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ABSTRACT. We show that the commutants of several classes of operators are
boundedly reflexive; including Hilbert space triangular operators and Banach
space compact cyclic operators, the latter gives an affirmative answer to a
question of Don Hadwin and Deguang Han. Under a mild condition on the
spectrum of a Banach space operator, we show that the hyporeflexive closure
of the operator is boundedly reflexive. With a simpler proof, we obtain a
stronger version of a theorem of David Larson and Warren Wogen on alge-
braic extensions of bitriangular operators. We also show that the commutant
of a bitriangular operator on a Hilbert space is reflexive if and only if the bitri-
angular operator is quasisimilar to a diagonal operator.
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1. INTRODUCTION

In this paper, we use X to denote a complex separable Banach space and B(X)
to denote the set of all bounded linear operators on X. If S is a subset of B(X),
for any r > 0, define Sr = {T ∈ S : ‖T‖ 6 r}. Let S be a subspace of B(X),
and let ref(S) = {T ∈ B(X) : Tx ∈ [Sx], for all x ∈ X}, where [ · ] denotes
the norm closure. A subspace S ⊆ B(X) is said to be reflexive if ref(S) = S . A
subspace S ⊆ B(X) is called n-reflexive if S (n), the n-fold inflation of S , is reflexive
in B(X(n)), where X(n) is the direct sum of n copies of X. Let refb(S) = {T ∈
B(X) : there exists an MT > 0 such that Tx ∈ [SMT x], for all x ∈ X}. Then S is
called boundedly reflexive if refb(S) = S . We say S is hereditarily boundedly reflexive
if every weakly closed subspace of S is boundedly reflexive. Note that if S is a
weakly closed subset of B(X), then [SMx] = SMx; in this case, the closure [ · ] is
not needed in the definition of refbS . Bounded reflexivity plays a very important
role in the study of positivity of elementary operators on C∗-algebras; see [14]
and its references for more details.
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For any x ∈ X, define the map φx : S → X by φx(T) = Tx, for all T ∈ S . A
vector x ∈ X is called a separating vector of S if φx is injective; x is called a strictly
separating vector of S if φx is bounded below on S ; and x is called a cyclic vector of
S if the range of φx is dense in X. A subset E of X is called a separating set of S
if the only operator S ∈ S such that Sx = 0, ∀x ∈ E is S = 0. For any operator
T ∈ B(X), we use w(T) to denote the weakly closed algebra generated by T and
the identity operator. We say T is reflexive (boundedly reflexive, respectively) if
w(T) is reflexive (boundedly reflexive, respectively). For any subset S ⊆ B(X),
we use LatS to denote the set of all common invariant subspaces of operators
in S and AlgLatS to denote the set of operators that leave all subspaces of LatS
invariant. When S is an algebra that contains the identity operator, then refS =
AlgLatS . Let S ′ denote the commutant of S . We call S ′ ∩AlgLatS the hyporeflexive
closure of S . When S = {T}, we use {T}′ ∩AlgLatT to denote the hyporeflexive
closure of T. To show certain operators are boundedly reflexive, sometimes, it is
easier to show the hyporeflexive closure of the operator is hereditarily boundedly
reflexive. An operator algebra A is called hyporeflexive if A′ ∩ AlgLatA = A.
Hyporeflexivity was studied in [8], [15], and [16].

In the case of Hilbert spaces, we use H to denote a complex separable Hilbert
space and B(H) for the set of bounded linear operators on H. Let T(H) be
the set of all trace-class operators and F1(H) be the set of all rank-1 operators.
For any subspace S of B(H), the preannihilator of S , denoted by S⊥, is defined
by S⊥ = {T ∈ T(H) : trace(TS) = 0, ∀ S ∈ S}. A subspace S of B(H) is
called elementary if S⊥ + F1(H) = T(H) and S is called approximately elementary if
S⊥ + F1(H) is trace-norm dense in T(H).

In Section 2, we show that if T ∈ B(X) is a cyclic operator with “thin" ap-
proximate point spectrum, then the commutant of T is hereditarily boundedly re-
flexive. As a consequence, compact cyclic operators are boundedly reflexive; for
example, the Volterra operator is boundedly reflexive. This affirmatively answers
a question raised by D. Hadwin and D. Han in [7]. For any Banach space operator
T with “thin" approximate point spectrum, we show that the hyporeflexive clo-
sure of T is boundedly reflexive. Finally, we show that there exists a Hilbert space
operator T such that w(T) has strictly separating vectors, yet {T}′ ∩AlgLatT is
not approximately elementary. The main results of Section 2 are Theorem 2.1,
Theorem 2.5, and Theorem 2.7.

