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ABSTRACT. A free semigroupoid algebra is the weak operator topology closed
algebra generated by the left regular representation of a directed graph. We
establish lattice isomorphisms between ideals and invariant subspaces, and
this leads to a complete description of the WOT-closed ideal structure for these
algebras. We prove a distance formula to ideals, and this gives an appropri-
ate version of the Carathéodory interpolation theorem. Our analysis rests on
an investigation of predual properties, specifically the An properties for linear
functionals, together with a general Wold Decomposition for n-tuples of par-
tial isometries. A number of our proofs unify proofs for subclasses appearing
in the literature.
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INTRODUCTION

In [19] and [20], the second author and Stephen Power began studying a
class of operator algebras called free semigroupoid algebras. These are the WOT-
closed (nonselfadjoint) algebras LG generated by the left regular representations
of directed graphs G. Earlier work of Muhly and Solel [24], [25] considered the
norm closed algebras generated by these representations in the finite graph case;
they called them quiver algebras. In the case of single vertex graphs, the LG ob-
tained include the classical analytic Toeplitz algebra H∞ [13], [14], [29] and the
noncommutative analytic Toeplitz algebras Ln studied by Arias, Popescu, David-
son, Pitts, and others [1], [9], [12], [11], [18], [27], [28].

In this paper, we consider algebraic structure-type problems for the alge-
bras LG. In particular, we derive a complete description of the WOT-closed ideal
structure; for instance, there is a lattice isomorphism between right ideals and
invariant subspaces of the commutant L′G = RG [11]. Furthermore, we prove a



274 MICHAEL T. JURY AND DAVID W. KRIBS

distance formula to ideals in these algebras [2], [10], [23]. This yields a version
of the Carathéodory interpolation theorem [2], [10] for LG. A valuable tool in
our analysis is a general Wold Decomposition [25], [26], which we establish for
n-tuples of partial isometries with initial and final projections satisfying natural
conditions. This leads to information on predual properties for LG. We prove LG
satisfies property A1 [6], [11]; that is, every weak* continuous linear functional
may be realized as a vector functional. A number of our proofs for general LG
unify the proofs for the special cases of Ln and H∞, which were previously estab-
lished by different means.

The first section contains a brief review of the notation associated with these
algebras. Our attention will be focused on the cases when the directed graph G
has “no sinks”; that is, every vertex in G is the initial vertex for some directed
edge. We include a list of some examples generated by simple graphs. We begin
the analysis proper in the second section, with a Wold Decomposition for n-tuples
of partial isometries. This leads into the topic of the third section; an investigation
into the basic properties of linear functionals on LG. In particular, we show the
ampliation algebras L

(n)
G have the factorization property An. In the subsequent

section, we prove the subclass of algebras with partly free commutant discovered
in [19], [20] are precisely those LG which satisfy the stronger factorization prop-
erty Aℵ0 , when an initial restriction is made on the graph. Using property A1
for LG and the Beurling Theorem from [20], we establish complete lattice isomor-
phisms between ideals and invariant subspaces of LG in the fifth section. This
allows us to describe, for example, the WOT-closure of the commutator ideal, and
precisely when WOT-closed ideals are finitely generated. In the penultimate sec-
tion we prove a completely isometric distance formula to ideals of LG, and we
apply this in special cases to obtain a Carathéodory Theorem in the final section.

1. FREE SEMIGROUPOID ALGEBRAS

Let G be a countable (finite or countably infinite) directed graph with edge
set E(G) and vertex set V(G). Let F+(G) be the free semigroupoid determined
by G; that is, F+(G) consists of the vertices which act as units, written as {k}k>1,
and allowable finite paths in G, with the natural operations of concatenation of
allowable paths. Given a path w = eim · · · ei1 in F+(G), an allowable product of
edges eij in E(G), we write w = k2wk1 when the initial and final vertices of w are,
respectively, k1 and k2. Further, by |w| we mean the number of directed edges
which determine the path w.

ASSUMPTION 1.1. For our purposes, it is natural to restrict attention to di-
rected graphs G with “no sinks”; that is, every vertex is the initial vertex for some
directed edge.
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Let HG = `2(F+(G)) be the Hilbert space with orthonormal basis {ξw :
w ∈ F+(G)} indexed by elements of F+(G). For each edge e ∈ E(G) and vertex
k ∈ V(G), define partial isometries and projections on HG by:

Leξw =
{

ξew if ew ∈ F+(G),
0 otherwise,

and

Lkξw =
{

ξkw = ξw if w = kw ∈ F+(G),
0 otherwise.

These operators may be regarded as “partial creation operators” acting on
a generalized Fock space Hilbert space. There is an equivalent tree perspective,
discussed in [20], which gives an appealing visual interpretation of the actions of
these operators. The vectors {ξk : k ∈ V(G)} are called the vacuum vectors.

The family {Le, Lk} also arises through the left regular representation λ :
F+(G) → B(HG), with λ(e) = Le and λ(k) = Lk. The associated free semigroupoid
algebra is the weak operator topology closed algebra generated by this family:

LG = WOT-Alg {Le, Lk : e ∈ E(G), k ∈ V(G)}
= WOT-Alg {λ(w) : w ∈ F+(G)}.

These algebras were the focus of analysis by the second author and Power in [19],
[20]. In the case of finite graphs, Muhly and Solel [24], [25] considered the norm
closed algebras AG generated by such a family, calling them quiver algebras.

There is an analogous right regular representation ρ : F+(G) → B(HG),
which yields partial isometries ρ(w) ≡ Rw′ for w ∈ F+(G) acting on HG by the
equations Rw′ξv = ξvw, where w′ is the word w in reverse order, with similar
conventions. Observe that Rv′Lw = LwRv′ for all v, w ∈ F+(G). In fact, the
algebra

RG = WOT-Alg {Re, Rk : e ∈ E(G), k ∈ V(G)}
= WOT-Alg {ρ(w) : w ∈ F+(G)}

coincides with the commutant L′G = RG. The commutant is also unitarily equiv-
alent to the algebra LGt , where Gt is obtained from G simply by reversing di-
rections of all edges. Elements of LG have Fourier expansions: If A ∈ LG and
k ∈ V(G), then Aξk = ∑

w=wk
awξw for some scalars aw ∈ C, and the Cesaro-type

sums

σk(A) = ∑
|w|<k

(
1− |w|

k

)
awLw

converge in the strong operator topology to A. These results are contained in
[20]. We write A ∼ ∑

w∈F+(G)
awLw as a notational convenience. We shall also put

Pk = Lk and Qk = Rk for the projections determined by vertices k ∈ V(G).
A valuable tool in our analysis is the Beurling-type invariant subspace the-

orem for LG proved in [20]. A non-zero subspace W of HG is wandering for LG if
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the subspaces LwW are pairwise orthogonal for distinct w in F+(G). Observe that
every wandering subspace W generates an LG-invariant subspace given by

LG[W ] = ∑
w∈F+(G)

⊕LwW .

Every LG-wandering vector ζ generates the cyclic invariant subspace LG[ζ]. The
subspace LG[ζ] is minimal cyclic if Lkζ = Pkζ = ζ for some vertex k ∈ V(G).
Notice that if ζ is a wandering vector, then each vector Pkζ which is non-zero is
wandering as well. The following result was proved in [20]. It is a generalization
of Beurling’s classical theorem [7] for H∞ and a corresponding result for free
semigroup algebras Ln [1], [12].

THEOREM 1.2. Every invariant subspace of LG is generated by a wandering sub-
space, and is the direct sum of minimal cyclic subspaces generated by wandering vectors.
Every minimal cyclic invariant subspace generated by a wandering vector is the range
of a partial isometry in RG, and the choice of partial isometry is unique up to a scalar
multiple.

In fact, more was proved in [20]. The partial isometries in RG have a stan-
dard form, and their initial projections are sums of projections amongst {Qk : k ∈
V(G)}. Given a minimal cyclic subspace LG[ζ] with Pkζ = ζ, a partial isometry
Rζ in RG which satisfies LG[ζ] = RζHG is defined by Rζ ξw = Lwζ for w in F+(G),
and the initial projection satisfies R∗ζ Rζ = Qk. Further, any partial isometry in RG
with range space LG[ζ] is a scalar multiple of Rζ .

We finish this section by setting aside a number of examples generated by
simple graphs.

EXAMPLES 1.3. (i) The algebra generated by the graph with a single ver-
tex and single loop edge is unitarily equivalent to the classical analytic Toeplitz
algebra H∞ [13], [14], [29].

(ii) The noncommutative analytic Toeplitz algebras Ln, n > 2 [1], [2], [9],
[12], [11], [10], [18], [27], [28], arise from the graphs with a single vertex and n
distinct loop edges.

(iii) The cycle algebras LCn discussed in [20] are generated by the graph Cn
with 2 6 n < ∞ vertices, and edges for directions {(2, 1), . . . , (n, n − 1), (1, n)}.
These algebras may be represented as matrix function algebras.

