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ABSTRACT. The probabilistic index of a completely positive map is defined
in analogy with a formula of M. Pimsner and S. Popa for conditional expecta-
tions. As an application, we describe a new strategy for computing the Jones
index of the range of certain endomorphisms. We use extended transition
operators to associate to an endomorphism a unital completely positive map
acting on a finite dimensional matrix algebra. Then the index to be computed
equals the probabilistic index of this map. For a class of examples we get a
complete classification.
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1. INTRODUCTION

In [20], M. Pimsner and S. Popa studied a notion of index for subfactors
which became known as Pimsner–Popa index or probabilistic index. For II1-
factors it coincides with the Jones index introduced by V. Jones in [12]. Many
generalizations have been based on it, in particular by interpreting it as an index
of a conditional expectation, see [15].

We are mainly interested in the original setting, namely in the following for-
mula: LetA0 ⊂ A be an inclusion of II1-factors. Then the probabilistic index π(E)
of the trace-preserving conditional expectation E : A → A0 can be computed by

π(E)−1 = inf
0 6=a∈A+

‖E(a)‖2
2

‖a‖2
2

,

with ‖ · ‖2 the norm defined by the trace. See Section 4 and 2.2 of [20], for more
details.

The notion of probabilistic index for a completely positive map which we
introduce in this paper, see Definition 4.1, is a very natural generalization of this
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formula. Its elementary properties are developed in Section 4. The paper is ar-
ranged in such a way that we can give in the end an application of this new
concept to a well known problem, namely the computation of the Jones index of
the range of certain endomorphisms of the hyperfinite II1-factor. Let us describe
this problem.

One of the connections between the noncommutative theory of probabil-
ity and the theory of operator algebras lies in the fact that the time evolution of
a noncommutative stationary stochastic process is an endomorphism of an op-
erator algebra, see for example [17]. In recent time the author has studied the
question how the probabilistic notion of adaptedness of a process with respect
to a filtration manifests itself on the level of endomorphisms of operator alge-
bras. See [8] for some general theory, here we concentrate on the following very
interesting class of examples.

Think of the hyperfinite II1-factor R as a weak closure with respect to the
trace of an infinite tensor product of copies (Md)n of Md, the algebra of complex
d× d-matrices (d > 2):

R =
( ∞⊗

n=0
(Md)n

)−
.

This tensor product structure may be interpreted as a filtration. Motivated by
the above considerations we call a (unital normal ∗-) endomorphism α : R → R
adapted if for all N ∈ N0

α
( N⊗

n=0
(Md)n

)
⊂

N+1⊗

n=0
(Md)n.

It is not difficult to show that such an endomorphism admits a product represen-
tation in the following sense (see 4.5.2 of [8], or 5.1.6 of [14]):

α = lim
N→∞

Ad(U1 · · ·UN),

where Un is a unitary in (Md)n−1 ⊗ (Md)n (naturally embedded in R), so that
Ad(Un) = Un ·U∗

n is an automorphism of (Md)n−1⊗ (Md)n. Given any sequence
of unitaries Un ∈ Md ⊗ Md, such a limit always exists pointwise in the σ-weak
topology (because on localized elements only finitely many factors in the product
act nontrivially) and it defines an adapted endomorphism. Let us call the partic-
ular case when all Un are equal to some fixed U ∈ Md ⊗ Md the homogeneous case
and denote it by αU .

In fact, it is possible to arrive at these endomorphisms in quite different
ways. As analyzed by J. Cuntz in [4], [5], any endomorphism of a Cuntz algebra
Od is induced by a unitary element U ∈ Od and may be indexed λU . Now Od
contains an infinite tensor product of Md in a natural way, and if U ∈ (Md)0 ⊗
(Md)1 then it can be checked that the restriction of λU to this subalgebra (and
weak closure with respect to the trace) yields αU . See 1.2 of [5].
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This point of view also shows that the αU are of some interest in algebraic
quantum field theory [10]. It was R. Longo who in [18] started to use the theory
of sectors to study properties of these endomorphisms. In particular he posed
the problem of computing the index of the range which equals the square of the
statistical dimension. Partial results are obtained in [18], [13] and refinements of
these methods and many more results along these lines are contained in [3], [2].
The concept of “localized endomorphism” as defined by R. Conti and C. Pinzari
in [3] is a slightly more general version of what we have called “homogeneous
adapted endomorphism” above, and the reader can find in their introduction a
discussion how this is related to the concept of “localized endomorphism” in
algebraic quantum field theory [10].

As V. Jones and V.S. Sunder write in 5.1.6 of [14], “it would be very inter-
esting to determine the exact dependence of the index on the initial sequence of
unitary elements”. Despite the progress sketched above one cannot say that this
goal is fully achieved and it may well be worth to consider reformulations of the
problem. The methods we present here come from the probabilistic interpreta-
tion sketched in the beginning. In the monograph [8] we give ample evidence
that the study of noncommutative stationary processes greatly benefits from the
systematic use of certain operators which are not contained in the original von
Neumann algebras. Our description of this approach in Section 2 is concise but
selfcontained for our purposes here. In detail, we associate to an adapted en-
domorphism α a family of unital completely positive maps, all acting on finite
dimensional spaces. In Theorem 2.3 it is shown how their asymptotic properties
determine whether α is an automorphism (i.e. surjective) or not. In the homoge-
neous case the result is especially nice: Surjectivity corresponds to the existence
of an absorbing vector state for the associated completely positive map.

In Section 3 we review the concept of an extended transition operator from
[8], [9] and derive some new aspects of it, namely an interesting interplay be-
tween these operators and the positive cone of the von Neumann algebra or the
GNS-space. In this way we get a close connection between the algebraic level and
the level of GNS-spaces, which may be seen as a part of spatial theory.

The connection between all these topics is finally established in Section 5. In
Theorem 5.1 we show that the Jones index [R : α(R)] of the range of an adapted
endomorphism α equals the probabilistic index of a unital completely positive
map Xα acting on Md. Thus we have a reduction to a finite dimensional problem.
Note that this does not depend on localizability assumptions for the conditional
expectation onto α(R) which underly many results in [3].

In Section 6 we show how the computation can actually be done for a class
of real orthogonal 4× 4-matrices. Even in this low dimensional case the complete
classification seems to be new. These computations are elementary but need some
work because Xα is obtained as a limit and because evaluation of the probabilistic
index requires a detailed understanding of the completely positive map. But we
think that we have achieved a separation of the relevant problems in such a way
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that in each part we can profit from independent theoretical progress. It is an
interesting question, for example, how other properties of the endomorphism α
reflect themselves in the finite dimensional map Xα.

Some conventions: For operator algebraic terminology we refer to [23]. The
algebras considered in this paper are von Neumann algebras and maps between
them are assumed to be normal. In particular, by the notation T : (A, φA) →
(B, φB) we mean a normal unital completely positive map T : A → B which
respects the normal states φA of A and φB of B in the sense that φB ◦ T = φA. We
denote by Tr the non-normalized trace for trace class operators, while tr always
denotes a tracial state, i.e. tr(1) = 1. The norm ‖ · ‖2 is defined by ‖a‖2

2 = tr(a∗a).
The positive cone in a von Neumann algebra A is denoted A+, and A1

+ consists
of the normalized elements in A+ in the sense that ‖a‖2 = 1.

