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ABSTRACT. We use the Legendre transform to find a relationship between the
norms of a one-parameter semigroup and those of its resolvent operators. The
theorems are illustrated with a variety of examples, particularly estimates of
the norms of the semigroups associated with Schrödinger operators, consid-
ered as acting on the space L1(Rn).
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1. INTRODUCTION

The theory of one-parameter semigroups provides a good entry into the
study of the properties of non-self-adjoint operators and of the evolution equa-
tions associated with them. There are many situations in which such an operator
A arises by linearizing some non-linear evolution equation around a stationary
point. The stability of the stationary point implies that every eigenvalue of the
semigroup Tt = eAt has negative real part, but the converse is not true. This was
vividly demonstrated in a famous example of Zabczyk, in which the semigroup
norm grows exponentially, although the spectrum of the operator in question is
purely imaginary (Theorem 2.17 of [4] and [36]). One of the main points of this
paper is to emphasize that similar phenomena occur for the so-called Schrödinger
semigroups, which have extensive applications in quantum theory and stochas-
tic processes. We will see that the long time behaviour of the norms of diffusion
semigroups with self-adjoint generators may be entirely different for the L1 and L2

norms, although the generator has the same spectrum in the two spaces. In other
words, growth bounds proved using the spectral theorem for self-adjoint opera-
tors may not generalize to the “same” evolution equation acting in other Banach
spaces, even when the other norm is physically more relevant than the Hilbert
space norm.
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There is an enormous literature studying the asymptotic behaviour of one-
parameter semigroups as t → ∞, [10], but as far as stability is concerned short
time bounds on the semigroup norm are often more relevant: if ft = Tt f grows
rapidly for some time, before eventually decaying exponentially, then the linear
approximation may become inappropriate before this decay comes into effect (or
would do under the linear approximation). The fact that the short time and long
time behaviour of a semigroup may be quite different is physically very clear for
the convection-diffusion operator on a bounded interval or region ([19], pp. 16–19
in [32]; see also [6]). In this case the underlying cause is the non-self-adjointness
of the operators concerned, which act in a Hilbert space.

The relevance of such issues to studies of the stability of fixed points of non-
linear hydrodynamic equations is still a matter of investigation. Traditionally it
was assumed that stability was equivalent to the spectrum of the linearized equa-
tion lying in the left-hand half plane. However, Trefethen and others have estab-
lished that in some problems in hydrodynamics pseudospectral methods provide
stability information unavailable by the use of spectral theory alone; see [29], [30]
and [9]. On the other hand Renardy has shown that in certain other hydrody-
namic problems spectral analysis does indeed suffice to determine stability [21],
[22], [23].

Our goal is to obtain information about the short time behaviour of the
semigroup from norm bounds on the resolvent operators — closely related to the
pseudospectra, for which efficient computations are now available [28], [29], [33],
[32], [34]. We succeed in obtaining lower bounds, not on the semigroup norms
themselves, but on certain regularizations, defined in the next section. We also
show (Theorem 6.4) that it is not possible to obtain similar upper bounds from
numerical information about the resolvent norms, however accurate this infor-
mation may be. Both of these facts are completely invisible if one only looks at
the spectrum of the relevant operator, which is of limited use for stability analysis.

Some of the results in this paper are already familiar in one form or another,
and the paper is written to help communication between experts in the various
fields involved. The contents of Section 2 and the numerical aspects of Section 5
are, however, new.

2. LOWER BOUNDS

If Tt is a one-parameter semigroup with generator A, we define

ω0 = lim sup
t→+∞

t−1 log(‖Tt‖),

s = sup{Re (λ) : λ ∈ Spec(A)},

sε = sup{Re (z) : ‖Rz‖ > ε−1},
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s0 = lim
ε→0

sε,

ρ = min{ω : ‖Tt‖ 6 eωt for all t > 0},

where Rz is the resolvent operator and ε > 0. s and s0 are often called the spectral
and pseudospectral abscissas respectively. An alternative characterization of ρ,
sometimes called the logarithmic norm of A, is given in Lemma 2.2. One always
has s 6 s0 6 ω0 6 ρ, and each of these may be a strict inequality. In a Hilbert
space ω0 = s0 ([10], Theorem 5.1.11). This identity is, however, not always valid
in Banach spaces ([10], Counterexample 4.2.7).

The pseudospectra of the operator A are by definition the sets

Specε(A) = Spec(A) ∪ {z ∈ C : ‖Rz‖ > ε−1},

defined for all ε > 0. Determining of the pseudospectra is equivalent to knowing
the value of ‖Rz‖ for all z ∈ C. Recent computational advances enable the sets to
be plotted efficiently even for very large matrices [28], [29], [32], [33], [34]. They
provide considerable insights into the behaviour of the operators concerned, and
there is an ongoing programme to relate other quantities of interest to these sets.

The semigroup Tt (or its generator) is sometimes said to satisfy the weak
stability principle if s = ω0, and the strong stability principle if there exists a
constant M such that

‖Tt‖ 6 Mest

for all t > 0. Every diagonalizable matrix satisfies the strong stability principle,
as does every operator in a Hilbert space which is similar to a normal operator.
In Section 5 we will show that physically important self-adjoint operators need
not satisfy the strong stability principle if they are considered with respect to a
natural non-Hilbertian norm.

In Example 4.1 we show that ‖Tt‖ may oscillate rapidly with time. Because
of this possibility we will not study the norm itself, but a regularization of it.
Although our main application is to one-parameter semigroups, we work at a
more general level to facilitate the discussions in the final section. We assume
that B,D are two Banach spaces and that Tt : D → B is a strongly continuous
family of operators defined for t > 0, satisfying ‖T0‖ = 1 and ‖Tt‖ 6 Meωt for
some M, ω and all t > 0. We define N(t) to be the upper log-concave envelope
of ‖Tt‖. In other words ν(t) = log(N(t)) is defined to be the smallest concave
function satisfying ν(t) > log(‖Tt‖) for all t > 0. It is immediate that N(t) is
continuous for t > 0, and that

1 = N(0) 6 lim
t→0+

N(t).

