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ABSTRACT. In analogy with the peak points of the Shilov boundary of a uni-
form algebra, Arveson defined the notion of boundary representations among
the completely contractive representations of a unital operator algebra. How-
ever, he was unable to show that such representations always exist. Drop-
ping his original condition that such representations should be irreducible,
we show that a family of representations (in Agler’s sense) of either an opera-
tor algebra or an operator space has boundary representations. This leads to a
direct proof of Hamana’s result that all unital operator algebras have enough
such boundary representations to generate the C∗-envelope.
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1. INTRODUCTION

Concretely, an operator algebra A is a subalgebra of B(K), the bounded
linear operators on some Hilbert space K. It is unital if it contains the identity
operator. The algebra M`(A) of `× ` matrices with entries fromA inherits a norm

as a subspace of M`(B(K)) identified canonically with B
( ⊕̀

1
K

)
. The Blecher,

Ruan and Sinclair Theorem ([5]) characterizes unital operator algebras in terms
of a matrix norm structure, while a theorem of Blecher ([4]) does the same for
non-unital algebras assuming the algebra multiplication is completely bounded.
Consequently it is possible to speak abstractly of an operator algebra without
reference to an ambient B(K).

Likewise operator spaces are concretely viewed as vector subspaces of some
B(K). In a manner akin to that for operator algebras they too may be character-
ized in terms of a matrix norm structure, as Ruan showed ([11]).
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A linear mapping φ : A → B(H) (A is either an operator algebra or an

operator space) induces a linear mapping φ` : M`(A) → B
( ⊕̀

1
H

)
by applying φ

entry-wise, so that φ`(ajm) = (φ(ajm)). The map φ is completely bounded if φ is
bounded and there exists C, independent of `, such that ‖φ`‖ 6 C, it is completely
contractive if it is completely bounded with C 6 1, and it is completely isometric
if φ` is an isometry for each `. Finally, a representation of A on the Hilbert space
H is an algebra homomorphism φ : A → B(H) (or simply a bounded linear map
in the case that A is an operator space). If A is a unital operator algebra, it is
assumed that any representation of A takes the unit to the identity operator.

A boundary representation ([3], [2]) of the unital operator algebra A consists
of a completely isometric homomorphism φ : A → C, where C is a C∗-algebra
and C∗(φ(A)) = C, together with a representation π : C → B(H) such that
the only completely positive map on C agreeing with π on φ(A) is π itself. In
originally defining boundary representations, Arveson also required that they be
irreducible. We do not impose this condition.

The C∗-envelope of A (either an operator algebra or an operator space), de-
noted by C∗e (A), is the essentially unique smallest C∗-algebra amongst those C∗-
algebras C for which there is a completely isometric homomorphism φ : A → C.
For instance, ifA is a uniform algebra, then C∗e (A) is the C∗-algebra of continuous
functions on the Shilov boundary of A. In fact, in this case the irreducible bound-
ary representations correspond to peak points of A. Arveson proved that C∗e (A)
exists provided there are enough boundary representations for A. However, the
existence of C∗e (A) does not imply the existence of boundary representations and
Hamana ([7]) established the existence of C∗e (A) for operator algebras in general
without recourse to boundary representations.

In this note we show, by elaborating on a construction of Agler essential to
his approach to model theory ([1]) and using a characterization of boundary rep-
resentations due to Muhly and Solel ([9]), that boundary representations exist,
and then following an argument similar to Arveson’s, we also derive the exis-
tence of C∗e (A).

Agler’s approach is to consider a family FA of representations of an associa-
tive algebra A (which is not necessarily an operator algebra). This is a collection
of representations which is

(1) Closed with respect to direct sums (so if {πα} is an arbitrary set of repre-
sentations in the family, then

⊕
α

πα is also a representation in the family);

(2) Hereditary (that is, if φ is a representation in the family and L is a sub-
space which is invariant for all φ(a), a ∈ A, then φ|L, the restriction of φ
to L, is also in the family);

(3) Closed with respect to unital ∗-representations (so if φ : A → B(H), and
ν : B(H) → B(K) is a unital ∗-representation, then ν ◦ φ is in the family).

If A is non-unital, then we also require
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(4) A is closed with respect to spanning representations with respect to the
partial ordering on dilations (defined below).

