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ABSTRACT. Let τ be a closed sectorial form in a Hilbert space H, and let
T = (T(t); t>0) be the C0-semigroup associated with τ. We generalize a cri-
terion of Ouhabaz on T-invariance of a closed convex set C ⊆ H in terms
of τ and the Hilbert space projection onto C. Using this criterion, we gener-
alize known criteria for domination properties between two C0-semigroups
associated with closed sectorial forms in L2-spaces. Following recent develop-
ments, the dominated semigroup is assumed to act on a Hilbert space valued
L2-space.
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1. INTRODUCTION

Let a, b be closed sectorial forms in the Hilbert spaces L2(Ω, µ; G), L2(Ω, µ),
respectively, where G is a Hilbert space. Denote by S, T the C0-semigroups asso-
ciated with a, b, respectively. Our aim is characterizing when S is dominated by
T, i.e.,

|S(t)u| 6 T(t)|u|
for all u ∈ D(a), t > 0 (where | · | denotes the norm in G). The results we are
going to present generalize previous results in two ways: on the one hand we
will study the case where the forms are not densely defined, and on the other
hand we will present core results.

Our work is motivated by the papers of E.M. Ouhabaz [10], [11] — to which
we refer for the history and earlier literature — as well as by the desire to find
manageable criteria for applications. Considering domination for semigroups
acting in Hilbert space valued L2-spaces was initiated by Shigekawa [12]. A treat-
ment of invariance and domination properties in the non-linear setting has been
given by Barthélemy [1].
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The application we have in mind is the theory of Schrödinger operators with
magnetic fields. In this case, Ω is an open subset of Rd, µ = σ dx with a (singu-
lar) weight σ : Ω → [0, ∞), and a, b are associated with the formal differential
operators

σ−1(∇− ib)∗a(∇− ib)
(
= −σ−1

d

∑
j,k=1

(∂j − ibj)ajk(∂k − ibk)
)
,

σ−1∇∗a∇, respectively. Here, b : Ω → Rd is a (singular) vector potential and
a(x) = (ajk(x))j,k=1,...,d is a nonnegative real symmetric matrix for all x ∈ Ω. It
was this situation in which the first named author was faced with the two prob-
lems mentioned above: in general, the forms a and b are not densely defined, and
they are explicitly given only on cores (cf. Kapitel 14 of [6]).

In order to illustrate the type of characterization we obtain, we mention here
the result that S is dominated by T if and only if D(a) is a generalized ideal of
D(b), and

Re a(u, v) > b(|u|, |v|)
for all u, v ∈ D(a) satisfying (u |v)G = |u||v|; cf. Theorem 4.1.

Our results on domination are derived from a result characterizing semi-
groups leaving invariant a closed convex set in a Hilbert space (Theorem 2.1).
This is parallel to the treatment in [10] and [11], the difference being that we push
this analysis further. As a consequence, our proof of the characterization of dom-
ination is in all parts based on the result of invariance. It is by this method that
we are able to treat the case where D(a) and D(b) are not densely defined and
where inequalities are assumed only on suitable cores of D(a) and D(b).

As far as possible, we treat the real case and the complex case simultane-
ously. Throughout the paper, we assume (Ω, µ) to be a measure space, and by
M(µ; G) we denote the set of measurable G-valued functions, where G is the
Hilbert space mentioned initially. For G = K ∈ {R,C}, the space M(µ;K) in fact
is a lattice.

The main result of Section 2 is our result presenting various characteriza-
tions for invariance of a closed convex set in a Hilbert space under a semigroup
which is associated with a sectorial form. This result is applied to characterizing
when a semigroup is real, positive, or sub-Markovian, respectively.

Section 3 contains preparations for the application of the main result of Sec-
tion 2 to domination. We point out the importance of the convex cone

C ..= {(u, v) ∈ M(µ; G)× M(µ;R) : |u| 6 v}
for the domination of operators: we compute a distinguished projection P from
M(µ; G)× M(µ;R) onto this cone, and we characterize subspaces U ⊆ M(µ; G),
V ⊆ M(µ;R) for which U × V is invariant under P. It is in this context that
generalized ideals appear as a natural concept.

In Section 4, the main result of Section 2 is applied to characterizing domina-
tion of a semigroup S by a positive semigroup T. As special situations we study
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the two cases that both S and T are symmetric, and that S is a positive semigroup,
too.

In Section 5 we supply some additional information concerning generalized
ideals.

2. THE INVARIANCE CRITERION

The aim of this section is to generalize Ouhabaz’ criterion on invariance of
closed convex sets ([10], Theorem 2.1, [11], Theorem 3) in three directions. Firstly,
we want to state the criterion in the setting of not necessarily densely defined
forms; this is in fact an easy task. Secondly, we want to present a core version
which is useful in applications. Thirdly, we want to remove the (standard) as-
sumption that the form is non-negative. The latter generalization originated in
the paper [4]; see also the comments at the end of this section.

Throughout this section let τ be a closed sectorial form in a (real or complex)
Hilbert space H. For the theory of sectorial forms we refer to Chapter VI of [3]
and Chapter I of [5]. We do not assume τ to be densely defined or non-negative.
Let Hτ

..= D(τ)H , A the m-sectorial operator in Hτ associated with τ and T =
(T(t) : t > 0) the C0-semigroup on Hτ generated by −A.

Let −ω0(τ) be the lower bound of τ, i.e.,

ω0(τ) ..= inf{ω ∈ R : Re τ(u) > −ω||u||2 for all u ∈ D(τ)}.