2. AN APPROACH VIA GNS-SPACES

Suppose R =
( ∞⊗

n=0
(Md)n

)−
is the hyperfinite II1-factor and

α = lim
N→∞

Ad(U1 · · ·UN) (with unitaries Un ∈ (Md)n−1 ⊗ (Md)n)

is an adapted endomorphism, as described in Section 1. By the GNS-construction
with respect to the tracial state we obtain a Hilbert spaceH with a cyclic and sep-
arating vector Ω. If (Hn, Ωn) is obtained by GNS-construction from (Md)n with
the tracial state then we can think of H as an infinite tensor product of Hilbert
spaces Hn along the sequence of unit vectors Ωn. Because the trace is invariant
for the endomorphism α we can define an extension to an isometry v on H. With
unitaries un ∈ B(H) given by

unaΩ := Ad Un(a)Ω, n ∈ N, a ∈ R
we have

vaΩ := α(a)Ω = lim
N→∞

u1 · · · uN aΩ.

If qN is the orthogonal projection from H onto the subspace
N⊗

n=0
Hn and eN is the

orthogonal projection onto v
( N⊗

n=0
Hn

)
then, taking into account that v|⊗N

n=0 Hn
=

u1 · · · uN+1|⊗N
n=0 Hn

, we have

eN = u1 · · · uN+1 qN u∗N+1 · · · u∗1 .

We want to compute ‖E(a)‖2, where E : R → α(R) is the trace-preserving condi-
tional expectation onto α(R) and ‖ · ‖2 is defined by ‖a‖2

2 = tr(a∗a). Let e ∈ B(H)
be the orthogonal projection onto the closure of α(R)Ω, i.e. E(a)Ω = eaΩ for all
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a ∈ R. Then

‖E(a)‖2 = ‖E(a)Ω‖ = ‖eaΩ‖
= lim

N→∞
‖eN aΩ‖ = lim

N→∞
‖qN u∗N+1 · · · u∗1 aΩ‖.

The following lemma prepares a reformulation of this equality in terms of com-
pletely positive maps.

LEMMA 2.1. Let K1,K2 be Hilbert spaces, Ω2 ∈ K2 a unit vector. If q is the
orthogonal projection from K1 ⊗ K2 onto K1 ⊗ Ω2 and v : K1 → K1 ⊗ K2 is an
isometry, then for all ξ ∈ K1

‖q v ξ‖2 = 〈Ω2 , Tr1(v pξ v∗) Ω2〉.
Here pξ denotes the one-dimensional projection ontoCξ, and Tr1 denotes the partial trace
evaluated on K1, i.e. Tr1(ρ1 ⊗ ρ2) = Tr(ρ1)ρ2.

Proof. Choose an ONB (δi) of K2 with δ0 = Ω2. Note that v pξ v∗ is the one-
dimensional projection onto Cvξ. Thus if we expand vξ = ∑

i
ξi ⊗ δi with ξi ∈ K1,

then we get

〈Ω2 , Tr1(v pξ v∗) Ω2〉 =
〈

δ0, ∑
i,j
〈ξi, ξ j〉δj

〉
〈δi, δ0〉 = 〈ξ0, ξ0〉 = ‖q v ξ‖2.

PROPOSITION 2.2. For all a ∈
M⊗

n=0
(Md)n with ‖a‖2 = 1

‖E(a)‖2
2 = lim

N→∞
〈ΩN , FN · · · FM+1(ρ) ΩN〉.

Here ρ := Tr0,...,M−1(u∗M · · · u∗1 paΩ u1 · · · uM) is a positive operator with Tr(ρ) = 1 (a
so-called density operator) on HM and paΩ is the one-dimensional projection onto CaΩ.
Further for all n ∈ N the map Fn(·) := Trn−1(vn · v∗n) is completely positive, mapping
density operators on Hn−1 into density operators on Hn, where vn is an isometry from
Hn−1 into Hn−1 ⊗Hn given by vn ξ := u∗n(ξ ⊗Ωn) for ξ ∈ Hn−1. The subscripts of
Tr indicate the collection of indices of those Hn where the partial trace is evaluated.

Proof. For M 6 N use Lemma 2.1 with K1 :=
N⊗

n=0
Hn and K2 := HN+1 to

obtain

‖qN u∗N+1 · · · u∗1 aΩ‖2

= 〈ΩN+1, Tr0,...,N(u∗N+1 · · · u∗1 paΩ u1 · · · uN+1)ΩN+1〉
= 〈ΩN+1, TrM,...,N(u∗N+1 · · · u∗M+1 ρ uM+1 · · · uN+1)ΩN+1〉
= 〈ΩN+1, FN+1 · · · FM+1(ρ) ΩN+1〉.

Combining this with the computations in the beginning of this section yields the
result.
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Note that for the index computations by the Pimsner–Popa formula (as ex-
plained in Section 1) we need to control ‖E(a)‖2 for positive a ∈ R. It will be
shown in the following sections how this can be done. If we only want to know
whether α is an automorphism we only have to check whether ‖E(a)‖2 = 1 for
all a ∈ R with ‖a‖2 = 1. Criteria for this can thus be derived directly from
Proposition 2.2.

THEOREM 2.3. The adapted endomorphism α is an automorphism if and only if
for all M ∈ N0 and all density operators ρM on HM

lim
N→∞

(FN · · · FM+1(ρM)− pΩN ) = 0.

Here pΩN denotes the one-dimensional projection onto CΩN . Note that the spaces are
finite dimensional and we can interpret the limit in many equivalent ways, for example
by operator norms getting small.

We remark that only tails (Fn)n>M, with M arbitrarily large, are relevant
in this criterion. If α is homogeneous, α = αU , then identifying all Hn with H0
and all Ωn with Ω0 we can also identify all Fn with F := F1, mapping the space
of density operators on H0 into itself. Then the criterion can be simplified as
follows:

COROLLARY 2.4. The homogeneous adapted endomorphism αU is an automor-
phism if and only if the vector state given by Ω0 is absorbing for F, in the sense that for
all x ∈ B(H0) and all density operators ρ on H0 we have

lim
N→∞

Tr(FN(ρ) x) = 〈Ω0, xΩ0〉.
Because in the setting of Corollary 2.4 we have to consider powers of a single

completely positive map F we can use spectral theory to check whether we have
an automorphism or not. See [8] for more details about connections with ergodic
theory.

