
(

k1 l2 l3 . . . ln+1
k1 l2 k3 . . . kn+1

)
h

(
V

(
k4 i4
k3 i3

)
. . . V

(
l3 j3
l4 j4

))

· q−1
(k3 ...kn+1)q(i3 ...in+1)q(j3 ...jn+1)q

−1
(l3 ...ln+1)

= (id⊗ h)(Jn ⊗ id)vn−1

(
j3 . . . jn+1
i3 . . . in+1

)
,

so the weak v∞-equivariance diagram commutes.
(ii) In terms of weights, the fact that ϕ is a trace means that q4

i depends only
on the matrix block containing (i

i). Thus the spin factor q−8
l q8

k in the formula of Jq
n

cancels, because (l
l) and (k

k) are in the same matrix block of A (cf. loop notation).
(iii) The Haar integral and its modular map are used in proof of (i) for ro-

tating a product of elements of H. If H is commutative its product does the same
job.

We have all ingredients needed for the case of trace-preserving coactions.
Let P be the colored planar operad constructed by Jones in [16]. A planar alge-
bra is a sequence of vector spaces P = P±0 , P1, P2, P3, . . . with a colored operad
morphism π : P → Hom(P), where Hom(P) is the colored operad of multilinear
maps between Pn’s.

If Qn ⊂ Pn is a sequence of subspaces, the restriction of multilinear maps be-
tween Pn’s to multilinear maps between Qn’s is a partially defined colored operad
morphism Res : Hom(P) → Hom(Q). If the domain of Res contains the image of
π the composition of Res and π makes Q a planar algebra, called subalgebra of
P.

The annular category A is defined as follows. The objects are the positive
integers and the space A(i, j) of arrows from i to j is formed by tangles in P with
output disc having 2j marked points and one input disc, having 2i marked points.
Composition of arrows is given by gluing of annuli. The restriction of π to A is
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a morphism from A to the category L(P) having as arrows from i to j the linear
maps from Pi to Pj.

Let (A, ϕ) be as in Section 1 and assume that ϕ has the trace property ϕ(ab) =
ϕ(ba). Let π : P → Hom(P(A, ϕ)) be the planar algebra associated to the bipar-
tite graph of A, with spin vector a 7→ ϕ(1a). The sequence of vector spaces of
P(A, ϕ) will be canonically identified with the sequence of tensor powers of A;
see Jones ([14]).

THEOREM 2.4. (i) The linear maps in the image by π of the annular category are
weakly v∞-equivariant. If H is commutative, they are v∞-equivariant.

(ii) The spaces of fixed points of the coactions vn form a subalgebra of P(A, ϕ).

Proof. (i) Gluing of commutative diagrams shows that weak v∞-equivariance
is stable by composition, so the annular tangles whose image by π are weakly v∞-
equivariant from a subcategory B ⊂ A. We want to prove that B = A.

Consider the inclusion tangle in A(n− 1, n), expectation tangle in A(n, n−
1), Jones projection tangle in A(0, n) and shift tangle in A(n − 1, n + 1) (see [16]
for pictures). By [14] their images by π are given by the formulae in Lemma 2.1
and Lemma 2.2, suitably rescaled. Lemma 2.1 shows that the first three tangles
are in B. In terms of weights, the fact that ϕ is a trace means that qi depends
only on the matrix block containing (i

i), so the spin factor in the formula (S) of
the antipode cancels. In particular the square of the antipode is the identity on
the coefficients of v, and by replacing H with its ∗-subalgebra generated by these
coefficients we may assume that S2 = id. By [29], the Haar integral is a trace, so
the modularity condition in Lemma 2.2 is satisfied. Thus the shift tangle is in B.

The sets A(0, n) of Temperley-Lieb tangles being generated by inclusions
and Jones projections, they are in B. For x, y ∈ A(0, n) let M(x, y) ∈ A(n, n) be
the 3-multiplication n-tangle of P with the upper circle filled with y and the lower
circle filled with x. The corresponding linear map is M̃(x, y) : p 7→ x̃pỹ and since
fixed points of vn are stable under multiplication, M(x, y) is in B.

Let T ∈ A(i, j). By using boxes instead of discs, as in [16], isotope T, then cut
it horizontally in three parts such that the middle part contains the inner box plus
vertical strings only. By adding contractible circles at right, we can arrange such
that the number of points on the middle cuts is greater than j. By adding more
contractible circles at right, each of them consisting of up and down semicircles
plus two outside expectation strings connecting them, we get an equality of the
form T◦◦...◦ = EM(x, y)I J, where I is a composition of inclusion tangles, J is a
composition of shift tangles, E is a composition of expectation tangles, x and y
are in A(k, k) for some big k and T◦◦...◦ is obtained from T by adding contractible
circles. Thus T◦◦...◦ is in B, so T is in B. Same proof works for the second part,
with weak v∞-equivariant replaced by v∞-equivariant.

(ii) Since weakly v∞-equivariant maps send fixed points to fixed points, part
(i) shows that π(A) is in the domain of Res. By Proposition 1.18 in [16] this implies
that π(P) is in the domain of Res and this proves the assertion.
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3. TWISTED STRUCTURE

We assume that ϕ is a δ-form, in the sense that ϕ(1) = 1 and Tr(B−4) =
δ2 for any matrix block B of the unique Q such that ϕ = Tr(Q4·). See [3] for
examples and comments. In terms of the basis, the unitality of ϕ translates into
the following formula

(‡) ∑ q4
j = 1.

We use the equivalence relation i ∼ j if (i
i) and (j

j) are in the same matrix
block of A. For any i in the set of indices we have the following formula

(†) ∑
j∼i

q−4
j = δ2.

By using δ we define normalised forms, expectations and Jones projections
by

ϕn

(
j1 . . . jn
i1 . . . in

)
= δ

1
2∓ 1

2−nδ(i1 ...in)(j1 ...jn)q
4
(i1 ...in) ,

En

(
j1 . . . jn
i1 . . . in

)
= δin jn δ−1∓1q∓4

in

(
j1 . . . jn−1
i1 . . . in−1

)
,

en = ∑ δ−1±1q±2
i q±2

j

(
g1 . . . gn−2 j j
g1 . . . gn−2 i i

)
,

where ±1 = (−1)n. Define also a linear form ψ2 by

ψ2

(
j1 j2
i1 i2

)
= δ(i1i2)(j1 j2)δ

−2q−4
i1

q4
i2 .

The modular map θn of ϕ̃n is given by the following formula (see Section 2):

θn

(
j1 . . . jn
i1 . . . in

)
= q4

(i1 ...in)q
−4
(j1 ...jn)

(
j1 . . . jn
i1 . . . in

)
.

In this section we prove the following technical result.

PROPOSITION 3.1. If Qn ⊂ A⊗n is a sequence of C∗-algebras satisfying:
(i) In(Qn−1) ⊂ Qn, En(Qn) ⊂ Qn−1, Jn(Qn−1) ⊂ Qn+1 and en ∈ Qn for any

n;
(ii) θn(x) = x for any x ∈ Qn and any n;
(iii) ϕ2(x) = ψ2(x) for any x ∈ Q2.

then there exists a unique C∗-planar algebra structure on the sequence Qn such that the
inclusions, shifts, traces, expectations and Jones projections are the restrictions of In, Jn,
ϕn, En and en. This C∗-planar algebra is spherical and of modulus δ.