Recall that ω0(τ) coincides with the type of the semigroup T. In particular, T is
contractive if and only if τ is non-negative, i.e., Re τ(u) > 0 for all u ∈ D(τ).

Before stating the main theorem of this section we introduce the following
notation. If ∅ 6= C is a closed convex subset of H, we denote by PH

C : H → C the
projection (= Hilbert space projection) from H onto C, i.e., for u ∈ H the element
PH

C u is the unique element of C satisfying

||u− PH
C u|| = min

v∈C
||u− v||.

It is known that PH
C u is characterized by

(2.1) Re (v− PH
C u |u− PH

C u) 6 0 for all v ∈ C.

We say that a set M ⊆ H is invariant under a semigroup S on H if S(t)M ⊆ M
for all t > 0.

In the case that the form τ is densely defined and non-negative, the equiva-
lences “(i)⇔(ii)⇔(iv)” of the following theorem are due to Ouhabaz ([10], Theo-
rem 2.1; [11], Theorem 3).

THEOREM 2.1. Let ∅ 6= C ⊆ H be a closed convex set, P ..= PH
C . Then the

following are equivalent:
(i) Hτ is invariant under P, and C ∩ Hτ is invariant under T;
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(ii) D(τ) is invariant under P, and

(2.2) Re τ(Pu, u− Pu) > 0

for all u ∈ D(τ);
(iii) there exists a dense subset D of D(τ) (i.e., D is a core for τ) such that P(D) ⊆

D(τ) and (2.2) holds for all u ∈ D;
(iv) D(τ) is invariant under P, and

(2.3) Re τ(u, u− Pu) > −ω||u− Pu||2
for all u ∈ D(τ), with ω = ω0(τ);

(v) there exist ω ∈ R and D ⊆ D(τ) dense, convex and invariant under P such
that (2.3) holds for all u ∈ D.

Proof. Since P is continuous, either of the conditions implies that Hτ =
D(τ) = D is invariant under P. This shows P¹Hτ

= PHτ
C∩Hτ

. We may therefore
assume Hτ = H, i.e., τ is densely defined.

(i) ⇒ (ii). The first part of the proof of Theorem 2.1 in [10] shows that D(τ)
is invariant under P. Let u ∈ D(τ). Then T(t)Pu ∈ C, so Lemma 1.1 of [10] and
characterization (2.1) imply

Re τ(Pu, u− Pu) = lim
t→0+

1
t

Re (Pu− T(t)Pu |u− Pu) > 0.

(ii) ⇒ (iv) follows from the equality

τ(u, u− Pu) = τ(Pu, u− Pu) + τ(u− Pu)

and the definition of ω0(τ).
(iv) ⇒ (i). We only have to prove the second statement. The following is an

adaptation of the proof of Theorem 2.1 in [10].
It is sufficient to show that λ(λ + A)−1(C) ⊆ C, for all λ > max(ω0(τ), 0).

Let u ∈ C, v ..= λ(λ + A)−1u. Then Av = λ(u− v). Characterization (2.1) yields
Re (u |v− Pv) 6 Re (Pv |v− Pv). Inequality (2.3) now implies

−ω0(τ)||v− Pv||2 6 Re τ(v, v− Pv) = Re (Av |v− Pv) = λ Re (u− v |v− Pv)

6 λ Re (Pv− v |v− Pv) = −λ||v− Pv||2.

Because of λ > ω0(τ) we obtain v = Pv ∈ C.
(iv) ⇒ (v) is trivial.
(v) ⇒ (iii) (cf. proof of Corollary 2.5 in [10]). Let u ∈ D. Then uε

..= Pu +
ε(u − Pu) ∈ D for all ε ∈ (0, 1), and uε → Pu in D(τ) as ε → 0. Moreover,
Puε = Pu by characterization (2.1). Thus (iii) follows by letting ε → 0 in

Re τ(uε, u− Pu) =
1
ε

Re τ(uε, uε − Puε) > −1
ε

ω||uε − Puε||2 = −εω||u− Pu||2.

(iii) ⇒ (ii). Let u ∈ D(τ). Let (un) ⊆ D such that un → u in D(τ) as n → ∞.
By (iii) we have

Re τ(Pun) 6 Re τ(Pun, un) (n ∈ N).
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As in the proof of Theorem 2.1 of [10] one deduces that there exists c > 1 such
that

Re τ(Pun) 6 c(Re τ(un) + ||un||2) + ||Pun||2 (n ∈ N).

Therefore, (Pun) is a bounded sequence in D(τ). Since Pun → Pu in H we obtain
that Pun → Pu weakly in D(τ) (see, e.g., Lemma I.2.12 of [5]). Thus, the lower
semicontinuity of Re τ implies

Re τ(Pu) 6 lim inf
n→∞

Re τ(Pun) 6 lim inf
n→∞

Re τ(Pun, un) = Re τ(Pu, u),

so (ii) holds.

The next result states an equivalent reformulation of property (i) of the
above theorem, which holds in a more general context.

PROPOSITION 2.2. Let S be a C0-semigroup on a closed subspace HS of H. Let
S0 be the semigroup on H defined by S0(t) ..= S(t)PH

HS
for all t > 0. Let∅ 6= C ⊆ H be

a closed convex set, P ..= PH
C . Then the following are equivalent:

(i) C is invariant under S0;
(ii) HS is invariant under P, and C ∩ HS is invariant under S.

Proof. It is immediate that one only has to show that C is invariant under
S0(0) = PH

HS
if and only if HS is invariant under P = PH

C . This equivalence is a
special case of the following lemma.