(iv) The algebra LC∞ [19], [20] generated by the infinite graph analogue of
the cycle graphs is determined by the graph C∞ with vertices {k}k>1 and directed
edges (k + 1, k).

(v) A non-discrete example discussed in [19] is given by the graph Q con-
sisting of vertices {q}q∈Q indexed by the rational numbers, and directed edges
eqp = qeqp p whenever p 6 q. Notice that Qt is graph isomorphic to Q, and thus
the algebra LQ ' LQt ' L′Q is unitarily equivalent to its commutant.
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2. WOLD DECOMPOSITION

In this section, we establish a Wold Decomposition for n-tuples of (non-zero)
operators S = (S1, . . . , Sn) which act on a common Hilbert space H and satisfy
the following Relations denoted by (†):

(1)
n
∑

i=1
SiS∗i 6 I.

(2) For 1 6 i 6 n,

(S∗i Si)
2 = S∗i Si.

(3) For 1 6 i, j 6 n,

(S∗i Si)(S∗j Sj) = 0 or S∗i Si = S∗j Sj.

(4) For 1 6 i 6 n, there is a j such that

SiS∗i 6 S∗j Sj.

(5) The distinct elements {Pk}k∈S from the set {S∗i Si : 1 6 i 6 n} satisfy

∑
k∈S

Pk = I.

NOTE 2.1. We shall behave as though n is finite in this section; there are ob-
vious modifications which can be made in the infinite case. The first four condi-
tions say the Si are partial isometries with pairwise orthogonal ranges, with initial
projections either orthogonal or equal, and with range projections supported on
a (unique) initial projection. The last condition, which is redundant when equal-
ity is achieved in the first condition, means no non-zero vector is annihilated by
all the Si. In terms of the directed graph connection we are about to make, this
means the associated directed graphs have no sinks.

DEFINITION 2.2. Given a positive integer n > 2, we write F+
n for the (non-

unital) free semigroup on n noncommuting letters. If G is a directed graph with n
edges, we let F+

n (G) denote the set of all finite words in the edges of G. Observe
that F+

n (G) contains the set of finite paths F+(G) \V(G) as a subset.

If w = im · · · i1 belongs to F+
n , it is convenient in this section to let w(S) be

the operator product w(S) = Sim · · · Si1 . When S = (S1, . . . , Sn) satisfies (†), this is
a partial isometry with initial projection w(S)∗w(S) equal to S∗i1 Si1 or 0, and final
projection w(S)w(S)∗ supported on Sim S∗im . Let SS be the weak operator topology
closed algebra generated by such an n-tuple and its initial projections

SS = WOT-Alg{S1, . . . , Sn, S∗1S1, . . . , S∗nSn}.

DEFINITION 2.3. A subspace W of H is wandering for S = (S1, . . . , Sn) satis-
fying (†) if the subspaces w(S)W are pairwise orthogonal for distinct words w in
F+

n . Observe that a given partial isometry w(S) may be equal to zero here. Every
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wandering subspace generates an invariant subspace by

SS[W ] = ∑
w∈F+

n

⊕w(S)W .

The following is the pure part of the Wold Decomposition. We set it aside
since it is the precise form we require in this paper.

LEMMA 2.4. Let S = (S1, . . . , Sn) be operators on H satisfying (†). The subspace

W = Ran
(

I −
n
∑

i=1
SiS∗i

)
is wandering for S. Suppose that

H = ∑
w∈F+

n

⊕w(S)W .

Let {Pk}k∈S be the distinct projections from the set {S∗i Si : 1 6 i 6 n}. Then

PkW ⊆ W = ∑
k∈S

⊕PkW .

Let G be the directed graph (with no sinks) with vertex set V(G) ≡ S , and n
directed edges {e ∈ E(G)} where the number of edges from vertex k to vertex l is given
by the cardinality of the set

{Si : S∗i Si = Pk and SiS∗i 6 Pl}.

Given k ∈ S , let αk = dim PkW and let {S(k)
i } = {Si : S∗i Si = Pk}. The sets {S(k)

i }
and {Le : e = ek} have the same cardinality for each k ∈ S = V(G). Let S0 = {k ∈
V(G) : αk 6= 0}. Then there is a unitary

U : H −→ ∑
k∈S0

⊕(QkHG)(αk)

such that for l ∈ S ,

{US(l)
i U∗} =

{
∑

k∈S0

⊕L(αk)
e

∣∣∣
(QkHG)(αk)

: e = el
}

,

where L(αk)
e |(QkHG)(αk) is the restriction of the ampliation L(αk)

e to the αk-fold direct sum
of QkHG with itself.

Proof. As S = (S1, . . . , Sn) are partial isometries with pairwise orthogonal

ranges, the operator P = I −
n
∑

i=1
SiS∗i is a projection and the subspace W = PH is

wandering. Notice that

(S∗i Si)(SjS∗j ) = (SjS∗j )(S∗i Si) =

{
SjS∗j if SjS∗j 6 S∗i Si,
0 otherwise.

Thus the initial projections S∗i Si commute with P, and hence PkW is contained
in W for k ∈ S . Further, W = ∑

k∈S
⊕PkW by condition (5) in (†); the no-sink

condition. The sets {S(k)
i } and {Le : e = ek, e ∈ E(G)} have the same cardinality
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from the definition of G. It is convenient to re-label {S(k)
i } as {Se : e = ek, e ∈

E(G)} for the rest of the proof.
It remains to construct a unitary U which intertwines {Se : e ∈ E(G)} with

the appropriate sums of restricted ampliations of {Le : e ∈ E(G)}. First note that
there is a natural bijective correspondence between F+

n (G) and F+
n induced by

the re-labeling of {S1, . . . , Sn} as {Se : e ∈ E(G)}. The non-trivial paths in the free
semigroupoid, F+(G) \ V(G), may be regarded as a subset of F+

n (G). The key
point is that, under this identification, the set of all words w in F+

n (G) for which
the partial isometry w(S) is non-zero is precisely the set F+(G) \ V(G). Indeed,
given a formal product w = ek · · · e1 in F+

n (G), the definition of G and properties
(†) for S = (S1, . . . , Sn) show that

w(S) 6= 0 if and only if Sej S
∗
ej

6 S∗ej+1
Sej+1 for 1 6 j < k

if and only if w = ek · · · e1 ∈ F+(G).

Given k in S0, so that αk = dim PkW 6= 0, for 1 6 j 6 αk let

{ξ
(j)
w ≡ w(L)ξ

(j)
k : w ∈ F+(G), w = wk}

be the standard orthonormal basis for the jth copy of the subspace QkHG in the
αk-fold direct sum (QkHG)(αk). Next, for each k in S0 choose an orthonormal basis
{η

(j)
k : 1 6 j 6 αk} for the (non-zero) subspace PkW . By hypothesis we have

H = span{w(S)η
(j)
k : w ∈ F+

n (G), k ∈ S0, 1 6 j 6 αk}.

Moreover, as W = ∑
k∈S0

⊕PkW is wandering for S , the non-zero vectors in this

spanning set form an orthonormal basis for H. But we observed above that w
in F+

n (G) \ F+(G) implies w(S) = 0. Further, by the properties (†) we also have
w(S)η

(j)
k 6= 0 precisely when w = wk inside F+(G). Hence the spanning set for

H may be restricted to require w in F+(G) \ V(G). Thus, it follows that we may
define a unitary operator

U : H −→ ∑
k∈S0

⊕(QkHG)(αk)

by intertwining these bases




U(η
(j)
k ) = ξ

(j)
k

U(w(S)η
(j)
k ) = w(L)ξ

(j)
k (= ξ

(j)
w )

where k ∈ S0, 1 6 j 6 αk, and w = wk ∈ F+(G) \ V(G). Evidently, this unitary
jointly intertwines the operators {Si} with the ampliations

{
∑

k∈S0

⊕L(αk)
e |(QkHG)(αk)

}

in the desired manner, and this completes the proof.
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It follows that the algebra SS is unitarily equivalent to a corresponding
“weighted ampliation” of LG, with weights αk. We may regard the dimension
αk = dim PkW as the pure multiplicity over vertex k in the Wold Decomposition for
S. Observe that we are allowing for αk = 0; this means that no copy of the “tree
component” subspace QkHG appears in the range of the unitary U. This situa-
tion arises, for instance, if the operators L = (Le)e∈E(G) themselves are restricted
to the direct sum of a subset of these reducing subspaces {QkHG}k∈V(G). More
generally, there is an interesting consequence of the lemma in the case that S is a
joint restriction of some L = (Le)e∈E(G) to a cyclic invariant subspace. A version
of the following result for the ampliations of LG will play a key role in Sections 3
and 6.

