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ABSTRACT. Given two (or n) isometries on a Hilbert space H, such that their
ranges are mutually orthogonal, one can use them to generate a C∗-algebra. If
the ranges sum toH, then this C∗-algebra, the Cuntz C∗-algebraOn, is unique
up to ∗-isomorphism. However if we omit to close under the ∗ operation and
merely consider the norm closed algebra generated by such isometries, that is
certainly not unique; even if we take the weak operator topology (WOT) closure
of such an algebra, it is still not unique. Among the possible WOT closures that
one might conceivably get, the largest is the von Neumann algebra that will be
obtained if it should chance to happen that the WOT closed algebra generated
is, in fact, closed under hermitian conjugation after all. In this paper we show
that this largest possible case can indeed happen (a problem which was posed
by Davidson); we exhibit pairs of isometries S0, S1 with disjoint ranges, such
that the WOT closed algebra generated by S0 and S1 is the whole of B(H).
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1. INTRODUCTION

Following Davidson we define the free semigroup algebra generated by finitely
many isometries S0, S1, . . . , Sn−1 with orthogonal ranges to be the unital WOT-
closed subalgebra AWOT

, where A = Alg{S0, S1, . . . , Sn−1}. In general, the ar-
chetypal example of this is the left regular representation of the free semigroup
on n generators, with Si being the representation of the ith generator. However,
we are going to take n = 2, and we are going to need isometries S0, S1 with
S0S∗0 + S1S∗1 = I; so for our purposes a standard example that’s closer to the one
we need is obtained by regarding L2([0, 1

2 ]) and L2([ 1
2 , 1]) as complementary sub-

spaces of L2([0, 1]) in the obvious way. We may then define S0 to be the natural
isometry L2([0, 1]) → L2([0, 1

2 ]) with (S0 f )(x) =
√

2 f (2x), while S1 can be the
natural isometry L2([0, 1]) → L2([ 1

2 , 1]) with (S1 f )(x) =
√

2 f (2x− 1).
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What we do in the paper is (up to unitary equivalence) a matter of making
this definition slightly more complicated with a phase change eiΘ(x), i.e. defining

(1.1) (S0 f )(x) =
√

2eiΘ(x) f (2x)

and

(1.2) (S1 f )(x) =
√

2eiΘ(x) f (2x− 1)

for a suitable measurable function Θ. However, the function Θ is very much
dependent on the binomial expansion of x ∈ [0, 1], so in fact we prefer to couch
everything in terms of a binomial expansion x ∈ Ω = {0, 1}N.

In this paper, therefore, the underlying Hilbert space H is in fact L2(Ω,P),
where the probability measure P(E) = λ(β(E)), λ Lebesgue measure on [0, 1] and

β : Ω → [0, 1] the binomial expansion with β(x) =
∞
∑

n=1
2−nxn. The appropriate

unitary equivalent to (1.1) and (1.2) is given below in equation (4.3).
For a general introduction to the theory of free semigroup algebras, and a

much more comprehensive set of references, we refer the reader to Davidson’s
forthcoming survey article [4]. The Cuntz algebra itself is studied in many pa-
pers starting with Cuntz [2]; an application to theoretical physics is developed by
Bratteli and Jorgensen ([1] and several other papers). The standard examples Ln
of free semigroup algebras have been very much studied, yielding information
about their structure such as the hyperreflexivity result of Davidson and Pitts [6].
In the more usual case when the free semigroup algebra is not a von Neumann
algebra, it sometimes has analytic properties; these are investigated by Popescu
([9] and several other papers). Ideas involving the relations S∗i Si = I, S∗i Sj = 0 for
i 6= j on general Banach spaces are used in some of the ramifications of the cele-
brated Gowers-Maurey constructions (see [7], [8]). In those papers the operators
involved are defined using “spreads”, i.e. increasing bijections between infinite
subsets of N. The same relations also turn up in an investigation of traces in the
Banach space setting by Dales, Laustsen and Read [3].

2. PRELIMINARY DEFINITIONS

There are two preliminary choices that we make before defining our opera-
tors S0 and S1. First, we choose (once and for all) a bijection ψ : N→ N×N, such
that writing ψ(n) = (pn, qn), we have pn 6 n, qn 6 n for all n.