LEMMA 2.3 ([1], footnote on p. 9). Let C1, C2 ⊆ H be closed convex sets, Pj
..=

PH
Cj

for j = 1, 2. Then C1 is invariant under P2 if and only if C2 is invariant under P1.

Proof. We only need to show necessity. Let C1 be invariant under P2, x ∈ C2.
We have to show that y ..= P1x ∈ C2. Since x ∈ C2, i.e. P2x = x, we have

||x− P2y|| = ||P2x− P2y|| 6 ||x− y|| = ||x− P1x||.
Note that P2y ∈ C1 since y ∈ C1. Since P1x is the best approximation of x in C1,
we conclude that y = P1x = P2y ∈ C2.

In Corollary 2.6 below we will need the following application of Lemma 2.3.
Recall that a complex Hilbert lattice H is the complexification of a real Hilbert
lattice Hr. If H is a real or complex Hilbert lattice then it is easy to show that the
projection from H onto H+ (= (Hr)+) is given by u 7→ (Re u)+.

LEMMA 2.4. Let H be a (real or complex) Hilbert lattice, and let V be a closed
subspace of H. Then PH

V is positive if and only if V is a sublattice of H.

Proof. By Lemma 2.3, applied with C1 = V, C2 = H+, we obtain: PV
..= PH

V
is positive if and only if PH

H+
v = (Re v)+ ∈ V for all v ∈ V. It remains to observe

that, if PV is positive, then |v| ∈ V for all v ∈ V. The latter holds because the
inequalities ||PV |v||| 6 ||v||, |v| = |PVv| 6 PV |v| imply |v| = PV |v| ∈ V.
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In the remainder of this section we apply Theorem 2.1 and Proposition 2.2
to real, positive, and sub-Markovian semigroups, respectively. Let τ, Hτ , T be as
above and define T0 like S0 in Proposition 2.2.

If H is the complexification of a real Hilbert space Hr and X is a subspace of
H, we define Xr

..= Hr ∩ X. We say that X is real if X = lin(Xr). If X is real then a
semigroup on X is called real if it leaves Xr invariant.

COROLLARY 2.5 (cf. Proposition 2.2 in [9]). Assume that H is the complexifica-
tion of a real Hilbert space Hr. Then the following are equivalent:

(i) T0 is real;
(ii) Hτ is real and T is real;

(iii) D(τ) is real, and τ(u, v) ∈ R for all u, v ∈ D(τ)r;
(iv) there exists a dense subset D of D(τ) such that u ∈ D implies Re u ∈ D(τ) and

τ(Re u, Im u) ∈ R.

Proof. Note that P : x 7→ Re x is the projection from H onto C ..= Hr, and
that a subspace of H is real if and only if it is invariant under P. Thus, (i) ⇔ (ii) is
immediate from Proposition 2.2. Moreover, Re τ(Pu, u− Pu) = Im τ(Re u, Im u)
for all u ∈ D(τ), so (iv) ⇒ (ii) follows from Theorem 2.1, (iii)⇒(i).

(iii) ⇒ (iv) is trivial, so it remains to show (ii) ⇒ (iii). Let u, v ∈ D(τ)r,
w ..= u + iv. By Theorem 2.1, (i)⇒(ii), Im τ(u, v) = Re τ(Pw, w− Pw) > 0 as well
as − Im τ(u, v) = Re τ(Pw, w− Pw) > 0, so (iii) holds.

COROLLARY 2.6 (cf. Theorem 2.4 of [9] and Corollary 2.5 of [10]). Let H be a
(real or complex) Hilbert lattice. Then the following are equivalent:

(i) T0 is positive;
(ii) Hτ is a sublattice of H, and T is positive;

(iii) T is real, D(τ) is a sublattice of H, and τ(u+, u−) 6 0 for all u ∈ D(τ)r;
(iv) T is real, and there exists a dense subset D of D(τ)r such that u ∈ D implies

u+ ∈ D(τ) and τ(u+, u−) 6 0.
Moreover, if (ii) holds then τ(|u|) 6 Re τ(u) for all u ∈ D(τ).

Proof. In the case K = R, the assertion is a consequence of Proposition 2.2
and Theorem 2.1, (i)⇔(ii)⇔(iii), applied with C = H+.

Assume now K = C. By Lemma 2.4, (i) implies that Hτ is a sublattice of
H. It remains to show that (ii) implies that |u| ∈ D(τ), τ(|u|) 6 Re τ(u) for all
u ∈ D(τ).

If τ is symmetric, this is proved in the same way as the corresponding as-
sertion in the first Beurling-Deny criterion; see, e.g., Theorem 1.3.2 of [2].

If τ is not symmetric, we use the symmetric part τs of τ, which is defined
by τs(u, v) ..= 1

2 (τ(u, v) + τ(v, u)), for u, v ∈ D(τs) ..= D(τ). Then τ(u+, u−) 6 0,
τ(u−, u+) = τ((−u)+, (−u)−) 6 0 for all u ∈ D(τ)r, and hence τs(u+, u−) 6 0
for all u ∈ D(τs)r. Moreover, τs(u, v) ∈ R for all u, v ∈ D(τs)r, so by Corollar-
ies 2.5 and 2.6 (real) we obtain that the semigroup associated with τs is real, and
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positive on Hr. Consequently, Corollary 2.6 (complex, form symmetric) implies
|u| ∈ D(τ), τ(|u|) = τs(|u|) 6 τs(u) = Re τ(u) for all u ∈ D(τ).