Proof. α is an automorphism if and only if ‖E(a)‖2 = 1 for all a ∈ R with

‖a‖2 = 1. It is enough to check this for a ∈
M⊗

n=0
(Md)n for all M. Running in Propo-

sition 2.2 through all a ∈
M⊗

n=0
(Md)n with ‖a‖2 = 1 we get all one-dimensional

projections on
M⊗

n=0
Hn as paΩ and (for M > 1) also as u∗M · · · u∗1 paΩ u1 · · · uM and

thus all density operators on HM as ρ. Summarizing, α is an automorphism if
and only if

lim
N→∞

〈ΩN , FN · · · FM+1(ρM) ΩN〉 = 1

for all M and all density operators ρM on HM. Now Theorem 2.3 and Corol-
lary 2.4 are a consequence of the following folklore result about trace class op-
erators which we only state below. A detailed proof is written down in A.5.3 of
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[8]. Compare further III.5.11 of [23]. The lemma also indicates the correct notions
of convergence to be used here if one considers infinite dimensional generaliza-
tions.

LEMMA 2.5. Consider sequences (Kn) of Hilbert spaces, (Ωn) of unit vectors,
(ρn) of density matrices such that Ωn ∈ Kn and ρn on Kn for all n. Then for N → ∞
the following assertions are equivalent:

(i) 〈ΩN , ρNΩN〉 → 1.
(ii) ‖ ρN − pΩN ‖1 → 0 (‖ρ‖1 := Tr|ρ|).

(iii) For all uniformly bounded sequences (xn) with xn ∈ B(Kn) for all n we have
Tr(ρN xN)− 〈ΩN , xNΩN〉 → 0.

3. EXTENDED TRANSITION AND POSITIVITY

Consider von Neumann algebras A,B, C on Hilbert spaces G,H,K with
cyclic vectors ΩG , ΩH, ΩK. The normal states onA,B, C induced by these vectors
are denoted φA, φB , ψ. Further suppose that

j : (B, φB) → (A⊗ C, φA ⊗ ψ)

is a (normal unital ∗-)homomorphism. Here we use von Neumann tensor prod-
ucts and the notation introduced at the end of Section 1. It is convenient to assume
that φA and φB are faithful, and we do that from now on. Then the vectors ΩG
and ΩH are also separating and j is injective.

We can extend j to a map

v : H → G ⊗K,

bΩH 7→ j(b) ΩG ⊗ΩK,

which is easily checked to be isometric and which will be called the associated
isometry. Then we can define a normal unital completely positive map

Z : B(G) → B(H),

x 7→ v∗ (x⊗ 1) v.

Note further that vΩH = ΩG ⊗ΩK and thus 〈ΩG , xΩG〉 = 〈ΩH, Z(x)ΩH〉.
Operators Z of this type have been studied in [8], [9] and have been called

“extended transition operators”. They play an interesting role in the spatial the-
ory of noncommutative Markov processes and their name is derived from the fact
that if we think of j as a dilation of a transition operator from B to A, then Z ex-
tends the dual transition operator on the commutants. For a survey on this type
of noncommutative Markov processes we refer to [17], further probabilistic back-
ground and details of the extension theory mentioned above can be found in [8],
[9]. Here we shall be concerned with another property of this class of operators:
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THEOREM 3.1. Let Z : B(G) → B(H) be an extended transition operator as
introduced above. Suppose that there exists a conditional expectation Q fromA⊗C onto
j(B) with invariant state φA ⊗ ψ. Then for any X : (A, φA) → (A, φA) there exists
a unique Ẑ(X) : (B, φB) → (B, φB) such that for some contraction x ∈ B(G) the
following equations are valid:

xaΩG = X(a)ΩG for all a ∈ A(3.1)

Z(x)bΩH = Ẑ(X)(b)ΩH for all b ∈ B.(3.2)

Explicitly: Ẑ(X) = j−1Q (X⊗Id) j, where Id is the identity on C.

Proof. The Kadison-Schwarz inequality for X tells us that X(a∗) X(a) 6
X(a∗a), and using the φA-invariance this implies that there is a contraction x ∈
B(G) which is uniquely determined by the first equation.

Further we get

Z(x)bΩH = v∗ (x⊗ 1) vbΩH
= v∗ (x⊗ 1) j(b) ΩG⊗ΩK
= v∗ X⊗Id(j(b)) ΩG⊗ΩK
= (j−1Q (X⊗Id) j)(b) ΩH,

because v∗(a⊗ c) ΩG ⊗ΩK = j−1Q(a⊗ c) ΩH for a ∈ A, c ∈ C. Because ΩH
is separating, Ẑ(X) is uniquely determined by the second equation and thus we
have

Ẑ(X) = j−1Q (X⊗Id) j.
From the properties of the factors of this product it is then easily checked that in-
deed Ẑ(X) is a normal unital completely positive map with invariant state φB .

REMARK 3.2. In [8], [9] we also considered non-unital homomorphisms j
with j(1) > 1⊗ pΩK , where pΩK is the one-dimensional projection onto CΩK.

Then all the arguments above still work except that Ẑ(X) may fail to be unital.

On the other hand, the following special unital case is particularly con-
venient and will in fact be the only one which appears in the applications in
Section 6: Let us call the homomorphism j : (B, φB) → (A ⊗ C, φA ⊗ ψ) auto-
morphic if A = B, G = H, φA = φB =: φ and there is a (normal ∗-)automorphism
β : (A⊗ C, φ⊗ ψ) → (A⊗ C, φ⊗ ψ) such that

j(a) = β(a⊗ 1) for all a ∈ A.

Then Theorem 3.1 can be simplified as follows:

COROLLARY 3.3. In the automorphic case the conditional expectation Q always
exists, namely Q = β Q0 β−1, where Q0 : (A⊗ C, φ⊗ ψ) → (A, φ) is the conditional
expectation determined by Q0(a⊗ c) = a ψ(c) (“slice map”). Then we have

Ẑ(X) = Q0 β−1 (X⊗Id) β.
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Proof. Immediate from the definition of automorphic and Theorem 3.1.

The preceding results show that an extended transition operator Z can also
be interpreted as a map Ẑ between spaces of completely positive maps. This is a
second kind of positivity which must be clearly distinguished from the complete
positivity of Z itself. To make this more precise, we give

DEFINITION 3.4. Let A be a von Neumann algebra with a faithful normal
state φ. A normal completely positive map X : A → A is called (φ-)doubly positive
if additionally

φ(a∗X(a)) > 0 for all a∈A.

EXAMPLE 3.5. Let A be a d× d-matrix with nonnegative real entries. Think-
ing of it as a positive map on the commutative algebra Cd with the arithmetic
mean as the state, we can check that in this case double positivity means that A

is also positive semidefinite. For example A =
(

2 1
1 1

)
is such a matrix. In the

theory of matrices “doubly positive”, or more precisely: “doubly nonnegative”,
is a well established terminology for that (but beware: “completely positive” is
used with a different meaning), see [1]. Some examples of doubly positive oper-
ators acting on noncommutative algebras can be seen in Remark 4.9.

PROPOSITION 3.6. Let Z : B(G) → B(H) be an extended transition operator
corresponding to some j : (B, φB) → (A⊗ C, φA ⊗ ψ). If X : (A, φA) → (A, φA) is
φA-doubly positive then Ẑ(X) : (B, φB) → (B, φB) is φB-doubly positive.