Second, we choose a strictly increasing sequence (bk)∞
k=1 of positive integers,

which must satisfy the mild growth conditions (6.3) and (6.13). The reader may
easily see that bk = 10k2 (say) satisfies both these conditions, and may assume
bk = 10k2 throughout if desired; but all you really need is a sequence — any
sequence — that grows moderately quickly.
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3. NOTATION

Let Ω = {0, 1}N. Let Xi : Ω → {0, 1} be the map that picks the ith coor-
dinate, and more generally for 0 6 n < m let τn,m : Ω → {0, 1}m−n be the map
sending the sequence x = (xi)∞

i=1 ∈ Ω to (xn+1, xn+2, . . . , xm) ∈ {0, 1}n−m. For
convenience we’ll write τn for τ0,n. (It is one of the personal conventions of the
present author that Greek “τ” often stands for “truncation”).

Let P be the Borel probability measure on Ω such that with respect to P, the
Xi are independent, and for all i, P(Xi = 1) = 1

2 . Obviously this is equivalent to
the definition P(E) = λ(β(E)) given in the Introduction.

Let F denote the Borel sets of Ω ; let Fn,m ⊂ F denote the finite σ-field
generated by {Xi : i = n + 1, . . . , m}; and let Fn = F0,n.

Let H be the Hilbert space L2(Ω,F ,P). Let β : Ω → [0, 1] be the bino-

mial expansion x →
∞
∑

i=1
2−ixi, and let βn,m : Ω → [0, 1] be the related map with

βn,m(x) =
m
∑

i=n+1
2n−ixi.

If x ∈ {0, 1}m (m ∈ N) and y ∈ {0, 1}n (n ∈ N ∪ {∞}) we write (x|y) for
the sequence z ∈ {0, 1}n+m with zi = xi (i 6 m) or yi−m (i > m). We write 0n, 1n
(respectively 0, 1) for the sequences in {0, 1}n (respectively Ω ) consisting of all
zeros and all ones, and we write just 0,1 for the sequences 01, 11. Of particular
significance to us is the sequence (0|1b−2|0) ∈ {0, 1}b. We shall use it to “code”
the function Θ in the main definition that follows.

For l ∈ N, and i > 0 we define Γi,l ⊂ Ω to be the set of x ∈ Ω such that we
have

(3.1) τi,i+bl
(x) = (0|1bl−2|0);

if i < 0 we define Γi,l = ∅. Note that for i > 0 we have

(3.2) P(Γi,l) = 2−bl .

For N, l ∈ N we then define

(3.3) GN,l =
N+1−bl⋃

i=N+2−pl−bl

Γi,l .

Note that GN,l ∈ FN+1 and

(3.4) P(GN,l) 6 pl · 2−bl 6 l · 2−bl ,

because as i ranges from N− pl − bl + 2 to N− bl + 1, there are pl posible values
of i, each involving an event of probability either zero or 2−bl .

Also, let

(3.5) EN,k = ΓN,k \
( ∞⋃

l=k

GN,l

)
∈ FN+bk

.
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We then define EN,k = τN+bk
(EN,k) ⊂ {0, 1}N+bk , so that the number |EN,k|

of elements in EN,k is 2N+bkP(EN,k).
If r ∈ N and δ ∈ {0, 1}r we write Ωδ for {x ∈ Ω : τr(x) = δ}; and if

r 6 N + bk we write EN,k,δ = EN,k ∩ Ωδ, EN,k,δ = τN+bk
(EN,k,δ). Once again,

|EN,k,δ| = 2N+bkP(EN,k,δ), and we shall get an estimate for this number later on in
Lemma 5.3. In the meanwhile, we note that in the above situation, if x ∈ ΓN,k ∩Ωδ

then exactly r + bk of the coordinates xi are determined (the ones from 1 to r and
the ones from N + 1 to N + bk), hence P(ΓN,k ∩Ωδ) = 2−r−bk ; and

(3.6) |EN,k,δ| 6 2N+bkP(ΓN,k ∩Ωδ) = 2N−r.

4. THE MAIN DEFINITION

DEFINITION 4.1. For each k ∈ N, let us define a map θk : Ω → R by

(4.1) θk(x) =
{

0 unless x ∈ Γ0,k,
2π · βbk ,bk+pk

(x) if x ∈ Γ0,k.

Then, define the map Θ : Ω → R by

(4.2) Θ(x) =
∞

∑
k=1

qkθk(x).

Note that because the sets Γ0,k are disjoint, the sum (4.2) never has more than
one nonzero term; and for future reference, we note that if x1 = 1 then Θ(x) = 0.
There is no doubt about the convergence of the sum (4.2).