In many cases one may have N(t) = ‖Tt‖, but we do not study this question,
asking only for lower bounds on N(t) which are based on pseudospectral infor-
mation.

If k ∈ R and we replace Tt by Ttekt then ‖Tt‖ is replaced by ‖Tt‖ekt and
N(t) is replaced by N(t)ekt. We put k = −ω0 or, equivalently, normalize our
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problem by assuming that ω0 = 0. In the semigroup context this implies that
Spec(A) ⊆ {z : Re (z) 6 0}. It also implies that ‖Tt‖ > 1 for all t > 0 by
Theorem 1.22 of [4]. If we define Rz : D → B by

Rz f =

∞∫

0

(Tt f )e−zt dt

then ‖Rz‖ is uniformly bounded on {z : Re (z) > γ} for any γ > 0, and the norm
converges to 0 as Re (z) → +∞. In the semigroup context Rz is the resolvent of
the generator A of the semigroup.

The following lemma compares N(t) with the alternative regularization

L(t) = sup{‖Ts‖ : 0 6 s 6 t}
of ‖Tt‖, which was introduced by Trefethen [31] and implemented in the package
Eigtool by Wright ([32], page 82 and [33]).

LEMMA 2.1. If ω0 = 0 then

‖Tt‖ 6 L(t) 6 N(t),

for all t > 0. If Tt is a one-parameter semigroup then we also have

N(t) 6 L
( t

n

)n+1

for all positive integers n and t > 0.

Proof. The log-concavity of N(t) and the assumption that ω0 = 0 imply that
N(t) is a non-decreasing function of t. We conclude that ‖Tt‖ 6 L(t) 6 N(t). If
Tt is a one-parameter semigroup we note that s → L(t/n)1+ns/t is a log-concave
function which dominates ‖Ts‖ for all s > 0, and which therefore also dominates
N(s).

In the following well-known lemma we put

N′(0+) = lim
ε→0+

ε−1{N(ε)− N(0)} ∈ [0, +∞].

LEMMA 2.2. The constant ρ satisfies

ρ = N′(0+) > lim sup
t→0

t−1 {‖Tt‖ − 1} .

If Tt is a one-parameter semigroup and B is a Hilbert space then

(2.1) ρ = sup{Re (z) : z ∈ Num(A)}
where Num(A) is the numerical range of A.

Proof. If N′(0+) 6 ω then, since N(t) is log-concave,

‖Tt‖ 6 N(t) 6 eωt

for all t > 0. The converse is similar. The second statement follows from the fact
that, assuming A to be the generator of a one-parameter semigroup, A−ωI is the
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generator of a contraction semigroup if and only if Num(A−ωI) is contained in
{z : Re (z) 6 0}.

We study the function N(t) via a transform, defined for all ω > 0 by

M(ω) = sup{‖Tt‖e−ωt : t > 0}.

We see that up to a sign µ(ω) = log(M(ω)) is the Legendre transform of ν(t) (also
called the conjugate function), and must be convex. It is also clear that M(ω) is a
monotonic decreasing function of ω which converges as ω → +∞ to lim sup

t→0
‖Tt‖.

Hence M(ω) > 1 for all ω > 0. We also have

(2.2) N(t) = inf{M(ω)eωt : 0 < ω < ∞}
for all t > 0 by the theory of the Legendre transform, i.e. simple convexity argu-
ments, due to Young and Fenchel ([27], p. 67).

In the semigroup context the constant c introduced below measures the de-
viation of the operator A from any generator of a contraction semigroup.

LEMMA 2.3. If a > 0, b ∈ R, and a‖Ra+ib‖ = c > 1 then

M(ω) > M̃(ω) :=

{
(a−ω)c

a if 0 < ω 6 r = a
(

1− 1
c

)
,

1 otherwise.

Proof. The formula

(2.3) Ra+ib =

∞∫

0

Tte−(a+ib)t dt

implies that

c
a

6
∞∫

0

N(t)e−at dt 6
∞∫

0

M(ω)eωt−at dt

for all ω such that 0 < ω < a. The estimate follows easily.

This lemma is most useful when c is much larger than 1. If c = 1 then r = 0
and the lemma reduces to M(ω) > 1 for all ω > 0.

THEOREM 2.4. If a‖Ra+ib‖ = c > 1 and r = a(1− 1/c) then

N(t) > min{ert, c}
for all t > 0.

Proof. This uses

N(t) > inf{M̃(ω)eωt : ω > 0},

which follows from (2.2).
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Trefethen and Wright give a related lower bound in [31] and [32], namely

L(t) > eat

1 + eat−1
c

.

Although these are lower bounds for different quantities and under slightly dif-
ferent conditions, the bound of Theorem 2.4 is better in the following sense. The
two sides of (2.4) are asymptotically equal as t → 0+ and t → ∞, but for interme-
diate t we have:

LEMMA 2.5. Let a > 0, t > 0 and c > 1 then

(2.4)
eat

1 + eat−1
c

6 min{ea(1−1/c)t, c}.

Proof. Put s = at. There are two inequalities to prove for all s > 0.

es

1 + es−1
c

6 c,

es

1 + es−1
c

6 e(1−1/c)s.

After some algebraic manipulations, both are seen to be elementary.

The above theorem provides a lower bound on N(t) from a single value of
the resolvent norm. The well-known constants c(a), defined for a > 0 by

c(a) = a sup{‖Ra+ib‖ : b ∈ R},

are immediately calculable from the pseudospectra. It follows from (2.3) and
ω0 = 0 that c(a) remains bounded as a → +∞. The transform c̃(·) defined below
is easily calculated from c(·).

COROLLARY 2.6. Under the above assumptions one has

(2.5) N(t) > c̃(t) := sup
{a:c(a)>1}

{min{er(a)t, c(a)}}

where

r(a) = a
(

1− 1
c(a)

)
.

THEOREM 2.7. If Tt is a one-parameter semigroup and s0 = ω0 = 0 then c(a) >
1 for all a > 0.

Proof. If c(a) < 1 then by using the resolvent expansion one obtains

‖Ra+ib+z‖ 6 c(a)
a

(
1− |z| c(a)

a

)−1

for all |z| < a/c(a). This implies that s0 < 0.
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Examples show that c(·) is often a decreasing function, but this is not true in
Example 4.4 below. If c(·) is differentiable then the supremum in (2.5) need only
be taken over those a at which c′(a) ≤ 0. The following transform of c(·) may
sometimes be easier to compute than c̃(·).