Proof. It suffices to check the additional property in Definition 3.4. If xaΩG =
X(a)ΩG for all a ∈ A, then by assumption

0 6 φA(a∗X(a)) = 〈aΩG , xaΩG〉, i.e. x > 0.

Then also Z(x) > 0 and for all b ∈ B
φB(b∗Ẑ(X)(b)) = 〈bΩH, Z(x)bΩH〉 > 0.

This shows that Ẑ(X) is φB-doubly positive.

4. A PROBABILISTIC INDEX FOR COMPLETELY POSITIVE MAPS

DEFINITION 4.1. Let A be a von Neumann algebra with a faithful normal
tracial state and let S : A → A be a normal unital completely positive map. Then
π(S), the probabilistic index of S, is defined by

π(S)−1 := inf
0 6=a∈(A⊗Mn)+, n∈N

tr(a · S⊗Idn(a))
tr(a2)

.



348 ROLF GOHM

Introducing the notation (A⊗ Mn)1
+ for positive elements a with tr(a2) = 1

we can also write π(S)−1 := inf tr(a · S⊗Idn(a)), the infimum over a ∈ (A ⊗
Mn)1

+ and all n ∈ N. Obviously we have π(S) ∈ [1, ∞] and π(S) = 1 if and only
if S = Id. We now discuss further elementary properties of this concept in a series
of remarks.

REMARK 4.2. Suppose that a, b ∈ (A⊗ Mn)+. Then

tr((a + b) · S⊗Idn(a + b)) > tr(a · S⊗Idn(a)) + tr(b · S⊗Idn(b)),

because the mixed terms are nonnegative. If further 0 6= a, b and tr(ab) = 0 then
tr(a2) + tr(b2) = tr((a + b)2) and

tr((a + b) · S⊗Idn(a + b))
tr((a + b)2)

> tr(a · S⊗Idn(a))
tr(a2)

tr(a2)
tr((a + b)2)

+
tr(b · S⊗Idn(b))

tr(b2)
tr(b2)

tr((a + b)2)

> min
{ tr(a · S⊗Idn(a))

tr(a2)
,

tr(b · S⊗Idn(b))
tr(b2)

}
.

Using the spectral theorem for positive operators we infer that

π(S)−1 = inf
0 6=p

tr(p · S⊗Idn(p))
tr(p)

,

where p ranges over all (nonzero) projections of A⊗ Mn for all n ∈ N. If all such
projections are orthogonal sums of minimal ones then it is enough to consider the
infimum for minimal projections.

REMARK 4.3. If A is a II1-factor and S = E is a trace-preserving conditional
expectation onto a II1-subfactor A0, then π(S) coincides with the probabilistic
index or Pimsner–Popa index introduced in [20]. In 2.2 of [20], it is shown that
this also coincides with the Jones index [A : A0] introduced in [12]. In fact, by 2.2
of [20], we have

[A : A0]−1 = inf
0 6=a∈A+

‖E(a)‖2
2

‖a‖2
2

= inf
0 6=a∈A+

tr(a · E(a))
tr(a2)

and similarly π(S)−1 =

inf
0 6=a∈(A⊗Mn)+, n∈N

tr(a · E⊗Idn(a))
tr(a2)

= inf
n∈N

[A⊗ Mn : A0 ⊗ Mn] = [A : A0]−1,

where the last inequality follows from 2.1.15 of [12].

REMARK 4.4. There is another situation when no amplification of S is needed
in Definition 4.1: If A is commutative then

π(S)−1 = inf
0 6=a∈A+

tr(a · S(a))
tr(a2)

.
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Proof. Identify A with L∞(Ω, Σ, µ) for a probability space (Ω, Σ, µ). The
probability measure µ represents the trace. Then

A⊗ Mn = L∞(Ω, Σ, µ)⊗ Mn ' L∞(Ω, Σ, µ; Mn),

i.e. Mn-valued functions. Let p̃ be a projection-valued function which yields a
good approximation of the infimum in Remark 4.2. We can approximate p̃ by a
step function with only finitely many projections as values (for details in measure
theory we refer to [21]). Using Remark 4.2 we infer that we can find a nonzero
projection p⊗ q ∈ A ⊗ Mn which also yields a good approximation of the infi-
mum. But now we get

tr(p⊗ q · S⊗Idn(p⊗ q))
tr(p⊗ q)

=
tr(p · S(p))

tr(p)
,

which shows that we do not need to consider amplifications of S to compute the
index. Note that if A = Cd with the arithmetic mean as the trace and S : A →
A is considered as a stochastic matrix, then π(S)−1 is nothing but the smallest
diagonal entry.

REMARK 4.5. To see an example where amplification is needed to get the
correct value of the probabilistic index, consider the trace-preserving conditional
expectation P0 : M2 → M2, a 7→ tr(a) 1. Then inf tr(p P0(p)) = 1

2 if the infimum
is computed for one-dimensional projections in M2. This is easily checked by
using the explicit parameterization as a Bloch sphere, see for example [19]. But
π(P0) = 4, as can be seen by applying Proposition 4.8 below. This is also the
correct value for the index of the inclusion C ⊂ M2 in the sense of Chapter 2
in [7].

REMARK 4.6. For S : Mn → Mn we have

π(S)−1 = inf
a∈(Mn⊗Mn)1

+

tr(a · S⊗Idn(a)).

In fact, if m > n then for any η ∈ Cn ⊗ Cm there exists η′ ∈ Cn ⊗ Cn and an
isometry w : Cn → Cm such that η = (1 ⊗ w)η′, see for example Lemma 2.2.1
of [6]. Thus for any one-dimensional projection p ∈ Mn ⊗ Mm there exists a one-
dimensional projection p′ ∈ Mn ⊗ Mn with p = (1⊗ w)p′(1⊗ w∗). But then

Tr(p · S⊗Idm(p)) = Tr(p′ · S⊗Idn(p′)).

The result follows from this because by Remark 4.2 considering minimal projec-
tions is enough.

REMARK 4.7. Recall from Definition 3.4 that we call S (tr-)doubly positive
if it additionally satisfies tr(a∗ S(a)) > 0 for all a ∈ A. If the (unital) map S is also
trace-preserving and (tr-)doubly positive then we get an upper bound

π(S) 6 π(P0),
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where P0 : A → A, a 7→ tr(a) 1 is the conditional expectation onto the constants.
Note that P0 is itself trace-preserving and (tr-)doubly positive.

Proof. Decompose a ∈ (A⊗ Mn)+ as a = a0 + a1 with a0 = P0 ⊗ Idn(a) and
a1 = a− P0 ⊗ Idn(a). Note that the ai are selfadjoint and satisfy tr(a0 · a1) = 0.
Now we compute

tr(a · S⊗Idn(a)) = tr(a · S⊗Idn(a0)) + tr(a0 · S⊗Idn(a1)) + tr(a1 · S⊗Idn(a1)).

The first summand is

tr(a · (S⊗Idn)(P0⊗Idn)(a)) = tr(a · P0⊗Idn(a)).

For the second summand we find

tr(P0⊗Idn(a) · S⊗Idn(a1)) = tr(S⊗Idn(P0⊗Idn(a) · a1))

= tr((P0⊗Idn)(a) · a1) = 0.