In Section 3, we show that if T ∈ B(H) is triangular or co-triangular, then
the commutant of T is boundedly reflexive. In this case, we also prove the hy-
poreflexive closure of T has a dense set of separating vectors. This strengthens a
theorem of Larson and Wogen ([13], Theorem 10) and our proof is much simpler.
As for reflexivity, we show that the commutant of a bitriangular operator on a
Hilbert space is reflexive if and only if the bitriangular operator is quasisimilar to
a diagonal operator; this generalizes the main result of [5]. The main results of
Section 3 are Theorem 3.8, Theorem 3.9, and Theorem 3.15.
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2. OPERATORS WITH “THIN" APPROXIMATE POINT SPECTRA

For T ∈ B(X), we use σp(T) and σap(T) to denote the point spectrum and ap-
proximate point spectrum of T, respectively. We say T has thin approximate point
spectrum if C \ σap(T) is dense in C.

THEOREM 2.1. Suppose T ∈ B(X) is a cyclic operator and T has thin approxi-
mate point spectrum. Then {T}′ is hereditarily boundedly reflexive; in particular, T is
boundedly reflexive.

Proof. Suppose S ∈ refb({T}′) and x0 is a cyclic vector of T. Then x0 is
necessarily a separating vector of {T}′.

Adding a scalar multiple of identity if necessary, we can assume T is invert-
ible. Since {T}′ is weakly closed and x0 is a separating vector of {T}′, there exists
a unique A0 ∈ {T}′ so that Sx0 = A0x0. Subtracting A0 from S and still call it S,
we may assume Sx0 = 0. We need to show S = 0.

First, we will show STx0 = 0. Clearly, S(T − λ)x0 = STx0, ∀ λ ∈ C. Also,
note that (T − λ)x0 is a separating vector of {T}′, for any λ ∈ C \ σp(T). Since
S ∈ refb({T}′), there exists a scalar MS > 0 so that for any λ ∈ C \ σp(T) there
exists a unique Aλ ∈ {T}′ with ‖Aλ‖ 6 MS satisfying S(T−λ)x0 = Aλ(T−λ)x0;
that is, Aλ defines a bounded map from C \ σp(T) to B(X). Moreover, fix a λ0 ∈
C \ σap(T), then Aλ(T − λ)x0 = Aλ0(T − λ0)x0, ∀ λ ∈ C \ σp(T). Since x0 is a
separating vector of {T}′, we have Aλ(T − λ) = Aλ0(T − λ0), ∀ λ ∈ C \ σp(T). It
follows that

(2.1) (T − λ0)(Aλ − Aλ0) = Aλ(λ− λ0).

Since Aλ is uniformly bounded by MS, (2.1) implies ‖(T − λ0)(Aλ − Aλ0)‖ → 0,
as λ → λ0. Since λ0 ∈ C \ σap(T), we have ‖Aλ − Aλ0‖ → 0, as λ → λ0. Thus Aλ

is continuous at λ0.
By (2.1) again, we have

(2.2) (T − λ0)
Aλ − Aλ0

λ− λ0
= Aλ.

The continuity of Aλ at λ0 implies
{

(T − λ0)
Aλ−Aλ0

λ−λ0

}
is a Cauchy net in B(X) as

λ → λ0. Again, since λ0 ∈ C \ σap(T), it follows that
{ Aλ−Aλ0

λ−λ0

}
is a Cauchy net

in B(X) as λ → λ0. Thus
{ Aλ−Aλ0

λ−λ0

}
is convergent; this implies Aλ is analytic at

λ0. Since λ0 is arbitrary from C \ σap(T), we have shown that Aλ is analytic in
C \ σap(T). The uniform boundedness of Aλ and the density of C \ σap(T) in C
allow us to extend Aλ to a bounded analytic function on C. By the Liouville’s
Theorem, Aλ is a constant operator, say Aλ = C. Now the fact that C(T − λ)x0 is
a constant vector independent of λ and x0 is a separating vector of {T}′ implies
C = 0. Thus, STx0 = 0.
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Since x0 is a separating vector of {T}′ and T is invertible, it follows that
Tx0 is a separating vector of {T}′. Replacing x0 by Tx0 and repeating the above
argument inductively, we can obtain STnx0 = 0 for every positive integer n. This
implies S = 0, since x0 is a cyclic vector of T.

Hereditary bounded reflexivity of {T}′ follows from the fact that {T}′ has
separating vectors.

COROLLARY 2.2. If T ∈ B(X) is a compact cyclic operator then {T}′ is heredi-
tarily boundedly reflexive.

