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ABSTRACT. For each outer function Ω in the Smirnov class and each p ∈
(0, ∞), we define a subspace N p

Ω of Hp that carries an operation analogous
to complex conjugation. Using these subspaces, we explicitly describe the in-
variant subspaces and noncyclic functions for the backward shift operator on
Hp for p ∈ [1, ∞) and p ∈ (0, ∞), respectively. We also discuss pseudocontin-
uations, the Darlington synthesis problem from electrical network theory, and
the kernels of Toeplitz operators.

KEYWORDS: Invariant subspaces, backward shift operator, Toeplitz operators, pseu-
docontinuation, Smirnov class, unitary matrices, Darlington synthesis, cyclic func-
tions, noncyclic functions, inner functions.

MSC (2000): 30D55, 47A15.

1. INTRODUCTION

In this note we introduce a family of subspaces of the Hp spaces for p ∈
(0, ∞) upon which a certain conjugation operation is defined. Using these sub-
spaces, we obtain explicit representations for the invariant subspaces and non-
cyclic functions for the backward shift operator on Hp for p ∈ [1, ∞) and p ∈
(0, ∞), respectively. We discuss applications of these results to the theory of
pseudocontinuations and to the Darlington synthesis problem from electrical net-
work theory. Furthermore, we obtain explicit representations for the kernels of
Toeplitz operators on Hp for p ∈ (1, ∞) and relate this to results of Hayashi [8]
and Dyakonov [6].

The first portion of this note concerns the construction and structure theory
of our subspaces. The second portion involves applications of these results. The
building blocks of our construction are the so-called real Smirnov functions, first
described by Helson [9] and later by Sarason and the author [7].

Recall that each Hp space is contained in the Smirnov class N+ which con-
sists of all functions of the form h1/h2 where h1, h2 are in H∞ and h2 is outer. If
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f belongs to N+, then f possesses nontangential limiting values a.e. on ∂D. Each
f in N+ factors as f = I f F where I f is inner and F is outer. This factorization is
unique up to unimodular constant factors. We freely identify Smirnov functions
with their boundary values on ∂D and we frequently suppress the “a.e.”

2. REAL SMIRNOV FUNCTIONS

A function f belonging to the Smirnov class N+ is called a real Smirnov
function if its boundary function is real valued a.e. on ∂D. The set R+ of all real
Smirnov functions is a real subalgebra of N+ that was explicitly described by
Helson [9]. He showed that if ψ1 and ψ2 are relatively prime inner functions such
that ψ1 − ψ2 is outer, then the function

(2.1) f (z) = i
ψ1 + ψ2

ψ1 − ψ2

is a real Smirnov function and every real Smirnov function arises this way. Al-
though elegant, this representation has its limitations. For example, the inner
functions ψ1 and ψ2 are often difficult to identify and there are no general criteria
describing when the difference of inner functions is outer.

In [7], Sarason and the author proved that any outer function F belonging
to R+ can be represented as a locally uniformly convergent product

f (z) = | f (0)|
∞

∏
n=1

T(ϕ+
n )

T(ϕ−n )

where T denotes the linear fractional transformation

T(z) := i
1− iz
1 + iz

and the inner functions ϕ+
n and ϕ−n are naturally associated with the boundary

values of arg F on ∂D.
If ϕ is a nonconstant inner function and k(z) = z

(1−z)2 denotes the Koebe

function, then k(ϕ) belongs to R+. The inner factor of k(ϕ) is precisely ϕ and
hence the construction of the general function in R+ can be reduced to the consid-
eration of outer functions in R+. In short, real Smirnov functions can be described
explicitly in terms of inner functions.

3. THE SPACES N p
Ω

Let C+ denote the complex subalgebra R+ + iR+ of N+. With respect to the
translation invariant metric

ρ( f , g) :=
1

2π

π∫

−π

log(1 + | f (eit)− g(eit)|) dt
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on N+ [3], C+ is a complete metric space and a topological algebra.
If Ω is an outer function, then ΩC+ ∩ Hp is closed in Hp for every p ∈

(0, ∞). We define N p
Ω to be ΩC+ ∩ Hp, regarded as a subspace of Hp. Although

N p
Ω may be trivial for certain choices of Ω and p, it is clearly nontrivial if Ω

belongs to Hp. An obvious condition for equality of these spaces is the following.

