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ABSTRACT. We consider Arveson’s problem on the maximality of subdiago-
nal algebras. We prove that a subdiagonal algebra is maximal if it is invariant
under the modular group of a faithful normal state which is preserved by the
conditional expectation associated with the subdiagonal algebra.
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1. INTRODUCTION

Let M be a von Neumann algebra. Let E be a normal faithful conditional
expectation fromM onto a von Neumann subalgebraD ofM. A σ-weakly closed
subalgebra A of M is called a subdiagonal algebra in M with respect to E if the
following conditions are satisfied:

(i) A+A∗ is σ-weakly dense in M;
(ii) E is multiplicative on A;

(iii) A∩A∗ = D, where A∗ = {x∗ : x ∈ A}.
D is then called the diagonal of A.

This notion was introduced by Arveson in [1] with the perspective to give
a unified theory of non-selfadjoint operator algebras, including the algebra of
bounded analytic matrix valued (or more generally, operator valued) functions
and nest algebras. One fundamental result proved in [1] is an inner-outer type
factorization, which extends significantly the previous inner-outer factorization
for analytic matrix valued functions obtained independently by Helson-Lowdens-
lager [6] and Wiener-Masani [16] (see also [5]). This theorem was further gen-
eralized and studied in many related contexts (see [9] and for more references
therein). On the other hand, as the well-known Szëgo inner-outer factorization
in the theory of the classical Hardy spaces, this factorization is central for the
development of the non-commutative Hardy space theory (cf. [12], [13], [14]).



138 QUANHUA XU

In all these works, and in fact since the creation of the theory of subdiagonal
algebras by Averson, a certain maximality assumption has always played a pre-
eminent role. Recall that a subdiagonal algebra A with respect to E is said to be
maximal if A is properly contained in no larger subdiagonal algebra with respect
to E . It was proved in [1] that any subdiagonal algebraA is contained in a unique
maximal subdiagonal algebra, denoted by Amax, which is described by

Amax = {x ∈ M : E(axb) = 0, ∀ a ∈ A, ∀ b ∈ A0},

where

A0 = {a ∈ A : E(a) = 0}.

Many known examples of subdiagonal algebras are maximal. A long standing
open problem raised by Arveson in [1] is that whether every subdiagonal algebra
is automatically maximal.

Only more than two decades later that Exel [3] gave a partial solution for
this problem: if there is a normal faithful tracial state τ on M such that τ ◦ E = τ
(in this case A is called a finite subdiagonal algebra), then A is maximal. In fact,
Exel’s arguments show a little bit more, namely, that every subdiagonal algebra
of a finite von Neumann algebra is automatically maximal. By the way, we recall
another problem posed in [1], still unsolved too, is that whether a subdiagonal
algebra of a finite and σ-finite von Neumann algebra is a finite subdiagonal alge-
bra.

Very recently, Ji, Ohwada and Saito proved in [8] that if A is a maximal
subdiagonal algebra in a σ-finite von Neumann algebraMwith respect to E , then
A is invariant under the modular automorphism group σ

ϕ
t of every E -invariant

normal faithful state ϕ on M. Recall that ϕ is E -invariant if ϕ ◦ E = ϕ. They then
asked whether the converse is true. Let us explicitly state this question as follows
(see Question 2.7 in [8]).

QUESTION. Let A be a subdiagonal algebra of a σ-finite von Neumann algebra
M with respect to E . Assume that A is σ

ϕ
t -invariant (i.e., σ

ϕ
t (A) ⊂ A, ∀ t ∈ R) for

every E -invariant normal faithful state ϕ on M. Is A maximal?

The aim of this note is to answer this question in the affirmative. Below is
our main result.

THEOREM 1.1. LetM be a σ-finite von Neumann algebra and E a normal faithful
conditional expectation from M onto a von Neumann subalgebra D ⊂ M. Let A be a
subdiagonal algebra of M with respect to E . If there is a normal faithful state ϕ on M
such that E commutes with σ

ϕ
t (i.e., σ

ϕ
t ◦ E = E ◦ σ

ϕ
t for all t ∈ R) and A is σ

ϕ
t -

invariant, then A is maximal.