LEMMA 2.8. If c(·) > 1 is a monotonic decreasing function then N(t) > ĉ(t) for
all t > 0, where ĉ(·) is the function inverse to

t(c) :=
log(c)

a(c)(1− 1
c )

and c → a(c) is the function inverse to a → c(a). The function ĉ(t) is defined for all
0 < t < ∞.

Proof. We only consider the case in which c(·) is differentiable with a nega-
tive derivative at each point. The graph of t → N(t) lies above each of the points
(t(c), c) by Theorem 2.4. Putting g(c) = log(c)/(1 − 1/c) a direct calculation
shows that g′(c) > 0 for all c > 1. Its definition implies that a′(c) < 0 for all c.
Hence

t′(c) =
a(c)g′(c)− a′(c)g(c)

a(c)2 > 0 .

The domain of ĉ(·) is the same as the range of t(·), and one may show that
t(c(a)) → 0 as a → ∞, while t(c(a)) → ∞ as a → 0.

Although much recent progress has been made, the numerical computation
of the pseudospectra is still relatively expensive. All of the examples of one-para-
meter semigroups in the next section are positivity-preserving, in the sense that
f > 0 implies Tt f > 0 for all t > 0. In this situation the evaluation of c(a)
is particularly simple. The following is only one of many special properties of
positivity-preserving semigroups to be found in [18].

LEMMA 2.9. Let Tt be a positivity-preserving one-parameter semigroup acting in
Lp(X, dx) for some 1 6 p < ∞. If ω0 = 0 then

‖Ra+ib‖ 6 ‖Ra‖

for all a > 0 and b ∈ R. Hence c(a) = a‖Ra‖.

Proof. Let f ∈ Lp and g ∈ Lq = (Lp)∗, where 1/p + 1/q = 1. Then

|〈Ra+ib f , g〉| =
∣∣∣

∞∫

0

〈Tt f , g〉e−(a+ib)t dt
∣∣∣ 6

∞∫

0

|〈Tt f , g〉|e−at dt

6
∞∫

0

〈Tt| f |, |g|〉e−at dt = 〈Ra| f |, |g|〉 6 ‖Ra‖‖ f ‖p‖g‖q.
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By letting f and g vary we obtain the statement of the lemma. (The inequality
|〈B f , g〉| 6 〈B| f |, |g|〉 for all positivity-preserving operators B may be proved by
considering first the case in which f , g take only a finite number of values.)

3. A DIRECT METHOD

The direct calculation of ‖Tt‖ for t > 0 is not straightforward for very large
matrices, i.e in dimensions of order 106, particularly when using the l1 norm:
even if A is sparse, eAt is usually a full matrix. If the generator A of the semigroup
has enough eigenvalues the following method may be useful. Let { fr}n

r=1 be a
linearly independent set of vectors in B, and suppose that A fr = λr fr for 1 6 r 6
n. Let L denote the linear span of { f1, . . . , fn} and let TL,t denote the restriction
of Tt to L. It is clear that

‖Tt‖ > ‖TL,t‖
for all t > 0. If L is large enough one might hope that this is a reasonably
good lower bound. If A has a large number of eigenvalues, then one might
choose some of them to carry out the above computation after inspecting the
pseudospectra of A.

The operator TL,t must be distinguished from PnTtPn, where Pn is the spec-
tral projection of A associated with the set of eigenvalues {λ1, . . . , λn}. If n = 1
the norm of the first operator is |e−λ1t|while the norm of the second is ‖P1‖|e−λ1t|.
We will see in Table 4 that the norm of P1 may be very large. Unfortunately the
norm of PnTtPn is much easier to compute than that of TL,t in the l1 context, using
Matlab’s eigs and norm(·,1) routines, and it is easy to confuse the two.

The following standard result is included for completeness.

LEMMA 3.1. Under the above assumptions, suppose also that the linear span of
{ fr}∞

r=1 is dense in B. Let Tn,t denote the restriction of Tt to Ln = lin{ f1, . . . , fn}. Then

lim
n→∞

‖Tn,t‖ = ‖Tt‖
for all t > 0. If t → ‖Tt‖ is continuous on [a, b] then the limit is locally uniform with
respect to t on that interval.

Proof. Given ε > 0 and t > 0 there exists f ∈ B such that ‖ f ‖ = 1 and
‖Tt f ‖ > ‖Tt‖ − ε. By the assumed density property, we may assume that f ∈ Ln
for some n. This immediately yields ‖Tt‖ > ‖Tn,t‖ > ‖Tt‖ − ε.

The final statement is a general property of any pointwise, monotonically
convergent sequence of continuous functions to a continuous limit.

Clearly this lemma is of limited use in the absence of any information about
the rate of convergence. If B is a Hilbert space, the norms of the approximating
semigroups may be evaluated by the following standard result. We know of no
analogue of this lemma for subspaces of Banach spaces. The problem is that the
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unit balls of subspaces of L1 may have very complicated shapes, which makes
operator norms difficult to compute. For example the unit ball of a generic, real,
two-dimensional subspace of l1{1, . . . , n} is a polygon with 2n sides, and higher
dimensional subspaces are even more complicated.

LEMMA 3.2. If Br,s = 〈 fs, fr〉 and Dr,s,t = eλrtδr,s for 1 6 r, s 6 n, then

‖Tn,t‖ = ‖B1/2DtB−1/2‖
where the norm on the RHS is the operator norm, Cn being provided with its standard
inner product.

Proof. The n × n matrix B is readily seen to be self-adjoint and positive. If
S : Cn → Ln is defined by

Sα =
n

∑
r=1

βr fr

where β = B−1/2α, then S is unitary and

S−1TtS = B1/2DtB−1/2.

This yields the statement of the lemma.