This will be proved by using the bubbling result of Jones in [16] applied to a
certain lattice of C∗-algebras satisfying the axioms of Popa in [24]. For checking
the axioms we have to verify all relevant formulae satisfied by In, Jn, ϕn, En and
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en. This kind of computation appears in many places in the subfactor literature;
see e.g. the books [11] or [17].

In this paper the set of parameters is somehow maximal, so we will give
self-contained complete proofs for everything. It is possible to use some Hopf
algebra dualities in order to cut from computations, but this rather complicates
things and we prefer to use the obvious symmetries only. In fact, the interesting
thing would be to have an explicit construction of the partition function, as in [14]
and we don’t know if this is possible.

Note also that all formulae to be verified are irrelevant once the result is
proved, because they can be easily verified on pictures.

We first associate to A and to the numbers qi a system of C∗-algebras satis-
fying some of Popa’s axioms. Define linear maps

J−n : A⊗n−1 → A⊗ A⊗n−1, J+
n : A⊗ A⊗n−1 → A⊗n+1,

by the following formulae in terms of the basis:

J−n

(
j3 . . . jn+1
i3 . . . in+1

)
= ∑

(
g
g

)
⊗

(
j3 . . . jn+1
i3 . . . in+1

)
,

J+
n

((
j2
i2

)
⊗

(
j3 . . . jn+1
i3 . . . in+1

))
= ∑

(
h j2 . . . jn+1
h i2 . . . in+1

)
.

These are inclusions of C∗-algebras.

LEMMA 3.2. We have J+
n J−n = Jn and the following Diagram (I) commutes:

C I1−→ A
I2−→ A⊗2 I3−→ A⊗3 I4−→ A⊗4 · · ·

↑ J+
0 ↑ J+

1 ↑ J+
2 ↑ J+

3

C id⊗I0−→ A⊗C id⊗I1−→ A⊗ A
id⊗I2−→ A⊗ A⊗2 · · ·

↑ J−1 ↑ J−2 ↑ J−3
C I1−→ A

I2−→ A⊗2 · · ·
↑ J+

0 ↑ J+
1

C id⊗I0−→ A⊗C · · ·
· · ·

where the symbols id⊗ I0 and J+
0 denote the unital embedding of C into A.

Proof. The first assertion follows from the following computation:

J+
n J−n

(
j3 . . . jn+1
i3 . . . in+1

)
= ∑

(
h g j3 . . . jn+1
h g i3 . . . in+1

)
= Jn

(
j3 . . . jn+1
i3 . . . in+1

)
.
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The commutation of the n-th square in the first row follow from

∑
(

h j2 . . . jn
h i2 . . . in

)
In+1−→ ∑

(
h j2 . . . jn l
h i2 . . . in l

)

↑ J+
n−1 ↑ J+

n(
j2
i2

)
⊗

(
j3 . . . jn
i3 . . . in

)
id⊗In−1−→ ∑

(
j2
i2

)
⊗

(
j3 . . . jn l
i3 . . . in l

)
.

The commutation of the n-th square in the second row follow from

∑
(

g
g

)
⊗

(
j3 . . . jn+1
i3 . . . in+1

)
id⊗In−→ ∑

(
g
g

)
⊗

(
j3 . . . jn+1 l
i3 . . . in+1 l

)

↑ J−n ↑ J−n+1(
j3 . . . jn+1
i3 . . . in+1

)
In−→ ∑

(
j3 . . . jn+1 l
i3 . . . in+1 l

)
.

From vertical 2-periodicity we get that the whole diagram is commuta-
tive.

Define linear maps

E−n : A⊗ A⊗n−1 → A⊗n−1, E+
n : A⊗n+1 → A⊗ A⊗n−1,

by the following formulae in terms of the basis:

E−n

((
j2
i2

)
⊗

(
j3 . . . jn+1
i3 . . . in+1

))
= δi2 j2 q4

i2

(
j3 . . . jn+1
i3 . . . in+1

)
,

E+
n

(
j1 . . . jn+1
i1 . . . in+1

)
= δi1 j1 δ−2q−4

i1

(
j2
i2

)
⊗

(
j3 . . . jn+1
i3 . . . in+1

)
.

LEMMA 3.3. The linear maps in the following Diagram (E)

C E1←− A
E2←− A⊗2 E3←− A⊗3 E4←− A⊗4 · · ·

↓ E+
0 ↓ E+

1 ↓ E+
2 ↓ E+

3

C id⊗E0←− A⊗C id⊗E1←− A⊗ A
id⊗E2←− A⊗ A⊗2 · · ·

↓ E−1 ↓ E−2 ↓ E−3
C I1←− A

I2←− A⊗2 · · ·
↓ E+

0 ↓ E+
1

C id⊗E0←− A⊗C · · ·
· · ·

are unital bimodule morphisms with respect to the inclusions in (I).

Proof. The unit for the multiplication of A⊗n is

1n = ∑
(

l1 . . . ln
l1 . . . ln

)
.
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By using (†) we get that E2n is unital:

∑ E2n

(
l1 . . . l2n
l1 . . . l2n

)
= ∑

l2n∼l2n−1

δ−2q−4
l2n

(
l1 . . . l2n−1
l1 . . . l2n−1

)
= 12n−1.

By using (‡) we get that E2n+1 is unital:

∑ E2n+1

(
l1 . . . l2n+1
l1 . . . l2n+1

)
= ∑ q4

l2n+1

(
l1 . . . l2n
l1 . . . l2n

)
= 12n.

By using (†) we get that E+
n is unital:

∑ E+
n

(
l1 . . . ln+1
l1 . . . ln+1

)
= ∑

l1∼l2

δ−2q−4
l1

(
l2
l2

)
⊗

(
l3 . . . ln+1
l3 . . . ln+1

)
= 1A ⊗ 1n−1.

By using (‡) we get that E−n is unital:

∑ E−n

((
l2
l2

)
⊗

(
l3 . . . ln+1
l3 . . . ln+1

))
= ∑ q4

l2

(
l3 . . . ln+1
l3 . . . ln+1

)
= 1n−1.

The right bimodule property for En can be checked as follows:

En

(
In

(
j1 . . . jn−1
i1 . . . in−1

) (
J1 . . . Jn
I1 . . . In

))

= En

(
∑

(
j1 . . . jn−1 l
i1 . . . in−1 l

) (
J1 . . . Jn
I1 . . . In

))

= δ(j1 ...jn−1)(I1 ...In−1)En

(
J1 . . . Jn−1 Jn
i1 . . . in−1 In

)

= δ(j1 ...jn−1)(I1 ...In−1)δIn Jn δ−1∓1q∓4
In

(
J1 . . . Jn−1
i1 . . . in−1

)

= δIn Jn δ−1∓1q∓4
In

(
j1 . . . jn−1
i1 . . . in−1

) (
J1 . . . Jn−1
I1 . . . In−1

)

=
(

j1 . . . jn−1
i1 . . . in−1

)
Ẽn

(
J1 . . . Jn
I1 . . . In

)
.