REMARK. It is classical that if ϕ is E -invariant, then E and σ
ϕ
t commute ([2],

1.4.3).
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The remainder of the note is essentially devoted to the proof of the theo-
rem above. Our strategy is to reduce the present situation to that of finite von
Neumann algebras, and then to use Exel’s theorem quoted previously. The key
ingredient of this reduction is an unpublished important result of Haagerup. It
roughly says that every von Neumann algebra can be embedded, in an appro-
priate way, into a large von Neumann algebra, which is a kind of inductive limit
of some nice finite von Neumann subalgebras. In the next section, we will recall
this reduction theorem of Haagerup and the construction of these nicely disposed
subalgebras. The proof of the above theorem will be given in Section 3. Section 4
contains a generalization to weights instead of states.

2. HAAGERUP’S REDUCTION THEOREM

In this section we recall an important unpublished theorem due to Haagerup
[4]. It states that any von Neumann algebra can be embedded, as the image of a
normal faithful conditional expectation, into a large von Neumann algebra which
is generated by an increasing family of finite subalgebras, each of which is the im-
age of a normal conditional expectation. Haagerup’s original intention is to ap-
proximate his non-commutative Lp-spaces based on type III von Neumann alge-
bras by those constructed from a trace. This approximation theorem on Haagerup
non-commutative Lp-spaces is very important in non-commutative analysis. In
many situations, it permits to consider only non-commutative Lp-spaces asso-
ciated with traces. We refer to [10] for more recent applications of Haagerup’s
reduction theorem to non-commutative martingale and ergodic theories. Note
that [10] also contains a reproduction of Haagerup’s unpublished manuscript [4].

The main tool of Haagerup’s construction is crossed products. Our refer-
ences for crossed products are [11] and [15]. Throughout, G will denote the dis-
crete subgroup

⋃
n>1

2−nZ of R. Let M be a von Neumann algebra acting on a

Hilbert space H and ϕ a normal faithful state on M. We consider the crossed
product Moσϕ G of M by G with respect to σϕ. In the sequel, we will denote
this crossed product by R. Recall that R is a von Neumann algebra on `2(G, H)
generated by the operators π(x), x ∈ M and λ(t), t ∈ G, which are defined by

(π(x)ξ)(s) = σ
ϕ
−s(x)ξ(s), (λ(t)ξ)(s) = ξ(s− t), s ∈ G, ξ ∈ `2(G, H).

Note that π is a normal faithful representation of M on `2(G, H). Thus we will
identify π(M) and M whenever possible. The operators π(x) and λ(t) satisfy
the following commutation relation:

(2.1) λ(t)π(x)λ(t)∗ = π(σ
ϕ
t (x)), t ∈ G, x ∈ M.
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Let ϕ̂ be the dual weight of ϕ on R. Then ϕ̂ is again a normal faithful state on R
uniquely determined by

(2.2) ϕ̂(λ(t)x) =
{

ϕ(x) if t = 0
0 otherwise

, x ∈ M, t ∈ G.

In particular, ϕ̂
∣∣M = ϕ. The modular automorphism group of ϕ̂ is uniquely de-

termined by

(2.3) σ
ϕ̂
t (x) = σ

ϕ
t (x), σ

ϕ̂
t (λ(s)) = λ(s), x ∈ M, t, s ∈ G.

Consequently, σ
ϕ̂
t
∣∣M = σ

ϕ
t , and so σ

ϕ̂
t (M) = M for all t ∈ R. It also follows that

(2.4) σ
ϕ̂
t (x) = λ(t)xλ(t)∗, x ∈ R, t ∈ G.

It is classical that there is a unique normal faithful conditional expectation Φ from
R onto M determined by

(2.5) Φ(λ(t)x) =
{

x if t = 0
0 otherwise

, x ∈ M, t ∈ G.

By (2.2), (2.3) and (2.5), we deduce that

(2.6) ϕ̂ ◦Φ = ϕ̂ and σ
ϕ̂
t ◦Φ = Φ ◦ σ

ϕ̂
t , t ∈ R.

With these notations, Haagerup’s reduction theorem asserts that there is an in-
creasing sequence (Rn)n>1 of von Neumann subalgebras ofRwith the following
properties:

(i) each Rn is finite;
(ii)

⋃
n>1

Rn is σ-weakly dense in R;

(iii) for every n > 1 there is a normal faithful conditional expectation Φn from
R onto Rn such that:

(2.7) ϕ̂ ◦Φn = ϕ̂, σ
ϕ̂
t ◦Φn = Φn ◦ σ

ϕ̂
t , Φn ◦Φn+1 = Φn, n > 1, t ∈ R.