4. EXACTLY SOLUBLE EXAMPLES

EXAMPLE 4.1. Let Tt be the positivity-preserving, one-parameter semigroup
acting on L2(R+) with generator

A f (x) = f ′(x) + v(x) f (x)

where v is any real-valued, bounded measurable function on R+. Explicitly

(4.1) Tt f (x) =
a(x + t)

a(x)
f (x + t)

for all f ∈ L2 and all t > 0, where

a(x) = exp
{ x∫

0

v(s) ds
}

.

The function a is continuous and satisfies

e−‖v‖∞ta(x) 6 a(x + t) 6 e‖v‖∞ta(x)

for all x, t; hence ‖Tt‖ 6 e‖v‖∞t for all t > 0.
The precise behaviour of ‖Tt‖ depends on the choice of v, or of a, and there

is a wide variety of possibilities. For example if c > 1 and b > 0 then the choice

(4.2) a(x) = 1 + (c− 1) sin2
(πx

2b

)
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leads to ‖T2nb‖ = 1 and ‖T(2n+1)b‖ = c for all positive integers n. In the case (4.2),
the regularizations N(t) and L(t) are not equal, but both are equal to c for t > b.

If c > 0 and 0 < γ < 1 then the unbounded potential v(x) = c(1− γ)x−γ

corresponds to the choice

a(x) = exp{cx1−γ}.

Instead of deciding the precise domain of the generator A, we define the one-pa-
rameter semigroup Tt directly by (4.1), and observe that

N(t) = ‖Tt‖ = exp{ct1−γ}
for all t > 0. If c is large and γ is close to 1, the semigroup norm grows rapidly
for small t, before becoming almost stationary. The behaviour of ‖Tt f ‖ as t → ∞
depends upon the choice of f , but for any f with compact support Tt f = 0 for all
large enough t. On the other hand ‖Tt f ‖ cannot be a bounded function of t for all
f ∈ L2(R+), because of the uniform boundedness theorem.

For this unbounded potential v, every z with Re (z) < 0 is an eigenvalue,
the corresponding eigenvector being

f (x) = exp{zx− c(1− γ)x1−γ}.

Hence
Spec(A) = {z : Re (z) 6 0}.

On the other hand ρ = +∞, and Num(A), which is always a convex set, must
equal the entire complex plane by Lemma 2.2.

EXAMPLE 4.2. If we put

A =
[

0 1
0 0

]

acting in C2 with the Euclidean norm, and |λ| = r > 0 then

‖Rλ‖ =
1

2r2 +

√
1 + 1

4r2

r
so

c(a) =
1
2a

+

√
1 +

1
4a2

for all a > 0. We also have

‖Tt‖ =
t
2

+

√
1 +

t2

4

which is log-concave, so ‖Tt‖ = N(t) for all t > 0. The choice a = 2 provides a
fairly good lower bound on N(t) for 0 6 t 6 0.5. As a gets smaller we get a better
lower bound on N(t) for large t > 0, while as a gets bigger we get a better lower
bound for small t > 0.
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EXAMPLE 4.3. Let A be the n× n Jordan matrix

Ai,j =
{

1 if j = i + 1,
0 otherwise,

acting in Cn with the l1 norm. Then

Tt = I + At + A2 t2

2!
+ · · ·+ An−1 tn−1

(n− 1)!

and

‖Tt‖ = 1 + t +
t2

2!
+ · · ·+ tn−1

(n− 1)!

for all t > 0. A direct calculation shows that

‖Tt‖ = N(t) = L(t)

for all t > 0, and that ρ = 1.
Direct calculations are not so easy for this example if one uses the l2 norm.

However, in this case it follows from (2.1) that ρ equals the largest eigenvalue of
B = (A + A∗)/2. Since the set of eigenvalues is {cos(rπ/(n + 1))}n

r=1, it follows
that

ρ = cos
( π

n + 1

)
< 1.

EXAMPLE 4.4. Given γ > 0, let

A =



−γ 1 0
0 −γ 0
0 0 0




act in C3 with the Euclidean norm. We have

‖Tt‖ = max

{
1, e−γt

{
t
2

+

√
1 +

t2

4

}}
.

If 0 < γ < 1 then this is not log-concave, and for γ close to 0, it increases linearly
in t for a long time, before eventually dropping to 1. The functions L(t) and N(t)
are equal, and they are constant for large enough t > 0. In this example

c(a) = max

{
1,

a
2(a + γ)2 +

a
a + γ

√
1 +

1
4(a + γ)2

}
.

This equals 1 for small a > 0, and converges to 1 as a → ∞, but it is not a mono-
tonic decreasing function of a.
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5. SCHRÖDINGER SEMIGROUPS

Semigroups with generators of the form A = −H = ∆− V have been ex-
tensively studied, and provide a fascinating insight into the importance of the
Banach space on which they are chosen to act.

If one assumes that the potential (multiplication operator) V : RN → R
lies in the so-called Kato class of [26], then the formula H = −∆ + V may be
interpreted as a quadratic form sum in L2(RN), and the one-parameter “Schrö-
dinger semigroup” {e−Ht}t>0 on L2 may be extended consistently to all of the
Lp spaces, 1 6 p 6 ∞ ([26], Theorem B.1.1). The domain of the semi-bounded
self-adjoint operator H may be hard to specify, but its quadratic form domain is
W1,2(RN) by p. 459, item (2) of [26]. If V is bounded below and locally L2 then H
is essentially self-adjoint on C∞

c (RN) by [14]; see also Theorem X.28 of [20].
If H is interpreted as a quantum-mechanical Hamiltonian, then there are

good reasons for being interested primarily in the choice p = 2: the time-depen-
dent Schrödinger equation f ′(t) = −iH f (t) is only soluble in Lp for p = 2, and in
addition the use of the L2 norm is fundamental to the probabilistic interpretation
of quantum mechanics. In this context Schrödinger semigroups are only of tech-
nical interest; they enable one to investigate a variety of spectral questions very
efficiently.

When studied in L2 the spectral theorem yields the strong stability condition

‖e−Ht‖ = e−λt

where

λ = min{Spec(H)}.

If the potential V depends upon a parameter c, then one often has λ(c) = 0 for
some range of values of c, with transitions to λ(c) < 0 at certain critical values of
c. These critical values describe the sharp emergence of instability.