Let L : Ω → Ω denote the left shift, with (Lx)i = xi+1 for all i ∈ N and
x ∈ Ω; and let ε ∈ {0, 1}. We define an isometry Sε ∈ B(H) by

(4.3) (Sε f )(x) =
{ √

2eiΘ(x) f (Lx) if x1 = ε,
0 otherwise;

( f ∈ H, x ∈ Ω).

We shall show that the subalgebraA ⊂ B(H) generated by S0 and S1 is WOT-
dense in B(H)(in fact weak* dense). The general outline of the proof is to exhibit
a collection of finite rank operators in the weak* closureAw*

, such that their norm
closed linear span contains every compact operator. Since the compact operators
are weak* dense in B(H), this establishes that Aw* = AWOT = B(H).

5. PROVING THE MAIN RESULT

Having defined our operators S0 and S1, we make the obvious remarks that
they are indeed isometries with orthogonal ranges, and S∗0S0 + S∗1S1 = I. Indeed,
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SεS∗ε is the projection onto the set of all functions supported on {x ∈ Ω : x1 = ε}
(ε = 0, 1).

If ε = (ε1, ε2, . . . , εn) ∈ {0, 1}n is a finite sequence, we define

(5.1) Sε = Sε1 ◦ Sε2 ◦ · · · ◦ Sεn ;

note that

(5.2) (Sε f )(x) =

{
2

n
2 ei∑0

=rn−1Θ(Lrx) · f (Lnx) if τn(x) = ε,
0 otherwise.

Our next step is to define certain linear combinations of the products Sε,
which will be used to establish that the WOT closure (indeed, the w* closure) of A
is all of B(H).

DEFINITION 5.1. For each N, k ∈ N define a function φN,k : {0, 1}N+bk → R,

(5.3) φN,k(ε) =
N−1

∑
i=0

Θ(Li(ε|0)).

For each r < N and δ ∈ {0, 1}r we then define an operator TN,k,δ ∈ A by

(5.4) TN,k,δ = 2
1
2 (bk−N) ∑

ε∈EN,k,δ

e−iφN,k(ε) · Sε.

Now each Sε is an isometry; and for different ε of the same length they have
orthogonal ranges, so

(5.5)
∥∥∥ ∑

ε∈EN,k,δ

Sε

∥∥∥ 6
√
|EN,k,δ| 6 2

1
2 (N−r)

by (3.6), whence

(5.6) ‖TN,k,δ‖ 6 2
1
2 (bk−r),

a result that is, significantly, independent of N. So a weak* limit point of the
operators TN,k,δ must exist as N → ∞. We shall find out what it is. Let us find
such a limit point and call it Tk,δ — for the moment passing over the small matter
that there is, in fact, just one possible limit point because the sequence is weak*
convergent.

For r ∈ N and α ∈ {0, 1}r, let’s write χr,α for the characteristic function

(5.7) χr,α(x) =
{

1 if τr(x) = α,
0 otherwise.

Let us determine the product 〈Sεχr,α, χr,γ〉 for each ε ∈ EN,k, r < N and
α, γ ∈ {0, 1}r. Now by (5.2),
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Sεχr,α(x) =

{
2

N+bk
2 ei∑

N+bk−1
j=0 Θ(Ljx)

χr,α(LN+bk x) if τN+bk
(x) = ε,

0 otherwise,
(5.8)

=

{
2

N+bk
2 ei∑

N+bk−1
j=0 Θ(Ljx) if τN+bk+r(x) = (ε|α),

0 otherwise.

We can deal with most of the eiΘ factors as follows:

LEMMA 5.2. For all N, k ∈ N and ε ∈ EN,k, and for all y ∈ Ω, we have

(5.9)
N−1

∑
i=0

Θ(Li(ε|y)) =
N−1

∑
i=0

Θ(Li(ε|0)) = φN,k(ε).

Furthermore, Θ(Li(ε|y)) = 0 for N + 1 6 i < N + bk − 1, and Θ(LN(ε|y)) =

2πqk

pk
∑

j=1
2−jyj, and Θ(LN+bk−1(ε|y)) = Θ(0|y).

Obviously the last statement follows because every ε ∈ EN,k has length N +
bk and has its last coordinate εN+bk

= 0; we defer the rest of the proof to the
Appendix.

Using Lemma 5.2, we find that the second row in (5.8) is equal to

(5.10)

{
2

N+bk
2 e2πiqk∑

pk
j=12−jαj · eiφN,k(ε) · eiΘ(LN+bk−1x) if τN+bk+r(x) = (ε|α),

0 otherwise.