PROPOSITION 3.1. If Ω1, Ω2 belong to Hp for some p ∈ (0, ∞), then N p
Ω1

=
N p

Ω2
if and only if Ω1 = hΩ2 for some invertible h in C+.

The example 1 + i
(
i z+1

z−1
)

shows that outer functions in C+ need not be in-
vertible in C+.

Each h in C+ possesses a unique representation h = a + ib where a and
b belong to R+. Since the algebra of boundary functions corresponding to C+

is closed under complex conjugation, the expression h will refer to the analytic
function a− ib and its boundary values on ∂D, rather than the complex conjugate
of the analytic function h on D. This induces a natural involution of N p

Ω which
we also refer to as conjugation.

Suppose that f = hΩ belongs to N p
Ω for some outer function Ω and p ∈

(0, ∞). Since the functions f and f̂ := hΩ have the same modulus on ∂D, they
share the same outer factor, say F. Therefore f̂ belongs to N p

Ω and we may write
f = I f F and f̂ = I f̂ F where I f and I f̂ denote the inner factors of f and f̂ , respec-

tively. We refer to f and f̂ as conjugate functions. The obvious equation f̂ = f Ω/Ω

completely characterizes conjugate pairs in N p
Ω.

PROPOSITION 3.2. Two functions f and g in Hp satisfy g = f Ω/Ω a.e. on ∂D
for some outer function Ω if and only if f and g belong to N p

Ω and are conjugates.

Proof. If f , g belong to Hp and satisfy g = f Ω/Ω, then they have the same
modulus on ∂D and hence the same outer factor, say F. Writing f = I f F and
g = IgF, it follows that I f IgF/F = Ω/Ω. Since Ω is outer and

I f Ig = 1
2 (I f + Ig)

/
1
2 (I f + Ig)

= 1
2i (I f − Ig)

/
1
2i (I f − Ig)

on ∂D, both 1
2 (I f + Ig)F/Ω and 1

2i (I f − Ig)F/Ω belong to R+. Hence there exist
a and b in R+ such that 1

2 (I f + Ig)F = aΩ and 1
2i (I f − Ig)F = bΩ. Thus f =

(a + ib)Ω and g = (a− ib)Ω belong to N p
Ω and are conjugates. The converse is

trivial.

If f = I f F and f̂ = I f̂ F are conjugates in N p
Ω, then I f I f̂ F = FΩ/Ω. This

shows that F belongs toN p
Ω and satisfies F̂ = I f I f̂ F. Moreover, the inner function

I f I f̂ depends only upon F and Ω. We call this inner function the associated inner
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function of F and denote it IF. The functions f = I f F in N p
Ω with outer factor F

are precisely those functions whose inner factors I f divide IF.
Each function f belonging to N p

Ω possesses the two representations

(1) f = I f F where F is outer, I f is the inner factor of f , and I f |IF.
(2) f = g1 + ig2 where ĝk = gk for k = 1, 2.

To pass from (1) to (2) note that the inner factor I f̂ of f̂ is given by I f̂ = IF/I f .
Going from (2) to (1) is slightly more complicated. Let f = g1 + ig2 = I f F where
the functions I f and F are to be determined. Since F is outer, it is determined by
the equation |F|2 = |g1|2 + |g2|2 on ∂D. The inner functions I f and I f̂ satisfy

I f =
g1

F
+ i

g2

F
,

I f̂ =
g1

F
− i

g2

F

and hence IF is given by

IF = I f I f̂ =
( g1

F

)2
+

( g2

F

)2
.

To study the structure of the N p
Ω spaces, we require a special class of outer

functions. Let us call an outer function simple if it is of the form Ψ = 1
2 (ψ1 + ψ2)

where ψ1, ψ2 are relatively prime inner functions, not both constant. We say that
an outer function F in Hp is weakly outer (in Hp) if it is divisible in Hp by a simple
outer function. Otherwise we say that F is strongly outer (in Hp).

PROPOSITION 3.3. An outer function F in N p
Ω satisfies F = ΨG for some simple

outer function Ψ = 1
2 (ψ1 + ψ2) and an outer function G in Hp if and only if G belongs

to N p
Ω and IG = ψ1ψ2IF.

Proof. This follows immediately from Proposition 3.2 and the identity Ψ/Ψ
= ψ1ψ2 which holds a.e. on ∂D.

PROPOSITION 3.4. If Ω is an outer function in Hp, then dimN p
Ω > 1 if and

only if Ω is weakly outer.