Finally the third summand is nonnegative because if S is (tr-)doubly positive then
S⊗Idn is (tr⊗ trn)-doubly positive. In fact, writing b = ∑

i,j
bij⊗eij with bij ∈ A

and matrix units eij ∈ Mn we get

(tr⊗ trn)(b∗ ·S⊗Idn(b)) = ∑
i,j,k,`

tr(b∗ijS(bk`)) trn(e∗ijek`) =
1
n ∑

i,j
tr(b∗ijS(bij)) > 0.

We now compute π(S) for a class of examples.

PROPOSITION 4.8. Let S : M2 → M2 be a unital completely positive map with
the Pauli matrices

σ0 =
(

1 0
0 1

)
, σ1 =

(
1 0
0 −1

)
, σ2 =

(
0 1
1 0

)
, σ3 =

(
0 −i
i 0

)

as eigenvectors, i.e., S σi = λi σi with λ0 = 1, λ1, λ2, λ3 ∈ R. With λmin :=min{λ1, λ2,
λ3} we get

π(S)−1 = min
{1

2
(1 + λmin),

1
4

3

∑
i=0

λi

}
.

REMARK 4.9. Note that any S : M2 → M2 as in Proposition 4.8 is automat-
ically trace-preserving. It is well known (see Appendix B of [16]) that a unital
linear map on M2 with the Pauli matrices as eigenvectors is completely positive
if and only if the tuple (λ1, λ2, λ3) of eigenvalues is contained in the (real) tetra-
hedron with corners at

(1, 1, 1), (1,−1,−1), (−1, 1,−1), (−1,−1, 1).

As it should be, this implies that the formula for π(S)−1 in Proposition 4.8 always
yields values in the interval [0, 1].
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If M2 3 a =
3
∑

i=0
αi σi for some numbers αi, then from tr(σi σj) = δij we infer

that tr(a∗S(a)) =
3
∑

i=0
λi |αi|2. Thus S is (tr-)doubly positive if and only if we have

additionally λ1, λ2, λ3 > 0. In this case 1 6 π(S) 6 π(P0) = 4 by Remark 4.7. On
the other hand, if we drop double positivity we can easily write down examples
with π(S) = ∞. For example, check that S : a 7→ σ1 a σ1 has λ1 = 1, λ2 = λ3 = −1
and then use Proposition 4.8.

Proof. Using Remark 4.6 we have

π(S)−1 = inf
a∈(M2⊗M2)1

+

tr(a · S⊗Id2(a)).

Now write a ∈ (M2 ⊗ M2)1
+ in the form

a =
3

∑
i=0

σi ⊗ ρi

with ρi ∈ M2. We have ρi = ρ∗i and
3
∑

i=0
tr(ρ2

i ) = 1. Then

π(S)−1 = inf
a∈(M2⊗M2)1

+

tr(a · S⊗Id2(a)) = inf
a∈(M2⊗M2)1

+

3

∑
i=0

λi tr(ρ2
i ).

Therefore Proposition 4.8 is an immediate consequence of the following

LEMMA 4.10. Consider the set

M := {(tr(ρ2
0), tr(ρ2

1), tr(ρ2
2), tr(ρ2

3))}a∈(M2⊗M2)1
+

as a subset of the hyperplane x0 + x1 + x2 + x3 = 1 in R4. Then the convex hull of M is
the polyhedron with corners at

(1, 0, 0, 0),
1
2
(1, 1, 0, 0),

1
2
(1, 0, 1, 0),

1
2
(1, 0, 0, 1),

1
4
(1, 1, 1, 1).

Proof. Let us first check that the given corners belong to the set M. In fact,
we find the following correspondences:

a0 = σ0 ⊗ σ0 B (1, 0, 0, 0),

a1 =
1√
2
(σ0 ⊗ σ0 + σ1 ⊗ σ1) B 1

2
(1, 1, 0, 0),

a2 =
1√
2
(σ0 ⊗ σ0 + σ2 ⊗ σ2) B 1

2
(1, 0, 1, 0),

a3 =
1√
2
(σ0 ⊗ σ0 − σ3 ⊗ σ3) B 1

2
(1, 0, 0, 1),

a4 =
1
2
(σ0 ⊗ σ0 + σ1 ⊗ σ1 + σ2 ⊗ σ2 − σ3 ⊗ σ3) B 1

4
(1, 1, 1, 1).



352 ROLF GOHM

a0, . . . , a4 are multiples of projections, normalized so that they belong to (M2 ⊗
M2)1

+.
It remains to show that any element of M is a convex combination of these

corners. To see that, we derive some properties shared by all elements (α, β, γ, δ)
of M:

(i) α, β, γ, δ > 0,
(ii) α + β + γ + δ = 1,

(iii) α > β, γ, δ,
(iv) α + β > γ + δ, α + γ > β + δ, α + δ > β + γ.

In fact, (i) and (ii) are immediate from the definition. To see (iii) and (iv) let us

write a ∈ (M2 ⊗ M2)1
+ as a block matrix

(
A B∗
B C

)
with A, B, C ∈ M2. Then

ρ0 =
1
2
(A + C), ρ1 =

1
2
(A− C), ρ2 =

1
2
(B + B∗), ρ3 =

1
2i

(B− B∗).

Because A, C > 0 we have ρ0 ± ρ1 > 0. We conclude that

tr(ρ2
0 − ρ2

1) = tr((ρ0 + ρ1)(ρ0 − ρ1)) > 0,

which is α > β. The other inequalities α > γ and α > δ in (iii) follow by applying
automorphisms of M2 which permute the Pauli matrices.

Further, see 3.5.15 of [11], for a general inequality for such block matrices
which specialized to the trace norm ‖ · ‖2 yields

tr(BB∗) 6 ‖A‖2 ‖C‖2.

Using this we get

γ + δ = tr(ρ2
2) + tr(ρ2

3)

=
1
4
( tr((B + B∗)2)− tr((B− B∗)2))

=
1
2

tr(BB∗ + B∗B) = tr(BB∗)

6 ‖A‖2 ‖C‖2 6 1
2
(‖A‖2

2 + ‖C‖2
2)

=
1
2
(tr(A2) + tr(C2)) = tr(ρ2

0) + tr(ρ2
1) = α + β.

Again by applying automorphisms of M2 which permute the Pauli matrices we
also get the other inequalities in (iv).

Now start with any (α, β, γ, δ) ∈ M, and without restriction of generality
assume that β is the minimal number in β, γ, δ. Define α′ := α− β, γ′ := γ−
β, δ′ := δ− β. Then

(α, β, γ, δ) = β(1, 1, 1, 1) + γ′(1, 0, 1, 0) + δ′(1, 0, 0, 1) + (α′ − γ′ − δ′)(1, 0, 0, 0).
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Using properties (i), (ii), (iii), (iv) above we can easily check that this presents
(α, β, γ, δ) as a convex combination of the corners given in Lemma 4.10. Thus
Lemma 4.10 is proved.