REMARK 2.7. In the case that τ is symmetric, the inequality in (iii) is in
fact equivalent to “τ(|u|) 6 Re τ(u) for all u ∈ D(τ)” (if T is real and D(τ)
is a sublattice of H). The latter inequality is one of the equivalences in the first
Beurling-Deny criterion.

Finally, let H be a Stonian Hilbert sublattice of M(µ;R) (i.e., f ∧ 1 ∈ H for
all f ∈ H). A bounded operator S on H is called sub-Markovian if S is positive and
|S f | 6 1 for all f ∈ H such that | f | 6 1. Note that S is sub-Markovian if and only
if S f 6 1 for all f ∈ H such that f 6 1. A semigroup T is called sub-Markovian if
T(t) is sub-Markovian for all t > 0.

Observe that the projection from H onto C ..= { f ∈ H : f 6 1} is given by
f 7→ f ∧ 1. Applying Proposition 2.2, Theorem 2.1, and Corollary 2.6, we obtain

COROLLARY 2.8 (cf. Corollary of Theorem 2 in [4] and Corollary 2.7 in [10]).
Let H be a Stonian Hilbert sublattice of M(µ;R). Then the following are equivalent:

(i) T0 is sub-Markovian;
(ii) Hτ is a Stonian sublattice of H, and T is sub-Markovian;

(iii) D(τ) is a Stonian sublattice of H, and τ(u ∧ 1, (u− 1)+) > 0 for all u ∈ D(τ);
(iv) there exists a dense subset D of D(τ) such that u ∈ D implies u ∧ 1 ∈ D(τ) and

τ(u ∧ 1, (u− 1)+) > 0.

It is this application of Theorem 2.1 that shows why it is important not to
assume that τ is non-negative in that theorem. The other applications could also
be proven by passing to the non-negative form τ + ω0(τ).

It seems that (variants of) the above corollary are well-known only in the
case that τ is non-negative. Nevertheless, it was already observed by H. Kunita
[4] that this assumption is not needed. We point out that Kunita also did not
assume the form to be symmetric — his result deals with an arbitrary densely
defined closed sectorial form. We did not find a reference to Kunita’s paper [4] in
the recent literature on non-symmetric Dirichlet forms.

We note that in Theorems 1 and 2 of [11], the result that is generalized by
our Theorem 2.1 has been applied to characterize L∞-contractivity of semigroups
acting on Hilbert space valued L2-spaces.

3. GENERALIZED IDEALS

In this section we provide the tools needed to formulate and prove the dom-
ination criterion in Section 4.

As announced in the introduction, G will be a (real or complex) Hilbert
space. The norm in G is denoted by | · |. By M(µ; G) we denote the measurable
functions from the measure space (Ω, µ) to G.



16 AMIR MANAVI, HENDRIK VOGT AND JÜRGEN VOIGT

We define the convex cone

(3.1) C ..= {(u, v) ∈ M(µ; G)× M(µ;R) : |u| 6 v}
(cf. proof of Theorem 4 of [11]). The following elementary observation establishes
the relationship between C and domination properties of operators.

REMARK 3.1. Let V be a sublattice of M(µ;R), and let U be a subspace of
M(µ; G) with |u| ∈ V for all u ∈ U. Let T : V → V, S : U → U be linear operators.
Then T is positive and S is dominated by T (i.e., |Su| 6 T|u| for all u ∈ U) if and
only if C ∩ (U ×V) is invariant under S× T.

In view of this remark one can expect that Theorem 2.1 is applicable to dom-
ination of semigroups. In order to apply Theorem 2.1, we have to study the pro-
jection from H ..= L2(µ; G) × L2(µ;R) (considered as a real Hilbert space) onto
C ∩ H and the invariant subspaces for this projection.

Let P : M(µ; G)× M(µ;R) → C be defined by

(3.2) P(u, v) ..=
1
2
((|u|+ |u| ∧ v)+ sgn u, (|u| ∨ v + v)+).

Here we use the notation

sgn x ..=

{
1
|x| x if x 6= 0,

0 if x = 0,

for x ∈ G, and correspondingly for a function u : Ω → G.

LEMMA 3.2. (i) Let C̃ ..= {(x, y) ∈ G×R : |x| 6 y}. Then C̃ is a closed convex
subset of G×R, and for (x, y) ∈ G×R one has

PG×R
C̃

(x, y) =
1
2
((|x|+ |x| ∧ y)+ sgn x, (|x| ∨ y + y)+)

(= P(x, y) if G and R are interpreted as M(µ; G) and M(µ;R), respectively, with a
one-point measure space).

(ii) The restriction of P to H = L2(µ; G)× L2(µ;R) is the projection from H onto
C ∩ H.

Proof. (i) Let x ∈ G, |x| = 1. Obviously, C̃ is invariant under the projection
PG×R
Rx×R. By Lemma 2.3 this implies PG×R

C̃
(αx, y) ∈ Rx×R for all α, y ∈ R.

A simple geometric consideration shows that on [0, ∞)x×R the projection
PG×R

C̃
is given by

PG×R
C̃

(αx, y) =





(αx, y) for y > α,
1
2 ((α + y)x, α + y) for |y| < α,
(0, 0) for y 6 −α

=
1
2
((α + α ∧ y)+x, (α ∨ y + y)+).
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For arbitrary x this transforms into

PG×R
C̃

(x, y) =
1
2
((|x|+ |x| ∧ y)+ sgn x, (|x| ∨ y + y)+).

(ii) is a direct consequence of (i).

In order to describe P-invariant subspaces of M(µ; G)× M(µ;R), we need
the following notion.