Schrödinger semigroups also have direct physical significance in problems
involving diffusion, but in this context the equation should be studied in L1(RN).
The point here is that the semigroup e−Ht is positivity-preserving, and ft = e−Ht

describes the distribution of some continuous quantity in RN at time t > 0 given
its initial distribution f . Assuming f > 0, the total amount of the quantity at time
t is given by

∫

RN

f (t, x) dN x = ‖ ft‖1.

It is known that, in the technical context described above, the spectrum of
Hp (the operator H considered as acting in Lp) is independent of p, [12]. The op-
erators e−Ht are known to have positive “heat” kernels K(t, x, y) (see Theorem 6.4
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of [25] or Lemma B.7.5 of [26]) and

‖e−H1t‖ = sup
y∈RN

∫

RN

K(t, x, y) dN x.

We will see that these integrals of the heat kernel are not determined by the spec-
tral properties of H1. We start by showing that the value of the constant ρ may be
entirely different in the L1 and L2 contexts. The conditions on the potential V in
the following theorem can clearly be weakened; we do not claim originality for
the theorem, which seems to be a part of the folklore.

THEOREM 5.1. Let H1 = −∆ + V, where V is continuous and bounded below,
with

c = inf{V(x) : x ∈ RN}.

Then c = −ρ.

Proof. The inequality ρ 6 −c, or equivalently

‖e−H1t‖ 6 e−ct for all t > 0

may be proved by the use of functional integration ([25], p. 459).
Conversely, let ε > 0 and let |x − a| < δ imply c 6 V(x) < c + ε. Let

f ∈ C∞
c ({x : |x − a| < δ}) be non-negative with ‖ f ‖1 = 1. Using integration by

parts we have

ρ >
{ d

dt
‖Tt f ‖

}
t=0

= lim
t→0

t−1 {〈Tt f , 1〉 − 〈 f , 1〉} = −〈H1 f , 1〉
= 〈∆ f −V f , 1〉 = −〈V f , 1〉 > −(c + ε)〈 f , 1〉 = −c− ε.

This implies that ρ > −c.

COROLLARY 5.2. If H1 = −∆ + V where V is not bounded below, then ρ = ∞,
whatever the spectral properties of H1.

The above results show that the short time L1 semigroup growth properties
do not depend only upon whether the spectrum is non-negative. We cannot give
a complete analysis of the long time behaviour, since the requisite theorems do
not exist, but discuss a typical case below. Our main purpose is to emphasize that
one may have a failure of the strong stability principle for such semigroups. Gen-
eralizations of this example have been studied in considerable detail by Murata
[16], [17] and by Davies and Simon [7] using the concepts of criticality, subcriti-
cality and zero energy resonance. The most general results which we know about
are by Zhang [37].

EXAMPLE 5.3. Let N > 3 and let

(5.1) α± =
N − 2

2
±

√
(N − 2)2

4
− c, 0 < c <

(N − 2)2

4
,
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so that
0 < α− <

N − 2
2

< α+ < N − 2.

Now consider the operator Hp = −∆ + V acting in Lp(RN), where the bounded,
strongly subcritical potential V is defined by

V(x) =
{ −c|x|−2 if |x| > 1,

0 otherwise.

It is known that the operator Hp has spectrum [0, ∞) for all 1 6 p 6 ∞, and that
c = (N − 2)2/4 is a critical value for the emergence of a negative eigenvalue [12],
[7].

The operator Hp possesses a zero energy resonance η (i.e. a positive eigen-
function associated with the eigenvalue 0, which decays at infinity but not rapidly
enough to lie in L2(RN)) given by

0 < η(x) =
{ |x|−α− − β |x|−α+ if |x| > 1,

1− β otherwise.

where
0 < β =

α−
α+

< 1.

The operator −Hp generates a positivity-preserving one-parameter semi-
group acting in Lp(RN) for all 1 6 p 6 ∞, and for p = 2 it is a self-adjoint
contraction semigroup. On the other hand it is proved in Theorem 14 of [7] that
for any σ1, σ2 satisfying 0 < σ1 < α−/2 < σ2 < ∞ there exist positive constants
c1, c2 such that

(5.2) c1(1 + t)σ1 6 ‖e−H1t‖ 6 c2(1 + t)σ2

for all t > 0, the norm being the operator norm in L1(RN). We conclude that
s = s0 = ω0 = 0 for this example, whether the operator is considered to act in
L1(RN) or L2(RN).

The above example exhibits polynomial growth of the L1 operator norm as
t → ∞. It exhibits the weak, but not the strong, stability property.

THEOREM 5.4. For every γ > 0 there exists a Schrödinger semigroup e−Kpt act-
ing in Lp(RN) for all 1 6 p 6 ∞ such that

c1(1 + γ2t)σ1 6 ‖e−K1t‖ 6 c2(1 + γ2t)σ2

for all t > 0, even though K2 = K∗2 > 0 in L2(RN).

Proof. The operator is given by Kp = −∆ + Vγ, where

Vγ(x) =

{
−c|x|−2 if |x| > 1

γ ,
0 otherwise.

The bounds are proved by reducing to the case γ = 1 by using the scaling trans-
formation (Uγ f )(x) = γN/2 f (γx). See [7] for details.
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By exploiting the rotational invariance, it is easily seen that the above exam-
ple is associated with a similar example on the half-line. However, the transfer-
ence procedure is different for the L1 and L2 norms.

LEMMA 5.5. Let the potential V be rotationally invariant and bounded below on
RN . Then the self-adjoint operator H = −∆ + V, defined as a quadratic form sum, is
bounded below, and the one-parameter semigroup Tt defined for t > 0 by Tt = e−Ht

acts consistently on Lp(RN) for all 1 6 p < ∞ and commutes with rotations. If we
identify the rotationally invariant subspace of L2(RN) with L2((0, ∞), dr) in the usual
way, then the restriction of H2 to this subspace is given by

L2 f (r) = − d2 f
dr2 +

(N − 1)(N − 3)
4r2 f (r) + V(r) f (r)

subject to Dirichlet boundary conditions at r = 0. On the other hand if we identify the
rotationally invariant subspace of L1(RN) with L1((0, ∞), dr) in the usual way, then
the restriction of H1 to this subspace is given by

L1 f (r) = − d2 f
dr2 + (N − 1)

( f (r)
r

)′
+ V(r) f (r)

subject to Dirichlet boundary conditions at r = 0.