REMARKS 2.3. (i) In [7], D. Hadwin and D. Han asked whether the Volterra
operator is boundedly reflexive. Corollary 2.2 answers the above question affir-
matively. For, the Volterra operator is compact and it has abundant cyclic vectors.
In fact, the set of cyclic vectors for any unicellular operator is a second category
set, by Theorem 2 of [18]. Therefore, any unicellular operator with a dense resol-
vent set is boundedly reflexive; in particular, the Donahue operators are bound-
edly reflexive. Note that, on the contrary, a unicelluar operator can never be
reflexive.

(ii) It is known and easy to show that reflexive operators must have plenty
of nontrivial invariant subspaces. However, a boundedly reflexive Banach space
operator may be transitive; for instance, take the quasinilpotent transitive opera-
tor constructed in [17], it follows immediately from Theorem 2.1 that the operator
is boundedly reflexive.

THEOREM 2.4. Suppose T is a cyclic operator andC \ (σp(T)∪ σap(T∗)) is dense
in C. Then {T}′ is hereditarily boundedly reflexive.

Proof. We can modify the proof of Theorem 2.1 by taking λ0, λ ∈ C \ (σp(T)∪
σap(T∗)) and taking the adjoint of equation (2.1). The rest is similar.

Using Theorem 2.1, we can also prove the following:

THEOREM 2.5. If T has thin approximate point spectrum then {T}′ ∩AlgLatT is
boundedly reflexive.

Proof. First, note that if E is any invariant subspace of T then σap(T|E) ⊆
σap(T), where T|E is the restriction of T to E. Thus T|E has thin approximate
point spectrum. Since

refb({T}′ ∩AlgLatT) ⊆ ref({T}′ ∩AlgLatT) ⊆ ref(AlgLatT) = AlgLatT,

E is an invariant subspace of refb({T}′ ∩AlgLatT). Clearly, ({T}′ ∩AlgLatT)|E ⊆
{T|E}′, where ({T}′ ∩AlgLatT)|E is the restriction of {T}′ ∩AlgLatT to E.

Suppose S ∈ refb({T}′ ∩AlgLatT). Then trivially S ∈ AlgLatT, so we only
need to show S ∈ {T}′. For any x ∈ X, let Ex be the cyclic invariant subspace of
T generated by x. Since T|Ex is cyclic and it has thin approximate point spectrum,
{T|Ex}′ is boundedly reflexive, by Theorem 2.1; that is, refb({T|Ex}′) = {T|Ex}′.
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It follows that

S|Ex ∈ refb(({T}′ ∩AlgLatT)|Ex ) ⊆ refb({T|Ex}′) = {T|Ex}′.
Thus, ST|Ex = S|Ex T|Ex = T|Ex S|Ex = TS|Ex . Since x is arbitrary, we conclude
ST = TS.

The C0-contractions on Hilbert spaces have been extensively studied in the
literature (see [2] and its references for details). It is well-known that not all C0-
contractions are reflexive. The situation is different for bounded reflexivity.

COROLLARY 2.6. All C0-contractions on a Hilbert space are boundedly reflexive.

Proof. Suppose T is a C0-contraction on a Hilbert space. Then by Theorem
1.2 on page 74 in [2] it follows that {T}′ ∩AlgLatT = w(T). Also, from Theorem
4.11 on page 32 in [2] we get that T has thin approximate point spectrum. The
conclusion now follows from Theorem 2.5.

For any T ∈ B(H), it is not hard to see that w(T) ⊆ {T}′ ∩AlgLatT. How-
ever, up until Wogen’s counterexamples in [19], it had been a longstanding open
question whether the inclusion could be proper. Not much is known about the
structure of the hyporeflexive closure of a Hilbert space operator. In fact, it is still
an open question whether {T}′ ∩AlgLatT is always an abelian algebra; see [9],
[11], and [12] for related questions. Our next theorem further differentiates w(T)
and {T}′ ∩AlgLatT, and it may shed some light on the above question.

First, note that for a weak*-closed linear subspace of B(H), the existence of
separating vectors implies the subspace is approximately elementary by Proposi-
tion 1.2 of [9]. The converse of the above is not true. In fact, Wogen constructed
an operator T so that w(T) is elementary and w(T) has no finite separating set
([19], Example 10).

THEOREM 2.7. There exists an operator T ∈ B(H) such that w(T) has strictly
separating vectors and {T}′ ∩AlgLatT is not approximately elementary.

Proof. First, we construct a weakly closed subspace S ⊂ B(H) so that S has
strictly cyclic vectors and S is not boundedly reflexive.