DEFINITION 3.3. Let U, V be subspaces of M(µ; G), M(µ;K), respectively.
We call U a generalized ideal of V if

(i) u ∈ U implies |u| ∈ V;
(ii) u ∈ U, v ∈ V, |v| 6 |u| implies v sgn u ∈ U.

If V is a generalized ideal of V, we say that V is a generalized ideal of itself.

REMARK 3.4. (a) If V is a real subspace of M(µ;K) then it is sufficient to
require (ii) for v ∈ Vr; in particular, U is a generalized ideal of V if and only if U
is a generalized ideal of Vr.

(b) Ouhabaz [10], [11] introduced the object defined in Definition 3.3 under
the name “ideal”. We reserve the term “ideal” for lattice ideals.

(c) The example given in Remark 4.2(d) illustrates that, in the case G = K,
it may happen that U 6= {0} is a generalized ideal of V, and U ∩V = {0}.

The following proposition establishes the relationship between the projec-
tion P and the notion of generalized ideal.

PROPOSITION 3.5. Let U, V be subspaces of M(µ; G), M(µ;R), respectively.
Then the following are equivalent:

(i) U ×V is invariant under P;
(ii) V is a sublattice of M(µ;R), and U is a generalized ideal of V.

Proof. (i) ⇒ (ii). Let v ∈ V. Then (0, v+) = P(0, v) ∈ U × V, which proves
the first assertion of (ii).

Let u ∈ U. Then 1
2 (u, |u|) = P(u, 0) ∈ U × V, so |u| ∈ V. Further, let

v ∈ V, |v| 6 |u|. Then 1
2 (u + v sgn u, |u|+ v) = P(u, v) ∈ U × V, and therefore

v sgn u = (u + v sgn u)− u ∈ U. This shows the second assertion.
(ii) ⇒ (i). Let (u, v) ∈ U ×V. Then |u| ∈ V since U is a generalized ideal of

V. Since V is a sublattice of M(µ;R), we obtain

1
2
(|u|+ |u| ∧ v)+,

1
2
(|u| ∨ v + v)+ ∈ V.

The inequality 0 6 1
2 (|u|+ |u| ∧ v)+ 6 |u| and U being a generalized ideal of V

then imply 1
2 (|u|+ |u| ∧ v)+ sgn u ∈ U. Hence P(u, v) ∈ U ×V.

The following proposition establishes the relationship between the notions
of ideal and generalized ideal.
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PROPOSITION 3.6 (cf. Proposition 3.6 of [10]). Let U ⊆ V be subspaces of
M(µ;K).

(i) Assume that V is a real subspace, and that U is a generalized ideal of V. If u ∈ U,
v ∈ V, |v| 6 |u|, then v ∈ U.

(ii) Assume that V is a generalized ideal of itself and a sublattice of M(µ;K). Then U
is an ideal of V if and only if U is a generalized ideal of V.

Proof. (i) If u ∈ U, v ∈ V, |v| 6 |u| then u ∈ V, |u| 6 |u|, therefore |u| =
u sgn u ∈ U, v = v sgn |u| ∈ U.

(ii) By (i) we only have to show: If U is an ideal of V then U is a generalized
ideal of V. For u ∈ U ⊆ V we have |u| ∈ V, by Definition 3.3(i). Let moreover
v ∈ V, |v| 6 |u|. Then v sgn u ∈ V by Definition 3.3(ii). But also |v sgn u| 6 |u|,
so U being an ideal of V implies v sgn u ∈ U.

COROLLARY 3.7. Let U, V be sublattices of M(µ;K), V a generalized ideal of
itself. Then U is an ideal of V if and only if U is a generalized ideal of V.

Proof. By the above proposition, we only have to show that U ⊆ V. This
is clear if U is an ideal of V. If U is a generalized ideal of V then u ∈ U implies
(Re u)+ ∈ U and hence (Re u)+ = |(Re u)+| ∈ V. This shows U ⊆ V.

4. THE DOMINATION CRITERION

In this section we assume a, b to be two closed sectorial forms in L2(µ; G),

L2(µ;K), respectively, where G is a Hilbert space. Let Ha
..= D(a)

L2(µ;G)
. De-

note by A the m-sectorial operator in Ha associated with a, by S the C0-semi-
group on Ha generated by −A, and define the semigroup S0 on L2(µ; G) as in
Proposition 2.2. Similarly for b, with the operator B, the C0-semigroup T on

Hb
..= D(b)

L2(µ;K)
, and the semigroup T0 on L2(µ;K).

The following theorem is the generalization of Ouhabaz’ criterion an-
nounced in the introduction.

THEOREM 4.1. Assume that Hb is a sublattice of L2(µ;K) and that T is positive.
Then the following statements (i)–(iv) are equivalent:

(i) S0 is dominated by T0, i.e., |S0(t)u| 6 T0(t)|u| for all u ∈ L2(µ; G), t > 0;
(ii) Ha is a generalized ideal of Hb, and S is dominated by T;

(iii) D(a) is a generalized ideal of D(b), and

(4.1) Re a(u, v) > b(|u|, |v|) (u, v ∈ D(a), (u |v)G = |u||v|);

(iv) there exist dense subspaces Da ⊆ D(a), Db ⊆ D(b)r such that Db is a sublattice
of L2(µ;R), Da is a generalized ideal of Db, and

Re a(u, v sgn u) > b(|u|, v) (u ∈ Da, v ∈ Db, 0 6 v 6 |u|).