Note that a normal conditional expectation satisfying the first equality in
(2.7) is unique. Since Φn ◦ Φn+1 is also a conditional expectation under which
ϕ̂ is invariant, this uniqueness implies Φn ◦ Φn+1 = Φn, that is, the third equal-
ity in (2.7) is a consequence of the first. Note that the second equality is also a
consequence of the first by Connes’ classical result already quoted before.

In Haagerup’s construction, Rn is the centralizer of a normal faithful state
ϕn on R such that its modular automorphism group σ

ϕn
t is periodic of period

2−n. In the sequel, we will need the precise form of ϕn. Thus let us briefly recall
this construction.

For a von Neumann algebra N and a normal faithful state ψ on N we de-
note, as usual, by Z(N ) the center of N and by Nψ the centralizer of ψ in N .
Recall that Nψ is the algebra of the fixed points of σ

ψ
t . By (2.4), λ(t) ∈ Z(Rϕ̂) for
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all t ∈ G. For any given n ∈ N, by functional calculus, there is bn ∈ Z(Rϕ̂) such
that

0 6 bn 6 2π and eibn = λ(2−n).

Set an = 2nbn. Then again an ∈ Z(Rϕ̂), n > 1. The desired state ϕn is defined as

(2.8) ϕn(x) =
1

ϕ̂(e−an)
ϕ̂(e−an x), x ∈ R, n > 1.

Since an ∈ Rϕ̂,

(2.9) σ
ϕn
t (x) = e−itan σ

ϕ̂
t (x)eitan , x ∈ R, t ∈ R, n > 1.

Then by (2.4) and the definition of an, σ
ϕn
t is 2−n-periodic. Let Rn = Rϕn . Then

ϕn
∣∣Rn

is a normal faithful tracial state on Rn, and so Rn is a finite von Neumann
subalgebra of R.

Define Φn : R → Rn by

Φn(x) = 2n
2−n∫

0

σ
ϕn
t (x)dt, x ∈ R.

By the 2−n-periodicity of σ
ϕn
t , we have

(2.10) Φn(x) =
1∫

0

σ
ϕn
t (x)dt, x ∈ R.

Then it is routine to check that Φn is a normal faithful conditional expectation
satisfying (2.7). Hence to prove Haagerup’s reduction theorem mentioned above
it remains to show that (Rn) is increasing and the union of the R′

ns is σ-weakly
dense in R. We refer the reader to [4] and [10] for more details.

3. THE PROOF

This section is devoted to the proof of Theorem 1.1. Throughout this section,
M,D, E ,A and ϕ will be fixed as in that theorem. R will be the crossed product
Moσϕ G as in the last section, and we will keep all notations introduced there.
The idea of the proof is to first liftA to a subdiagonal algebra inR, then compress
the latter to a subdiagonal algebra in Rn by the conditional expectation Φn, and
finally come back to A by passing to limit as n → ∞.

For easy later reference let us state the commutation assumption on E and
σ

ϕ
t as follows

(3.1) σ
ϕ
t ◦ E = E ◦ σ

ϕ
t , t ∈ R.

This implies that D is σ
ϕ
t -invariant and σ

ϕ
t
∣∣D is exactly the modular automor-

phism group of ϕ
∣∣D . Consequently, we do not need to distinguish ϕ and ϕ

∣∣D , σ
ϕ
t
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and σ
ϕ
t
∣∣D , respectively. Now let S = D oσϕ G. Then S is naturally identified as

a von Neumann subalgebra of R, generated by all operators π(x), x ∈ D and
λ(t), t ∈ G. The dual weight of ϕ

∣∣D on S is equal to ϕ̂
∣∣S . Again, we will de-

note this restriction by the same symbol ϕ̂. It is not hard to extend E to a normal
faithful conditional expectation Ê from R onto S , which is uniquely determined
by

(3.2) Ê(λ(t)x) = λ(t) E(x), x ∈ M, t ∈ G.

The reader is referred to [10] for details and for more extensions of this type. By
(2.4), (3.1) and (3.2), we deduce

(3.3) σ
ϕ̂
t ◦ Ê = Ê ◦ σ

ϕ̂
t , t ∈ G.

On the other hand, using (2.9), (3.3) and the fact that an ∈ S and Ê is a conditional
expectation with respect to S , we get

(3.4) σ
ϕn
t ◦ Ê = Ê ◦ σ

ϕn
t , t ∈ R, n > 1.

Hence by the definition (2.10) of the conditional expectation Φn : R → Rn, we
deduce

(3.5) Φn ◦ Ê = Ê ◦Φn, n > 1.