When A is unital, (1)–(3) can be shown to imply (4), using an argument similar to
that used to prove (1) of Theorem 1.1 in [6].

Agler’s definition of a family may readily be taken over to subspaces of
associative algebras without alteration, and we do so here.

A consequence of (1) is that for each a ∈ A, there is a constant Ca such that
sup

π∈FA
‖π(a)‖ 6 Ca, and indeed, we may define a norm ‖ · ‖FA on A such that

‖a‖FA is this supremum. Endowing A with this norm (which we do whenever
A is not already a normed algebra or a subspace thereof), it happens that all
representations in FA become contractive representations. On the other hand, if
A is already (a subspace of) a normed algebra, then from (1) we likewise deduce
that all representations are uniformly bounded in norm.

Special examples of families include the collection of all completely contrac-
tive representations of an operator space A and the collection of all representa-
tions π of the disc algebra such that π(z) is an isometry.

A representation φ lifts to a representation ψ if φ is the restriction of ψ to
an invariant subspace. Following Agler ([1]) we will say that the representation
φ : A → B(H) is extremal, if whenever K is a Hilbert space containing H and
ψ : A → B(K) is a representation such that H is invariant for ψ(A) and φ = ψ|H,
then H reduces ψ(A). Further, if ρ : A → B(L) is a representation, then ρ lifts to
an extremal representation; i.e., there exists a Hilbert space H containing L and
an extremal representation φ of A such that L is invariant for φ(A) and ρ = φ|L
([1], Proposition 5.10).

Lifting induces a partial ordering on representations, with φα 6 φβ being
equivalent to φα lifting to φβ. If S is a totally ordered set of liftings (with respect to
this partial ordering), then we define the spanning representation φs : A → B(Hs)
by setting Hs to be the closed span of the Hα’s over all α ∈ S , and then densely
defining φs to be φα on Hα and extending to all of Hs by boundedness of the
representations φα. It is readily verified that φs is a representation which lifts
each φα.

The representation φ : A → B(H) dilates to the representation ψ : A →
B(K) if K contains H and φ(a) = PHψ(a)|H for all a ∈ A. A fundamental result of
Sarason ([12]) says that a representation φ dilates to a representation ψ if and only
if H is semi-invariant for ψ. Thus, there exists subspaces L ⊂ N ⊆ K invariant
for ψ such that H = N ª L. Alternatively, K = L ⊕ H ⊕ M with L and L ⊕ H
invariant for φ. Just as in the case of liftings, dilating induces a partial ordering
on representations in the obvious manner. We can also similarly define spanning
representations of totally ordered sets of representations, and this is what is used
in item (4) above. Note that liftings are also dilations (with L = {0}). Hence
the partial ordering on dilations subsumes that of liftings, and in particular, any
spanning representation of liftings is one in terms of dilations as well.
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As was noted above, families of representations over unital algebras contain
all spanning representations formed from chains of representations in the family,
though it appears that this assumption needs to be added in the non-unital set-
ting and for operator spaces. On the other hand, there are interesting collections
of representations which are closed with respect to (1) and (4) of a family, but not
necessarily (2) and (3). For example, take the algebra complex polynomials in a
variable z and consider the collection of all representations obtained by mapping
z to a contractive co-hyponormal operator. Since the theorems we prove below
only depend on existence of spanning representations and the uniform bounded-
ness of representations, we define the extended family of an associative algebra A
to be a collection of representations of A which is closed under the formation of
direct sums and spanning representations. We likewise define the notion of an
extended family for subspaces of an associative algebra.

For dilations, the equivalent of an extremal will be referred to as a ∂-repre-
sentation. The representation φ : A → B(H) is a ∂-representation if whenever
ψ : A → B(K) dilates φ, then H reduces ψ(A).

Muhly and Solel ([9]) show, in the language of Hilbert modules rather than
representations, that for unital operator algebras ∂-representations coincide with
boundary representations (forgetting the irreducibility requirement).

THEOREM 1.1. Let A be a unital operator algebra. Then ρ : A → B(H) is a ∂-
representation if, and only if, given any completely isometric map φ : A → C where C is a
C∗ algebra with C = C∗(φ(A)), there exists a boundary representation π : C∗(φ(A)) →
B(H) such that π ◦ φ = ρ.