COROLLARY 2.5. Let M = LGξ be a cyclic invariant subspace for LG. Let S =
{k ∈ V(G) : Pkξ 6= 0}. Then the operators Le|M are jointly unitarily equivalent to the
operators Le|∑⊕

k∈S (QkHG). In particular, the corresponding restrictions of LG are unitarily
equivalent:

LG|M ' LG|∑⊕
k∈S (QkHG).(2.1)

Proof. Assume first that all the restrictions Se = Le|M are non-zero. Then
we may apply Lemma 2.4 to the tuple (Se)e∈E(G). The wandering subspace here
is

W = Ran
(

IM − ∑
e∈E(G)

SeS∗e
)

= dim
(
Mª

(
∑

e∈E(G)

⊕LeM
))

.

But in this case W is spanned by {PkPξ = PPkξ : k ∈ V(G)} where P = I −
∑
e

LeL∗e . It follows that the subspaces PkW ⊆ W are at most one dimensional, and

that PkW 6= 0 if and only if Pkξ 6= 0. Hence the result follows from Lemma 2.4.
In the general case, Lemma 2.4 would produce a joint unitary equivalence

between the non-zero operators amongst {Se : e ∈ E(G)} and the creation opera-
tors from a subgraph of G. (The subgraph obtained would consist of the satura-
tions at all vertices in S = {k ∈ V(G) : Pkξ 6= 0}.) But it is easy to see that Se = 0
if and only if e is not part of a path starting at some vertex in S , and this also
corresponds to the case that Le|∑⊕

k∈S (QkHG)(αk) = 0. Thus, the unitary equivalence

(2.1) holds in all situations.

We now turn our attention to the general case. The families of partial isome-
tries L = (Le)e∈E(G) provide the models for pure partial isometries in the Wold
Decomposition through their weighted ampliations as in Lemma 2.4. On the
other hand, the “coisometric” component of the decomposition is characterized
by determining a representation of a Cuntz-Krieger directed graph C∗-algebra
[4], [21], [22].

DEFINITION 2.6. Let S = (S1, . . . , Sn) satisfy (†) on H. Then
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(i) S is fully coisometric if equality is achieved in condition (1) of (†):

SS∗ =
[
S1 · · · Sn

]



S∗1
...

S∗n


 =

n

∑
i=1

SiS∗i = I.

(ii) S is pure if H is equal to the S-invariant subspace generated by the wan-

dering subspace W = Ran
(

I −
n
∑

i=1
SiS∗i

)
:

H = ∑
w∈F+

n

⊕w(S)W .

Every countable directed graph G with n edges can be seen to determine
a fully coisometric n-tuple S = (Se)e∈E(G), where the particular (†) relations be-
tween the Se are governed by the directed graph as in the statement of Lemma 2.4.
Conversely, every fully coisometric n-tuple here can be shown to be jointly uni-
tarily equivalent to a fully coisometric n-tuple of the form S = (Se)e∈E(G), where
the directed graph G is again explicitly obtained as in Lemma 2.4. (See work of
Brenken [8] for discussions on this topic.) Further, we have shown in Lemma 2.4
how pure n-tuples are completely determined by tuples L = (Le)e∈E(G). Thus we
may prove the following.

THEOREM 2.7. Let S = (S1, . . . , Sn) be operators on H satisfying (†). Then
S1, . . . , Sn are jointly unitarily equivalent to the direct sum of a pure n-tuple and a fully
coisometric n-tuple which both satisfy (†). In other words, there is a directed graph G
with n edges and a unitary U such that US1U∗, . . . , USnU∗ are of the form

{USiU∗}n
i=1 =

{
Se ⊕

(
∑

k∈S0

⊕L(αk)
e

∣∣∣
(QkHG)(αk)

)
: e ∈ E(G)

}
.(2.2)

Let Hp = ∑
w∈F+

n

⊕w(S)W where W = Ran
(

I −
n
∑

i=1
SiS∗i

)
and let Hc = (Hp)⊥.

The subspaces Hc and Hp reduce S = (S1, . . . , Sn), and the restrictions Si|Hc and Si|Hp

determine the joint unitary equivalence in (2.2).
This decomposition is unique in the sense that ifK is a subspace ofH which reduces

S = (S1, . . . , Sn), and if the restrictions {Si|K : 1 6 i 6 n} are pure, respectively fully
coisometric, then K ⊆ Hp, respectively K ⊆ Hc.

Proof. Since each S∗i W = {0}, it is clear that Hp reduces S = (S1, . . . , Sn).
Thus, the restrictions Si|Hp form a pure n-tuple and Lemma 2.4 shows they are
jointly unitarily equivalent to an n-tuple of the desired form. On the other hand,
the operators Vi = Si|Hc satisfy

IHc =
n

∑
i=1

ViV∗
i =

n

∑
i=1

SiS∗i |Hc .
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Indeed, if P = I −
n
∑

i=1
SiS∗i , then Pξ belongs to W ⊆ Hp for all ξ ∈ H. But when

ξ ∈ Hc we have Pξ ∈ Hc sinceHc reduces S, and thus Pξ ∈ Hc ∩W ⊆ Hc ∩Hp =
{0}, so that Pξ = 0 as claimed. Hence it follows that V = (V1, . . . , Vn) satisfies (†)
and is fully coisometric, and by our remarks preceding the theorem, this n-tuple
is determined by the same directed graph G as the pure part of S = (S1, . . . , Sn).

To verify the uniqueness statement we shall prove more. Let Pc and Pp be,
respectively, the projections of H onto Hc and Hp. Let Q ∈ B(H) be a projection
such that QH reduces S = (S1, . . . , Sn). We claim that QPc = PcQ and QPp = PpQ;
in other words, QH = Pc(QH) ⊕ Pp(QH) contains both subspaces Pc(QH) and
Pp(QH). To see this, first let {Xk : k > 1} be the projections

Xk = ∑
w∈F+

n ; |w|=k

w(S)w(S)∗ = Φk(I),

where Φ(A) =
n
∑

i=1
Si AS∗i . As Hc reduces S and Φ(Pc) = Pc, we have the re-

strictions Xk|Hc = IHc for k > 1. Furthermore, since Hp = ∑
w∈F+

n

⊕w(S)W and

w(S)∗W = {0} for w ∈ F+
n , it is evident that the strong operator topology limit

SOT- lim
k→∞

Xk|Hp = 0.

Now let Qξ = ξ = Pcξ + Ppξ belong to QH. It suffices to show that both Pcξ
and Ppξ belong to QH. But since QH is reducing for S, we have

Pcξ = lim
k→∞

XkPcξ = lim
k→∞

Xk(Pcξ + Ppξ) = lim
k→∞

Xkξ ∈ QH.

This establishes the claim and finishes the proof.

REMARK 2.8. This decomposition theorem plays a role in forthcoming work
of the authors on dilation theory [17]. There are a number of modern generaliza-
tions of Wold’s classical theorem which appear in the literature (for instance see
[15], [25], [26]). A special case of Theorem 2.7 is discussed in [20]. In its general
form, Theorem 2.7 is most closely related to the Wold Decomposition of Muhly
and Solel [25] established for the more abstract setting of representations of C∗-
correspondences. In fact, from one point of view, Theorem 2.7 can be thought of
as an explicit identification, of the pure part in particular, of the components of
their Wold Decomposition in some very concrete cases.

3. PREDUAL PROPERTIES

A WOT-closed algebra A has property An, 1 6 n 6 ℵ0, if for every n × n
matrix [ϕij] of weak* continuous linear functionals on A, there are vectors {ζi, ηj :
1 6 i, j 6 n} with

ϕij(A) = (Aηj, ζi) for A ∈ A and 1 6 i, j 6 n.(3.1)
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These notions are discussed in detail in [6]. Given 1 6 n 6 ℵ0, recall that the nth
ampliation of A is the WOT-closed algebra A(n) generated by the n-fold direct sums
A(n) = A⊕ · · · ⊕ A where A ∈ A. The infinite ampliation of A, which we write as
A(∞), satisfies property Aℵ0 [6], and hence property An for n > 1. We prove the
following for LG in the case that G has no sinks.

THEOREM 3.1. L
(n)
G has property An for 1 6 n 6 ℵ0.

Proof. Fix 1 6 n 6 ℵ0 and let A = L
(n)
G and H = H(n)

G . Let [ϕij] be an n× n
matrix of weak* continuous functionals on A. We may regard these as functionals
ϕ̃ij acting on A(∞) by ϕ̃ij(A(∞)) ≡ ϕij(A). Since A(∞) has property Aℵ0 , hence An,
there are vectors {xi, yj}16i,j6n in H(∞) such that

ϕ̃ij(A(∞)) = (A(∞)xi, yj) = (A(∞)xi, PMyj),

where PM is the projection onto the A(∞)-invariant subspace

M =
∨

16i6n

A(∞)xi.