Proof. The operator H acts on the space L2((0, ∞), rN−1 dr) of rotationally
invariant functions according to the formula

H2 f (r) = − 1
rN−1

d
dr

{
rN−1 d f

dr
}

+ V(r) f (r).

We transfer H2 to L2((0, ∞), dr) by means of the unitary map U f (r) = r(N−1)/2

· f (r), obtaining the stated formula for L2 = UH2U−1.

We have already commented that the operator H is essentially self-adjoint
on C∞

c (RN), but since N > 3, the origin has zero capacity, and C∞
c (RN\{0}) is a

quadratic form core for H. On restricting to the rotationally invariant subspace it
follows that C∞

c (0, ∞) is a quadratic form core for L2. If N = 3 then one imposes
Dirichlet boundary conditions at 0 in the traditional sense, but if N > 3 then L2 is
in the limit point case at both 0 and ∞ because of the singularity of the potential
at the origin. Technically speaking there is no choice of boundary conditions to
be made, but one might also say that Dirichlet boundary conditions are forced.

The operator H1 acts on the space L1((0, ∞), rN−1 dr) of rotationally in-
variant functions according to the same formula as for H2. We transfer H1 to
L1((0, ∞), dr) by means of the isometric map V f (r) = rN−1 f (r), obtaining the
stated formula for L1 = VH1V−1.

There are several ways of discretizing the operator L1. One obtains a dis-
cretization which has real eigenvalues and generates a positivity-preserving semi-
group by starting from the formula

L1 f (r) = r(N−1)/2L2{r−(N−1)/2 f (r)}.
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The last part of the following lemma will be used when carrying out numerical
calculations below.

LEMMA 5.6. Let M2 be a self-adjoint n× n matrix with non-positive off-diagonal
entries, and let D be a diagonal n× n matrix with positive entries. Then the matrix

M1 = DM2D−1

has the same, real, spectrum as M2, and e−M1t is positivity-preserving for all t > 0. If
also M∗

11 > 0 then e−M1t is a contraction semigroup on Cn provided with the l1 norm.
If λ is an eigenvalue of M2 with multiplicity 1 and f 6= 0 is a corresponding eigenvector,
then the spectral projection Pλ of M1 corresponding to the eigenvalue λ has norm

(5.3) ‖Pλ‖ =
‖D f ‖1 ‖(D−1)∗ f ‖∞

〈 f , f 〉
calculated with respect to the l1 norm of Cn.

Proof. See Theorem 7.14 of [4] or the proof of Lemma 5.9 for the positivity-
preservation. The second statement is also classical, but we include a proof for
completeness. Since the coefficients of the matrix e−M1t are non-negative, we
have

‖e−M1t f ‖1 − ‖ f ‖1 =
n

∑
r=1
{|(e−M1t f )r| − | fr|} 6

n

∑
r=1
{(e−M1t| f |)r − | fr|}

= 〈e−M1t| f | − | f |, 1〉 = −
t∫

0

〈M1e−M1s| f |, 1〉 ds

=

t∫

0

〈e−M1s| f |, M∗
11〉 ds 6 0.

The expression for ‖Pλ‖ is obtained from the formula

Pλφ =
〈φ, (D−1)∗ f 〉

〈 f , f 〉 D f .

EXAMPLE 5.7. We describe a discretization of the operator L1, with the crit-
ical value of the parameter c in (5.1), namely c = (N − 2)2/4, and with N = 3,
acting in the space Cn of finite sequences. We put

(M2 f )r =





(2− v1) f1 − f2 if r = 1,
(2− vr) fr − fr−1 − fr+1 if 2 6 r 6 n− 1,
(2− vn) fn − fn−1 if r = n.

We choose

vr =
{

2− s1 if r = 1,
2− s−1

r−1 − sr if 2 6 r 6 n,
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where sr = (1 + 1/r)1/2. We note that

1
4r2 6 vr 6 1

4r2 + O(r−4)

as r → ∞. We finally put M1 = DM2D−1 where Dr,s = rδr,s for all r, s.

THEOREM 5.8. The matrix M2 is non-negative and self-adjoint. The operators
e−M1t on Cn are positivity-preserving for all t > 0, and their eigenvalues λr,t all satisfy
0 < λr,t 6 1. If we replace vr by 0 in the above definitions, then e−M1t is a one-parameter
contraction semigroup on Cn provided with the l1 norm.

Proof. The self-adjointness of M2 is evident. The fact that M2 is non-negative
depends upon a discrete analogue of the Hardy inequality. There is a substantial
literature on discrete analogues of differential inequalities, but we can prove the
result which we need very quickly. The relevant quadratic form is

Q(a) = |a1|2 + |an+1|2 +
n

∑
r=1
{|ar − ar−1|2 − vr|ar|2}

=
n

∑
r=1

(2− vr)|ar|2 −
n

∑
r=2
{arar−1 + ar−1ar}

=
n

∑
r=2

|s1/2
r−1ar−1 − s−1/2

r−1 ar|2 + |s1/2
n an|2 > 0.

Since M1 and M2 are similar, the comments about the eigenvalues of e−M1t follow
immediately. The fact that e−M1t is positivity preserving for t > 0 follows using
Lemma 5.6, as does the final statement of the theorem.

In spite of the above, Theorem 5.4 suggests that the norm of e−M1t, consid-
ered as an operator on Cn provided with the l1 norm, should grow with t. Table
1 shows the results of testing this numerically using Matlab. Our computations
used the formula

e−M1t = De−M2tD−1

and exploited the self-adjointness of M2 when calculating the exponential. One
can use this formula directly to obtain the bound

‖e−M1t‖ 6 n1/2‖D‖‖e−M2t‖‖D−1‖ 6 n3/2

for all t > 0, using the fact that ‖ f ‖2 6 ‖ f ‖1 6 n1/2‖ f ‖2 for all f ∈ Cn and
M2 = M∗

2 > 0. However, this provides no insight into the limiting behaviour as
n → ∞.