For any u, v ∈ H, we use u ⊗ v to denote the rank-1 operator with (u ⊗
v)x = 〈x, v〉u, ∀ x ∈ H, where 〈·, ·〉 denotes the inner product. Let {en}∞

1 be an
orthonormal basis of H and S be the backward unilateral shift with respect to
{en}∞

1 . Define

S = {x⊗ e1 + Sx⊗ e2 : x ∈ H}.

It is straight forward to check that e1 ⊗ e2 /∈ S ,S is weakly closed, and for any
x⊗ e1 + Sx⊗ e2 ∈ S , ‖x⊗ e1 + Sx⊗ e2‖ 6 2‖x‖.

Take any fixed y =
∞
∑

n=1
ynen with |y1| > |y2|, then y1 I + y2S is invert-

ible. Thus, ‖(x ⊗ e1 + Sx ⊗ e2)y‖ = ‖(y1 I + y2S)x‖ > ‖(y1 I + y2S)−1‖−1‖x‖ >
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1
2‖(y1 I + y2S)−1‖−1‖x ⊗ e1 + Sx ⊗ e2‖. It follows that y is a strictly separating
vector of S .

To see S is not boundedly reflexive, we show e1 ⊗ e2 ∈ refbS . This yields
that S 6= refbS , thus S is not boundedly reflexive.

To this end, we show that for any y =
∞
∑

n=1
ynen ∈ H , there exists an x ∈ H

with ‖x‖ 6 2 so that (x ⊗ e1 + Sx ⊗ e2)y = (e1 ⊗ e2)y. Without loss of generality,
we can assume y1 and y2 are not both zero; otherwise, we could choose x = 0.
If |y1| > 1

2 |y2|, choose x1 = y2
y1

and xn = 0, n = 2, 3, . . .; if |y1| < 1
2 |y2|, choose

x1 = 0, x2 = 1 and xn =
(
− y1

y2

)n−2
, n = 3, 4, . . . .

Using S constructed above and follow the same procedure as that of Con-
struction 3.2 of [1], we can construct an operator T (see Proposition 3.3 of [1]) with
the desired properties. A similar argument to that of Proposition 3.6 of [1] shows
that T is not boundedly reflexive. From the way T is constructed (see especially
page 577, Form (3.2) of [1]), one could easily see that all strictly separating vectors
of S are embedded into strictly separating vectors of w(T) also.

Next, we show that {T}′ ∩AlgLatT is not approximately elementary. Note
that, by Theorem 3.10 of [14], a boundedly reflexive operator space is hereditarily
boundedly reflexive if and only if it is approximately elementary. By Proposi-
tion 3.5 of [1], {T}′ ∩ AlgLatT = AlgLatT, so it is boundedly reflexive (in fact,
reflexive). Since w(T) is not boundedly reflexive, {T}′ ∩AlgLatT is not heredi-
tarily boundedly reflexive, thus it is not approximately elementary.

From the proof of Theorem 2.7, one can see that the existence of strictly sep-
arating vectors for w(T) does not guarantee bounded reflexivity of w(T). Even
though, the existence of “abundant" strictly separating vectors for a weakly closed
subpace of operators implies bounded reflexivity for the subspace of operators,
by Theorem 3.5 of [14].

3. TRIANGULAR OPERATORS

Suppose T ∈ B(H). A vector x ∈ H is called an algebraic vector of T if there exists
a nonzero polynomial p(z) such that p(T)x = 0. An operator is called a triangular
operator if the set of its algebraic vectors is dense in H. Let ker(µ− T)n = {x ∈ H :
(µ − T)nx = 0}, where µ is any complex scalar and n is any positive integer. It
can be easily verified that T is a triangular operator if and only if H is the closed
linear span of ker(µ− T)n, over all µ and n. The adjoint of a triangular operator
is called a co-triangular operator.

The first main result of this section states that the commutant of a triangular
operator is boundedly reflexive. We break the proof of this result into Lemmas 3.1
through 3.7, leading to Theorem 3.8. First, it is more convenient for us to extend
the definitions of reflexivity and bounded reflexivity to subspaces of B(K, L), the
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set of all bounded linear operators from a Hilbert space K to a Hilbert space L.
Since the generalizations are obvious, we omit the formal definitions.

Suppose S ⊆ B(H) and H0 is another Hilbert space. We define the left
augmentation of S to be

S̃ = {(O S) ∈ B(H0 ⊕ H, H) : S ∈ S},

where O is the zero transformation from H0 to H. Similarly, we define the bottom
augmentation of S to be

S =
{(

S
O

)
∈ B(H, H ⊕ H0) : S ∈ S

}
,

where O is the zero transformation from H to H0.
The following lemma is immediate from the definitions.