The proof of the other formula En(xIn(y)) = En(x)y is similar. For E−n we
have

E−n

(
J−n

(
j3 . . . jn+1
i3 . . . in+1

) ((
J2
I2

)
⊗

(
J3 . . . Jn+1
I3 . . . In+1

)))
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= E−n

(
∑

(
g
g

) (
J2
I2

)
⊗

(
j3 . . . jn+1
i3 . . . in+1

) (
J3 . . . Jn+1
I3 . . . In+1

))

= δ(j3 ...jn+1)(I3 ...In+1)E−n

((
J2
I2

)
⊗

(
J3 . . . Jn+1
i3 . . . in+1

))

= δ(j3 ...jn+1)(I3 ...In+1)δI2 J2 q4
I2

(
J3 . . . Jn+1
i3 . . . in+1

)

= δI2 J2 q4
I2

(
j3 . . . jn+1
i3 . . . in+1

) (
J3 . . . Jn+1
I3 . . . In+1

)

=
(

j3 . . . jn+1
i3 . . . in+1

)
E−n

((
J2
I2

)
⊗

(
J3 . . . Jn+1
I3 . . . In+1

))
.

The proof of the other formula E−n (xJ−n (y)) = E−n (x)y is similar. For E+
n we

have

E+
n

(
J+
n

((
J2
I2

)
⊗

(
J3 . . . Jn+1
I3 . . . In+1

)) (
j1 . . . jn+1
i1 . . . in+1

))

= E+
n

(
∑

(
h J2 . . . Jn+1
h I2 . . . In+1

) (
j1 . . . jn+1
i1 . . . in+1

))

= δ(J2 ...Jn+1)(i2 ...in+1)E+
n

(
j1 j2 . . . jn+1
i1 I2 . . . In+1

)

= δ(J2 ...Jn+1)(i2 ...in+1)δi1 j1 δ−2q−4
i1

(
j2
I2

)
⊗

(
j3 . . . jn+1
I3 . . . In+1

)

= δi1 j1 δ−2q−4
i1

(
J2
I2

) (
j2
i2

)
⊗

(
J3 . . . Jn+1
I3 . . . In+1

) (
j3 . . . jn+1
i3 . . . in+1

)

=
((

J2
I2

)
⊗

(
J3 . . . Jn+1
I3 . . . In+1

))
E+

n

(
j1 . . . jn+1
i1 . . . in+1

)
.

The proof of the other formula E+
n (xJ+

n (y)) = E+
n (x)y is similar.

LEMMA 3.4. Consider the sequence of elements en.
(i) We have e2s = J2s−1 J2s−3 . . . J5 J3(e2) for any s.

(ii) We have e2s+1 = J2s J2s−2 . . . J6 J4 J+
2 (d2) for any s, with d2 given by

d2 = ∑ δ−2q−2
i q−2

j

(
j
i

)
⊗

(
j
i

)
.

(iii) The sequence en defines a representation of the Temperley-Lieb algebra of mod-
ulus δ on the inductive limit of the algebras in the first row of (I).

Proof. By definition of en and Jn−2 we have

en = ∑ δ−1±1q±2
i q±2

j

(
g1 . . . gn−2 j j
g1 . . . gn−2 i i

)
= Jn−2(en−2)
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for any n. Together with

e3 = ∑ δ−2q−2
i q−2

j

(
g1 j j
g1 i i

)
= J+

2 (d2)

this proves (i) and (ii). By using (†) we get that e2n+1 is an idempotent:

e2
2n+1 = ∑ δ−4q−2

i q−2
j

(
g1 . . . g2n−1 j j
g1 . . . g2n−1 i i

)
q−2

I q−2
J

(
G1 . . . G2n−1 J J
G1 . . . G2n−1 I I

)

= ∑
j∼g2n−1

δ−4q−4
j q−2

i q−2
J

(
g1 . . . g2n−1 J J
g1 . . . g2n−1 i i

)
= e2n+1.

By using (‡) we get that e2n+2 is an idempotent:

e2
2n+2 = ∑ q2

i q2
j

(
g1 . . . g2n j j
g1 . . . g2n i i

)
q2

I q2
J

(
G1 . . . G2n J J
G1 . . . G2n I I

)

= ∑ q2
i q2

J q4
j

(
g1 . . . g2n J J
g1 . . . g2n i i

)
= e2n+2.

The first Jones relation can be verified as follows:

e3 Ĩ3(e2)e3 = ∑ δ−4q−2
i q−2

k

(
K k k
K i i

)
∑ q2

hq2
k

(
h h l
k k l

)
∑ q−2

h q−2
j

(
H j j
H h h

)

= ∑ δ−4q−2
i q−2

l q2
l q2

l q−2
l q−2

j

(
l j j
l i i

)
= δ−2e3.

The other relation is proved in a similar way:

Ĩ3(e2)e3 Ĩ3(e2) = ∑ δ−2q2
kq2

i

(
k k K
i i K

)
∑ q−2

h q−2
k

(
l h h
l k k

)
∑ q2

hq2
j

(
j j H
h h H

)

= ∑ δ−2q2
l q2

i q−2
l q−2

l q2
l q2

j

(
j j l
i i l

)
= δ−2 Ĩ3(e2).

By applying inclusions and shifts we get all Jones relations.

Together with J+
n J−n = Jn Lemma 3.4 shows that the elements en belong to

the sequence of algebras obtained by going south-east starting from the algebra
A⊗2 in the first row of (I).

In other words, the Jones projections live at the same places as they do in
standard λ-lattices axiomatized by Popa in [24].

In next four lemmas we prove that (I) together with the Jones projections
and the bimodule maps in (E) satisfies Popa’s axioms, namely the Jones formu-
lae (1.1.2), the Pimsner-Popa formulae (1.3.3

′′
), the commuting square condition

(1.1.1) and the commutation relations (2.1.1) in [24]. The Diagram (I) is not a stan-
dard λ-lattice in general, because the bimodule maps in (E) are not conditional
expectations with respect to some trace.
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LEMMA 3.5. The following equalities hold:

en+2(In+2(x))en+2 = (In+2 In+1En+1(x))en+2,

δ2(In+2En+2(yen+2))en+2 = yen+2,

for any x ∈ A⊗n+1 and y ∈ A⊗n+2.

Proof. The first formula follows from the following computation:

en+2 In+2

(
j1 . . . jn+1
i1 . . . in+1

)
en+2

= ∑ δ−1±1(qiqj)
±2

(
g1 . . . gn j j
g1 . . . gn i i

) (
j1 . . . jn+1 l
i1 . . . in+1 l

)
en+2

= ∑ δ−1±1(qiqin+1)
±2

(
j1 . . . jn jn+1 in+1
i1 . . . in i i

)
en+2

= ∑ δ−2±2(qiqin+1 qIqj)
±2

(
j1 . . . jn jn+1 in+1
i1 . . . in i i

) (
g1 . . . gn j j
g1 . . . gn I I

)

= ∑ δ−2±2(qiq2
in+1

qj)
±2δin+1 jn+1

(
j1 . . . jn j j
i1 . . . in i i

)

= ∑ δ−2±2(qiqj)
±2q±4

in+1
δin+1 jn+1

(
j1 . . . jn l1 l2
i1 . . . in l1 l2

) (
g1 . . . gn j j
g1 . . . gn i i

)

=
(

In+2 In+1En+1

(
j1 . . . jn+1
i1 . . . in+1

))
en+2.