In particular, Rn and S are respectively Ê -invariant and Φn-invariant.
Now let Sn = Sϕn , n > 1. Then clearly, Sn = Rn ∩ S for every n > 1. Also

note that Φn
∣∣S and Ê ∣∣Rn

are normal faithful conditional expectations from S onto
Sn, respectively, from Rn onto Sn. (Sn)n>1 and (Φn

∣∣S )n>1 are the increasing se-
quences of von Neumann subalgebras of S and respectively the sequence of the
corresponding conditional expectations given by Haagerup’s construction pre-
sented in the last section relative to (D, ϕ

∣∣D) instead of (M, ϕ). Again, we will
denote these restriction mappings by the same symbols as the mappings their-
selves when no confusion can occur.

Since A is σ
ϕ
t -invariant, by (2.1), the family of all linear combinations on

λ(t) π(x), t ∈ G, x ∈ A, is a ∗-subalgebra of R. Let Â be its σ-weakly closure in
R and An = Â ∩ Rn. The following lemmas show that Â (respectively An) is a
subdiagonal algebra with respect to Ê (respectively Ê ∣∣Rn

).

LEMMA 3.1. Â is a subdiagonal algebra of R with respect to Ê .

Proof. We first prove that Â+ Â∗ is σ-weakly dense inR. For this it suffices
to show that for any t ∈ G and x ∈ M, λ(t) π(x) is the limit of elements in
Â+ Â∗. Since A+A∗ is σ-weakly dense in M, there are ai, bi ∈ A such that

x = lim
i

(ai + b∗i ) σ-weakly.

Since π is normal,

π(x) = lim
i

(π(ai) + π(bi)∗) σ-weakly.
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Therefore,

λ(t)π(x) = lim
i

(λ(t)π(ai) + λ(t)π(bi)∗) σ-weakly.

This is the desired limit.
Next we show that Ê is multiplicative on Â. To this end we note that by

(3.2), for any s, t ∈ G and x, y ∈ A
Ê(λ(s)π(x)π(y)λ(t)) = λ(s)π(E(xy))λ(t)

= λ(s)π(E(x)E(y))λ(t)

= Ê(λ(s)π(x))Ê(π(y)λ(t)),

where we have used the multiplicativity of E on A. Then the linearity and nor-
mality of Ê imply the multiplicativity of Ê on Â.

Thus it remains to show Â ∩ Â∗ = S . To this end, we will use the matrix
representation (xs,t)s,t∈G of an element x ∈ B(`2(G, H)) in the natural basis of
`2(G). It is well-known that x ∈ R if and only if there is a function X : G → M
such that

xs,t = σ
ϕ
−s(X(s t−1)), s, t ∈ G.

(cf. Section 22.1 of [15]). Clearly, this function X is unique. Now we claim that
if x ∈ Â, then X(t) ∈ A for all t ∈ G. Indeed, this is clear if x = λ(t0) π(x0)
for some t0 ∈ G and x0 ∈ A. It then follows that the claim is true if x is a linear
combination of λ(t) π(y), t ∈ G, y ∈ A. For a general x ∈ Â, there is a net {xi} of
linear combinations on λ(t) π(y), t ∈ G, y ∈ A, such that

x = lim
i

xi σ-weakly.

If Xi denotes the function corresponding to xi, then clearly

X(t) = lim
i

Xi(t) σ-weakly, t ∈ G.

Hence by the σ-weak closedness of A, we conclude that X(t) ∈ A for all t ∈ G,
proving our claim.

Similarly, if x ∈ Â∗, then X(t) ∈ A∗ for all t ∈ G. Now let x ∈ Â ∩ Â∗.
Then X(t) ∈ A ∩ A∗ = D for all t ∈ G. Therefore, x ∈ S , and so Â ∩ Â∗ ⊂ S .
The converse inclusion is trivial. Thus Â ∩ Â∗ = S . Therefore Â is a subdiagonal
algebra with respect to Ê .

LEMMA 3.2. EveryAn is a finite subdiagonal algebra inRn with respect to Ê ∣∣Rn
.

Proof. Since Ê is multiplicative on Â, Ê ∣∣Rn
is multiplicative on An. On the

other hand,

An ∩A∗n = Â ∩ Â∗ ∩Rn = S ∩Rn = Sn.
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Thus it remains to show the σ-weak density of An +A∗n in Rn. Let x ∈ Rn. Since
Â+ Â∗ is σ-weakly dense in R, there are ai, bi ∈ Â such that

x = lim
i

(ai + b∗i ) σ-weakly.