So for a vector x = (ε|α|y) we have (using the last part of Lemma 5.2)

(5.11) e−iφN,k(ε)Sεχr,α(x) = 2
N+bk

2 e2πiqk∑
pk
j=12−jαj · eiΘ(0|α|y);

and Sεχr,α(x) = 0 for any vector x not of this form. Hence, the inner product
〈e−iφN,k(ε)Sεχr,α, χr,γ〉 is equal to zero if (γ1, γ2, . . . , γr) 6= (ε1, ε2, . . . , εr). Other-
wise, it is equal to

(5.12) 2−
2r+N+bk

2 e2πiqk∑
pk
j=12−jαj ·

∫
eiΘ(0|α|y)dP(y),

(for the Radon-Nikodym derivative for dP(y) versus dP(x) = dP(ε|α|y) gives
us a factor of 2−r−N−bk ). Now let δ ∈ {0, 1}pk , and let’s assume that r > pk.
Summing over all ε ∈ EN,k,δ we count 1 for each element of EN,k,δ that starts with
the sequence γ; obviously the first pk elements of γ must be equal to the sequence
δ or we get zero; more generally we get

〈TN,k,δχr,α, χr,γ〉 = 2
1
2 (bk−N) ∑

ε∈EN,k,δ

〈e−iφN,k(ε)Sεχr,α, χr,γ〉(5.13)

=

{
0 if (γ1, γ2, . . . , γpk ) = (δ1, δ2, . . . , δpk ),

2−N−re2πiqk∑
pk
j=12−jαj · Iα · |EN,k,γ| otherwise,
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where Iα =
∫

eiΘ(0|α|y)dP(y). This is now the moment to estimate the size |EN,k,γ|
of the set EN,k,γ.

LEMMA 5.3. For each k ∈ N there is a constant ηk > 0 with the property that for
every r ∈ N and γ ∈ {0, 1}r, we have

(5.14) lim
N→∞

|EN,k,γ| · 2r−N = ηk.

Once again we defer this fairly routine proof to the Appendix. Taking the
limit of expression in the second row of (5.13) as N → ∞, we find that for every
r > pk, α, γ ∈ {0, 1}r and δ ∈ {0, 1}pk we have 〈Tk,δχr,α, χr,γ〉 =

(5.15)

{
0 unless (γ1, γ2, . . . , γpk ) = (δ1, δ2, . . . , δpk ),

2−2rηk · e2πiqk∑
pk
j=12−jαj · Iα otherwise.

But there can be only one operator Tk,δ that satisfies equation (5.15) for all r, α and
γ. It is the operator given by

(5.16) Tk,δ( f ) = ηk〈 f , gk〉χpk ,δ,

where

(5.17) gk(y) = e2πiqk∑
pk
j=12−jyj eiΘ(0|y).

Formulae (5.16) and (5.17) remove the shackles from our whole situation.
The operator Tk,δ has rank 1, and we claim that the norm closed linear span of all
these operators is the full algebra K(H) of compact operators on H. For we can
vary k in such a way that pk remains constant and qk varies from 1 to 2pk ; now
inverting the finite Fourier transform that’s happening in (5.17), we can find (for
each ζ ∈ {0, 1}pk ) a finite linear combination of the operators Tk,δ equal to Rζ,δ,
where

(5.18) Rζ,δ( f ) = 〈 f , ψpk ,ζ〉χpk ,δ

and

(5.19) ψpk ,ζ(y) = χpk ,ζ(y) · eiΘ(0|y).

But it is obvious that the norm-closed linear span of these rank 1 operators is
K(H). The weak* closure is therefore all of B(H), and so, Aw* = AWOT = B(H)
as claimed.

6. APPENDIX

In this section we give the proofs of two lemmas which we deferred in the
main text of the paper. We begin by proving the three clauses of Lemma 5.2 which
were not proved in the main text.
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Proof of certain clauses of Lemma 5.2. The main part of this is to prove equa-
tion (5.9), and it is enough if we show that for all i with 0 6 i 6 N − 1 we
have Θ(Li(ε|y)) = Θ(Li(ε|0)). The sum of these values will then certainly be
φN,k(ε) by Definition 5.1. Write then x = (ε|δ), x′ = (ε|0), y = Li(x) and
y′ = Li(x′). Now ε ∈ EN,k by hypothesis, so x, x′ are both in EN,k ⊂ ΓN,k. It
follows from (3.1) that xN+1 = x′N+1 = 0. Accordingly, yN+1−i = y′N+1−i = 0

with 2 6 N + 1− i 6 N + 1. We know from Definition 4.1 that Θ(y) =
∞
∑

l=1
qlθl(y),

and that θl(y) = 0 unless τbl
(y) = (0|1bl−2|0). Since yN+1−i = 0 we deduce that

(6.1) bl 6 N + 1− i 6 N + 1.