LEMMA 3.1. A subspace of B(H) is boundedly reflexive if and only if any left aug-
mentation of the subspace is boundedly reflexive if and only if any bottom augmentation
of the subspace is boundedly reflexive.

The next lemma may not be new. We provide a proof here for completeness,
also due to the fact that we could not find a reference for it.

LEMMA 3.2. Let T =
(

J1 + λ 0
0 J2

)
, where J1 and J2 are upper triangular nilpo-

tent Jordan blocks of sizes m and n, respectively, and λ is a complex scalar. Suppose

B =
(

B11 B12
B21 B22

)
, where B11 and B22 are m×m and n× n matrices, respectively.

(i) If λ 6= 0 then B ∈ {T}′ if and only if B12 and B21 are both zero matrices, and
B11 and B22 are both upper triangular square matrices with constant diagonals.

(ii) If λ = 0 then B ∈ {T}′ if and only if B11 and B22 are both upper triangular
square matrices with constant diagonals, and B12 and B21 are both augmentations of
upper triangular square matrices, with constant diagonals, of size k × k, where k =
min(m, n).

Proof. Since TB = BT, a quick computation yields J1B11 = B11 J1, J2B22 =
B22 J2, (J1 + λ)B12 = B12 J2, and J2B21 = B21(J1 + λ). It is well-known and can be
easily checked that commutant of a Jordan block consists of all upper triangular
matrices with constant diagonals, so B11 and B22 are both upper triangular square
matrices with constant diagonals.

If λ 6= 0, using (J1 + λ)B12 = B12 J2 repeatedly will give us (J1 + λ)N B12 =
B12 JN

2 . When N > n, the right hand side of the last equation is 0. The invertibility
of (J1 + λ)N implies B12 = 0. A similar argument shows B21 = 0.

If λ = 0 and m = n, then J1 = J2. Thus B12 and B21 are in the commutant of
J1 = J2, so they are both upper triangular square matrices with constant diagonals
(with no augmentation, or trivial augmentation).

Suppose λ = 0 and m > n. Repeated use of J1B12 = B12 J2 gives us
Jm−1
1 B12 = B12 Jm−1

2 = 0. It follows that the entries in the last row of B12 are
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all 0. If m − 1 > n, then Jm−2
1 B12 = B12 Jm−2

2 = 0. This implies that the entries
in the row that is second from the bottom of B12 are all 0. Repeating the above

until m − k = n. This shows that B12 can be written in the form B12 =
(

B′12
O

)
,

where O is the zero k× n matrix and B′12 is a n× n square matrix. Write J1 in the

following form: J1 =
(

J2 C
0 D

)
. Using the above forms for J1 and B12 in equa-

tion J1B12 = B12 J2, we can obtain J2B′12 = B′12 J2, i.e. B′12 is in the commutant of
J2. Thus B′12 is an upper triangular square matrix with constant diagonals. The
argument for B21, as well as for the case m < n, is similar.

In the following, for convenience, we will allow N to be either a positive
integer or ∞.

LEMMA 3.3. Let Ji be an upper triangular nilpotent Jordan block acting on a finite

dimensional Hilbert space Hi, H =
N⊕

i=1
Hi, and Pi be the orthogonal projection from H

onto Hi. Suppose T =
N⊕

i=1
(Ji + λi) ∈ B(H). Then for any B ∈ B(H), B ∈ {T}′ if and

only if, for any m and n,
(i) if λm 6= λn then PmBPn = 0;

(ii) if λm = λn then PmBPn is an augmentation of a k× k upper triangular matrix
with constant diagonals, where k = min(dimHm, dimHn).

Proof. Note that PmH and PnH are reducing subspaces of T. Thus Pm + Pn is
an orthogonal projection and (Pm + Pn)H is a reducing subspace of T. It follows
that TB = BT if and only if (Pm + Pn)T(Pm + Pn)B(Pm + Pn) = (Pm + Pn)B(Pm +
Pn)T(Pm + Pn). The conclusion follows by an appeal to Lemma 3.2.

LEMMA 3.4. Let Ji be an upper triangular nilpotent Jordan block acting on a finite

dimensional Hilbert space Hi, H =
N⊕

i=1
Hi, and Pi be the orthogonal projection from H

onto Hi. Suppose T =
N⊕

i=1
(Ji + λi) ∈ B(H). Then {T}′ is boundedly reflexive.

Proof. First notice that the subspace of all upper triangular square matri-
ces with constant diagonals is a unital algebra generated by a Jordan block. It
is well-known and can be easily verified that a Jordan block is a cyclic operator.
Therefore, by Theorem 2.1, a unital algebra generated by a Jordan block is bound-
edly reflexive. Thus any augmentation of the subspace is boundedly reflexive by
Lemma 3.1.