The right term in the second formula is given in terms of a basis by:
(

j1 . . . jn+2
i1 . . . in+2

)
en+2 = ∑ δ−1±1(qiqj)

±2
(

j1 . . . jn+2
i1 . . . in+2

) (
g1 . . . gn j j
g1 . . . gn i i

)

= ∑ δ−1±1(qjn+1 qj)
±2δjn+1 jn+2

(
j1 . . . jn j j
i1 . . . in in+1 in+2

)
.

Thus the left term is given by the following formula:

δ2 In+2En+2

((
j1 . . . jn+2
i1 . . . in+2

)
en+2

)
en+2

= ∑ δ2δ−1∓1δ−1±1(qjn+1 qin+2)
±2δjn+1 jn+2 q∓4

in+2

(
j1 . . . jn in+2 l
i1 . . . in in+1 l

)
en+2

=∑ δ−1±1(qjn+1 q−1
in+2

qiqj)
±2δjn+1 jn+2

(
j1 . . . jn in+2 l
i1 . . . in in+1 l

)(
g1 . . . gn j j
g1 . . . gn i i

)

= ∑ δ−1±1(qjn+1 q−1
in+2

qin+2 qj)
±2δjn+1 jn+2

(
j1 . . . jn j j
i1 . . . in in+1 in+2

)
.

By cancelling q−1
in+2

qin+2 this is equal to the right term.
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LEMMA 3.6. The following equalities hold:

fn+2(J+
n+1(x)) fn+2 = (J+

n+1 J−n+1E−n+1(x)) fn+2 ,

δ2(J+
n+1E+

n+1(y fn+2)) fn+2 = y fn+2 ,

for any x ∈ A⊗ A⊗n and y ∈ A⊗n+2, with fn+2 = In+2 In+1 . . . I4 I3(e2).

Proof. The element fn+2 is given by

fn+2 = ∑ q2
i q2

j

(
j j g3 . . . gn+2
i i g3 . . . gn+2

)
.

The first formula follows from the following computation:

fn+2 J+
n+1

((
j2
i2

)
⊗

(
j3 . . . jn+2
i3 . . . in+2

))
fn+2

= ∑ q2
i q2

j

(
j j g3 . . . gn+2
i i g3 . . . gn+2

) (
h j2 . . . jn+2
h i2 . . . in+2

)
fn+2

= ∑ q2
i q2

i2

(
i2 j2 j3 . . . jn+2
i i i3 . . . in+2

)
fn+2

= ∑ q2
i q2

i2 q2
I q2

j

(
i2 j2 j3 . . . jn+2
i i i3 . . . in+2

) (
j j g3 . . . gn+2
I I g3 . . . gn+2

)

= ∑ q2
i q4

i2 q2
j δi2 j2

(
j j j3 . . . jn+2
i i i3 . . . in+2

)

= ∑ q2
i q4

i2 q2
j δi2 j2

(
l1 l2 j3 . . . jn+2
l1 l2 i3 . . . in+2

) (
j j g3 . . . gn+2
i i g3 . . . gn+2

)

=
(

J+
n+1 J−n+1E−n+1

((
j2
i2

)
⊗

(
j3 . . . jn+2
i3 . . . in+2

)))
fn+2 .

The right term in the second formula is given in terms of a basis by
(

j1 . . . jn+2
i1 . . . in+2

)
fn+2 = ∑ q2

i q2
j

(
j1 . . . jn+2
i1 . . . in+2

) (
j j g3 . . . gn+2
i i g3 . . . gn+2

)

= ∑ q2
j1 q2

j δj1 j2

(
j j j3 . . . jn+2
i1 i2 i3 . . . in+2

)
.

Thus the left term is given by the following formula:

δ2 J+
n+1E+

n+1

((
j1 . . . jn+2
i1 . . . in+2

)
fn+2

)
fn+2

= ∑ q2
j1 q2

i1 δj1 j2 q−4
i1

(
h i1 j3 . . . jn+2
h i2 i3 . . . in+2

)
fn+2
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= ∑ q2
j1 q2

i1 q2
i q2

j δj1 j2 q−4
i1

(
h i1 j3 . . . jn+2
h i2 i3 . . . in+2

) (
j j g3 . . . gn+2
i i g3 . . . gn+2

)

= ∑ q2
j1 q4

i1 q2
j δj1 j2 q−4

i1

(
j j j3 . . . jn+2
i1 i2 i3 . . . in+2

)
.

By cancelling q4
i1

q−4
i1

this is equal to the right term.

LEMMA 3.7. The following equalities hold:

dn+2(J−n+2(x))dn+2 = (J−n+2 J+
n E+

n (x))dn+2 ,

δ2(J−n+2E−n+2(ydn+2))dn+2 = ydn+2 ,

for any x ∈ A⊗n+1 and y ∈ A⊗ A⊗n+1, with dn+2 = (id⊗ In+1 In . . . I3 I2)(d2).

Proof. The element dn+2 is given by

dn+2 = ∑ δ−2q−2
i q−2

j

(
j
i

)
⊗

(
j g3 . . . gn+2
i g3 . . . gn+2

)
.

The first formula follows from the following computation:

dn+2 J−n+2

(
j2 . . . jn+2
i2 . . . in+2

)
dn+2

= ∑ δ−2q−2
i q−2

j

((
g
g

) (
j
i

)
⊗

(
j g3 . . . gn+2
i g3 . . . gn+2

) (
j2 . . . jn+2
i2 . . . in+2

))
dn+2

= ∑ δ−2q−2
i q−2

i2

((
i2
i

)
⊗

(
j2 j3 . . . jn+2
i i3 . . . in+2

))
dn+2

= ∑ δ−4q−2
i q−2

i2
q−2

I q−2
j

(
i2
i

)(
j
I

)
⊗

(
j2 j3 . . . jn+2
i i3 . . . in+2

)(
j g3 . . . gn+2
I g3 . . . gn+2

)

= ∑ δ−4q−2
i q−4

i2
q−2

j

(
j
i

)
⊗

(
j j3 . . . jn+2
i i3 . . . in+2

)

= ∑ δ−4q−2
i q−4

i2
q−2

j

(
l1
l1

) (
j
i

)
⊗

(
l2 j3 . . . jn+2
l2 i3 . . . in+2

) (
j g3 . . . gn+2
i g3 . . . gn+2

)

=
(

J−n+2 J+
n E+

n

(
j2 . . . jn+2
i2 . . . in+2

))
dn+2 .