Proof. If dimN p
Ω > 1, then we can find some g belonging to N p

Ω such that
ĝ = g and g is not a scalar multiple of Ω. Since the functions Ω + ig and Ω− ig
share the same modulus on ∂D, they share the same outer factor. We may there-
fore write Ω + ig = ψ1F and Ω− ig = ψ2F where ψ1 and ψ2 are inner functions,
not both constant, and F is an outer function belonging to Hp. Solving for Ω

yields Ω = 1
2 (ψ1 + ψ2)F and hence Ω is weakly outer. Conversely, Proposi-

tions 3.2 and 3.3 show that if Ω is weakly outer in Hp, then dimN p
Ω > 1.

Let us call an inner function I a maximal inner function for N p
Ω if it is the

inner factor of some f belonging to N p
Ω and I does not properly divide the inner
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factor of any g in N p
Ω. Note that a maximal inner function for N p

Ω is necessarily
the associated inner function IF for some outer function F in N p

Ω.

PROPOSITION 3.5. An inner function I is a maximal inner function for N p
Ω if

and only if there exists a strongly outer function F in N p
Ω such that I = IF.

Proof. If I = IF and F is weakly outer, then Proposition 3.3 implies that I is
not maximal. If I = IF is not a maximal inner function for N p

Ω, then Iψ = IG for
some outer function G in N p

Ω and a nonconstant inner function ψ. Hence

IF/F = Ω/Ω = IψG/G

on ∂D. If Ψ denotes the simple outer function Ψ = 1
2 (1 + ψ), then ΨG/F belongs

to R+ and the method of Proposition 3.4 applied to the functions F± iΨG shows
that F is weakly outer.

If F is strongly outer in Hp, then the associated inner functions of F are
maximal in any subspaceN p

Ω that contains F. Another relationship between outer
functions and their associated inner functions is given below.

PROPOSITION 3.6. Fix p ∈ [1, ∞) and let F be an outer function in N p
Ω that is

bounded away from 0. If G is an outer function in N p
Ω such that IG = IF, then F and G

are real scalar multiples of each other.

Proof. If IG = IF, then G/F belongs to R+ since

IGG/G = Ω/Ω = IFF/F.

The quotient G/F belongs to R+ ∩ H1 = R since F is bounded away from 0.

4. THE BACKWARD SHIFT OPERATOR

Our first application of the spaces N p
Ω involves the backward shift on the

Hardy spaces. The backward shift of a function f (z) =
∞
∑

n=0
anzn analytic on the

unit disk is the function

B f (z) :=
f (z)− f (0)

z
.

In terms of Taylor coefficients at the origin, the backward shift sends the coeffi-
cient sequence (a0, a1, a2, . . .) to (a1, a2, a3, . . .). The mapping f 7→ B f is a contin-
uous linear operator (also denoted by B) on each Hp space.

A subspace M ⊆ Hp is called B-invariant (or simply invariant) if BM ⊆
M. A straightforward application of Beurling’s theorem and the F. and M. Riesz
theorem yields the following well-known result.

THEOREM. The proper B-invariant subspaces of Hp for p ∈ (1, ∞) are precisely
the subspaces Hp ∩ ϕzHp where ϕ is a nonconstant inner function.
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Aleksandrov extended the theorem above to include the case p = 1. For p ∈
(0, 1), the situation is more difficult. Although the subspaces Hp ∩ ϕzHp are still
B-invariant, many more invariant subspaces exist. Nevertheless, Aleksandrov
proved that every proper B-invariant subspace of Hp for p ∈ (0, 1) is contained
in a subspace of the form Hp ∩ ϕzHp. For a detailed account of these results
see [3].

Suppose that ϕ is a nonconstant inner function. For each ζ in ∂D such that
ϕ has a nontangential limiting value at ζ of unit modulus, we define

Kζ(z) :=
1− ϕ(ζ)ϕ(z)

1− ζz
.

Fix p ∈ (0, ∞) and let c be a unimodular constant such that c2 = ζϕ(ζ). Consider
the space N p

Ω where Ω = cKζ . By Proposition 3.2, a function f belongs to N p
Ω if

and only if

f =
gcKζ

cKζ

= gzϕ

for some g in Hp. If such a function g exists, then f and g are conjugates. Since
a function f belongs to Hp ∩ ϕzHp if and only if there exists a function g in Hp

such that f = gzϕ, we have proved the following proposition.

PROPOSITION 4.1. If ϕ is a nonconstant inner function and p ∈ (0, ∞), then
Hp ∩ ϕzHp = N p

cKζ
.