Moreover, if (ii) holds then
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(v) D(a) is a generalized ideal of D(b), and

b(|u|)− b(v) 6 Re(a(u)− a(v sgn u)) (u ∈ D(a), v ∈ D(b)r, |v| 6 |u|).

Conversely, if a and b are symmetric and
(vi) there exist dense subspaces Da ⊆ D(a), Db ⊆ D(b)r such that Db is a sublattice

of L2(µ;R), Da is a generalized ideal of Db, and

b(|u|)− b(v) 6 a(u)− a(v sgn u) (u ∈ Da, v ∈ Db, 0 6 v 6 |u|),

then (i)–(iv) hold.

REMARKS 4.2. Assume that G = K.
(a) Assume that Hb is a sublattice of L2(µ;K) and that T is positive. Then,

by Corollary 2.6, T0 is positive and hence dominated by itself. By Theorem 4.1,
(i)⇒(ii),(iii), we obtain that Hb is a generalized ideal of itself, and so is D(b).

(b) Since (u |v)K = uv, the condition “(u |v)G = |u||v|” in (4.1) in state-
ment (iii) can be replaced by “uv > 0”.

(c) In the case Ha ⊆ Hb, the word “generalized” can be dropped in state-
ment (ii). This is immediate from Proposition 3.6(ii) and part (a) above.

(d) The following elementary example illustrates that, in the situation of
Theorem 4.1, the domination property is possible without Ha being a subset of
Hb, even if G = K. Let Ω consist of two points, L2(µ;K) = K2, b = 0 on D(b) ..=
{(x, x) : x ∈ K}. Let γ ∈ K, |γ| = 1, γ 6= 1, a = 0 on D(a) ..= {(x, γx) : x ∈ K}.
Then Ha = D(a) is a generalized ideal of Hb = D(b), and S = (idHa : t > 0) is
dominated by T = (idHb

: t > 0).

Proof of Theorem 4.1. First observe that the complex case can be reduced
to the real case: Consider G as a real Hilbert space GR with scalar product
defined by Re (x |y). In the same way, replace a by the form aR defined by
aR(u, v) ..= Re(a(u, v)). Then aR is a closed sectorial form in L2(µ; GR), and
aR is associated with S, considered as a semigroup on (Ha)R . Finally, restrict the
(complex) domains of b, T, and T0 to the respective real spaces, and take into
account Remark 3.4(a).

For the remainder of the proof we assume K = R. Following the proof of
(i)⇒(ii) in Theorem 4 of [11], we define the sesquilinear form τ =.. a× b by

D(τ) ..= D(a)× D(b), τ((u1, v1), (u2, v2)) ..= a(u1, u2) + b(v1, v2).

Then τ is a closed sectorial form in H ..= L2(µ; G) × L2(µ;R). Moreover, the
C0-semigroup W = S× T on Hτ = Ha × Hb associated with τ is given by

W(t)( f , g) = (S(t) f , T(t)g) (( f , g) ∈ Hτ , t > 0),

and we have W0 = S0 × T0.
Let C and P be as in Section 3, (3.1) and (3.2). Recall from Lemma 3.2(ii) that

P¹H = PH
C∩H . By Remark 3.1, statement (i) of the theorem holds if and only if

C ∩ H is invariant under W0.
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Since Hb is a sublattice of L2(µ;R), Proposition 3.5 implies that Ha is a gen-
eralized ideal of Hb if and only if Hτ = Ha × Hb is invariant under P. We can
thus reformulate statement (ii) of the theorem as follows.

(ii’) Hτ is invariant under P, and C ∩ Hτ is invariant under W.
After these preparations we proceed to the proof of the asserted implica-

tions.
(i) ⇔ (ii’) is a direct consequence of Proposition 2.2.
(ii’)⇒ (iii), (v). Theorem 2.1, (i)⇒(ii), implies that D(τ) is invariant under P,

and hence, by Proposition 3.5, that D(a) is a generalized ideal of D(b). Moreover,

τ(P(u, v), (1− P)(u, v)) > 0 ((u, v) ∈ D(τ)).

Let u ∈ D(a), v ∈ D(b), |v| 6 |u|. Then P(u, v) = 1
2 (u + v sgn u, |u|+ v), (1−

P)(u, v) = 1
2 (u− v sgn u, v− |u|), and we obtain

(4.2) a(u + v sgn u, u− v sgn u) > b(|u|+ v, |u| − v).

Replacing v by −v in (4.2) and adding the resulting inequality to (4.2) yields (v).
In order to show (iii), let u, v ∈ D(a) with (u | v)G = |u| · |v|. Let ũ ..=

1
2 (u + v), ṽ ..= 1

2 (|u| − |v|). Then ũ ∈ D(a), ṽ ∈ D(b), |ṽ| 6 |ũ|. Moreover,

u = ũ + ṽ sgn ũ, v = ũ− ṽ sgn ũ, |u| = |ũ|+ ṽ, |v| = |ũ| − ṽ.

Hence (4.2) applied to ũ, ṽ yields (iii).
(iii)⇒ (iv). Take Da

..= D(a), Db
..= D(b), and recall from Corollary 2.6 that

D(b) is a sublattice of L2(µ;R).
(iv) ⇒ (ii’). Without restriction a, b are non-negative, so τ is non-negative.

By Proposition 3.5, the assumptions imply that Da×Db is invariant under P. Let
u ∈ Da, v ∈ Db. By Theorem 2.1, (v)⇒(i), we only have to show

α ..= τ((u, v), (1− P)(u, v)) > 0.