5. COMPUTATION OF [R : αR]

Putting together the definitions and results from the previous sections we
can describe a strategy for the computation of [R : αR] for an adapted endomor-
phism α. This is summarized in

THEOREM 5.1. Let α = lim
N→∞

Ad(U1 · · ·UN) be an adapted endomorphism of

R =
( ∞⊗

n=0
(Md)n

)−
. Then there exists a unital completely positive and trace preserving

map Xα : Md → Md such that

[R : αR] = π(Xα).

Explicitly: Using the maps Fn from Section 2 and the notation from Section 3 (see also
Remark 5.3 below), the limit

X(M)
α := lim

N→∞
F̂∗M+1 · · · F̂∗N(PN)

(with PN : (Md)N → (Md)N , a 7→ tr(a)1 ) exists for all M ∈ N0, and we can take for
Xα any accumulation point of the X(M)

α (as maps on Md). If α is homogeneous then we
define

Xα := X(0)
α = lim

N→∞
(F̂∗)N(P0).

Proof. From Proposition 2.2, for a ∈
M⊗

n=0
(Md)n with ‖a‖2 = 1 we have

‖E(a)‖2
2 = lim

N→∞
〈ΩN , FN · · · FM+1(ρ) ΩN〉

with ρ := Tr0,...,M−1(u∗M · · · u∗1 paΩ u1 · · · uM) and Fn(·) := Trn−1(vn · v∗n), where
vn := u∗n|Hn−1 . We transform this as follows:

〈ΩN , FN · · ·FM+1(ρ) ΩN〉
= Tr(pΩN FN · · · FM+1(ρ)) = Tr(F∗M+1 · · · F∗N(pΩN ) ρ)

= Tr(10,...,M−1 ⊗ F∗M+1 · · · F∗N(pΩN ) u∗M · · · u∗1 paΩ u1 · · · uM)

= 〈ξ, 10,...,M−1 ⊗ F∗M+1 · · · F∗N(pΩN )ξ〉,
where pΩN is the one-dimensional projection onto CΩN , ξ := u∗M · · · u∗1 aΩ =
Ad(U∗

M · · ·U∗
1 )(a)Ω and F∗n is the adjoint of Fn with respect to the duality given
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by Tr. Explicitly:

F∗n : B(Hn) → B(Hn−1),

x 7→ v∗n (1⊗ x) vn.

In fact, if x ∈ B(Hn) then

Tr(Fn(ρ) · x) = Tr(Trn−1(vnρv∗n) · x) = Tr(vnρv∗n · 1⊗ x) = Tr(ρ · v∗n 1⊗ x vn).

Because vn is an isometric extension of Ad U∗
n |(Md)n−1

it turns out that F∗n is an
extended transition operator as studied in Section 3. See Remark 5.3 below for
additional details which are helpful for later computations but are not needed in
this proof. Note further that

pΩN aΩN = PN(a)ΩN for all a ∈ (Md)N .

We conclude from Theorem 3.1 that for b ∈ (Md)M

F∗M+1 · · · F∗N(pΩN )bΩM = XMN(b)ΩM

with a unital completely positive and trace preserving map

XMN := F̂∗M+1 · · · F̂∗N(PN) : (Md)M → (Md)M.

Because vN+1ΩN = ΩN ⊗ΩN+1 we get F∗N+1(pΩN+1) > pΩN and thus

F∗M+1 · · · F∗N+1(pΩN+1) > F∗M+1 · · · F∗N(pΩN ),

which means that xMN := F∗M+1 · · · F∗N(pΩN ) is (for N → ∞) an increasing se-
quence of positive operators. It is bounded by 1 and thus it converges to a posi-
tive operator x(M)

α ∈ B(HM). Then for all b ∈ (Md)M we get

XMN(b)ΩM = xMNbΩM
N→∞−→ x(M)

α bΩM =: X(M)
α (b)ΩM.

Here X(M)
α (b) is well defined because ΩM is separating, and as a limit of unital

completely positive and trace preserving maps, X(M)
α is also a unital completely

positive and trace preserving map from (Md)M to (Md)M.

Now recall that for a ∈
M⊗

n=0
(Md)n with ‖a‖2 = 1 we have ‖E(a)‖2

2 =

lim
N→∞

〈Ω, Ad(U∗
M · · ·U∗

1 )(a∗)10,...,M−1 ⊗ F∗M+1 · · · F∗N(pΩN )Ad(U∗
M · · ·U∗

1 )(a)Ω〉.

Varying a in
( M⊗

n=0
(Md)n

)1

+
we notice that also Ad(U∗

M · · ·U∗
1 )(a) takes all values

in
( M⊗

n=0
(Md)n

)1

+
and thus with inf = inf

a∈(
⊗M

n=0(Md)n)1
+

inf ‖E(a)‖2
2 = inf lim

N→∞
〈Ω, a 10,...,M−1 ⊗ F∗M+1 · · · F∗N(pΩN ) aΩ〉

= inf 〈Ω, a 10,...,M−1 ⊗ X(M)
α (a)Ω〉(5.1)

= inf tr(a 10,...,M−1 ⊗ X(M)
α (a)).
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Let us first consider the homogeneous case. Then the X(M)
α can all be identified

with Xα := X(0)
α on (Md)0. Considering M → ∞ for

( M⊗
n=0

(Md)n

)1

+
we get

inf
a∈R1

+

‖E(a)‖2
2 = inf

M∈N0, a∈(
⊗M

n=0(Md)n)1
+

tr(a · 10,...,M−1 ⊗ Xα(a)).

The left hand side is the Pimsner–Popa index, which is equal to the Jones index
[R : αR], see Section 1, Remark 3.3, and first of all 2.2 of [20], for a proof of
this equality. The right hand side is π(Xα), the probabilistic index of Xα, see
Definition 4.1. Thus for the homogeneous case the proof is finished.

In the inhomogeneous case let the X(M)
α all act on Md and then let Xα be

any accumulation point of the X(M)
α . Such points exist because the set of unital

completely positive maps on Md is compact. Equation 5.1 above shows that

inf
a∈(

⊗M
n=0(Md)n)1

+

tr(a · 10,...,M−1 ⊗ X(M)
α (a))

is decreasing with M, and then similar arguments as above make clear that [R :
αR] = π(Xα).

REMARK 5.2. Using Proposition 3.6 we conclude that Xα is (tr-)doubly pos-
itive. By Remark 4.7 this yields the upper bound

[R : αR] = π(Xα) 6 π(P0).

For example, for d = 2 we have π(P0) = 4, see Remark 4.5 and Proposition 4.8.
Of course the inequality [R : αR] 6 d2 is well known by other arguments, see
[18], [14].

REMARK 5.3. Let us describe F∗n as an extended transition operator in more
detail. As noted in the proof of Theorem 5.1 we have

F∗n (x) = v∗n (1⊗ x) vn,

where vn extends Ad U∗
n |(Md)n−1

. Identifying all (Md)n with Md, we can identify

F∗n with an extended transition operator Z]
n which is given in an automorphic

way, as in Corollary 3.3. With canonical unit vectors (δi) and

flip : Cd → Cd, δi ⊗ δj 7→ δj ⊗ δi,

the defining automorphism β]
n is given explicitly as

β]
n : Md ⊗ Md → Md ⊗ Md, β]

n = Ad(U]
n) with U]

n := flip ◦U∗
n .