Table 1. Values of ‖e−M1t‖ for various n.
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t n = 100 n = 200 n = 300
0 1 1 1

100 4.059 4.059 4.059
200 4.824 4.824 4.824
300 5.333 5.337 5.337
400 5.701 5.735 5.735
500 5.945 6.063 6.063
600 6.071 6.346 6.346
700 6.095 6.595 6.595
800 6.036 6.818 6.818
900 5.914 7.022 7.022
1000 5.747 7.208 7.209

For n = 300 the maximum value of the norm occurs for t ∼ 6000. While
the increase may not appear very rapid, it should be noted that we have assumed
a unit separation of the points on Z+, so the implied time scale is very long by
comparison with that of the corresponding differential operator. Table 2 shows
how the maximum value of the l1 norm as t varies depends upon the value of n.

Table 2. max
t>0

‖e−M1t‖ as a function of n.

n norm max
50 4.33
100 6.10
150 7.46
200 8.60
250 9.61
300 10.53

Since every eigenvalue of M1 is positive we must have

lim
t→∞

‖e−M1t‖ = 0

but, still using the l1 norm, if n = 300 the inequality ‖e−M1t‖ 6 1 only holds for
t > 4.6× 104.

Table 1 suggests the existence of a limit as n → ∞, and this is proved below.
We identify Cn with the subspace of l1(Z+) consisting of sequences with support
in {1, . . . , n}. We also identify any n× n matrix X with the operator X̃ on l1(Z+)
defined by

(X̃ f )r =





n
∑

s=1
Xr,s fs if 1 6 r 6 n,

0 otherwise.

We finally exhibit the n-dependence of the various operators explicitly.
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LEMMA 5.9. There exists a bounded operator M1,∞ on l1(Z+) to which M1,n con-
verge strongly as n → ∞. For every t > 0 the operators e−M1,nt increase monotonically
to e−M1,∞t, and

(5.4) lim
n→∞

‖e−M1,nt‖ = ‖e−M1,∞t‖.

Proof. The limit operator is given by

(M1,∞ f )r =
{

(2− v1) f1 − 1
2 f2 if r = 1,

(2− vr) fr − r
r−1 fr−1 − r

r+1 fr+1 if r > 2,

and is evidently bounded on l1(Z+). The strong convergence of M1,n to M1,∞
implies the strong convergence of the semigroup operators. We also have

(e−M1,nt f )r =
∞

∑
s=1

Kn(t, r, s) fs

for all f ∈ l1(Z+), where Kn(t, r, s) > 0 is the transition “probability” for a jump
process which is killed if it moves outside {1, . . . , n} and grows at the rate vr at
each r such that 1 6 r 6 n. It follows on probabilistic grounds that n → Kn(t, r, s)
is monotonic increasing with

lim
n→∞

Kn(t, r, s) = K∞(t, r, s).

This implies (5.4).

The formula (5.2) with N = 3 suggests that for our example one should
have

‖e−M1,∞t‖ ∼ kt1/4

as t → ∞. For finite n this can only happen for t in the transitory growth interval.
Numerical calculations confirm this. If n = 200 one has

(2.69t)1/4 6 ‖e−M1t‖ 6 (2.71t)1/4

for all t satisfying 200 6 t 6 1200. If n = 300 the same holds for 200 6 t 6 2500.
We may also investigate the resolvent norms in the l1 context, or more

specifically the function c(a) = a‖Ra‖; see Lemma 2.9. The eigenvalues of M1
are all positive, so ω0 6= 0, and we must have lim

a→0+
c(a) = 0. However, the

smallest eigenvalue converges to 0 as n → ∞, so c(a) may be quite large even for
small positive a. The data in Table 3 were obtained for the case n = 300, putting
a = 2−m and stopping at the value of m for which c(a) takes its maximum value.
For n = 300 the smallest eigenvalue of M1 is 6.38× 10−5 and the largest is 4.00.

Table 3. Dependence of c(a) on a = 2−m for n = 300.
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m c(a)
1 1.50
2 1.72
4 2.36
6 3.30
8 4.65
10 6.56
12 8.45

For n = 1000 the smallest eigenvalue of M1 is 5.772× 10−6 and the largest is 4.00.
The largest value of c(a) for a of the above form occurs for a = 2−16 and is 15.50.

We finally tabulate how the smallest eigenvalue λ of M1 depends upon n,
with the values of the norm of the corresponding spectral projection Pλ, com-
puted using (5.3). The fact that ‖Pλ‖ grows like n1/2 as n increases was expected
on the basis of replacing f in (5.3) by the exact zero energy resonance gr = r1/2 of
the operator M1 acting in L1(Z+).

Table 4. Dependence of λ and ‖Pλ‖ on n.

n λ ‖Pλ‖ ‖Pλ‖/n1/2

100 5.669× 10−4 11.178 1.1178
200 1.4314× 10−4 15.772 1.1152
400 3.597× 10−5 22.278 1.1139
600 1.601× 10−5 27.274 1.1134
800 9.014× 10−6 31.487 1.1132
1000 5.772× 10−6 35.199 1.1131

EXAMPLE 5.10. In the above study we focused on the case N = 3, but the
difference between the l1 and l2 theories becomes even more dramatic for larger
values of N. The only change needed in our discrete example with the critical
value of c in (5.1), namely c = (N − 2)2/4, is to redefine D by Dr,s = r(N−1)/2δr,s
for all r, s. For N = 6 the bounds (5.2) then suggest that ‖e−M1t‖ ∼ t as t → ∞.
Numerical calculations yield

4.00 t 6 ‖e−M1t‖ 6 4.02 t

for all t satisfying 100 6 t 6 2000, when n = 300.

CONJECTURE 5.11. Let N > 2, let (D f )r = r(N−1)/2 fr for all r > 1, and let

(M2,∞ f )r =
{

(2− v1) f1 − f2 if r = 1,
(2− vr) fr − fr−1 − fr+1 if r > 2.