Let P =.. (P1, P2). Then P1(u, v) ∈ Da. Further, note that |P1(u, v)| = P1(|u|, v) 6
|u| and P1(u, v) = P1(|u|, v) sgn u. Hence ṽ ..= |u| − P1(|u|, v) ∈ Db, 0 6 ṽ 6 |u|,
and ṽ sgn u = u− P1(u, v). Therefore,

α = a(u, u− P1(u, v)) + b(v, v− P2(u, v))

= a(u, ṽ sgn u) + b(v, v− P2(|u|, v))

> b(|u|, ṽ) + b(v, v− P2(|u|, v)) = (b× b)((|u|, v), (1− P)(|u|, v)).

To see that the latter quantity is non-negative, recall that T0 is dominated by itself,
so C ∩ H is invariant under T0 × T0; then apply Proposition 2.2 and Theorem 2.1,
(i)⇒(iv).

(vi) ⇒ (iv). If a and b are symmetric then (vi) is equivalent to the validity
of (4.2) for all u ∈ Da, v ∈ Db, 0 6 v 6 |u|. Defining ũ ..= 1

2 (u + v sgn u),
ṽ ..= 1

2 (|u| − v), we deduce (iv) as in the proof of (ii’) ⇒ (iii).

In the following result we study the special case that G = K and that both
semigroups S0 and T0 are positive.
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COROLLARY 4.3. Assume that Ha, Hb are sublattices of L2(µ;K) and that S, T
are positive. Then the following are equivalent:

(i) Ha is an ideal of Hb, and S is dominated by T;
(ii) D(a) is an ideal of D(b), and

(4.3) a(u, v) > b(u, v) (0 6 u, v ∈ D(a)).

Proof. By Remark 4.2(a), S0 and T0 are positive, Hb is a generalized ideal of
itself, and so is D(b). By Corollary 2.6, D(a) and D(b) are sublattices of L2(µ;K).
Moreover, since S0 is dominated by S0, we obtain by Theorem 4.1, (i)⇒(iii), that
(4.3) implies (4.1):

Re a(u, v) > a(|u|, |v|) > b(|u|, |v|) (u, v ∈ D(a), uv > 0).

Now the assertion follows from Theorem 4.1, (ii)⇔(iii), and Corollary 3.7.

We conclude this section by showing the connection between the domina-
tion results of Theorem 4.1 and the well-established “generalized Kato’s inequal-
ity for operators”.

THEOREM 4.4. Assume that Hb is a sublattice of L2(µ;K), that T is positive, and
that Ha is a generalized ideal of Hb. Then the following are equivalent:

(i) S is dominated by T;
(ii) u ∈ D(A) implies |u| ∈ D(b), and

Re (Au |v sgn u) > b(|u|, v) (u ∈ D(A), 0 6 v ∈ D(b));

(iii) Re (Au |v sgn u) > (|u| ∣∣ B∗v) for all u ∈ D(A), 0 6 v ∈ D(B∗), where B∗ is
the adjoint of B in the Hilbert space Hb.

Proof. (i) ⇒ (ii). The first assertion of (ii) follows from Theorem 4.1,
(ii)⇒(iii). Let u ∈ D(A), v ∈ D(b)+. The domination hypothesis implies

Re
1
t
(u− S(t)u

∣∣v sgn u) =
1
t
(|u| ∣∣v)− 1

t
Re (S(t)u

∣∣v sgn u)

> 1
t
(|u| − T(t)|u| ∣∣v) (t > 0).

By Lemma 1.1 of [10] we obtain

1
t
(|u| − T(t)|u| ∣∣v) −→ b(|u|, v) (t → 0),

and thus

Re (Au |v sgn u) = lim
t→0

Re
1
t
(u− S(t)u

∣∣v sgn u) > b(|u|, v).

(ii) ⇒ (iii). Recall that D(B∗) ⊆ D(b), and b(w, v) = (w|B∗v) for all w ∈
D(b), v ∈ D(B∗); cf. Theorem VI.2.5 of [3]. This shows that (iii) is a special case
of (ii).

(iii) ⇒ (i) is shown as in C-II, proof of Theorem 4.2, (ii)⇒(i) of [8].
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REMARKS 4.5. (a) Corollary 4.3, (ii)⇒(i), was proved in Corollary B.3 of [14]
for symmetric forms. In Theorem 3.7 of [10], Corollary 4.3 was proved for the case
Ha = Hb.

(b) The equivalence “(i)⇔(ii)” in Theorem 4.4 is due to Simon ([13], Theo-
rem 1) for the special case of densely defined symmetric forms. In the case that
both semigroups act on the same space, equivalence “(i)⇔(iii)” is true in the more
general framework of countably order complete Banach lattices (see C-II, Theo-
rem 4.2 of [8]).

5. SUPPLEMENT ON GENERALIZED IDEALS

We first study the relationship between the notions of “sublattice of
M(µ;K)” and of “generalized ideal of itself” (recall Definition 3.3).

PROPOSITION 5.1. Let V ⊆ M(µ;K) be a generalized ideal of itself. Then V is a
sublattice of M(µ;K).

Proof. For K = R there is nothing to show. In the case K = C we only have
to show that v ∈ V implies (Re v)+ ∈ V. So, let v ∈ V. Applying alternatingly
conditions (i) and (ii) of Definition 3.3, we obtain v sgn v = |v| ∈ V, v sgn v ∈ V,
thus (Re v) sgn v ∈ V, |Re v| = |(Re v) sgn v| ∈ V, |Re v| sgn v ∈ V, and finally
(Re v)+ sgn v = 1

2 ((Re v) sgn v + |Re v| sgn v) ∈ V, (Re v)+ = |(Re v)+ sgn v| ∈
V.