6. A CLASS OF EXAMPLES

We now present a class of examples where we can obtain a complete classifi-
cation of the occurring index values. This is based on the following computations.
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LEMMA 6.1. Suppose that X : M2 → M2 is a unital completely positive map
with Xσi = λiσi, i = 0, 1, 2, 3 (as in Proposition 4.8). Further let U ∈ M2 ⊗ M2 ' M4
be a real orthogonal matrix with

U =
(

1 0
0 0

)
⊗

(
α 0
0 d

)
+

(
0 0
0 1

)
⊗

(
a 0
0 δ

)

+
(

0 0
1 0

)
⊗

(
0 b
γ 0

)
+

(
0 1
0 0

)
⊗

(
0 β
c 0

)

'




α 0 0 β
0 d c 0
0 b a 0
γ 0 0 δ


 .

Form the extended transition operator Z for the automorphism β = Ad U, see Corol-
lary 3.3 (automorphic case). Then Ẑ(X)σi = λ′iσi with




λ′0
λ′1
λ′2
λ′3


 = A




λ0
λ1
λ2
λ3


 ,

where A is a stochastic 4× 4-matrix whose rows A0, A1, A2, A3 are given by

A0 = (1, 0, 0, 0),

A1 =
( 1

4
(α2 + b2 − γ2 − d2)2,

1
4
(α2 − b2 − γ2 + d2)2,

(αγ + bd)2, (αγ− bd)2
)

,

A2 =
( 1

4
(αc + βd + γa + δb)2,

1
4
(αc + βd− γa− δb)2,

1
2
(αa + βb)2 +

1
2
(γc + δd)2, 0

)
,

A3 =
( 1

4
(αc− βd− γa + δb)2,

1
4
(αc− βd + γa− δb)2,

0,
1
2
(αa− βb)2 +

1
2
(γc− δd)2

)
.

Proof. This is a lengthy but straightforward computation with 4× 4-matrices.
We omit writing it down but indicate what has to be done and explain the spe-
cific features of the solution: We have to put the Pauli matrices σi into the formula
Ẑ(X) = Q0 β−1(X⊗Id) β obtained in Corollary 3.3. Explicitly:

Ẑ(X)σi = Q0 U∗[X⊗Id(U σi ⊗ 1 U∗)]U.



INDEX FOR COMPLETELY POSITIVE MAPS 357

By its special form U is an even transformation with respect to the Z2-grading of
C2 ⊗C2 which is given with the canonical unit vectors {δ0, δ1} as

C2 ⊗C2 = span{δ0 ⊗ δ0, δ1 ⊗ δ1} ⊕ span{δ0 ⊗ δ1, δ1 ⊗ δ0}.

This prevents Ẑ(X) from mixing up σ1 with σ2, σ3. Because the entries of U are
real numbers, Ẑ(X) also does not mix up σ2 and σ3 and thus has the same eigen-
vectors as X. To obtain the formulas above it is finally necessary to insert the
orthogonality relations for the entries of U.

LEMMA 6.2. Given a unitary U ∈ M2 ⊗ M2, let Z] be the extended transition
operator belonging to the automorphism β] = Ad U], where U] = flip ◦U∗ (compare
Remark 5.3). Suppose that X : M2 → M2 is a unital completely positive map with
Xσi = λiσi, i = 0, 1, 2, 3. Then in the following two cases we have Ẑ](X)σi = λ]

i σi so
that 



λ]
0

λ]
1

λ]
2

λ]
3


 = A]




λ0
λ1
λ2
λ3




with a stochastic matrix A]:

(I) For U =




c1 0 0 s1
0 s2 c2 0
0 −c2 s2 0
s1 0 0 −c1


 or U =




c1 0 0 s1
0 s2 c2 0
0 c2 −s2 0
−s1 0 0 c1




we have A] =




1 0 0 0
c2− c2

+ s2
+ s2−

0 s2
12 c2

12 0
0 s2

21 0 c2
21


 .

(II) For U =




c1 0 0 s1
0 s2 c2 0
0 −c2 s2 0
−s1 0 0 c1


 or U =




c1 0 0 s1
0 s2 c2 0
0 c2 −s2 0
s1 0 0 −c1




we have A] =




1 0 0 0
c2− c2

+ s2
+ s2−

s2
21 0 c2

21 0
s2

12 0 0 c2
12


 .

Here we have used the following notation: Take angles φ1, φ2 in the interval (−π
2 , + π

2 ]
and ci := cos φi, si := sin φi for i = 1, 2 and
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c12 := cos(φ1 + φ2), s12 := sin(φ1 + φ2),

c21 := cos(φ1 − φ2), s21 := sin(φ1 − φ2),

c+ :=
1
2
[cos(2φ1) + cos(2φ2)], s+ :=

1
2
[sin(2φ1) + sin(2φ2)],

c− :=
1
2
[cos(2φ1)− cos(2φ2)], s− :=

1
2
[sin(2φ1)− sin(2φ2)].

Proof. Forming U] from U means transposition followed by an exchange
of the second and third row. Now we can apply Lemma 6.1 for U] instead of
U. With some elementary trigonometry we get the formulas above, and we have
taken the opportunity to present A] in a more readable way by distinguishing
two cases.

THEOREM 6.3. Consider the homogeneous adapted endomorphism αU with U as
in Cases (I) and (II) of Lemma 6.2, φ1, φ2 ∈ (−π

2 , + π
2 ].

If φ1 6= ±φ2 then αU is an automorphism (i.e. [R : αUR] = 1). Suppose that
φ1 = ±φ2. Then in Case (I) we always have [R : αUR] = 4. In Case (II) we have
[R : αUR] = 4 if φ1 = φ2 = 0 or φ1 = φ2 = π

2 and we have [R : αUR] = 2
otherwise.

REMARK 6.4. Note that because only Ad U (= Ad(−U)) is relevant for αU ,
choosing angles φ1, φ2 ∈ (−π

2 , + π
2 ] in Cases (I) and (II) covers all homogeneous

adapted endomorphisms which are defined by an orthogonal matrix U of the
form given in Lemma 6.1. The following pictures summarize the content of The-
orem 6.3: for the two Cases (I) and (II) the dashed lines enclose the φ1, φ2-square
[−π

2 , + π
2 ]2. We leave it white when the index equals 1, thin colouring indicates

that the index equals 2 and thick colouring that the index equals 4.
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Proof. By Theorem 5.1 (and Remark 5.3) we have [R : αR] = π(Xα) with

Xα = lim
N→∞

(Ẑ])N(P0) : M2 → M2.

Using Lemma 6.2, we start with λ0 = 1, λ1 = λ2 = λ3 = 0 corresponding to P0
and conclude that the Pauli matrices are eigenvectors of Xα with eigenvalues
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


λα
0

λα
1

λα
2

λα
3


 = lim

N→∞
(A])N




1
0
0
0


 .