Then by the normality of Φn, we have

x = Φn(x) = lim
i

(Φn(ai) + Φn(bi)∗) σ-weakly.

However, by (2.9), (2.10) and the assumption that A is σ
ϕ
t -invariant, we easily

deduce that Â is Φn-invariant for all n > 1. Hence, Φn(ai), Φn(bi) ∈ Â ∩ Rn =
An. It follows that An +A∗n is σ-weakly dense in Rn. Thus An is a subdiagonal
algebra with respect to Ê ∣∣Rn

. Note that as a by-product we have also proved
An = Φn(Rn).

We recall that if A is a subdiagonal algebra in M with respect to E , then the
maximal subdiagonal algebra containing A is

Amax = {x ∈ M : E(AxA0) = E(A0xA) = 0}.

LEMMA 3.3. Â is maximal.

Proof. We must show (Â)max = Â. Let x ∈ (Â)max. Set xn = Φn(x), n > 1.
We claim that xn ∈ (An)max. Indeed, let a, b ∈ An with Ê(b) = 0. Then a, b ∈
A ∩ Rn. Since Φn is a conditional expectation with respect to Rn, by (3.5), we
have

Ê(axnb) = Ê(aΦn(x)b) = Ê(Φn(axb)) = Φn(Ê(axb)) = 0.

This yields our claim. However, by Lemma 3.2 and Exel’s theorem, An is max-
imal. Hence xn ∈ Â for n > 1. On the other hand, (2.7) implies that xn → x
σ-weakly. Since Â is σ-weakly closed, we conclude that x ∈ Â. Therefore, Â is
maximal.

Finally, we are ready to prove our main theorem.

Proof of Theorem 1.1. Applying the preceding discussion toAmax in the place
of A, we get a subdiagonal algebra Âmax of R with respect to Ê . Since A ⊂
Amax, Â ⊂ Âmax. However, by Lemma 3.3, Â is maximal. Hence Â = Âmax.
Consequently, for any x ∈ Amax, π(x) ∈ Âmax = Â. Then necessarily, x ∈ A.
Thus A = Amax, and so A is maximal.

4. A GENERALIZATION

It is not clear to the author at the time of this writing whether the state ϕ
in Theorem 1.1 can be replaced by a semifinite normal faithful weight (keeping
all other assumptions). The author is able to prove this only for normal faithful
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weights whose restrictions to D are strictly semifinite. Recall that a weight ϕ on
M is said to be strictly semifinite if there is a family {ψj}j∈J of normal positive
functionals whose supports are pairwise disjoint and such that

ϕ = ∑
j∈J

ψj.

This is equivalent to saying that ϕ is semifinite on the centralizer Mϕ. Our main
theorem can be extended to weights as follows.

THEOREM 4.1. Let M be a von Neumann algebra and E a normal faithful con-
ditional expectation from M onto a von Neumann subalgebra D ⊂ M. Let A be a
subdiagonal algebra of M with respect to E . If there is a normal faithful weight ϕ on M
such that ϕ

∣∣D is strictly semifinite on D, E commutes with σ
ϕ
t and A is σ

ϕ
t -invariant,

then A is maximal.

As a corollary, we get the following generalization of Exel’s theorem to the
semifinite case. See [7] for a related result.

COROLLARY 4.2. Let A be a subdiagonal algebra of M with respect to E . If there
is a normal semifinite faithful trace τ on M such that τ is semifinite on D, then A is
maximal.

The proof of Theorem 4.1 above can be reduced to the state case via a stan-
dard way. Indeed, let ϕ be a weight as in the theorem and consider again the
crossed product R = M oσϕ G. Using the strict semifiniteness and the con-
struction in Section 2, one can prove that there is an increasing family {Ri}i∈I of
w∗-closed ∗-subalgebras of R satisfying the following properties:

(i) each Ri is finite and σ-finite;
(ii) the union of all Ri is w∗-dense in R;

(iii) the identity pi of Ri belongs to Rϕ̂;
(iv) there is a normal conditional expectation Φi from R onto Ri such that

ϕ̂ ◦Φi = pi ϕ̂pi and σ
ϕ̂
t ◦Φi = Φi ◦ σ

ϕ̂
t , t ∈ R, i ∈ I;

(v) for all i, j ∈ I with i 6 j,

Φi ◦Φj = Φj ◦Φi = Φi.

We refer to [10] for more details. Then repeating the arguments in Section 3,
we can prove Theorem 4.1. We omit all details.
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