The proof of Muhly and Solel of this equivalence uses the existence of the
C∗-envelope. Our main result and proof of the existence of the C∗-envelope do
not depend on their work. However, it should be noted that a proof of the equiva-
lence which does not already assume the existence of the C∗-envelope is possible,
and we sketch a proof below based along a line of reasoning in Theorem 1.2 of [8].

Sketch of the proof of Theorem 1.1. Suppose φ : A → C = C∗(φ(A)) is com-
pletely isometric and π : C∗(φ(A)) → B(H) is a boundary representation. Set
ρ = π ◦ φ, and note that it is completely contractive. Suppose ν : A → B(K)
dilates ρ. The goal is to show that H reduces ν.

To this end, define a map γ : φ(A) → B(K) by γ(φ(a)) = ν(a), a ∈ A.
This map is completely contractive, and so by the Arveson extension theorem
extends to a completely positive unital map γ : C∗(φ(A)) → B(K) with γ ◦ φ = ν.
Observe that the map which takes b 7→ PHγ(φ(b))|H, b ∈ C∗(φ(A)) is completely
positive, and by definition, PHγ(φ(a))|H = ρ(a) = π(φ(a)) for all a ∈ A. We have
assumed that π is a boundary representation, so in fact PHγ(φ(b))|H = π(b) for
all b ∈ C∗(φ(A)). From this we have for all a ∈ A,

ρ(a)ρ(a)∗ = π(φ(a))π(φ(a))∗
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= π(φ(a)φ(a)∗)
= PHγ(φ(a)φ(a)∗)|H
> PHγ(φ(a))γ(φ(a)∗)|H = PHν(a)ν(a)∗|H
> PHγ(φ(a))PHγ(φ(a)∗)|H = PHν(a)PHν(a)∗|H
= ρ(a)ρ(a)∗,

where the first inequality is the Cauchy-Schwarz inequality for completely posi-
tive maps ([10]). From this we see that ν(a)∗H ⊆ H. An identical argument gives
ν(a)H ⊆ H, proving that H reduces ν.

The converse is a straightforward exercise and is left to the reader.

Unless otherwise stated, we shall henceforth assume that A is either an as-
sociative algebra or a subspace of such an algebra. We will prove the following:

THEOREM 1.2. If ρ : A → B(H) is a representation in an extended family FA,
then there exists a Hilbert space K containing H and a ∂-representation φ : A → B(K)
also in FA such that ρ dilates to φ.

As mentioned above, Arveson’s original definition of boundary represen-
tation required π to be irreducible. Note that Theorem 1.2 does not imply the
existence of irreducible boundary representations.

The authors would like to thank Jim Agler for sharing a draft of the first
several chapters of a recent manuscript on his abstract model theory and Vern
Paulsen for his valuable assistance and an advance look at a draft of his book,
Completely Bounded Maps and Operator Algebras ([10]), particularly the chap-
ters on the abstract characterization of operator algebras and the C∗-envelope.

The remainder of the paper is organized as follows. Section 2 establishes
Theorem 2.1 giving the existence of extremals, which form the core of any model
in Agler’s approach to model theory ([1]). Although versions of this result are
quite old, no proofs yet appear in the literature. In Section 3 we prove Theo-
rem 1.2 and in Section 4 we explain how to obtain the existence of C∗e (A) from
Theorem 1.2.

2. LIFTINGS AND EXTREMALS

In Agler’s approach to model theory a family is a collection of representa-
tions of a unital algebra satisfying the first three canonical axioms listed in the
last section. A key result in his model theory is that an arbitrary member of a
family FA lifts to an extremal member of the family FA ([1], Proposition 5.10).
We establish this result for extended families of associative algebras and their
subspaces.

THEOREM 2.1. If ρ : A → B(H) is a representation in an extended family FA,
then ρ lifts to an extremal representation in FA.



164 MICHAEL A. DRITSCHEL AND SCOTT A. MCCULLOUGH

We establish a preliminary version of Theorem 2.1 in Lemma 2.2 below, and
then indicate a proof of the theorem based on the lemma.

Suppose the representation φα : A → B(Hα) lifts to the representation φβ :
A → B(Hβ). Then the lifting is trivial if Hα is reducing, not just invariant, for
φβ(A). If the only liftings of φα are trivial, then φα is extremal.