Therefore every function in Hp ∩ ϕzHp is of the form (a + ib)Kζ where a
and b belong to R+ and the invariant subspaces Hp ∩ ϕzHp enjoy the description

Hp ∩ ϕzHp = {(a + ib)Kζ : a, b ∈ R+} ∩ Hp.

EXAMPLE. Let ϕ denote a nonconstant inner function and let p ∈ (0, ∞).
For each w in the unit disk D, the function

Kw(z) :=
1− ϕ(w)ϕ(z)

1− wz

is a bounded outer function belonging to Hp ∩ ϕzHp. Its conjugate is the function

K̂w(z) =
ϕ(z)− ϕ(w)

z− w

and its associated inner function IKw is given by

(4.1) IKw(z) =
Bϕ(w)(ϕ(z))

Bw(z)

where Ba(z) denotes the linear fractional transformation

Ba(z) =
z− a

1− az
.
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If ϕ is not a Möbius transformation, then IKw is nonconstant for every w in D.
Indeed, if IKw is constant, then Bϕ(w)(ϕ(z)) and Bw(z) differ by a unimodular
constant and Pick’s Lemma shows that ϕ is a Möbius transformation. Since each
Kw is bounded away from 0, Proposition 3.6 implies that the only outer functions
F in Hp ∩ ϕzHp for p ∈ (1, ∞) with IF = IKw are the real scalar multiples of Kw.

We say that a function f in Hp is noncyclic if the closed linear span [ f ]p of the
set { f , B f , B2 f , . . .} is not all of Hp. This is equivalent to asserting that f belongs
to Hp ∩ ϕzHp for some nonconstant inner function ϕ. We now explicitly describe
the noncyclic functions in Hp.

PROPOSITION 4.2. If p ∈ (0, ∞), then the linear manifold of noncyclic functions
in Hp is exactly

Hp ∩
{

i
ψ1 − ψ2

ψ1 + ψ2

1− ϕ1

1− ϕ2
: ψ1, ψ2, ϕ1, ϕ2 inner

}
.

Proof. That the noncyclic functions in Hp form a linear manifold is well-
known [3]. Proposition 3.2 implies that a function f = I f F belongs to Hp ∩ ϕzHp

if and only if f / f = ϕ1 ϕ2 where ϕ1 = ϕI f and ϕ2 = zI f̂ . Since f 1−ϕ2
1−ϕ1

belongs to

R+, the result follows from (2.1).

In light of a well-known result of Douglas, Shapiro, and Shields, cf. Theo-
rem 2.2.1 in [4], Proposition 4.2 explicitly characterizes all H2 (and more generally
Hp for p ∈ (1, ∞)) functions which are pseudocontinuable of bounded type. We re-
fer the reader to [10] and the original paper [4] for the relevant definitions and
background.

A function f in Hp ∩ ϕzHp is called a generator (of Hp ∩ ϕzHp) if [ f ]p =
Hp ∩ ϕzHp. Let (ϕ, ψ) denote the greatest common divisor of the inner functions
ϕ and ψ. Interpreting Theorem 3.1.5 of [4] in terms of conjugation, we obtain the
following proposition.

PROPOSITION 4.3. If f belongs to Hp ∩ ϕzHp for some p ∈ [1, ∞) and (I f̂ , ϕ) =

1, then [ f ]p = Hp ∩ ϕzHp.

COROLLARY. Let p ∈ [1, ∞). If F is an outer function belonging to Hp ∩ ϕzHp,
then F̂ generates Hp ∩ ϕzHp. In particular, K̂w is a generator for each w in D.

If ϕ is a singular inner function, then Equation (4.1) and Frostman’s The-
orem imply that (IKw , ϕ) = 1 and hence Kw is a generator for almost every w.
More generally, if ϕ(w) 6= 0 and ϕ(w) does not lie in the exceptional set for ϕ
(the set of all w in the unit disk such that Bw(ϕ) is not a Blaschke product), then
(IKw , ϕ) = 1 and Kw generates Hp ∩ ϕzHp.

COROLLARY. Let p ∈ [1, ∞). If F is an outer function belonging to Hp ∩ ϕzHp

and (IF, ϕ) = 1, then every f in Hp ∩ ϕzHp with outer factor F generates Hp ∩ ϕzHp.
In particular, every self-conjugate outer function is a generator.
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If p ∈ [1, ∞), then every outer function F in Hp ∩ ϕzHp is the sum of two
generators. Indeed,

F =
1
2
(1 + IF)F + i

1
2i

(1− IF)F

is such a representation.