Clearly we may assume PMyj = yj for 1 6 j 6 n.
Let L̃e and P̃k be the restrictions of the generators of A(∞) to this invariant

subspace; that is,

L̃e = (L(n)
e )(∞)|M and P̃k = (P(n)

k )(∞)|M.

The wandering subspace here is

W = Ran
(

IM − ∑
e∈E(G)

L̃e L̃∗e
)

= Mª ∑
e∈E(G)

L̃eM.

Then, as in Corollary 2.5, it follows that αk ≡ dim P̃kW 6 n for k in V(G). Further,
if we let S = {k ∈ V(G) : P̃kW 6= 0}, Lemma 2.4 gives a unitary

U : M −→ ∑
k∈S

⊕(QkHG)(αk) ↪→ H

which may be defined so that

UL̃eU∗ = ∑
k∈S

⊕L(αk)
e |(QkHG)(αk) .

Now, given 1 6 i, j 6 n, let x̃i be the vector in H defined by

PUM(x̃i) = Uxi and PHªUM(x̃i) = 0,
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and similarly define ỹj in terms of Uyj. Moreover, for each A(∞) in A(∞) let AS =

UA(∞)U∗. Then given A in A = L
(n)
G and 1 6 i, j 6 n, we have

ϕij(A) = ϕ̃ij(A(∞)) = (A(∞)xi, yj)

= (U∗ASUxi, yj)

= (ASUxi, Uyj) = (Ax̃i, ỹj).

This shows that L
(n)
G has property An.

An immediate consequence of the fact that LG satisfies A1 is the following.
This will be valuable in Section 5.

COROLLARY 3.2. The weak* and weak operator topologies coincide on LG.

REMARK 3.3. Applied to the case of single vertex graphs, the proof of The-
orem 3.1 for n = 1 provides a new proof of property A1 for the free semigroup
algebras Ln, n > 2. In fact, this proof unifies the H∞ [6] and Ln cases. The pre-
viously known proof for Ln [11] of Davidson and Pitts relied on the existence
of a pair of isometries with mutually orthogonal ranges in the commutant. The
subclass of LG which satisfy this extra condition are discussed further below.

4. PARTLY FREE ALGEBRAS

An interesting subclass of the algebras LG discovered in [19], [20] are char-
acterized by commutant L′G = RG containing a pair of isometries with mutually
orthogonal ranges. In the terminology of [19], [20], these are the LG with unitally
partly free commutant, as there is a unital injection of the free semigroup algebra
L2 into the commutant L′G in this case.

We say that G contains a double cycle if there are distinct cycles wi = kwik,
i = 1, 2, of minimal length over some vertex k in G. By a proper infinite (directed)
path in G, we mean an infinite path ω = ei1 ei2 ei3 · · · in the edges of G such that no
edges are repeated and every finite segment corresponds to an allowable finite
directed path in G. (Note that with our notation such an infinite path ends at
the final vertex for ei1 .) Say that G has the aperiodic path property if there exists
an aperiodic infinite path; in other words, there exists a proper infinite path or a
double cycle in G. Define the attractor at a vertex k in G to be the set consisting of
k, together with all finite and infinite paths which end at k, and all vertices that
are initial vertices for paths ending at k. Then G satisfies the uniform aperiodic path
entrance property if the attractor at every vertex includes an aperiodic infinite path.

The following result is from [20] (finite case) and [19] (countably infinite
case).

LEMMA 4.1. The following assertions are equivalent for a countable directed
graph G:
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(i) G has the uniform aperiodic path entrance property;
(ii) L′G is unitally partly free;

(iii) L′G contains a pair of isometries U, V with mutually orthogonal ranges; U∗V
= 0.

In [19], [20] things were phrased differently. Recall that the commutant
L′G = RG is unitarily equivalent to LGt , where Gt is the graph obtained from
G by reversing directions of all directed edges. Thus, as in [19], [20], one could
just as easily phrase this theorem in terms of LG being partly free, proper infi-
nite paths defined by starting (instead of ending) at a vertex, and the graph G
satisfying a corresponding exit property.

The LG satisfying the condition in Lemma 4.1 form a large class of operator
algebras [19]. Indeed, the classification theorem from [20], which proved G to be
a complete unitary invariant of LG, shows that different graphs really do yield
different algebras. Concerning the Examples from 1.3, observe that the graphs
in (ii) and (v) satisfy the uniform aperiodic path entrance condition, hence L′G is
unitally partly free in both cases. Further, notice that the algebra LC∞ from (iv) is
unitally partly free since it is unitarily equivalent to the commutant of LCt

∞
.

In connection with predual properties, the importance of isometries with
pairwise orthogonal ranges in the commutant of an algebra was realized in [5]
and [10]. In particular, the following result was proved in [10].

LEMMA 4.2. If A is a WOT-closed algebra which commutes with two isometries
with orthogonal ranges, then it has property Aℵ0 .

Thus we have the following consequence of Lemma 4.1.

COROLLARY 4.3. If G has the uniform aperiodic path entrance property, equiva-
lently the commutant L′G is unitally partly free, then LG has property Aℵ0 .

There is a strong partial converse of this result, to which we now turn for
the rest of this section.

DEFINITION 4.4. If G is a directed graph for which the attractor at each ver-
tex includes an infinite directed path, then we say G has the uniform infinite path
entrance property.

The class of algebras LG generated by the graphs which satisfy this property
includes, for example, all algebras satisfying the conditions of Lemma 4.1. But
function algebras such as H∞ and the cycle algebras LCn , 1 6 n < ∞, are also
included. The following result shows that the algebras of Lemma 4.1 truly stand
apart in this class. They are the only algebras which satisfy the Aℵ0 property.

THEOREM 4.5. Let G satisfy the uniform infinite path entrance property. Then
the following assertions are equivalent:

(i) G has the uniform aperiodic path entrance property;
(ii) L′G is unitally partly free;
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(iii) L′G contains a pair of isometries U, V with mutually orthogonal ranges;
U∗V = 0;

(iv) LG satisfies property Aℵ0 .

We first show that the cycle algebras do not satisfy Aℵ0 .

LEMMA 4.6. Let 1 6 n < ∞. The cycle algebra LCn does not satisfy property
An+1.

Proof. Suppose LCn satisfies An+1. Choose a vertex k in Cn and put H =
HCn . Then, since Pk belongs to LCn , the compression algebra A = PkLCn Pk|PkH has
property An+1 as well. To see this, suppose ϕ is a functional on A. For A ∈ LCn ,
let Ak = Pk APk|PkH and define a functional on LCn by ϕ̃(A) ≡ ϕ(Ak). If ϕ̃ can be
realized as a vector functional, ϕ̃(A) = (Aξ, η), then

ϕ(Ak) = ϕ(Pk AkPk|PkH) = ϕ̃(Pk AkPk) = (AkPkξ, Pkη).

Let w ∈ F+(G) be the cycle of minimal length in Cn with w = kwk. A
consideration of Fourier expansions for elements of LCn reveals that PkLCn Pk is
the subalgebra of LCn given by

PkLCn Pk = WOT−Alg{Lw, Pk}.

Moreover, V = PkLwPk|PkH = Lw|PkH is unitarily equivalent to the canonical
unilateral shift operator of multiplicity n. Indeed, Pk commutes with Lw and V is
a pure isometry with

rank(I −VV∗) = rank(Pk(I − LwL∗w)Pk) = n.

(One multiplicity is picked up for each of the n infinite stalks in the Fock space
tree.) Thus, A = WOT−Alg{V, IPkH} does not have property An+1 since the shift
of multiplicity n does not satisfyAn+1 [6]. This contradiction shows that LCn does
not satisfy property An+1.

Proof of Theorem 4.5. It follows from Lemma 4.1 and Corollary 4.3 that it suf-
fices to prove (iv)⇒(i). Thus, suppose LG satisfies Aℵ0 . Given a subset S ⊆ V(G)
of vertices in G, let PS be the projection in LG defined by PS = ∑

k∈S
Pk. Ob-

serve that every compression algebra PSLGPS |PSH satisfies Aℵ0 since PS belongs
to LG; every functional ϕ on PSLGPS |PSH can be extended to LG by defining
ϕ̃(A) ≡ ϕ(PSAPS |PSH) as in the previous proof.

Now suppose (i) does not hold. Then there is a vertex k ∈ V(G) such that
the attractor at k contains no aperiodic infinite path. In other words, there are no
paths leaving double cycles for k, and there are no infinite non-overlapping di-
rected paths which end at k. Hence, the uniform infinite path entrance property
tells us there is a path from a cycle into k. Furthermore, by moving backwards
along the paths which enter k, we can find a cycle C from which there is a path
into k with the following properties: The only edges that enter the vertices in C
are the edges which make up the cycle, and the cardinality n of the vertex set is
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equal to the number of edges in the cycle. In other words, there are no multiple
edges between vertices in C (using the fact that (i) fails), and there are no directed
paths from vertices outside C to vertices inside C (using the uniform infinite path
entrance property). Let S be the collection of vertices in C, so that |S| = n. It
follows from the choice of C that the algebra PSLGPS |PSH is unitarily equiva-
lent to LCn . This gives a contradiction to Lemma 4.6, and hence G must in fact
satisfy (i).