If φβ lifts φα, then we define a lifting φδ : A → B(Hδ) of φβ to be strongly
non-trivial with respect to φα if there exists an a ∈ A such that

PHδªHβ
φδ(a)∗|Hα 6= 0.

Otherwise, the lifting is weakly trivial relative to φα. Finally, φβ is weakly extremal
relative to φα if every lifting of φβ is weakly trivial relative to φα.

LEMMA 2.2. Each representation φ0 : A → B(H0) in an extended family FA lifts
to a representation in FA which is weakly extremal relative to φ0.

Proof. The proof is by contradiction. Accordingly, suppose φ0 does not lift
to a weakly extremal representation relative to φ0.

Let κ0 be the cardinality of the set of points in the unit sphere of H0, κ1 the
cardinality of the set of elements in the unit ball of A. Set κ = 2ℵ0·κ0·κ1 > κ0 · κ1.
Let λ be the smallest ordinal greater than or equal to κ. Note that for each a, there
is a Ca > 0 so that for π ∈ FA, ‖π(a)h‖ 6 Ca‖h‖ for all h ∈ H0 and a ∈ A.

Construct a chain of liftings in FA by transfinite recursion on the ordinal
λ as follows: if α 6 λ, and α has a predecessor, let φα denote a strong (with re-
spect to φ0) nontrivial lifting of φα−1. Such an lifting exists by the assumption
that φ0 does not lift to a weak extremal. If α is a limit ordinal, set φα to the span-
ning representation of {φδ}δ<α. For any h in the unit sphere of H0 and a in the
unit ball of A, there are at most countably many α’s with predecessors where
PHαªHα−1 φα(a)∗h 6= 0. Since the cardinality of the set of ordinal numbers less than
or equal to λ and having a predecessor is κ, there must be an ordinal β < λ with
predecessor where PHβªHβ−1 φβ(a)∗h = 0 for all h in the unit sphere of H0 and a
in the unit ball of A, so that φβ is a lifting of φβ−1 which is weakly trivial with
respect to φ0; a contradiction, ending the proof.

Proof of Theorem 2.1. We use Theorem 2.2 to prove Theorem 2.1. Let φ0 :
A → B(H0) denote a given representation. Lift φ0 to a representation φ1 : A →
B(H1) which is weakly extremal relative to φ0. Lift φ1 to a representation φ2
which is weakly extremal relative to φ1. Continuing in this manner, constructs
a chain φj, j ∈ N, with respect to the partial order on liftings with the property
that φj is weakly extremal relative to φj−1. The resultant spanning representation
φ∞ : A → B(H∞) lifts φ0 and it is easily checked to be extremal, since it is weakly
extremal relative to φj for all j ∈ N.

It is not difficult to see that the restriction of an extremal to a reducing sub-
space is an extremal. Also, in Theorem 2.1 if we were to take the intersection of
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all reducing subspaces of φ∞ containing H0, we end up with the smallest reduc-
ing subspace for φ∞ containing H0. Restricting to this gives a minimal extremal
φe lifting φ0, in the sense that if ψ lifts φ0 and ψ 6 φe, then ψ = φe. Of course
φe may still be reducible even if φ0 is irreducible. In addition, there may be non-
isomorphic minimal extremal liftings of φ0.

3. DILATIONS AND BOUNDARY REPRESENTATIONS

Let φα : A → B(Hα) be a representation. In parallel with the theory of
liftings, a dilation φβ : A → B(Hβ) is termed trivial if Hα is reducing for φβ(A). If
the only dilations of φα are trivial ones, then φα is a ∂-representation.

Likewise, suppose φδ > φβ > φα in the partial ordering for dilations, with
the representations mapping into the operators on Hδ, Hβ and Hα, respectively.
By assumption, we can write Hδ = Lδ ⊕ Hβ ⊕ Mδ, where Lδ and Lδ ⊕ Hβ are
invariant for φδ. We say that φα is strongly non-trivial with respect to φα if there
exists an a ∈ A such that either

PLδ
πβ(a)|Hα 6= 0 or PMδ

πβ(a)∗|Hα 6= 0.

Otherwise, the dilation is said to be weakly trivial relative to φα. Finally, φβ is a
weak ∂-representation relative to φα if every lifting of φβ is weakly trivial relative to
φα.

LEMMA 3.1. Each representation φ0 : A → B(H0) in an extended family FA
dilates to a weak ∂-representation relative to φ0 which is also in FA.