Suppose S ∈ refb({T}′). Then PmSPn ∈ Pmrefb({T}′)Pn ⊆ refb(Pm{T}′Pn).
It follows from Lemma 3.1, Lemma 3.3, and the previous paragraph that Pm{T}′Pn
is boundedly reflexive. Thus PmSPn ∈ Pm{T}′Pn. Another appeal to Lemma 3.3
yields S ∈ {T}′.



COMMUTANTS AND HYPOREFLEXIVE CLOSURE OF OPERATORS 375

An operator L ∈ B(H) is called a quasiaffinity if L is injective and has a dense
range. An operator A ∈ B(H) is called quasisimilar to an operator T ∈ B(H) if
there exist quasiaffinities L and R so that LT = AL and TR = RA.

LEMMA 3.5. Suppose A ∈ B(H) is quasisimilar to T ∈ B(H). Then {A}′ is
boundedly reflexive (reflexive, respectively) if and only if {T}′ is boundedly reflexive
(reflexive, respectively).

Proof. By symmetry, we only have to prove one direction. Suppose {T}′
is boundedly reflexive and L and R are quasiaffinities such that LT = AL and
TR = RA. For any B ∈ {T}′, we have LBRA = LBTR = LTBR = ALBR.
This implies L{T}′R ⊆ {A}′. Similarly, R{A}′L ⊆ {T}′. Since LRA = LTR =
ALR, LR ∈ {A}′. Suppose S ∈ refb({A}′). It follows that RSL ∈ refb({T}′). Since
{T}′ is boundedly reflexive, there exists a C ∈ {T}′ such that RSL = C. Hence,
LRSLR = LCR ∈ {A}′. Since LR ∈ {A}′, LRASLR = ALRSLR = ALCR =
LCRA = LRSLRA = LRSALR. The density of the ranges of L and R implies
AS = SA. Therefore, S ∈ {A}′, i.e. {A}′ is boundedly reflexive.

The argument for reflexivity is similar.

A Hilbert space operator is called bitriangular if both the operator and its
adjoint are triangular. A Hilbert space operator C is called an algebraic operator
if there exists a nonzero polynomial p(z) so that p(C) = 0. Clearly, algebraic
operators are bitriangular.

LEMMA 3.6. The commutant of a bitriangular operator is boundedly reflexive. In
particular, the commutant of an algebraic operator is boundedly reflexive.

Proof. Let A be any bitriangular operator. By Theorem 4.6 of [3], A is qua-
sisimilar an operator T, which is the direct sum of Jordan blocks. By Lemma 3.4,
{T}′ is boundedly reflexive. Thus {A}′ is boundedly reflexive by Lemma 3.5.

A subspace E ⊆ H is called a semi-invariant subspace of an operator T if
there exist invariant subspaces M1 ⊆ M2 of T so that E = M2 ª M1. A subspace
E ⊆ H is called a hyperinvariant subspace of T if E is an invariant subspace of
{T}′.

LEMMA 3.7. Suppose T ∈ B(H). Let {Eλ, λ ∈ Λ} be a family of hyperinvariant
subspaces of T whose linear span is dense in H and T|Eλ

be the restriction of T to Eλ. If
{T|Eλ

}′ is boundedly reflexive for all λ then {T}′ is boundedly reflexive.

Proof. Since Eλ is a hyperinvariant subspace of T, it follows that {T}′|Eλ
⊆

{T|Eλ
}′. Take an arbitrary A ∈ refb({T}′). Note that refb({T}′) ⊆ ref({T}′) =

AlgLat({T}′), thus Eλ ∈ LatA. It is not hard to check that A|Eλ
∈ refb({T}′|Eλ

) ⊆
refb({T|Eλ

}′) = {T|Eλ
}′, the last equality is due to the hypothesis that {T|Eλ

}′ is
boundedly reflexive. Thus, AT|Eλ

= A|Eλ
T|Eλ

= T|Eλ
A|Eλ

= TA|Eλ
. Now, the

density of the linear span of Eλ implies AT = TA.
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THEOREM 3.8. If T is triangular or co-triangular then the commutant of T is
boundedly reflexive.

Proof. First, suppose T is triangular. Let En,µ = ker(µ− T)n. Then En,µ is a
hyperinvariant subspace of T. Since T is triangular, H is the closed linear span of
these subspaces. Clearly, T|En,µ is algebraic. By Lemma 3.6, {T|En,µ}′ is boundedly
reflexive. The conclusion now follows from Lemma 3.7.