Then M1,∞ = DM2,∞D−1 is a bounded operator on l1(Z+) with non-negative real
spectrum, and there exists a positive constant c such that

lim
t→∞

t−(N−2)/4‖e−M1,∞t‖ = c.
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6. ABSENCE OF UPPER BOUNDS

In finite dimensions it is also possible to obtain upper bounds on semigroup
norms from spectral or pseudospectral information, but the results deteriorate as
the dimension increases [8], [2], [3], [24]. It is therefore not surprising that no
such bounds can be obtained in a general Banach space setting. In this section
we describe physically important examples to show that this difficulty cannot be
evaded.

The converse part of the following theorem is a classical result of Hille and
Yosida, and has frequently been used to pass from resolvent bounds or from
the dissipative property to a one-parameter semigroup ([4], Corollary 2.22). The
smallest possible constant c in (6.1) is often called the Kreiss constant by numeri-
cal analysts, by analogy with the constant of the Kreiss matrix theorem.

THEOREM 6.1. If Tt is a one-parameter semigroup satisfying ‖Tt‖ 6 c for all
t > 0 then its generator A satisfies

Spec(A) ⊆ {λ : Re (λ) 6 0}

and

(6.1) ‖(λI − A)−1‖ 6 c
Re (λ)

for all λ such that Re (λ) > 0. The converse implication holds if c = 1.

There are many important examples in which one does not have c = 1. The
following is typical of semigroups whose generator is an elliptic operator of order
greater than 2, and is treated in detail in [5].

EXAMPLE 6.2. Let Tt act in L1(Rn) for t > 0 according to the formula

Tt f (x) = kt ∗ f (x)

where ∗ denotes convolution and

k̂t(ξ) = e−|ξ|
4t.

Formally speaking Tt = eAt where A = −∆2. It is immediate that kt lies in
Schwartz space for every t > 0, and hence that convolution by kt defines a
bounded operator on L1. kt is not a positive function on Rn, and if we put
cn = ‖kt‖1 then cn > 1 is independent of t by scaling and

‖Tt‖ = cn

for all t > 0. For n = 1 we have c1 ∼ 1.2367.

The following more general theorem implies that ρ = +∞ for all one-para-
meter semigroup whose generator is elliptic of order greater than 2, [15].
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THEOREM 6.3. Let Ω be a region in RN and let A be an elliptic operator of or-
der greater than two whose domain contains C∞

c (Ω). If A generates a one-parameter
semigroup Tt on Lp(Ω) and p 6= 2 then Tt cannot be a contraction semigroup.

In spite of its great value, we emphasize that the Hille-Yosida theorem is
numerically fragile. An estimate which differs from that required by an unmea-
surably small amount does not imply the existence of a corresponding one-para-
meter semigroup. We conjecture that a natural example (i.e. an example arising
from a genuine problem in physics) with similar properties can be constructed
in Hilbert space. The following theorem, involving the Schrödinger equation, is
due to Hörmander [13].

THEOREM 6.4. For every ε > 0 there exists a reflexive Banach space B and a
closed densely defined operator A on B such that:

(i) Spec(A) ⊆ iR;
(ii) ‖(λI − A)−1‖ 6 (1 + ε)/|Re (λ)| for all λ /∈ iR;

(iii) A is not the generator of a one-parameter semigroup.

Proof. Given 1 6 p 6 2, we define the operator A on Lp(R) by

A f (x) = i
d2 f
dx2 .

As initial domain we choose Schwartz space S , which is dense in Lp(R). The
closure of A, which we denote by the same symbol, has resolvent operators given
by Rλ f = gλ ∗ f , where ∗ denotes convolution and

ĝλ(ξ) = (λ− iξ2)−1

for all λ /∈ iR. If p = 2 the unitarity of the Fourier transform implies that ‖Rλ‖ 6
|Re (λ)|−1. For p = 1, however,

‖Rλ‖ = ‖gλ‖L1 .

Assuming for definiteness that Re (λ) > 0 the explicit formula for gλ yields

‖Rλ‖ =
1

|λ|1/2

∞∫

0

exp[−|x|Re {(iλ)1/2}] dx.

Putting λ = reiθ where r > 0 and −π/2 < θ < π/2, we get

‖Rλ‖ =
1

r cos( θ
2 + π

4 )
6 2
|Re (λ)| .

Interpolation then implies that if 1 6 p 6 2 and 1/p = γ + (1− γ)/2 then

‖Rλ‖ 6 2γ

|Re (λ)| .

By taking p close enough to 2 we achieve the condition (ii).
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The operators Tt are given for t 6= 0 by Tt f = kt ∗ f where ∗ denotes convo-
lution and

kt(x) = (4πit)−1/2 exp
{
− x2

4it

}
.

It follows from the formula for the operator norm on L1(R) that the operators Tt
are not bounded on L1(R) for any t 6= 0. Suppose next that 1 < p < 2 and that a
semigroup Tt on Lp(R) with generator A does exist; we will derive a contradic-
tion by an argument which we learned from I.E. Segal. If f ∈ S and ft ∈ S is
defined for all t ∈ R by

f̂t(ξ) = e−iξ2t f̂ (ξ)

then ft is differentiable with respect to the Schwartz space topology, and there-
fore with respect to the Lp norm topology, with derivative A ft. It follows by
Theorem 1.7 of [4] that ft = Tt f . Now assume that a > 0 and f̂ (ξ) = e−aξ2

, so
that f̂t(ξ) = e−(a+it)ξ2

. Explicit calculations of ft and f yield

‖ f ‖p = (4πa)1/2p−1/2 p−1/2p

‖ ft‖p = (4π)1/2p−1/2 p−1/2pa−1/2p(a2 + t2)1/2p−1/4.

Hence

‖Tt‖ > ‖ ft‖p

‖ f ‖p
=

(
1 +

t2

a2

)(2−p)/4p
.

But this diverges to ∞ as a → 0, so Tt cannot exist as a bounded operator for any
t 6= 0.

The above theorem implies that one cannot expect to derive upper bounds
on semigroup norms from numerical resolvent norm estimates, i.e. from pseu-
dospectra, in infinite-dimensional contexts. The Miyadera-Hille-Yosida-Phillips
theorem provides a general connection between resolvent and semigroup bounds
([4], Theorem 2.21). However, it involves obtaining bounds on all powers of the
resolvent, and is rarely used.
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