REMARK 4.7. We wonder whether the initial restriction to G satisfying the
uniform infinite path entrance property is really necessary in Theorem 4.5. It may
simply be a convenient technical assumption. It seems plausible to us that The-
orem 4.5 could hold without making this initial restriction on G. We would also
expect that the equivalent conditions in this result could be extended to include
the related factorization properties An(n2) and X0,1 [5], [10], which involve norm
control over the vectors chosen, and perhaps even property A2.

5. IDEALS AND INVARIANT SUBSPACES

In this section we give a detailed description of the WOT-closed ideal struc-
ture for LG. The key ingredients in our analysis are the Beurling Theorem 1.2
for LG and the A1 property for functionals established in Theorem 3.1. In [11],
Davidson and Pitts described the ideal structure for free semigroup algebras Ln.
For the sake of continuity in the literature, our presentation in this section will
mirror their approach whenever possible.

DEFINITION 5.1. Given a directed graph G, let Idr(LG) and Id(LG) denote,
respectively, the sets of all WOT-closed right and two-sided ideals. Note that
Idr(LG) and Id(LG) form complete lattices under the operations of intersections
and WOT-closed sums.

To streamline the presentation, we shall let ξφ be the vector given by the
following weighted sum of the vacuum vectors: ξφ = ∑

k∈V(G)

1
k ξk. This sum is

finite precisely when G has finitely many vertices. Observe that for all words
w ∈ F+(G) we have Lwξφ = 1

k ξw, where w = wk.
If J belongs to Idr(LG), then the subspace

J ξφ = JLGξφ = JHG = JRGξφ = RGJ ξφ.

Thus, the range subspace of J satisfies JHG = J ξφ and is RG-invariant. If, in
addition, J belongs to Id(LG), then LGJ ξφ = J ξφ, and J ξφ is LG-invariant.
Hence J ξφ belongs to both Lat(LG) and Lat(RG) when J is a two-sided ideal.

On the other hand, if M belongs to Lat(RG), it follows that the set {A ∈
LG : Aξφ ∈ M} is contained in Idr(LG). Indeed, this set is clearly WOT-closed
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and for X ∈ LG,

AXξφ ∈ AHG = ARGξφ = RG Aξφ ⊆ M.

Furthermore, if M is also LG-invariant, then this set evidently forms a two-sided
ideal.

The following theorem shows that ideals in Idr(LG) and Id(LG) are fully
determined by their ranges.

THEOREM 5.2. Let µ : Idr(LG) → Lat(RG) be defined by µ(J ) = J ξφ. Then
µ is a complete lattice isomorphism. The restriction of µ to the set Id(LG) is a complete
lattice isomorphism onto Lat(LG) ∩ Lat(RG). The inverse map ι sends a subspace M to

ι(M) = {A ∈ LG : Aξφ ∈ M}.

Proof. We have observed above that the maps µ and ι map into the correct
subspace lattice and ideal lattice respectively.

We show first that µι is the identity map. Let M belong to Lat(RG). It is
clear that µι(M) is contained in M. Conversely, let {ξk,j}k,j be an orthonormal
basis for the RG-wandering subspace W = Mª ∑

e

⊕ReM, with Qkξk,j = ξk,j.

Then from the Beurling Theorem (the RG version) we have

M = ∑
j,k

⊕
RG[ξk,j] = ∑

j,k

⊕ Ran(Lξk,j
).

As L∗ξk,j
Lξk,j

= Pk, it follows that Lξk,j
ξφ = 1

k ξk,j is in M and Lξk,j
belongs to ι(M).

Hence
M = ∑

j,k

⊕ Ran(Lξk,j
) ⊆ ι(M)HG = ι(M)ξφ = µ(ι(M)).

Thus, µι(M) = M, as required.
To see that ιµ is the identity, fix J in Idr(LG) and let M = µ(J ). It is clear

from the definitions that J is contained in ιµ(J ). We first show that for every ξ
in HG,

J ξ = ιµ(J )ξ.(5.1)

From the Beurling Theorem, the cyclic LG-invariant subspace LG[ξ] decomposes
as LG[ξ] = ∑

k∈S
⊕Rζk

HG, where S = {k ∈ V(G) : Pkξ 6= 0}, the vectors ζk = Pkζk are

LG-wandering, and the Rζk
are partial isometries in RG with pairwise orthogonal

ranges. It follows that

J ξ = JLGξ = J ∑
k∈S

⊕Rζk
HG = ∑

k∈S

⊕Rζk
JHG = ∑

k∈S

⊕Rζk
M.

But since µι is the identity we have µ(ιµ(J )) = µ(J ) = M, hence the same
computation for ιµ(J )ξ yields the same result. This yields (5.1).

Next suppose that ϕ is a WOT-continuous linear functional on LG which
annihilates the ideal J . By Theorem 3.1, there are vectors ξ, η in HG with ϕ(A) =
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(Aξ, η) for A in LG. Since ϕ(J ) = 0, the vector η is orthogonal to J ξ = ιµ(J )ξ.
Hence ϕ also annihilates ιµ(J ). Thus, since the weak* and WOT topologies on LG
coincide, we have J = ιµ(J ) by the Hahn-Banach Theorem.

Thus we have shown that µ establishes a bijective correspondence between
elements of Idr(LG) and Lat(RG) which maps Id(LG) onto Lat(LG) ∩ Lat(RG),
and that ι = µ−1. It is elementary to verify that µ and ι are complete lattice
isomorphisms, and, since this may be accomplished in exactly the same way as
for the free semigroup algebras Ln [11], we leave these remaining details to the
interested reader.

Let us apply the theorem to the case of singly generated ideals.

COROLLARY 5.3. Let A belong to LG. Then the WOT-closed two-sided ideal gen-
erated by A is given by {X ∈ LG : Xξφ ∈ LG AHG}.

An interesting special case occurs when A = Lw is a partial isometry coming
from a word w in F+(G). The corresponding ideal is easily described in terms of
Fourier expansions.

COROLLARY 5.4. For w in F+(G), the WOT-closed two-sided ideal generated by
Lw is given by

{X ∈ LG : (Xξφ, ξv) 6= 0 only if v = u1wu2; u1, u2 ∈ F+(G)}.

The theorem also leads to a simple characterization of the WOT-closure of
the commutator ideal of LG. Define the G-symmetric Fock space to be the subspace
of HG spanned by the vectors ∑

σ∈Sr

ξσ(w), where w ∈ F+(G) with |w| = r, Sr is the

symmetric group on r letters, and σ(w) is the word with letters in w permuted by
σ. We put ξσ(w) = 0 and Lσ(w) = 0 when σ(w) is not an allowable finite path in G.
The terminology here is motivated by the case of a trivial graph with one vertex
and a number of loop edges. For a general graph though, there may be very little
“symmetry” associated with HG (see Example 5.6 below).

By considering Fourier expansions it is not hard to see that the linear span
of the commutators of the form [Lv, Lw] = LvLw − LwLv for v, w in F+(G) is WOT-
dense in the WOT-closure of the commutator ideal of LG. But a simple exercise in
combinatorics shows that each of these commutators is determined by elemen-
tary commutators. For instance, given edges e, f , g in E(G) observe that

[Le f , Lg] = Le[L f , Lg] + [Le, Lg]L f .

It follows that the WOT-closure of the commutator ideal and its range subspace
have the following form.
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COROLLARY 5.5. The WOT-closure of the commutator ideal of LG is the WOT-
closed two-sided ideal given by

C = 〈[Lv, Lw] : v, w ∈ F+(G)〉
= 〈[Le, L f ], [Le, Pk] : e, f ∈ E(G), k ∈ V(G)〉.

The corresponding range subspace in Lat(LG) ∩ Lat(RG) is

µ(C) = (Hs
G)⊥ = span{ξue f v − ξu f ev : e 6= f , u, v ∈ F+(G)}.

Notice that an elementary commutator will typically collapse; for instance,
LeL f = 0 if the final vertex of f is different than the initial vertex of e. In fact, LeL f
and L f Le are both non-zero precisely when e f (and f e) forms a cycle in G. The
following class of examples differ greatly from the algebras Ln and H∞.

EXAMPLE 5.6. Let G be a directed graph with no cycles; that is, no paths
with the same initial and final vertices. Then every commutator [Le, L f ] = LeL f −
L f Le with e, f ∈ E(G) is equal to LeL f , −L f Le, or 0. Further, since there are no
loop edges,

[Le, Pk] =





Le if e = ek,
−Le if e = ke,
0 otherwise.