We may suppose, then, that τbl
(y) = τbl

(y′) = (0|1bl−2|0) for a (necessarily
unique) value of l, otherwise Θ(y) = Θ(y′) = 0 (for yj = y′j = ε j when j 6
N + bk). Suppose such a value l exists. If l > k then by (3.5), in order to have
x, x′ ∈ EN,k we must have x, x′ /∈ GN,l . Accordingly, since τi,i+bl

(x) = (0|1bl−2|0),
we must have i /∈ [N + 2 − pl − bl , N + 1 − bl ]; but by (6.1) we don’t have
i > N + 1− bl either; therefore i 6 N + 1− pl − bl , but then

(6.2) Θ(y) = qlθl(y) = 2πβbl ,bl+pl
(y) = 2πβbl ,bl+pl

(y′) = Θ(y′),

because βbl ,bl+pl
is a Fbl+pl

-measurable function, and y and y′ agree in their first
N + bk − i places; in particular they agree for their first N + 1 − i places; and
bl + pl 6 N + 1− i.

To handle the case l < k, we assume (as a mild condition of rapid increase
on the sequence (bk)) that

(6.3) bl + l < bl+1

for all l ∈ N. Since pl 6 l this ensures that pl + bl < bk for all l < k. So y
and y′ (which agree up to position N + bk − i) agree up to position bl + pl (i <
N, l < k). Once again we get Θ(y) = Θ(y′) by the method of (6.2). Thus we have
established formula (5.9).

The remaining clauses of Lemma 5.2 are relatively easy; since x, x′ ∈ EN,k ⊂
ΓN,k, it follows that xj = x′j = 1 for N + 2 6 j < N + bk, for

(6.4) τN,N+bk
(x) = τN,N+bk

(x′) = (0|1bk−2|0).

For N + 1 6 i < N + bk − 1 the vector Li(x) begins with one of the sequence of 1’s
that are involved in the 1bk−2 part of the sequence; and so Θ(Li(x)) = 0, likewise
Θ(Li(x′)) = 0; for as remarked in Definition 4.1, in order to have Θ(z) 6= 0 one
must have z1 = 0.
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Finally (6.4) tells us that the vectors LNx, LNx′ begin with the key sequence
(0|1bk−2|0); accordingly (4.2) gives

Θ(LNx) = qkθk(LNx) = 2πqkβbk ,bk+pk
(LNx) = 2πqk

pk

∑
j=1

2−jxN+bk+j(6.5)

= 2πqk

pk

∑
j=1

2−jyj

(for x = (ε|y)). This completes the proof of Lemma 5.2, except for the last clause
whose proof was given in the main text.

We continue by proving Lemma 5.3. The chief interesting thing about this
lemma is the fact that ηk does not depend on γ; and that, as the reader may have
guessed, is a probabilistic independence argument.

Proof of Lemma 5.3. Fix m > k and consider the set

(6.6) CN,k,m = ΓN,k \
( m⋃

l=k

GN,l

)
.

Looking at the definitions ((3.3) and (3.1)) we note that ΓN,k ∈ FN,N+bk
while

GN,l ∈ FN−pl−bl ,N+bl
. Furthermore, ΓN,k = LΓN,k+1; and GN,l = LGN+1,l pro-

vided N − pl − bl > 0 (so that all the Γi,l involved are nonempty). Since pm 6 m,
it follows from condition (6.3) that the sequence pm + bm is increasing, so we
find that CN,k,m ∈ FN−pm−bm,N+bm . Also P(CN,k,m) is independent of N pro-
vided N > pm + bm, because ΓN,k = LΓN+1,k for all N, GN,l = LGN+1,l provided
N > pl + bl (see (3.3) and (3.1)), and hence CN,k,m = LCN+1,k,m. Let the common
asymptotic value of P(CN,k,m) be ζk,m; plainly the sequence ζk,m decreases with
m, so let

(6.7) ζk = lim
m→∞

ζk,m.