Finally we can use Proposition 4.8 to get the value of π(Xα) from the λα
i .

With the notation in Lemma 6.2 we can check that for φ1, φ2 ∈ (−π
2 , + π

2 ]

c− = 0 ⇔ cos(2φ1) = cos(2φ2) ⇔ φ1 = ±φ2,

s12 = 0 ⇔ sin(φ1 + φ2) = 0 ⇔ φ1 = φ2 =
π

2
or φ1 = −φ2,

s21 = 0 ⇔ sin(φ1 − φ2) = 0 ⇔ φ1 = φ2.

Thus if φ1 6= ±φ2 then c−, s12, s21 6= 0. Looking at the Markov chain associated
to the stochastic matrix A], we then observe that in both Cases (I) and (II) we
have paths of nonvanishing probability connecting any state to the absorbing
state belonging to row 0. Then it is well known (see for example [22]) that

lim
N→∞

(A])N




1
0
0
0


 =




1
1
1
1


 .

This means that Xα = Id and π(Xα) = 1.
Now assume that φ1 = ±φ2. This can be analyzed in a similar way. We have

c− = 0 which for Case (I) immediately implies that

lim
N→∞

(A])N




1
0
0
0


 =




1
0
0
0


 ,

which means that π(Xα) = 4. Now consider Case (II). If φ1 = φ2 = 0 or φ1 =
φ2 = π

2 then c− = s21 = s12 = 0 and

lim
N→∞

(A])N




1
0
0
0


 =




1
0
0
0


 , i.e. π(Xα) = 4.

For other angles we have c− = 0 and either s21 6= 0, s12 = 0 or s21 = 0, s12 6= 0.
Then either

lim
N→∞

(A])N




1
0
0
0


 =




1
∗
1
0


 or lim

N→∞
(A])N




1
0
0
0


 =




1
∗
0
1


 ,

which by Proposition 4.8 always yields π(Xα) = 2.
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REMARK 6.5. For Case (II) with φ1 = φ2 = π
4 the value 2 of the index has

been computed by R. Conti and F. Fidaleo in 4.2 of [2], using the theory of sectors.
It is an example of a braided endomorphism.

REMARK 6.6. Similar as in the proof of Theorem 6.3 we can also use Propo-
sition 4.8 and Lemma 6.2 together with Theorem 5.1 to determine index values for
inhomogeneous adapted endomorphisms α = lim

N→∞
Ad(U1 · · ·UN) where the Un

are orthogonal matrices of the form given in Lemma 6.1 or 6.2. Then the problem
can be reduced to the study of asymptotics for inhomogeneous Markov chains,
see [22].

Acknowledgements. This work was supported by DFG (Deutsche Forschungsgemein-
schaft). Further I would like to thank the referee for helpful remarks.

REFERENCES

[1] A. BERMAN, Complete positivity, Linear Algebra Appl. 107(1988), 57–63.

[2] R. CONTI, F. FIDALEO, Braided endomorphisms of Cuntz algebras, Math. Scand.
87(2000), 93–114.

[3] R. CONTI, C. PINZARI, Remarks on the index of endomorphisms of Cuntz algebras,
J. Funct. Anal. 142(1996), 369–405.

[4] J. CUNTZ, Automorphisms of certain simple C∗-algebras, in Quantum Fields — Al-
gebras, Processes (Proc. Sympos., Univ. Bielefeld, Bielefeld, 1978), Springer, Vienna, 1980,
pp. 187–196.

[5] J. CUNTZ, Regular actions of Hopf algebras on the C∗-algebra generated by a Hilbert
space, in Operator Algebras, Mathematical Physics, and Low Dimensional Topology, Res.
Notes Math., vol. ??, A.K. Peters, Wellesley, 1993, pp. ??.

[6] E. EFFROS, Z. RUAN, Operator Spaces, London Math. Soc. Monographs (N.S.), vol. 23,
Clarendon Press, Oxford 2000.

[7] F. GOODMAN, P. DE LA HARPE, V. JONES, Coxeter Graphs and Towers of Algebras,
Springer-Verlag, Berlin 1989.

[8] R. GOHM, Elements of a Spatial Theory for Non-Commutative Stationary Processes with
Discrete Time Index, Habilitationsschrift (2002). A revised version appeared as Non-
commutative Stationary Processes, Lecture Notes in Math., vol. 1839, Springer-Verlag,
Berlin 2004.

[9] R. GOHM, A duality between extension and dilation, in Advances in Quantum Dynam-
ics, AMS-IMS-SIAM Joint Summer Research Conference 2002, Contemp. Math., vol. 335,
Amer. Math. Soc., Providence RI 2003, pp. 139–147.

[10] R. HAAG, Local Quantum Physics, Springer-Verlag, Berlin 1992.

[11] R. HORN, C. JOHNSON, Topics in Matrix Analysis, Cambridge Univ. Press, Cambridge
1991.

[12] V.F.R. JONES, Index for subfactors, Invent. Math. 71(1983), 1–25.



INDEX FOR COMPLETELY POSITIVE MAPS 361

[13] V.F.R. JONES, On a family of almost commuting endomorphisms, J. Funct. Anal.
119(1994), 84–90.

[14] V.F.R. JONES, V.S. SUNDER, Introduction to Subfactors, Cambridge Univ. Press, Cam-
bridge 1997.

[15] H. KOSAKI, Extension of Jones’ theory on index of arbitrary factors, J. Funct. Anal.
66(1986), 123–140.

[16] C. KING, M.B. RUSKAI, Minimal entropy of states emerging from noisy quantum
channels, IEEE Trans. Inform. Theory 47(2001), 192–209.

[17] B. KÜMMERER, Survey on a theory of non-commutative stationary Markov pro-
cesses, in Quantum Probability and Applications. III, Lecture Notes in Math., vol. 1303,
Springer-Verlag, Berlin 1988, pp. 154–182.

[18] R. LONGO, A duality for Hopf algebras and for subfactors. I, Comm. Math. Phys.
159(1994), 123–150.

[19] M.A. NIELSEN, I.L. CHUANG, Quantum Computation and Quantum Information, Cam-
bridge Univ. Press, Cambridge 2000.

[20] M. PIMSNER, S. POPA, Entropy and index for subfactors, Ann. Sci. École Norm. Sup.
(4), 19(1986), 57–106.

[21] W. RUDIN, Real and Complex Analysis, 3rd edition, McGraw-Hill, 1987.

[22] E. SENETA, Non-Negative Matrices and Markov Chains, Springer Ser. Statist., Springer-
Verlag, Berlin 1981.

[23] M. TAKESAKI, Theory of Operator Algebras. I, Springe-Verlag, Berlin 1979.

ROLF GOHM, DEPARTMENT OF MATHEMATICS,UNIVERSITY OF READING,WHITE-
KNIGHTS, PO BOX 220, BERKSHIRE, RG6 6AX, UK

E-mail address: r.gohm@reading.ac.uk

Received December 12, 2003.