Thus, by Corollary 5.5, the WOT-closure of the commutator ideal is equal to the
WOT-closed ideal generated by the Le,

C = 〈Le : e ∈ E(G)〉,
and the range is given by,

µ(C) = (Hs
G)⊥ = span{ξw : w ∈ F+(G) \V(G)} = HG ª span{ξk : k ∈ V(G)}.

It also follows that LG/C is completely isometrically isomorphic to the algebra
span{Pk : k ∈ V(G)} in this case (see Section 6).

We finish this section with an investigation into factorization in right ideals.

LEMMA 5.7. Let {Lζ j : 1 6 j 6 s} be a finite set of partial isometries in LG with

pairwise orthogonal ranges Mj. Let M =
s
∑

j=1

⊕Mj and J = ι(M). Then J = {A ∈
LG : Ran(A) ⊆ M} and every element A of J factors as

A =
s

∑
j=1

Lζ j Aj with Aj ∈ LG.

In particular, the algebraic right ideal generated by the finite set {Lζ j : 1 6 j 6 s}
coincides with J .

In the case of a countably infinite set of partial isometries {Lζ j : j > 1} in LG
with pairwise orthogonal ranges, every element A of J (which is not a finitely generated
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algebraic ideal in this case) factors as a WOT-convergent sum

A = WOT- ∑
j>1

Lζ j Aj with Aj ∈ LG.

Proof. We shall focus on the case where the Lζ j form a finite set. The count-
able case is easily obtained from this analysis.

EachMj is RG-invariant, hence so isM. Thus, if A in LG satisfies Aξφ ∈ M,
then Ran(A) = AHG is contained in M, and we have

J = {A ∈ LG : Ran(A) ⊆ M}.

This shows that J is a WOT-closed right ideal containing {Lζ j : 1 6 j 6 s}.

On the other hand, since the projection onto M is given by PM =
s
∑

j=1
Lζ j L

∗
ζ j

,

for A in J we have

A =
( s

∑
j=1

Lζ j L
∗
ζ j

)
A =

s

∑
j=1

Lζ j Aj,

where Aj = L∗ζ j
A. We finish the proof by showing that each Aj is in LG. First note

that Aj clearly commutes with the projections Qk ∈ RG = L′G. Further, as RG-
wandering vectors for M, each ζ j is orthogonal to ∑

e

⊕Re(Ran(A)) ⊆ ∑
e

⊕ReM.

Thus for w ∈ F+(G), we have (R∗e A∗ζ j, ξw) = (ζ j, Re Aξw) = 0, and hence
R∗e A∗ζ j = 0. Whence, using Lemma 11.1 of [20], given e = ek in E(G) we have

AjRe − Re Aj = L∗ζ j
ARe − ReL∗ζ j

A = (L∗ζ j
Re − ReL∗ζ j

)A

= k2(ξφ(R∗e Lζ j ξφ)∗)A = k(ξφ(A∗R∗e ζ j)
∗) = k(ξφ(R∗e A∗ζ j)

∗) = 0.

Therefore Aj belongs to R′
G = LG, as required.

A special case of the lemma concerns the two-sided ideals in LG generated
by the partial isometries from paths of a given length, {Lw : w ∈ F+(G), |w| = s}.

COROLLARY 5.8. For s > 1, every A in LG can be written as a sum

A = ∑
|w|<s

awLw + ∑
|w|=s

Lw Aw,

where aw ∈ C and Aw ∈ LG for w ∈ F+(G). In the case that there are infinitely many
paths of a given length, {aw}|w|<s belongs to `2 and the sums are WOT-convergent.

We mention that the previous two results applied to the Ln case include a
uniqueness of factorization. For the general LG case this uniqueness does not
hold; ostensibly because the generators here are partial isometries instead of
isometries. However, the elements Aj in LG from Lemma 5.7 can be chosen
uniquely under the extra constraint L∗ζ j

Lζ j Aj = Aj.
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Together with Theorem 5.2, the previous lemma may be used to describe
precisely when a right ideal is finitely generated. The following result generalizes
Theorem 2.10 of [11].

THEOREM 5.9. Let J be a WOT-closed right ideal in LG. Let M = µ(J ) in
Lat(RG) and let W be the RG-wandering subspace for M. If the sum of the dimensions
of the wandering subspaces {QkW : k ∈ V(G)} is finite, s < ∞, then J is generated
by s partial isometries with pairwise orthogonal ranges as an algebraic right ideal. When
this wandering dimension is infinite, s = ∞, J is not finitely generated as a WOT-closed
right ideal, but it is generated by countably many partial isometries as a WOT-closed right
ideal.

REMARK 5.10. There is no analogous structure for the WOT-closed left ideals
of LG. While some partial results go through, there are factorization pathologies
in left ideals. Indeed, this was discovered in [18] for the case of free semigroup al-
gebras Ln. For instance, the algebraic left ideal determined by a generator of Ln is
not even norm closed. The basic point is that these generators have proper factor-
izations inside the algebra, a property which is exclusive to the noncommutative
setting.

We conclude this section with a comment on related work in the literature.

REMARK 5.11. The results on ideals of LG presented in this section general-
ize the characterization of ideals in H∞ [13], [14], as well as work of Davidson and
Pitts [12] in the case of free semigroup algebras Ln. In their work on quiver alge-
bras, Muhly and Solel [25] briefly considered the ideal structure for LG, obtaining
a version of Theorem 5.2 in the special case that G is a finite graph and satisfies
a certain entrance condition. We mention that their condition can be seen to be
equivalent to the finite graph case of the uniform aperiodic path entrance property
from Theorem 4.1. Thus, by Theorem 4.1, Muhly and Solel actually established
the lattice isomorphism theorem in the case that G is finite and LG has unitally
partly free commutant, and hence our result is an extension of theirs to the gen-
eral LG case when G has no sinks.

6. DISTANCE FORMULA TO IDEALS

Let Mn(LG) denote the algebra of n× n matrices with entries in LG, equip-
ped with the operator norm in B(HG)(n). We prove the following distance for-
mula to ideals in Mn(LG).

THEOREM 6.1. Let J be a WOT-closed right ideal of LG, and let M = JHG =
J ξφ be the range subspace in Lat(RG). Then for every A in Mn(LG), we have

dist(A,Mn(J )) = ‖(P⊥M ⊗ In)A‖.
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REMARK 6.2. Our proof is based on McCullough’s distance formula for
ideals in dual algebras [23]. We shall proceed by establishing a variant of this
result (Lemma 6.3), then combine it with the Wold Decomposition Lemma 2.4 to
obtain the distance formula. Note that Lemma 6.3 does not use the fact that LG is
WOT-closed, only that it is weak* closed. One could prove the distance formula
using the results of Section 3 (thus using the Wold decomposition implicitly, and
avoiding Lemma 6.3), but we have arranged the proof this way to emphasize the
role of the Wold decomposition. The proof we give reduces to that given by Mc-
Cullough for H∞, and is similar in flavour to the Arias-Popescu proof in the case
of free semigroup algebras Ln [2].

We first fix some notation. Let 1 6 n 6 ℵ0. Throughout this section, Z will
denote a positive trace class operator in B(H(n)

G ), factored as Z = ∑
i>1

ziz∗i , with

each zi in H(n)
G . Let z̃ = [z1 z2 · · · ]t denote the corresponding vector in the infinite

direct sum H(∞)
G . Note that ‖z̃‖2 = ∑

i>1
‖zi‖2 = tr(Z). We will let A = Mn(LG),

and for a WOT-closed right ideal J in LG, we let AJ = Mn(J ).
For a given positive trace class operator Z on H(n)

G , let

M(Z) = A(∞) z̃ and N (Z) = A
(∞)
J z̃ ,

and let PM(Z) and PN (Z) be the projections onto M(Z) and N (Z) respectively.

LEMMA 6.3. For A ∈ A,

dist(A, AJ ) = sup
Z
‖P⊥N (Z)A(∞)PM(Z)‖

where the supremum is taken over all positive trace class operators Z in B(H(n)
G ).

Proof. We must show that

inf
B−A∈AJ

‖B‖ = sup
Z
‖P⊥N (Z)A(∞)PM(Z)‖;

the left-hand side being the definition of dist(A, AJ ). We first prove the distance
is bounded above by this supremum.

Since A is weak* closed, it is isometrically isomorphic to the dual of a Banach
space; namely

A∗ = C1(H(n)
G ) / A⊥

where A⊥ consists of the trace-class operators T ∈ C1(Hn
G) such that tr(AT) = 0

for every A ∈ A. Let π denote the quotient map

π : C1(H(n)
G ) −→ A∗ .

Then the action of an element A ∈ A on the predual A∗ is given by

LA(F) ≡ tr(AF̃)
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where F̃ is any representative of the coset F ∈ A∗. Let AJ⊥ denote the preannihi-
lator of AJ in the predual A∗; that is,

AJ⊥ = {F ∈ A∗ : LA(F) = 0 for all A ∈ AJ }.