If T is co-triangular, then the above paragraph shows that {T∗}′ is bound-
edly reflexive. Now the conclusion follows from Corollary 2.7 of [14] which states
that a subspace S ⊆ B(H) is boundedly reflexive if and only if S∗ is boundedly
reflexive.

THEOREM 3.9. If T ∈ B(H) is triangular or co-triangular then {T}′ ∩AlgLatT
has a dense set of separating vectors; in particular, w(T) has a dense set of separating
vectors.

Proof. If T is triangular, let {en}∞
1 be an orthonormal basis of H so that

En = span{e1, . . . , en} are invariant subspaces of T. Let A = {T}′ ∩ AlgLatT.
Clearly, En are invariant subspaces of A. Take any A ∈ A, A|En T|En = AT|En =
TA|En = T|En A|En , so A|En ∈ {T|En}′. Note that for any E ∈ Lat(T|En ), then
E ∈ LatT. Thus, E ∈ LatA, which implies E ∈ Lat(A|En ). Therefore, A|En ∈
{T|En}′ ∩AlgLat(T|En ) = w(T|En ) (The last equality holds for all algebraic oper-
ators, in fact for all C0-contractions, by Theorem 1.2 on page 74 of [2].), yielding
A|En ⊆ w(T|En ). It is well known that a singly generated unital algebra on a fi-
nite dimensional Hilbert space has separating vectors, so w(T|En ) has separating
vectors. Hence, A|En has separating vectors. By Theorem 11 of [6], A has a dense
set of separating vectors.

If T is co-triangular, let {en}∞
1 be an orthonormal basis of H such that E⊥n

are invariant subspaces of T, where En = span{e1, . . . , en}. Thus each En is
semi-invariant subspace of T. Again, assume A = {T}′ ∩ AlgLatT. Let Pn be
the orthogonal projection of H onto En. Take any A ∈ A, then each En is a
semi-invariant subspace of A also. It follows that Pn A|En PnT|En = Pn AT|En =
PnTA|En = PnT|En Pn A|En , so Pn A|En ∈ {PnT|En}′. It can be easily verified that for
any E ∈ Lat(PnT|En ), then E ⊕ E⊥n ∈ LatT. Thus E ⊕ E⊥n ∈ LatA, which implies
E ∈ Lat(Pn A|En ). Therefore PnA|En ⊆ {PnT|En}′ ∩AlgLat(PnT|En ) = w(PnT|En ).
Since w(PnT|En ) has separating vectors, PnA|En has separating vectors. By Theo-
rem 11 of [6], A has a dense set of separating vectors.

COROLLARY 3.10. If T is triangular or co-triangular then {T}′ ∩ AlgLatT is
hereditarily boundedly reflexive; in particular, T is boundedly reflexive.

Proof. Clearly, AlgLatT is reflexive, so it is boundedly reflexive. By The-
orem 3.8, {T}′ is boundedly reflexive. Therefore, {T}′ ∩ AlgLatT is boundedly
reflexive. The hereditary bounded reflexivity follows from the fact that {T}′ ∩
AlgLatT has separating vectors, by Theorem 3.9.
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REMARK 3.11. For perspective, it should be noted that every operator on
a finite dimensional space is boundedly reflexive, an immediate consequence of
Corollary 2.6 or Corollary 3.10.

Let E and F be closed subspaces of H so that H = E ⊕ F. An operator
A ∈ B(H) is called an algebraic extension of an operator T ∈ B(E) if A has the
following form:

A =
(

T B
0 C

)

with respect to the decomposition H = E ⊕ F, where C ∈ B(F) is an algebraic
operator.

The main result of [13] states that if A is an algebraic extension of a bitri-
angular operator then w(A) has a separating vector ([13], Theorem 10). Our next
corollary improves this result.

COROLLARY 3.12. If A is an algebraic extension of a bitriangular operator then
w(A) has a dense set of separating vectors.

Proof. Suppose E and F are closed subspaces of H such that H = E⊕ F and
A has the following form with respect to the orthogonal decomposition:

A =
(

T B
0 C

)
,

where T is bitriangular and C is algebraic.
First, we show A is co-triangular, i.e. A∗ is triangular. Let x be any algebraic

vector of T∗ and y ∈ F be arbitrary. Then there is a non-zero polynomial p(t) such
that p(T∗)x = 0 and p(C∗) = 0. Write

p(A∗) =
(

p(T∗) 0
D 0

)

for some D ∈ B(E, F). Then p(A∗)(x⊕ y) = 0⊕Dx and hence p(A∗)2(x⊕ y) = 0.
So x ⊕ y is an algebraic vector of A∗. Now, the density of algebraic vectors of T∗

in E implies the set of algebraic vectors for A∗ is dense in H, thus A∗ is triangular.
Now by Theorem 3.9, w(A) has a dense set of separating vectors.