5. DARLINGTON SYNTHESIS

Our motivation for this discussion stems from results of Arov [1] and Dou-
glas and Helton [5] connecting the Darlington synthesis problem from electrical
network theory to the theory of pseudocontinuations [10] and hence to the back-
ward shift operator.

The simplest case of the Darlington synthesis problem is the following.
Given a function a in H∞, do there exist b, c, d belonging to H∞ such that

(5.1) U =
(

a −b
c d

)

is unitary a.e. on ∂D? Arov, and Douglas and Helton considered the general (op-
erator valued) problem and showed that the scalar valued problem is solvable if
and only if (via Theorem 2.2.1 in [4]) a is noncyclic for the backward shift on H2.

If U is of the form (5.1) and unitary a.e. on ∂D, then det U is an inner func-
tion. A necessary and sufficient condition is the following.

PROPOSITION 5.1. If ϕ is a nonconstant inner function, then U is unitary a.e. on
∂D and det U = ϕ if and only if:

(i) a, b, c, d belong to (zϕH2)⊥ = H2 ∩ ϕH2;
(ii) â = d and b̂ = c;

(iii) |a|2 + |b|2 = 1 a.e. on ∂D.

Proof. (⇒) If U is unitary on ∂D, then ϕ = ad + bc is inner. Comparing
entries in the identity U = (U∗)−1 yields the equations a = dϕ and b = cϕ.
Proposition 4.1 implies that a, b, c, d are in (zϕH2)⊥, â = d, and b̂ = c. Finally, the
identity UU∗ = I shows that |a|2 + |b|2 = 1 a.e. on ∂D.

(⇐) Let a = IaF, b = IbG, c = IcG, and IdF where Ia, Ib, Ic, Id are inner and
F, G are outer. Consider the entries in the product

UU∗ =
(

IaF −IbG
IcG IdF

) (
IaF IcG
−IbG IdF

)
.

Since |F|2 + |G|2 = 1 a.e. on ∂D, the entries on the main diagonal of the product
are both 1. The upper right corner of the product is the function X = IaFIcG −
IbGIdF which we wish to show is identically 0.
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A few manipulations lead to the equation

Ia Id
F
F
− Ib Ic

G
G

= X
Ic Id

FG
.

Since a, d and b, c are conjugates, we see that Ia Id = IF and Ib Ic = IG. Therefore

X
Ic Id

FG
= ϕ− ϕ = 0

and hence X vanishes identically. A similar argument applies to the bottom left
corner of the product. Thus U is unitary a.e. on ∂D and

det U = ad + bc

= Ia IdF2 + Ib IcG2

= IFF2 + IGG2

= |F|2 ϕ + |G|2 ϕ

= ϕ

a.e. on ∂D which completes the proof.

If the 2× 2 scalar valued Darlington synthesis problem is solvable for some
a in H∞, then there exists a function b in H∞ such that |a|2 + |b|2 = 1 on ∂D.
Moreover, b must also lie in (zϕH2)⊥ = H2 ∩ ϕH2, the B-invariant subspace
generated by ϕ.

PROPOSITION 5.2. If a belongs to (zϕH2)⊥ for some nonconstant inner function
ϕ, ‖ a ‖∞ 6 1, and a is not an inner function, then there exists an outer function G ∈
(zϕH2)⊥ such that |a|2 + |G|2 = 1 a.e. on ∂D.

Proof. As before, let a = IaF where Ia is inner and F is outer. By Proposi-
tion 4.1, it follows that IFF = Fϕ. This implies that IFF2 = |F|2 ϕ which yields
ϕ− IFF2 = ϕ(1− |F|2). Since F is not an inner function and ϕ− IFF2 belongs to
H∞, it follows that

∫

∂D

log(1− |F|2) =
∫

∂D

log |ϕ− IFF2| > −∞

and there exists an outer function G in H∞ such that |G|2 = 1− |F|2. Thus

ψG2 = ϕ− IFF2 = ϕ|G|2

for some inner function ψ. Since ψG = Gϕ, Proposition 3.2 implies that G belongs
to (zϕH2)⊥ and ψ = IG.