Given F ∈ A∗ and ε > 0, there exists a trace class operator Y on H(n)
G such that

π(Y) = F, and ‖Y‖1 < ‖F‖+ ε. Let Y∗ = VZ be the polar decomposition of Y∗,
with V a partial isometry and Z = (YY∗)1/2. For this Z, let z̃ be as above. Then
given A ∈ A,

(A(∞) z̃, V∗(∞) z̃) = tr(AZV∗) = tr(AY) = LA(F).

Thus, when A ∈ AJ , we have (A(∞) z̃, V∗(∞) z̃) = 0.
Now, since A

(∞)
J z̃ is dense in N (Z), it follows that

Ran(PM(Z)V
∗(∞)PM(Z)) ⊆ M(Z)ªN (Z).

We now compute, for any A ∈ AJ ,

LA(F) = (A(∞) z̃, V∗(∞) z̃)

= (A(∞) z̃, PM(Z)V
∗(∞)PM(Z) z̃)

= (A(∞) z̃, P⊥N (Z)PM(Z)V
∗(∞)PM(Z) z̃)

= (P⊥N (Z)A(∞) z̃, PM(Z)V
∗(∞)PM(Z) z̃).

Thus by the Cauchy-Schwarz inequality,

|LA(F)| 6 ‖P⊥N (Z)A(∞)PM(Z)‖‖V∗(∞) z̃‖‖z̃‖.

As V is a partial isometry, ‖V∗(∞) z̃‖ 6 ‖z̃‖ and thus

‖z̃‖2 = tr(Z) = ‖Y‖ < ‖F‖+ ε,

implies (since ε was arbitrary) that

|LA(F)| 6 ‖P⊥N (Z)A(∞)PM(Z)‖‖z̃‖2

6
(

sup
Z
‖P⊥N (Z)A(∞)PM(Z)‖

)
‖F‖.

By the Hahn-Banach theorem, the functional LA on AJ⊥ extends to a functional
L on all of A∗ with

‖L‖ 6 sup
Z
‖P⊥N (Z)A(∞)PM(Z)‖

and L(F) = LA(F) for F ∈ AJ⊥.
Since (A∗)∗ = A, there exists an operator B in A such that ‖B‖ = ‖A‖ and

L(F) = LB(F) for F ∈ A∗,
LA(F) = LB(F) for F ∈ AJ⊥.

In particular, this means that B− A belongs to (AJ⊥)⊥, and hence to AJ .
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Thus, we have shown that there exists B ∈ A such that B− A ∈ AJ and

‖B‖ 6 sup
Z
‖P⊥N (Z)A(∞)PM(Z)‖,

and so
dist(A, AJ ) = inf

B−A∈AJ
‖B‖ 6 sup

Z
‖P⊥N (Z)A(∞)PM(Z)‖.

To prove the reverse inequality, observe that if B− A belongs to AJ , then

P⊥N (Z)(B− A)(∞)PM(Z) = 0,

as N (Z) is the range of A
(∞)
J restricted to M(Z). Thus

P⊥N (Z)B(∞)PM(Z) = P⊥N (Z)A(∞)PM(Z).

Hence, given B with B− A in AJ , we have

‖B‖ = ‖B(∞)‖ > ‖B(∞)PM(Z)‖
> ‖P⊥N (Z)B(∞)PM(Z)‖
= ‖P⊥N (Z)A(∞)PM(Z)‖.

Therefore,
inf

B−A∈AJ
‖B‖ > sup

Z
‖P⊥N (Z)A(∞)PM(Z)‖.

This concludes the proof of the lemma.

Proof of Theorem 6.1. Suppose A, B ∈ A and A− B ∈ AJ . Then, since P⊥M ⊗
In annihilates AJ ,

(P⊥M ⊗ In)B = (P⊥M ⊗ In)A.

Hence ‖B‖ > ‖(P⊥M ⊗ In)B‖ = ‖(P⊥M ⊗ In)A‖, and we have

dist(A, AJ ) = inf
B−A∈AJ

‖B‖ > ‖(P⊥M ⊗ In)A‖.

To prove the reverse inequality, we employ the previous lemma and the
Wold Decomposition. By Lemma 6.3, it will suffice to show that

‖P⊥N (Z)A(∞)PM(Z)‖ 6 ‖(P⊥M ⊗ In)A‖
for each positive trace class operator Z.

For T1, . . . , Tn in LG, let T̃ denote the n-tuple T̃ = (T1, . . . , Tn), treated as
a column vector. We begin by constructing an auxilliary Hilbert space K in the
following manner: Given a positive trace class operator Z, define a Hermitian
form on the set of n-tuples of elements of LG via

(T̃, S̃) = ∑
i>1

(T̃tzi, S̃tzi)(HG)(n) = ∑
i,k,l

(Tkzk
i , Slz

l
i)HG ,
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where zk
i is the kth coordinate from zi ∈ H(n)

G . The collection of n-tuples T̃
equipped with this Hermitian form gives a pre-Hilbert space; taking the quo-
tient modulo null vectors and closing, we obtain a Hilbert space which we denote
HG(Z). We let K = (HG(Z))(n) denote the direct sum of n copies of HG(Z).

If A = (Ajk)n
j,k=1 belongs to Mn(LG), we may define a bounded operator

MA,Z on K by MA,Z ≡ (A(n)
jk )n

j,k=1. The effect of MA,Z on a vector (T̃1, . . . , T̃n) in
K will be

MA,Z(T̃1, . . . , T̃n) =
( n

∑
k=1

A1k(T̃k)k, . . . ,
n

∑
k=1

Ank(T̃k)k

)
.

Now, let B̃j denote the transpose of the jth row of B ∈ Mn(LG), and define a map
Φ by

Φ(B(∞) z̃) = (B̃1, . . . , B̃n)
between dense subspaces of M(Z) and K. An elementary calculation shows that
Φ is a surjective isometry between these dense subspaces, and so extends to a
unitary map fromM(Z) onto K. It is clear that, if we let KJ denote the closure in
K of vectors for which each entry of each summand is an operator in J , then Φ

carries N (Z) (the range of the restriction of A
(∞)
J to M(Z)) onto KJ . Moreover,

for each A ∈ A, this map intertwines A(∞)|M(Z) and MA,Z. Hence these maps are
unitarily equivalent,

A(∞)|M(Z) ' MA,Z.
Consider now the operators Ψe on HG(Z), defined by

Ψe(T1, . . . , Tn) ≡ (LeT1, . . . , LeTn).

With each dim Ψ∗
e ΨeW 6 n, the set {Ψe : e ∈ E(G)} satisfies the hypotheses of

Lemma 2.4, and so there exists a unitary operator

U : HG(Z) −→ H ≡ ∑
k∈S

⊕(QkHG)(αk)

such that
UΨeU∗ = ∑

k∈S

⊕L(αk)
e |(QkHG)(αk) for e ∈ E(G),

where S is the subset of vertices V(G) determined as in Lemma 2.4 by the non-
zero subspaces amongst {Ψ∗

e ΨeW : e ∈ E(G)}.
The ampliation U(n) is a unitary map from K onto H(n). Under U, the (j, k)

block A(n)
jk of MA,Z is taken to A(n)

jk |H. We now let MA denote the operator on

H(n2)
G which has the form of an n × n block matrix whose (j, k) block is A(n)

jk .

With these definitions, U(n)MA,Z(U(n))∗ = MA|H(n) . Moreover, recalling that
M = Ran(J ) = JHG ⊆ HG, we see that U(n) maps KJ onto M(n2) ∩ H(n) =
(M(n) ∩H)(n). Thus, it follows that

P⊥N (Z)A(∞)PM(Z) ' P⊥KJ MA,Z ' (P⊥M ⊗ In2)MA|H(n) .
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Finally, let P denote the projection of H(n)
G onto H. By reordering the sum-

mands of H(n2)
G with a canonical shuffle, MA is seen to be unitarily equivalent to

the direct sum of n copies of A with itself. This reordering fixes P⊥M ⊗ In2 , and
takes P onto another projection, say P′. Thus, for every A ∈ Mn(LG),

‖P⊥N (Z)A(∞)PM(Z)‖ = ‖(P⊥M ⊗ In2)MA|H(n)‖
= ‖(P⊥M ⊗ In)(n)A(n)P′‖
6 ‖(P⊥M ⊗ In)A‖,

and this completes the proof.

The conclusion of Theorem 6.1 for two-sided ideals follows from the result
for right-sided ideals in precisely the same way as the Ln case [10]. In particular,
the following result may be applied to the WOT-closure of the commutator ideal
of LG, as well as the radical of LG [20].

COROLLARY 6.4. Let J be a WOT-closed two-sided ideal in LG, with range sub-
space M = µ(J ). Then LG/J is completely isometrically isomorphic to the compres-
sion algebra P⊥MLGP⊥M = P⊥MLG.