The right term in the second formula is given in terms of a basis by
((

j1
i1

)
⊗

(
j2 . . . jn+2
i2 . . . in+2

))
dn+2

= ∑ δ−2q−2
i q−2

j

(
j1
i1

) (
j
i

)
⊗

(
j2 . . . jn+2
i2 . . . in+2

) (
j g3 . . . gn+2
i g3 . . . gn+2

)

= ∑ δ−2q−2
j1

q−2
j δj1 j2

(
j
i1

)
⊗

(
j j3 . . . jn+2
i2 i3 . . . in+2

)
.
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Thus the left term is given by the following formula:

δ2 J−n+2E−n+2

(((
j1
i1

)
⊗

(
j2 . . . jn+2
i2 . . . in+2

))
dn+2

)
dn+2

= ∑ q−2
j1

q−2
i1

δj1 j2 q4
i1

((
g
g

)
⊗

(
i1 j3 . . . jn+2
i2 i3 . . . in+2

))
dn+2

= ∑ δ−2q−2
j1

q−2
i1

δj1 j2 q4
i1 q−2

i q−2
j

(
g
g

)(
j
i

)
⊗

(
i1 j3 . . . jn+2
i2 i3 . . . in+2

)(
j g3 . . . gn+2
i g3 . . . gn+2

)

= ∑ δ−2q−2
j1

q−4
i1

δj1 j2 q4
i1 q−2

j

(
j
i1

)
⊗

(
j j3 . . . jn+2
i2 i3 . . . in+2

)
.

By cancelling q−4
i1

q4
i1

this is equal to the right term.

LEMMA 3.8. (i) The diagram obtained from (I) by replacing its vertical rows with
the vertical rows of (E) commutes.

(ii) For any rectangular subdiagram of (I) having C in the south-west corner, the
algebra in the north-west corner commutes with the algebra in the south-east corner.

Proof. (i) Let (IE) be this Diagram. The commutation in its first row follow
from (

j1 . . . jn
i1 . . . in

)
In+1−→ ∑

(
j1 . . . jn l
i1 . . . in l

)

↓ E+
n−1 ↓ E+

n

δi1 j1 δ−2q−4
i1

(
j2
i2

)
⊗

(
j3 . . . jn
i3 . . . in

)
id⊗In−1−→ ∑ δi1 j1 δ−2q−4

i1

(
j2
i2

)
⊗

(
j3 . . . jn l
i3 . . . in l

)
.

The commutation in the second row of (IE) follow from
(

j2
i2

)
⊗

(
j3 . . . jn+1
i3 . . . in+1

)
id⊗In−→ ∑

(
j2
i2

)
⊗

(
j3 . . . jn+1 l
i3 . . . in+1 l

)

↓ E−n ↓ E−n+1

δi2 j2 q4
i2

(
j3 . . . jn+1
i3 . . . in+1

)
In−→ ∑ δi2 j2 q4

i2

(
j3 . . . jn+1 l
i3 . . . in+1 l

)
.

Both Diagrams (I) and (E) being 2-periodic on the vertical, (IE) is 2-periodic
as well on the vertical, so it commutes.

(ii) Let a < b be the ranks of the lines of (I) containing the north and south
vertices of the rectangle. For b odd the rectangle is of the form

A⊗2s I−→ A⊗2s+k

↑ ↑ J
C −→ A⊗k ,

A⊗ A⊗2s id⊗I−→ A⊗ A⊗2s+k

↑ ↑ J−2s+k+1 J
C −→ A⊗k ,

depending on the parity of a, with I and J given by

I = I2s+k I2s+k−1 . . . I2s+2 I2s+1 , J = J2s+k−1 J2s+k−3 . . . Jk+3 Jk+1 ,
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The corresponding images are:

Im(I) =
{

∑ λ

(
j1 . . . j2s l1 . . . lk
i1 . . . i2s l1 . . . lk

)}
,

Im(J) =
{

∑ λ

(
g1 . . . g2s j1 . . . jk
g1 . . . g2s i1 . . . ik

)}
,

and Im(id ⊗ I) = 1 ⊗ Im(I) and Im(J−2s+k+1 J) = 1 ⊗ Im(J), so commutation is
clear. For b even the rectangle is of the form

A⊗2s+1 I−→ A⊗2s+k+2

↑ ↑ J
C −→ A⊗ A⊗k ,

A⊗ A⊗2s+1 id⊗I−→ A⊗ A⊗2s+k+2

↑ ↑ J−2s+k+3 J
C −→ A⊗ A⊗k ,

depending on the parity of a, with I and J given by

I = I2s+k+1 I2s+k . . . I2s+3 I2s+2 , J = J2s+k+1 J2s+k−1 . . . Jk+5 Jk+3 J+
k+1 ,

The corresponding images are

Im(I) =
{

∑ λ

(
j1 . . . j2s j2s+1 l1 . . . lk+1
i1 . . . i2s i2s+1 l1 . . . lk+1

)}
,

Im(J) =
{

∑ λ

(
g1 . . . g2s h j2 . . . jk+2
g1 . . . g2s h i2 . . . ik+2

)}
,

and Im(id ⊗ I) = 1 ⊗ Im(I) and Im(J−2s+k+3 J) = 1 ⊗ Im(J), so commutation is
clear.

Define a linear form ψ on A by

ψ

(
j
i

)
= δij p4

i

where pi are the following positive numbers:

pi = δ−
1
2 q−1

i

(
∑
l∼i

q4
l

) 1
4 .

By using (†) and (‡) we get

∑ p4
i = ∑

i∼l
δ−2q−4

i q4
l = ∑ q4

l = 1.

This Formula will be called (‡) for pi’s. There is also a corresponding (†)
formula:

∑
i∼k

p−4
i = ∑

i∼k
δ2q4

i

(
∑
l∼k

q4
l
)−1 = δ2.

Next lemma shows that the linear forms ϕn define a filtered linear form ϕ∞,
which fails to commute globally with vertical maps in (E) because ϕ and ψ are
not equal in general. In fact ϕ = ψ if and only if qi = pi and the above formula for
the numbers pi shows that this happens if and only if ϕ is the Perron-Frobenius
trace.
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LEMMA 3.9. Consider the Diagram (I) in Lemma 3.1.
(i) The linear maps ϕn in Proposition 3.1 define a filtered unital linear form ϕ∞

on the sequence of algebras in the first row of (I).
(ii) The restriction of ϕ∞ to the algebra A⊗ A⊗n−1 in the second row is ψ⊗ ϕn−1.
(iii) The diagram of restrictions of ϕ∞ is 2-periodic on the vertical.
(iv) The restrictions of ϕ∞ commute with the horizontal maps in (E).
(v) We have ϕn−1E−n E+

n = ψ2E2n, where E2n = E3E4 . . . En−1En.
(vi) We have (ψ⊗ ϕn−1)E+

n = ψ2 I2E1n, where E1n = E2E2n.