COROLLARY 3.13. If A is an algebraic extension of a bitriangular operator then
A is boundedly reflexive.

Proof. By the proof of Corollary 3.12, A is co-triangular. Now the conclusion
follows from Corollary 3.10.

COROLLARY 3.14. Suppose H is a finite dimensional Hilbert space and S is any
subset of B(H). Then the commutant of S is boundedly reflexive. In particular, any
maximal abelian subalgebra of B(H) is boundedly reflexive.

Proof. When H is finite dimensional, every operator in B(H) is triangular.
Thus, the commutant of each operator in B(H) is boundedly reflexive by Theorem
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3.8. Since S ′ is the intersection of boundedly reflexive subspaces (S ′ = ∩{{S}′ :
S ∈ S}), S ′ is boundedly reflexive.

For any maximal abelian subalgebra A of B(H), A = A′. Thus, A is bound-
edly reflexive.

Using Lemmas 3.3 and 3.5, together with a theorem of Davidson and Her-
rero ([3], Theorem 4.6), we can give the following necessary and sufficient condi-
tion for the commutant of a bitriangular operator to be reflexive.

THEOREM 3.15. Suppose A ∈ B(H) is a bitriangular operator. Then {A}′ is
reflexive if and only if A is quasisimilar to a diagonal operator.

Proof. By Theorem 4.6 of [3], A is quasisimilar to an operator of the form:

T =
N⊕

i=1
(Ji + λi), where each Ji is an upper triangular nilpotent Jordan block acting

on a finite dimensional Hilbert space Hi, and H =
N⊕

i=1
Hi (Here N = ∞ when

dimH = ∞) . By Lemma 3.5, {A}′ is reflexive if and only if {T}′ is reflexive.
Let Pi be the orthogonal projection from H onto Hi. It follows from Lemma 3.3
that {T}′ is reflexive if and only if Pm{T}′Pn is reflexive for all positive integers
m and n; this happens if and only if dimHi = 1 for each i, since a unital algebra
generated by a Jordan block is reflexive if and only if the Jordan block is of size
1× 1, by Theorem 2 of [4].

Theorem 3.15 is a generalization of the following main result of [5].

COROLLARY 3.16. ([5]) The commutant of an operator on a finite dimensional
Hilbert space is reflexive if and only if the operator is diagonalizable.

Proof. Note that on a finite dimensional Hilbert space every operator is a
bitriangular operator and every quasiaffinity is invertible.

N-reflexivity of an operator space measures how close the operator space
is to being reflexive. Although the commutant of a Banach space operator might
not be reflexive, the following proposition shows that if it is not reflexive, it is
never too far from being reflexive.

PROPOSITION 3.17. The commutant of a Banach space operator is 2-reflexive.

Proof. Let T ∈ B(X). For simplicity of notations, we suppose S = {T}′.
Take any A ∈ ref(S (2)) ⊆ B(X ⊕ X), then necessarily A has the form A = A1 ⊕
A1. For any x ∈ X, there exist Sn ∈ S such that Snx ⊕ SnTx → A1x ⊕ A1Tx.
Since Snx ⊕ SnTx = Snx ⊕ TSnx → A1x ⊕ TA1x, it follows that A1Tx = TA1x.
Since x is arbitrary, we obtain A1T = TA1, that is, A1 ∈ {T}′. Therefore, {T}′ is
2-reflexive.

Proposition 3.17 generalizes Corollary 11 of [10] to Banach spaces.
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COROLLARY 3.18. There exists a 2-reflexive transitive abelian unital algebra con-
sisting of entirely boundedly reflexive operators.

Proof. First note that the intersection of 2-reflexive subspaces is 2-reflexive.
Thus, if S is any subset of B(X) then S ′ =

⋂{{S}′ : S ∈ S} is 2-reflexive, by
Proposition 3.17.

Let T be the quasinilpotent transitive operator constructed in [17]. Then
{T}′′, the double commutant of T, has the desired properties. First of all, {T}′′
is 2-reflexive by the previous paragraph. By Theorem 2.1, {T}′ is hereditarily
boundedly reflexive; in particular, it consists of entirely boundedly reflexive op-
erators. It is not hard to check that w(T) ⊆ {T}′′ ⊆ {T}′ and {T}′′ is an abelian
unital algebra. Now the transitivity of T implies {T}′′ is transitive.
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