7. CARATHÉODORY THEOREM

As an application of the distance formula, in this section we prove the ana-
logue of the Carathéodory Theorem [2], [10] for the algebras LG. The Carathéodo-
ry problem specifies an initial segment of the general Fourier series for elements
of LG, then asks when the segment can be completed to an operator in LG of norm
at most one.

We say that a subset Λ of F+(G) is a left lower set if u belongs to Λ whenever
w = uv does. In other words, Λ is closed under taking left subpaths; these are
the subpaths of w obtained by moving from a vertex in w along the rest of w =
yw to its final vertex y. Let PΛ be the orthogonal projection onto the subspace
MΛ = span{ξw : w ∈ Λ}. Observe that MΛ is invariant for R∗

G, and hence M⊥
Λ

belongs to Lat(RG). Recall that elements A of LG have Fourier expansions A ∼
∑

w∈F+(G)
awLw, and hence it follows that elements of the matrix algebras Mk(LG)

have natural Fourier expansions as well.

THEOREM 7.1. Let G be a countable directed graph and suppose Λ is a left lower
set of F+(G). Given k > 1, let {Cw : w ∈ Λ} be matrices in Mk(C). Then there is an
element A in the unit ball of Mk(LG) with Fourier coefficients Aw = Cw for w ∈ Λ if
and only if ∥∥∥(PΛ ⊗ Ik)

(
∑

w∈Λ

Lw ⊗ Cw

)∥∥∥ 6 1.

When Λ is an infinite set this sum is understood to converge WOT in the Cesaro sense.
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Proof. This result can be proved as an immediate consequence of the dis-
tance formula. The set of elements of LG which interpolate the zero data Cw ≡ 0
for w ∈ Λ is equal to the WOT-closed right ideal J with range µ(J ) = P⊥ΛHG.
Thus, if we are given data Cw, the desired element exists precisely when the dis-
tance from ∑

w∈Λ
Lw ⊗ Cw to Mk(J ) is at most one, and the result follows from

Theorem 6.1.

The simplest example of a lower set is the set F+(G)k of all paths in G of
length at most k. The (two-sided) ideal in this case is given by

ι(M⊥
F+(G)k

) ≡ L0,k
G =

{
A ∈ LG : A = ∑

|w|>k
awLw

}
.

Thus we obtain the following corollary. Let PΛk be the projection onto the sub-
space MF+(G)k

.

COROLLARY 7.2. Given a formal power series ∑
|w|6k

aww in the semigroupoid al-

gebra CF+(G), there is an element A in LG with ‖A‖ 6 1 and A− ∑
w∈F+(G)k

awLw in

LG if and only if ∥∥∥PΛk

(
∑

w∈F+(G)k

awLw

)∥∥∥ 6 1.

REMARK 7.3. There is a different, more self-contained proof of the Carathéo-
dory Theorem for LG which is worth discussing since it yields general infor-
mation on elements of LG. Furthermore, this alternative approach gives a new
proof for free semigroup algebras Ln which generalizes the Parrot’s Lemma cum
Toeplitz matrix approach for H∞.

We first establish some notation and make some simple observations. Given
a lower set Λ in F+(G), let Λk = {w ∈ Λ : |w| 6 k} for k > 0 and let Ek be the
projection of HG onto span{ξw : w ∈ Λk}. Then each Ek is a subprojection of PΛ

and PΛ = ∑
k>0

⊕Fk, where Fk+1 = Ek+1 − Ek and F0 = E0. The lower set property

yields the identity

Ek+1ReEk = Ek+1Re for e ∈ E(G).(7.1)

Also note that Qy = ∑
w=wy

⊕ξwξ∗w for every vertex y ∈ V(G), where ξwξ∗w is the rank

one projection onto the span of ξw, and that

Re(ξwξ∗w)R∗e = (Reξw)(Reξw)∗ = ξweξ∗we.

Further, it is clear that the projections {Qy, PΛ, Ek} are mutually commuting; for
instance, QyPΛEk is the projection onto the subspace

QyPΛEkHG = span{ξw : w ∈ Λk, w = wy}.

We need the following estimates for elements of LG to apply Parrot’s Lemma.
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PROPOSITION 7.4. Let G be a countable directed graph and let Λ be a lower set in
F+(G). Given X ∈ LG, define

Ak = EkXEk and Bk = Ek+1X(Ek+1 − E0) for k > 0.

Then
‖Bk‖ 6 ‖Ak‖ 6 ‖X‖ for k > 0.

Proof. Fix k > 0. As Qy commutes with X and each Ek, we have Ak =
∑
y

⊕AkQy. Thus,

‖Ak‖ = sup
y
‖EkXQyEk‖.

On the other hand,

Bk = Ek+1X(Ek+1 − E0)Ek+1 = ∑
w∈Λk+1\Λ0

Ek+1X(ξwξ∗w)Ek+1.

But this sum may be written as

Bk = ∑
e∈E(G)

∑
u∈Λk

Ek+1X(ξueξ∗ue)Ek+1.

Indeed, since Λ is a lower set, every w ∈ Λk+1 \Λ0 is of the form w = ue for some
u ∈ Λk and edge e. On the other hand, if w = ue, with u ∈ Λk, is not in Λk+1, then
(ξwξ∗w)Ek+1 = ξw(Ek+1ξw)∗ = 0, so the corresponding term in this sum vanishes.
Thus, we have

Bk = ∑
e∈E(G)

∑
w∈Λk

Ek+1XRe(ξwξ∗w)R∗e Ek+1

= ∑
e∈E(G)

∑
w∈Λk

Ek+1Re(EkX(ξwξ∗w)Ek)R∗e Ek+1

= ∑
y∈V(G)

∑
e=ye

⊕Ek+1Re

(
∑

w∈Λk ; w=wy
EkX(ξwξ∗w)Ek

)
R∗e Ek+1

= ∑
y

∑
e=ye

⊕Ek+1Re(EkXQyEk)R∗e Ek+1.

Therefore, as the ranges of {Ek+1Re : e ∈ E(G)} are pairwise orthogonal for fixed
k > 0, it follows that

‖Bk‖ = sup
y

sup
e=ye

‖Ek+1Re(EkXQyEk)R∗e Ek+1‖

6 sup
y
‖EkXQyEk‖ = ‖Ak‖,

for k > 0, and this completes the proof.

These are precisely the estimates required to apply Parrot’s Lemma in the
“bottom left corner” argument for the proof of the Carathéodory Theorem. In
the H∞ case, equality is achieved with ‖Bk‖ = ‖Ak‖. This is easily seen from
the Toeplitz matrix perspective for elements of H∞. This is also the case for free
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semigroup algebras Ln. Let us discuss the special case of L2 to illustrate this
generalized Toeplitz matrix structure.

EXAMPLE 7.5. Let {1, 2} be the (noncommuting) generators of F+
2 . The full

Fock space has an orthonormal basis given by {ξφ, ξw : w ∈ F+
2 }. Elements

X of L2 have Fourier expansions given by their action on the vacuum vector;
Xξφ = ∑

w∈F+
2 ∪{φ}

awξw. Let Λ = F+
2 ∪ {φ} be the trivial lower set, so that PΛ = I.

Consider the ordering for Λ2 = {w : |w| 6 2} given by

Λ2 = {φ, {1, 2}, {12, 12, 21, 22}}.

The projection E2 has range space span{ξw : w ∈ Λ2}. Hence the compression of
X ∼ ∑

w
awLw in L2 to E2 is unitarily equivalent to

A2 = E2XE2 '




aφ 0 0 0 0 0 0
a1 aφ 0 0 0 0 0
a2 0 aφ 0 0 0 0
a12 a1 0 aφ 0 0 0
a12 0 a1 0 aφ 0 0
a21 a2 0 0 0 aφ 0
a22 0 a2 0 0 0 aφ




.

On the other hand, B2 = E3X(E3 − E0) can be seen to be unitarily equivalent to
A2 ⊗ I2 where I2 is the scalar 2 × 2 identity matrix. Thus, in this case ‖B2‖ =
‖A2‖. More generally, if Λ = F+

n ∪ {φ} and X belongs to Ln, the operators Bk are
unitarily equivalent to Ak ⊗ In. The “n-branching” in F+

n creates n-ampliations in
the generalized Toeplitz matrices.

REMARK 7.6. We mention that when G has loop edges, it is also possible to
derive a version of Pick’s interpolation theorem [2], [10], [29] for LG. Indeed, in
[20] it was shown how loop edges over vertices explicitly define eigenvectors for
L∗G , with corresponding eigenvalues making up unit balls in the complex spaces
Ck. But the notation is rather cumbersome, and thus, as it is a direct generaliza-
tion of the Pick theorem from [2], [10] for Ln, we shall not present it here.
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