Proof. The proof closely follows that of the existence of weak extremals, and
is by contradiction. Hence we suppose φ0 does not lift to a weak ∂-representation
relative to φ0. We define the ordinal λ as in the proof of Lemma 2.2.

Construct a chain of dilations in FA where each of the representations by
transfinite recursion on the ordinal λ as in Lemma 2.2: if α 6 λ and α is a limit
ordinal, set φα to the spanning representation of {φδ}δ<α and if α has a predeces-
sor, let φα be a dilation to a strong (with respect to φ0) nontrivial dilation of φα−1,
which exists by the assumption that φ0 does not lift to a weak ∂-representation.
Then for any h in the unit sphere of H0 and a in the unit ball ofA, there are at most
countably many α’s with predecessors where PLδ

πβ(a)h 6= 0 or PMδ
πβ(a)∗h 6= 0.

The same reasoning then gives a representation φβ in our chain dilating φβ−1
which is weakly trivial with respect to φ0, a contradiction.

Proof of Theorem 1.2. This now follows the proof of Theorem 2.1. Construct
a countably infinite chain of representations {φi} into the bounded operators on
Hilbert spaces Hi, where φi is a weak ∂-representation with respect to φi−1 for
each i ∈ N. Let φ∞ denote the spanning representation on the Hilbert space H∞.
Since a dilation of a weak ∂-representation with respect to a representation φ is
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also a weak ∂-representation with respect to φ, φ∞ is a weak ∂-representation with
respect to φi for all i. It easily follows that φ∞ is a ∂-representation.

Minimal ∂-representations dilating a given representation can be defined in
the manner of minimal extremals.

4. THE C∗-ENVELOPE AND THE SHILOV IDEAL

The C∗-envelope of the operator algebra A, denoted C∗e (A), is a C∗-algebra
which is determined by the property: there exists a completely isometric repre-
sentation γ : A → C∗e (A) such that C∗(γ(A)) = C∗e (A) and if ρ : A → B(H) is
any other completely contractive representation, then there exists an onto repre-
sentation π : C∗(ρ(A)) → C∗(γ(A)) such that π(ρ(a)) = γ(a) for all a ∈ A.

It is not hard to see that C∗e (A) is essentially unique, for if ρ also has the
properties of γ, then there exists an onto representation σ : C∗(γ(A)) → C∗(ρ(A))
with σ(γ(a)) = ρ(a) for all a ∈ A. It follows that σ is the inverse of π and thus, as
C∗-algebras, C∗(γ(A)) equals C∗(ρ(A)).

THEOREM 4.1 ([7]). Every unital operator algebra has a C∗-envelope.

Proof. A proof follows directly from Theorem 1.2. Viewing the operator
algebra A as a subspace of B(K), the inclusion mapping ι : A → B(K) is a
completely isometric representation and thus, according to this proposition, it
dilates to a completely isometric representation γ : A → B(H) which is a ∂-
representation.

To see that C∗(γ(A)) is the C∗-envelope, suppose ψ : A → B(Hψ) is also
completely isometric. In this case σ : ψ(A) → B(H) given by σ(ψ(a)) = γ(a) is
completely contractive (and thus well-defined). By a theorem of Arveson, there
exists a Hilbert space K containing H and a representation π : C∗(ψ(A)) →
B(K) such that γ(a) = σ(ψ(a)) = PHπ(ψ(a))|H ([10], Corollary 6.7). Since
a 7→ PHπ(ψ(a))|H is a representation of A and γ is a ∂-representation, H reduces
π(ψ(A)). Thus, σ extends to an onto representation C∗(ψ(A)) → C∗(γ(A)).

Arveson says that J is the Shilov boundary of the concrete operator algebra
A ⊂ B(K) if J contains every ideal I with the property that the restriction of the
quotient q : C∗(A) → C∗(A)/I to A is completely isometric. Since the inclusion
of A into B(K) is completely isometric, there exists an onto representation π :
C∗(A) → C∗e (A) = C∗(γ(a)) such that π(a) = γ(a), where γ is a representation
as in Theorem 4.1 which generates the C∗-envelope ofA. It is left to the interested
reader to verify that the kernel of π is the Shilov ideal of A.

Acknowledgements. Research supported by the NSF and the EPSRC.
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