The following result shows that the converse of the above proposition holds
for K = R, whereas for K = C one needs an additional hypothesis.

PROPOSITION 5.2. Let V be a sublattice of M(µ;K).
(i) If K = R then V is a generalized ideal of itself.

(ii) If K = C and V is uniformly complete then V is a generalized ideal of itself. (We
recall that for an Archimedean vector lattice E, uniform completeness means: For all
x ∈ E+, the (complex) principal ideal Ex, endowed with the norm

||y||x ..= inf{c > 0 : |y| 6 cx},

is complete; cf. Definition 1.1.7 and Proposition 1.2.13 of [7].)

Proof. (i) For all u, v ∈ V, |v| 6 |u|, one has v sgn u = |u + v| − |u| ∈ V.
(ii) Observe that, for all w, z ∈ C, |w| 6 |z|, 0 < λ 6 1, one has

∣∣∣ 1
λ

(|z + λw| − |z|)− Re (w sgn z)
∣∣∣ 6 λ|w|.

(It is easy to see that it is sufficient to prove the inequality for the special case

w = 1. For the proof of this case one estimates 1
λ

λ∫
0

∣∣ d
dt |z + t| − Re (sgn z)

∣∣ dt

suitably.)
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Let u, v ∈ V with |v| 6 |u|. Then ||u + λv| − |u|| 6 λ|v| and hence 1
λ (|u +

λv| − |u|) ∈ V|v| for all λ > 0, where V|v| is the principal ideal in V generated by
|v|. The above inequality shows that 1

λ (|u + λv| − |u|) → Re (v sgn u) as λ → 0,
in the |v|-norm on M(µ;C)|v|. The uniform completeness of V implies that V|v|
is closed in M(µ;C)|v| and therefore Re (v sgn u) ∈ V. Applying this result to
−iv in place of v, we obtain Im(v sgn u) = Re(−iv sgn u) ∈ V, v sgn u ∈ V. This
shows property (ii) of Definition 3.3.

If V ⊆ M(µ;K) is a generalized ideal of itself one may ask whether
v sgn u ∈ V for all u, v ∈ V. This is evidently true if V is an ideal of M(µ;K).
With (Ω,A, µ) = (N, 2N , counting measure) and V the set of all convergent se-
quences one obtains a generalized ideal of itself, but there exist u, v ∈ V such that
v sgn u /∈ V.

PROPOSITION 5.3. Let V be a sublattice of M(µ;K). Assume that, for each count-
able order bounded set A ⊆ Vr, the supremum of A taken in M(µ;R) belongs to V. Then
v sgn u ∈ V for all u, v ∈ V.

Proof. The assumption implies that V is countably order complete and
hence uniformly complete (cf. Proposition 1.1.8 of [7]). Thus we obtain from
Proposition 5.2 that V is a generalized ideal of itself.

Since V is a lattice it is sufficient to show the assertion for v > 0. Note that
|ku| ∧ v ∈ V for all k ∈ N. Thus property (ii) of Definition 3.3 implies (|ku| ∧
v) sgn u ∈ V, k ∈ N. Since (|ku| ∧ v) sgn u → v sgn u, k → ∞, pointwise and
boundedly (by v), the assumption on V implies v sgn u ∈ V.

REMARKS 5.4. (a) The assumptions of Proposition 5.3 are fulfilled, in par-
ticular, if V is a closed sublattice of Lp(µ;K), with 1 6 p < ∞ (or more generally,
of a Banach function space with order continuous norm).

(b) Proposition 5.3 can be interpreted as the statement that in a sublattice V
of M(µ;K) satisfying the assumption of Proposition 5.3, the signum operator Su
with respect to an element u ∈ V is explicitly given by

Suv = v sgn u (v ∈ V)

(cf. Chapter C-I, Section 8 of [8] for the signum operator).
(c) Incidentally, Proposition 5.3 also supplies a detail which seems to have

been neglected in the proof of Proposition 3.2 of [10]. Indeed, if H is a closed sub-
lattice of L2(Ω,A, µ), then H ∼= L2(Ω̃, Ã, µ̃) (as a Hilbert space and a lattice) for a
suitable measure space; cf. Corollary 2.7.5 of [7]. Now, if u ∈ L2(µ) belongs to H
and ũ is the corresponding element of L2(µ̃), then part (a) above shows that the
signum operator Su is given by Suv = v sgn u, but evidently in the representation
L2(µ̃) one has Sũṽ = ṽ sgn ũ. Since the signum operator is unique this implies
that v sgn u is represented by the function ṽ sgn ũ in L2(µ̃), for arbitrary u, v ∈ H.

(d) In Proposition 5.3, the hypothesis on V may not simply be replaced by
assuming Vr countably order complete. Indeed, let F be a free ultrafilter on N,



24 AMIR MANAVI, HENDRIK VOGT AND JÜRGEN VOIGT

and define a sublattice V of M(N;R) (N with counting measure) by

V ..= {u ∈ `∞(N) : u(1) = lim u(F )}.

Then V is order complete, but, defining u, v ∈ V by u(1) ..= 0, u(n) ..= 1/n
(n > 2), v(n) ..= 1 (n ∈ N), we obtain v sgn u /∈ V. We remark that, for u ∈ V, the
signum operator Su in V is given by multiplication with

ũ(n) ..=
{

lim(sgn u)(F ) for n = 1,
sgn u(n) for n > 2.
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