Proof. (i) It is enough to verify the equality ϕn−1En = ϕn:

ϕn−1En

(
j1 . . . jn
i1 . . . in

)
= δin jn δ−1∓1q∓4

in ϕn−1

(
j1 . . . jn−1
i1 . . . in−1

)

= δin jn δ−1∓1+ 1
2± 1

2−n+1q∓4
in δ(i1 ...in−1)(j1 ...jn−1)q

4
(i1 ...in−1)

= δ(i1 ...in)(j1 ...jn)δ
1
2∓ 1

2−nq4
(i1 ...in) = ϕn

(
j1 . . . jn
i1 . . . in

)
.

(ii) is verified as follows:

ϕn+1 J+
n

((
j2
i2

)
⊗

(
j3 . . . jn+1
i3 . . . in+1

))

= ∑ ϕn+1

(
h j2 . . . jn+1
h i2 . . . in+1

)

= ∑
h∼i2

δ
1
2± 1

2−n−1δ(i2 ...in+1)(j2 ...jn+1)q
4
hq−4

i2
q4
(i3 ...in+1)

= δi2 j2 p4
i2 δ

1
2± 1

2−n+1δ(i3 ...in+1)(j3 ...jn+1)q
4
(i3 ...in+1)

= (ψ⊗ ϕn−1)
((

j2
i2

)
⊗

(
j3 . . . jn+1
i3 . . . in+1

))
.

(iii) It is enough to show that the restrictions of ϕ∞ to the algebras in the
third row are the linear forms ϕn. This follows from the equality J+

n J−n = Jn in
Lemma 3.1 and from the Formulae (†) and (‡):

ϕn+1 Jn

(
j3 . . . jn+1
i3 . . . in+1

)
= ϕn+1

(
h g j3 . . . jn+1
h g i3 . . . in+1

)

= ∑
g∼h

q4
hq−4

g δ−2 ϕn−1

(
j3 . . . jn+1
i3 . . . in+1

)

= ∑ q4
h ϕn−1

(
j3 . . . jn+1
i3 . . . in+1

)

= ϕn−1

(
j3 . . . jn+1
i3 . . . in+1

)
.
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(iv) From proof of (i) we know that the restrictions of ϕ∞ to the algebras in
the first row commute with the bimodule morphisms. By tensoring everything to
the left with id we get the assertion for the second row. By vertical 2-periodicity
of everything this extends to the whole diagram.

(v) The map E2n is given by the following formula:

E2n

(
j1 . . . jn
i1 . . . in

)
=

(
j1 j2
i1 i2

)
ϕn−2

(
j3 . . . jn
i3 . . . in

)
.

The map ϕn−1E−n E+
n is given by

ϕn−1E−n E+
n

(
j1 . . . jn+1
i1 . . . in+1

)
= δi1 j1 δi2 j2 δ−2q−4

i1
q4

i2 ϕn−1

(
j3 . . . jn+1
i3 . . . in+1

)

and together with the definition of ψ2 before Proposition 3.1 this proves (v).
(vi) From the defining formulae of ψ and E+

n we get

(ψ⊗ ϕn−1)E+
n

(
j1 . . . jn+1
i1 . . . in+1

)
= δi1 j1 δ−2q−4

i1
ψ

(
j2
i2

)
ϕn−1

(
j3 . . . jn+1
i3 . . . in+1

)

= δi1 j1 δi2 j2 δ−2q−4
i1

p4
i2 ϕn−1

(
j3 . . . jn+1
i3 . . . in+1

)
.

From i1 ∼ i2 and from the definition of numbers pi we get

p4
i1 q4

i1 = δ−2 ∑
l∼i1

q4
l = δ−2 ∑

l∼i2

q4
l = p4

i2 q4
i2 .

By replacing in the above formula q−4
i1

p4
i2

by q−4
i2

p4
i1

we get

(ψ⊗ ϕn−1)E+
n

(
j1 . . . jn+1
i1 . . . in+1

)
= δi1 j1 δi2 j2 δ−2 p4

i1 q−4
i2

ϕn−1

(
j3 . . . jn+1
i3 . . . in+1

)
.

From the definition of numbers pi we get

ψ2 I2

(
j1
i1

)
= ∑ ψ2

(
j1 l
i1 l

)
= ∑

l∼i1

δi1 j1 δ−2q−4
i1

q4
l = δi1 j1 p4

i1 .

The map E1n is given by

E1n

(
j1 . . . jn
i1 . . . in

)
= δi2 j2 δ−2q−4

i2

(
j1
i1

)
ϕn−2

(
j3 . . . jn
i3 . . . in

)

so the composition ψ2 I2E1n is given by the same formula as (ψ⊗ ϕn−1)E+
n .

Proof of Proposition 3.1. Let Qn ⊂ A⊗n be a sequence of C∗-algebras satisfy-
ing conditions (i), (ii), (iii) in Proposition 3.1. Define Rn = E+

n (Qn+1) and consider
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the following Diagram (?):

C ⊂ Q1 ⊂ Q2 ⊂ Q3 ⊂ · · ·
∪ ∪ ∪
C ⊂ R1 ⊂ R2 ⊂ · · ·

∪ ∪
C ⊂ Q1 ⊂ · · ·

∪
· · · · · ·

We claim that this is a subsystem of C∗-algebras of the Diagram (I) in Lem-
ma 3.3.

First, the map E+
n being an involutive bimodule morphism, Rn is a C∗-

algebra. The other thing is to verify that all inclusions in the statement make
sense. The assumption In(Qn−1) ⊂ Qn in (1) justifies the inclusions in the first
row. The bimodule property of E+

n shows that Rn is included in Qn+1 via J+
n ,

so the first row of vertical inclusions is the good one as well. The commuting
square property in Lemma 3.9 (i) justifies the second row of horizontal inclu-
sions. From condition Jn(Qn−1) ⊂ Qn+1 in (1) and from J+

n J−n = Jn in Lemma 3.3
and E+

n J+
n = id in Lemma 3.4 we get

J−n (Qn−1) = E+
n J+

n J−n (Qn−1) = E+
n Jn(Qn−1) ⊂ E−n (Qn+1) = Rn

so the second row of vertical inclusions is the good one. By vertical 2-periodicity
we get that (?) is a subsystem of (I).

Condition (2) and the definition of ϕ∞ show that the restrictions of ϕ∞ to
the algebras in (?) are traces. We prove now that (?), together with ϕ∞ and with
the Jones projections in Lemma 3.4 is a standard λ-lattice, with λ = δ2.

For, it is enough to verify the commutation of ϕ∞ with the maps in (E), cf.
discussion preceding Lemma 3.5. Commutation with horizontal maps follows
from Lemma 3.9 (iv). By using vertical 2-periodicity of everything, it remains to
prove that the restrictions of ϕ∞ commute with the maps of the form E+

n and E−n
in the first two rows of vertical maps of (E).

From Lemma 3.9 (iv) we get ϕn+1 = ϕ2E2n = ϕE1n. Lemma 3.9 (ii) shows
that the commutation of ϕ∞ with E+

n is equivalent to the equality (ψ⊗ ϕn−1)E+
n =

ϕn+1. This follows from Lemma 3.9 (vi), from ϕn+1 = ϕE1n and from condition
(3). The formulae for restrictions ϕ∞ in Lemma 3.9 (i), (ii), (iii) show that their
commutation with E−n is equivalent to the equality ϕn−1E−n = ψ ⊗ ϕn−1. This
must be true on the image of E+

n , so is equivalent to the equality ϕn−1E−n E+
n =

(ψ⊗ ϕn−1)E+
n obtained by composing with E+

n . This follows from Lemma 3.9 (v),
from ϕn+1 = ϕ2E2n and from condition (3).