Now by (3.5) and (6.6), for any m we have

P(CN,k,m) > P(EN,k) > P(ΓN,k)−
∞

∑
l=k
P(ΓN,k ∩ GN,l)(6.8)

> P(ΓN,k)− P(GN,k ∩ ΓN,k)−
∞

∑
l=k+1

P(GN,l).

By (3.4) and (3.2) this is at least

(6.9) 2−bk − P(GN,k ∩ ΓN,k)−
∞

∑
l=k+1

l · 2−bl .

Now for i ∈ (N + 1− pk − bk, N + 1− bk] the intervals (i, i + bk] and (N, N + bk]
can overlap in at most one point; hence (referring to (3.1)) we see that P(Γi,k ∩
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ΓN,k) 6 21−2bk (for the coordinates of x ∈ Γi,k ∩ ΓN,k are determined uniquely in at
least 2bk − 1 places), and summing over these values of i and using (3.3) we have

(6.10) P(GN,k ∩ ΓN,k) 6
N+1−bk

∑
i=N+2−pk−bk

P(Γi,k ∩ ΓN,k) 6 pk · 21−2bk 6 k · 21−2bk .

Substituting this inequality into (6.9) we obtain

(6.11) P(EN,k) > 2−bk − k · 21−2bk −
∞

∑
l=k+1

l · 2−bl ,

and hence

(6.12) ζk > 2−bk − k · 21−2bk −
∞

∑
l=k+1

l · 2−bl .

It is another mild condition of rapid increase on the sequence bk that

(6.13) 2−bk − k · 21−2bk −
∞

∑
l=k+1

l · 2−bl > 0

for all k. That ensures the important fact that ζk > 0. Now CN,k,m∈FN−pm−bm,N+bm

and Ωγ ∈ Fr. For large N those two σ-fields are independent. Accordingly, for
large enough N we have

(6.14) P(Ωγ ∩ CN,k,m) = ζk,m · P(Ωγ) = 2−rζk,m.

Now EN,k,γ = Ωγ ∩ EN,k, thus

(6.15) Ωγ ∩ CN,k,m ⊃ EN,k,γ = Ωγ ∩ CN,k,m \
( ∞⋃

l=m+1

GN,l

)
,

and hence, for large enough N we have

(6.16) 2−rζk,m > P(EN,k,γ) > 2−rζk,m −
∞

∑
l=m+1

l · 2−bl

by (3.4) again. Plainly we have lim
N→∞

P(EN,k,γ) = 2−rζk and hence lim |EN,k,γ| ·
2−N−bk = limP(EN,k,γ) = 2−rζk, or

(6.17) lim
N→∞

|EN,k,γ| · 2r−N = 2bk ζk,

establishing (5.14) with ηk = 2bk ζk > 0. Thus the lemma is proved.
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7. CONCLUSIONS

Given any free semigroup algebra B , there is always a maximal von Neu-
mann algebra N ⊂ B, namely N = B ∩ B∗; and there is always the enveloping
von Neumann algebra M ⊃ B. Usually we expect that N is rather small; but
here we have N = M. It would be nice to know if this is general, i.e. if every
enveloping von Neumann algebra M for a free semigroup algebra B is in fact it-
self a free semigroup algebra. Presumably a proof of such a result would involve
perturbing the generators in a manner similar to the introduction of the function
Θ here. But if pursuing this simple-mindedly, one will always need an extra gen-

erator if
n
∑

i=1
SiS∗i < I. A more thorough examination of possible changes in the

number of generators might lead in the general direction of the notorious ques-
tion of whether von Neumann algebras generated by free groups on n generators
are, in fact, ∗-isomorphic for n > 2. When one has a free semigroup algebra with

n
∑

i=1
SiS∗i = I, I guess one is usually free to change the number of generators as

one wishes subject to n > 2. After all, we got our example for n = 2 from the
binary expansion on [0, 1]. Real numbers in [0, 1] also have a decimal expansion
— which suggests that any example along these lines might be varied so one gets
the same semigroup algebra from a closely related set of 10 generators. But what

happens when
n
∑

i=1
SiS∗i < I is another matter.

Obviously the von Neumann algebra N is a unitary invariant associated
with the choice of the generators; I wonder which von Neumann algebras can be
so obtained, and how they can be “positioned” within the free semigroup algebra
as a whole.
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ADDED IN PROOFS. This construction has now been rather ingeniously simplified
by K.R. Davidson; see [5] for details.