We now parametrize all nonconstant matrices U of the form (5.1) which are
unitary on ∂D:

(i) Pick a nonconstant inner function ϕ.
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(ii) Select a function a in (zϕH2)⊥ satisfying ‖ a ‖∞ 6 1.
(a) If a is inner, then b = c = 0, a divides ϕ, and U is diagonal.
(b) If a is not inner, then select b in (zϕH2)⊥ such that |a|2 + |b|2 = 1

a.e. on ∂D.
(iii) b̂ and â complete the bottom row.

6. KERNELS OF TOEPLITZ OPERATORS

If u belongs to L∞, then the Toeplitz operator with symbol u is the operator
Tu : H2 → H2 defined by Tu f = P(u f ) where P denotes the orthogonal projec-
tion from L2 onto H2. The projection P is a special case of the Riesz projection
P : Lp → Hp which is continuous whenever p ∈ (1, ∞). Since the multiplication
operator with symbol u is bounded for such p, the map f 7→ P(u f ) defines a
bounded linear operator (also denoted Tu) on Hp for each p ∈ (1, ∞). These op-
erators will be referred to as Toeplitz operators on Hp and the kernel of Tu as an
operator on Hp will be denoted kerp Tu. We show that the nontrivial kernels of
Toeplitz operators kerp Tu for p ∈ (1, ∞) coincide with the spaces N p

Ω where Ω is
an outer function in Hp. We require the following result of Hayashi [8].

THEOREM (Hayashi). Let Tu be a Toeplitz operator on Hp for some p ∈ (1, ∞).
If kerp Tu is nontrivial, then there exists an outer function Ω in Hp such that kerp Tu =
kerp TzΩ/Ω.

PROPOSITION 6.1. If p ∈ (1, ∞) and Ω in Hp is outer, then kerp TzΩ/Ω = N p
Ω.

Proof. If f = I f F belongs to kerp TzΩ/Ω, then I f FzΩ/Ω = zIF for some
inner function I. Hence IF = I f F Ω/Ω which implies that f is inN p

Ω. If f belongs

to N p
Ω, then f = hΩ for some h in C+. Since P((zΩ/Ω) f ) = P(z(hΩ)) and hΩ

is the boundary function for the Hp function f̂ , we see that TzΩ/Ω f = 0.

If Ω is an outer function in Hp, then Bourgain’s Factorization Theorem [2]
provides Blaschke products ϕ, b and an invertible outer function G in H∞ such
that

Ω/Ω =
ϕG
bG

.

Our final proposition relates N p
Ω spaces, B-invariant subspaces, and the kernels

of Toeplitz operators for p ∈ (1, ∞). The equality of (4.1) and (5.1) is from [6].

PROPOSITION 6.2. Let p ∈ (1, ∞) and let Ω be an outer function in Hp. If
Ω/Ω = ϕG

bG
where ϕ, b are Blaschke products and G is an invertible H∞ function, then

the following subspaces of Hp are identical:

(i) N p
Ω;

(ii) ker TzΩ/Ω;
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(iii) G
b (bHp ∩ ϕHp);

(iv) { f ∈ G(Hp ∩ ϕHp) : bI f |IF/G}.
The notation IF/G in (iv) refers to the associated inner function for the outer function
F/G in Hp ∩ ϕHp.

Proof. The equality of (i) and (ii) follows from Proposition 6.1.
If f = I f F belongs to N p

Ω, then

f̂ = I f̂ F = I f F Ω/Ω = I f F
ϕG
bG

.

Hence bI f I f̂ (F/G) = (F/G)ϕ and the outer function F/G belongs to Hp ∩ ϕHp

and has the associated inner function IF/G = bI f I f̂ . Hence (i) yields (iv).

If f belongs to G(Hp ∩ ϕHp) and bI f |IF/G, then bI f J(F/G) = (F/G)ϕ for
some inner function J. This is equivalent to

I f JF = F
( ϕG

bG

)
= F Ω/Ω.

Hence f belongs to N p
Ω (with conjugate JF) and (iv) yields (i).

If f = I f F belongs to G
b (bHp ∩ ϕHp), then f = G

b (bI F
G ) for some inner

function I. It follows that I f = I and bI f
F
G belongs to Hp ∩ ϕHp. Therefore

bI f |IF/G and hence (iii) gives (iv).
If f belongs to G(Hp ∩ ϕHp) and bI f |IF/G, then bI f

F
G is in bHp ∩ ϕHp.

Hence f = G
b (bI f

F
G ) belongs to G

b (bHp ∩ ϕHp) which proves that (iv) yields
(iii).
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