Thus (?) is a standard λ-lattice with λ = δ2. The bubbling construction of
Jones in [16] applies and proves Proposition 3.1.
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4. THE PLANAR ALGEBRA OF A COACTION — TWISTED CASE

Let H be a Hopf ∗-algebra as in Section 1. Associated to any complex num-
ber z is a multiplicative functional fz : H → C such that the following equalities
hold (Theorem 5.6 in [29]):

(f1) f0 = ε and ( fz ⊗ ft)∆ = fz+t for any z, t.
(f2) S2 = ( f1 ⊗ id⊗ f−1)∆(2), where ∆(2) = (id⊗∆)∆.
(f3) fzS = f−z and fz∗ = f−z for any z.
(f4) σ = ( f1 ⊗ id⊗ f1)∆(2) satisfies h(ab) = h(bσ(a)) for any a, b.

Let A be a finite dimensional C∗-algebra. Write A as a direct sum of complex
matrix algebras and let Tr be the trace of A which on matrix subalgebras is the
usual trace of matrices.

LEMMA 4.1. If v : A → A ⊗ H is a coaction there exists a unique Q ∈ A
satisfying the following conditions:

(i) ad(Q) = (id⊗ f 1
4
)v;

(ii) Q > 0;
(iii) Tr(Q4) = 1;
(iv) the numbers Tr(B−4) with B matrix block of Q are all equal.

Proof. For any real number z consider the linear map ρz = (id⊗ fz)v. Since
both fz and v are multiplicative, this is an automorphism of the complex algebra
A. By applying (f1) we get ρ0 = id and

ρz+t = (id⊗ fz ⊗ ft)(id⊗∆)v = (id⊗ fz ⊗ ft)(v⊗ id)v

= (id⊗ fz)v(id⊗ ft)v = ρzρt.

This shows that ρz has n-th roots for any n. But ρz must leave invariant
the center Z(A) of A, so its restriction is an automorphism of Z(A) having n-th
roots for any n. This is not possible if the restriction is not the identity. Since
ρz preserves the central minimal idempotents of A, it has to preserve the matrix
blocks. But on matrix algebras automorphisms are inner, so ρz is inner. Choose
Qz ∈ A such that ρz is equal to ad(Qz) = Qz · Q−1

z . By using the second equality
in (f3) with z real we get

ρ−z = (id⊗ f z)(id⊗ ∗)v = ∗(id⊗ fz)(∗ ⊗ ∗)v = ∗(id⊗ fz)v∗ = ∗ρz∗
and together with ρzρ−z = ρ0 = id this gives ρz ∗ ρz∗ = id. On the other hand

ρz ∗ ρz ∗ (a) = Qz(Qza∗Q−1
z )∗Q−1

z = ad((Q∗z Q−1
z )−1)(a)

so Q∗z Q−1
z is in Z(A). Let B be a matrix block of Qz and let λ be a complex number

such that B∗ = λB. By applying ∗ we get B = λB∗ and by combining these two
formulae we get B = λλB, so λ is of modulus one. Choose a half root λ

1
2 of λ and
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let B′ = λ
1
2 B. Then

(B′)∗ = λ
1
2 B∗ = λ−

1
2 λB = λ

1
2 B = B′.

Rescale in this way all blocks of Qz such that they become self-adjoint. We
have ρz = ad(Qz) and Qz = Q∗z for any z. Let Q = Q2

1
8
. Then Q is positive and

ad(Q) = ad(Q 1
8
)2 = ρ2

1
8

= ρ 1
4

= (id⊗ f 1
4
)v.

We can rescale all blocks of Q such that (iv) holds, then rescale Q such that
(iii) holds.

For the converse, if Q′ is another element satisfying all conditions in the
statement then (i) shows that Q′Q−1 is central, so if Q = (Bi) is a decomposition
of Q then Q′ must be of the form (λiBi). From (ii) we get that λi > 0, then from
(iv) we get that the λi’s are equal, and finally from (iii) we get that they are all
equal to 1.

Choose a system of matrix units X ⊂ A such that the element Q ∈ A in
Lemma 4.1 is diagonal, with eigenvalues qi. Let δ be the square root of the num-
bers in Lemma 4.1 (iv). Then ϕ = Tr(Q4.) is a δ-form (see Section 3).

By using boxes instead of discs as in Jones’ paper [16], we say that a tangle
in P is vertical if it can be isotoped to a tangle all whose strings are parallel to the
y-axis.

Consider the planar algebra P(A) associated to the bipartite graph of the
inclusion C ⊂ A, with Perron-Frobenius spin vector. See Jones [14].

THEOREM 4.2. Let v : A → A ⊗ H be a coaction. Assume that v preserves
the linear form ϕ = Tr(Q4·) with Q ∈ A given by Lemma 4.1. There exists a unique
C∗-planar algebra structure Q(v) on the sequence of spaces of fixed points of vn such that

(i) For any vertical tangle T ∈ P the multilinear map of Q(v) associated to T is
the restriction of the multilinear map of P(A) associated to T.

(ii) The Jones projections are given by

en = ∑ δ−1±1q±2
i q±2

j

(
g1 . . . gn−2 j j
g1 . . . gn−2 i i

)
.

This C∗-planar algebra is spherical and of modulus δ.

Proof. Uniqueness follows from the fact that P is generated by vertical tan-
gles and Jones projections (see Section 2). It remains to verify conditions (i), (ii),
(iii) in Proposition 3.1.

(i) By using Lemma 2.2 and Lemma 2.3, it is enough to check the modularity
condition in Lemma 2.3. The formula of θ in Section 2 gives

θ

(
j
i

)
= q4

i q−4
j

(
j
i

)
= ad(Q)4

(
j
i

)
= (id⊗ f1)v

(
j
i

)
.
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By using twice the axiom for coactions (id⊗∆)v = (v⊗ id)v we get

(id⊗∆(2))v = (id⊗ id⊗∆)(v⊗ id)v = (v⊗ id⊗ id)(v⊗ id)v.

By using (f4) we get that the modularity condition is satisfied:

(id⊗ σ)v = (id⊗ f1 ⊗ id⊗ f1)(v⊗ id⊗ id)(v⊗ id)v

= ((( f1 ⊗ id)v)⊗ id)v(id⊗ f1)v = (θ ⊗ id)vθ .

(ii) This will follow from θn = (id ⊗ f1)vn. In terms of the basis, the map
(id⊗ f1)vn is

(id⊗ f1)vn

(
j1 . . . jn
i1 . . . in

)
= ∑

(
l1 . . . ln
k1 . . . kn

)
q−1
(k1 ...kn)q(i1 ...in)q(j1 ...jn)q

−1
(l1 ...ln)

· f1Vn

(
l1 . . . ln j1 . . . jn
k1 . . . kn i1 . . . in

)
,

so condition θn = (id⊗ f1)vn is equivalent to the following Condition (f1) for Vn:

f1Vn

(
l1 . . . ln j1 . . . jn
k1 . . . kn i1 . . . in

)
= δ

(
j1
i1

... jn
in

)(
l1
k1

... ln
kn

)
q4
(i1 ...in)q

−4
(j1 ...jn) .

Since θ1 is the modular map of ϕ, this is true for n = 1:

f1V
(

l j
k i

)
= δkiδjl q4

i q−4
j .

Since f1 is multiplicative, from (f1) for V we get (f1) for V2:

f1V2

(
l1 l2 j1 j2
k1 k2 i1 i2

)
= f1

(
k2 i2
k1 i1

)
f1

(
l1 j1
l2 j2

)

= δk1i1 δk2i2 q4
i1 q−4

i2
δl2 j2 δl1 j1 q4

j2 q−4
j1

= δ(k1k2)(i1i2)δ(l1l2)(j1 j2)q
4
(i1i2)q

−4
(j1 j2) .

Since f1 is multiplicative, from (f1) for V we get (f1) for V3:

f1V3

(
l1 l2 l3 j1 j2 j3
k1 k2 k3 i1 i2 i3

)
= f1V

(
k2 i2
k1 i1

)
f1V

(
l3 j3
k3 i3

)
f1V

(
l1 j1
l2 j2

)

= δk1i1 δk2i2 q4
i1 q−4

i2
δk3i3 δl3 j3 q4

i3 q−4
j3

δl2 j2 δl1 j1 q4
j2 q−4

j1

= δ(k1k2k3)(i1i2i3)δ(l1l2l3)(j1 j2 j3)q
4
(i1i2i3)q

−4
(j1 j2 j3) .

The proof is similar for arbitrary n.
(iii) The coaction v2 is given by the formula (see Section 1)

v2

(
j1 j2
i1 i2

)
= ∑

(
l1 l2
k1 k2

)
⊗ q−1

k1
qk2 qi1 q−1

i2
qj1 q−1

j2
q−1

l1
ql2 V

(
k2 i2
k1 i1

)
V

(
l1 j1
l2 j2

)
.

Consider the following matrix:

W = ∑
(

i1 i2
k1 k2

)
⊗ q−1

k1
qk2 qi1 q−1

i2
V

(
k2 i2
k1 i1

)
.
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By using (∗) we get that the matrix W∗ is given by

W∗ = ∑
(

k1 k2
i1 i2

)
⊗ q−1

k1
qk2 qi1 q−1

i2
V

(
k1 i1
k2 i2

)

= ∑
(

l1 l2
j1 j2

)
⊗ q−1

l1
ql2 qj1 q−1

j2
V

(
l1 j1
l2 j2

)
.

The linear map x 7→ W(x⊗ 1)W∗ is given by

W
((

j1 j2
i1 i2

)
⊗1

)
W∗ =

(
∑

(
I1 I2
k1 k2

)
⊗q−1

k1
qk2 qI1 q−1

I2
V

(
k2 I2
k1 I1

))

·
((

j1 j2
i1 i2

)
⊗ 1

)(
∑

(
l1 l2
J1 J2

)
⊗ q−1

l1
ql2 qJ1 q−1

J2
V
(

l1 J1
l2 J2

))

so we have v2(x) = W(x⊗ 1)W∗ for any x. By using (S) we get

(id⊗ S)W = ∑
(

i1 i2
k1 k2

)
⊗ q−1

k1
qk2 qi1 q−1

i2
SV

(
k2 i2
k1 i1

)

= ∑
(

i1 i2
k1 k2

)
⊗ q−1

k1
qk2 qi1 q−1

i2
q2

k1
q−2

i1
q2

i2 q−2
k2

V
(

i1 k1
i2 k2

)

= ∑
(

i1 i2
k1 k2

)
⊗ qk1

q−1
k2

q−1
i1

qi2 V
(

i1 k1
i2 k2

)

= ∑
(

k1 k2
i1 i2

)
⊗ qi1 q−1

i2
q−1

k1
qk2 V

(
k1 i1
k2 i2

)
= W∗ .

By using (ε) and (∆) we get

(id⊗ ε)W = ∑
(

i1 i2
k1 k2

)
q−1

k1
qk2 qi1 q−1

i2
δk1i1 δk2i2 = ∑

(
k1 k2
k1 k2

)
= 12 ,

(id⊗∆)W = ∑
(

i1 i2
k1 k2

)
⊗ q−1

k1
qk2 qi1 q−1

i2
V

(
k2 h
k1 g

)
⊗V

(
h i2
g i1

)
.

On the other hand, W12W13 is given by

W12W13 = ∑
(

g h
k1 k2

)(
i1 i2
g h

)
⊗ q−1

k1
qk2 qgq−1

h V
(

k2 h
k1 g

)
⊗ q−1

g qhqi1 q−1
i2

V
(

h i2
g i1

)

and this is equal to (id ⊗ ∆)W. Thus W is a unitary corepresentation and v2 =
ad(W). Consider the matrix

QW = (id⊗ f 1
2
)W = ∑

(
i1 i2
k1 k2

)
q−1

k1
qk2 qi1 q−1

i2
f 1

2
V

(
k2 i2
k1 i1

)
.

By using (f1) for V we can compute QW :

QW = ∑
(

i1 i2
k1 k2

)
q−1

k1
qk2 qi1 q−1

i2
δk1i1 δk2i2 q2

i1 q−2
i2

= ∑
(

i1 i2
i1 i2

)
q2

i1 q−2
i2

.

From the formulae (f1)–(f4) and from cosemisimplicity of H we get that the
equality Tr(Q2

W ·) = Tr(Q−2
W ·) holds on End(W) (Lemma 1.1 in [1]). On the other
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hand, the above formula of QW shows that Tr(Q2
W ·) is ϕ2 and Tr(Q−2

W ·) is ψ2. To-
gether with the equality End(W) = Q2(v) coming from v2 = ad(W), this shows
that ϕ2 = ψ2 on Q2(v).

A natural question now is about how to verify the assumptions of Theo-
rem 4.2, namely that v preserves the linear form ϕ = Tr(Q4·) with Q ∈ A given
by Lemma 4.1.

(1) In the S2 = id case we have Q = 1 and the condition is satisfied. This is
not very interesting, because Theorem 4.2 is weaker anyway than Theorem 2.4 in
this case.

(2) In the S2 6= id case there are basically two examples. First is the case of
adjoint coactions, where the condition is satisfied. This follows from the explicit
formulae of Woronowicz in [29], and the whole thing is discussed in detail in [1].
The other example is with the universal coactions in [3], and once again, one can
check that the condition is satisfied.

We do not know if there is a simpler characterisation of coactions v for which
Q(v) is a planar algebra. In case there is one, getting it from what we do in this
paper is probably a purely Hopf C∗-algebraic problem, with no planar topology
involved. This possible remaining problem is to be added to those mentioned at
the end of the introduction.
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